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Correction to “Locally flat 2-spheres in simply connected 4-manifolds”

RONNIE LEE AND DARIUSZ M. WILCZYNSKI

In the proof of Theorem 1.2 of [3], p. 410, line-12, we asserted
that [P, h, z) @ H(A") has an orthogonal summand equivalent to H(A"*"). This
is indeed the case when b,(N) > |a(N)| + 2. For then [H,(N), A, x] ® H(Z") splits
off a copy of H(Z'*') and the assertion follows by Theorem 4.6. However,
as already pointed out in Remark 4.5, [H,(N), A, x] ® H(Z’) may not split off
H(Z™*") in the case b,(N) = |o(N)|+ 2. Thus to show that the stable equivalence
of (4.13) implies [P, h,z] =[P’,h’,2z] in this case as well, one argues that
(i) [P, h] ® 4 Z[{,] has an orthogonal summand equivalent to H(Z[{,]) for each
n|d, n>1, and (ii) [P, h] ® 4 A has an orthogonal summand of rank >1 which
is perpendicular to z @ 1. (This works also in the case b,(N) > |6(N)| + 2.) For then
the conclusion of Theorem 4.2 holds (see Remark 4.5) and the rest of the argument
goes through without change. It remains to show (i) and (ii). As before, (i) follows
from the signature hypothesis b,(N) > max, < ;. |6(N) — 2j(d —j)(1/d*)x - x| by
Theorem 10 of [4]. Since [P, /] ® , Z has an orthogonal summand of rank >1
which is perpendicular to z® 1, (ii) follows by the commutative diagram on
p. 406.

In the proof of Theorem 4.6, p. 407, line-7, the result of [1] was misapplied. The
argument was made for a primitive class Z whereas [1] requires the class to be
unimodular. Therefore the argument should be applied instead to the unimodular
class in P®; Z whose d multiple equals Z® 1. This yields an isometry y of
[P, h) ® , Z which maps £® 1 to the class corresponding to d(z ®1). It follows
from the discussion in [2, ch. IV §3] that, for k > 2, there are such isometries
which lift to [P, h] ® , A. Since £ € P, any lifted isometry will map # to d(z ® 1),
as required.

We are grateful to I. Hambleton and M. Kreck for bringing these two points to
our attention.
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