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Correction to &quot;Locally flat 2-spheres in simply connectée 4-manifolds&quot;

Ronnie Lee and Dariusz M. Wilczynski

In the proof of Theorem 1.2 of [3], p. 410, line-12, we asserted

that [P, h, z] ®H(Ar) has an orthogonal summand équivalent to H(Ar+]). This
is indeed the case when b2(N) &gt; \a(N)\ + 2. For then [H2(N\ A, x] ®H(Zr) splits
off a copy of H(Zr+l) and the assertion follows by Theorem 4.6. However,
as already pointed out in Remark 4.5, [H2(N), À, x] ®H(Zr) may not split off
H(Zr + l) in the case b2(N) \a(N)\ + 2. Thus to show that the stable équivalence
of (4.13) implies [P, h, z] £ [P\ h\ z&apos;\ in this case as well, one argues that

(i) [P, h] ®A Z[ÇJ has an orthogonal summand équivalent to H(Z[Çn]) for each

n | d, n &gt; 1, and (ii) [P, h] ®AÂ has an orthogonal summand of rank &gt; 1 which
is perpendicular to z ® 1. (This works also in the case b2(N) &gt; \&lt;r(N)\ + 2.) For then
the conclusion of Theorem 4.2 holds (see Remark 4.5) and the rest of the argument
goes through without change. It remains to show (i) and (ii). As before, (i) follows
from the signature hypothesis b2(N) &gt;ma.xo^J&lt;d\a(N)—2j(d—j)(l/d2)x - x\ by
Theorem 10 of [4]. Since [P, h] ®A IL has an orthogonal summand of rank &gt; 1

which is perpendicular to z®l, (ii) follows by the commutative diagram on

p. 406.

In the proof of Theorem 4.6, p. 407, line-7, the resuit of [1] was misapplied. The

argument was made for a primitive class z whereas [1] requires the class to be

unimodular. Therefore the argument should be applied instead to the unimodular
class in P®^Z whose d multiple equals £®1. This yields an isometry rj of
[P, h] ®A È which maps z® 1 to the class corresponding to a(z® 1). It follows
from the discussion in [2, ch. IV §3] that, for k &gt; 2, there are such isometries rj

which lift to [P, h] ®A Â. Since z € PG, any lifted isometry will map z to a(z ® 1),

as required.
We are grateful to I. Hambleton and M. Kreck for bringing thèse two points to

our attention.
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