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On the arithmetic of some division algebras

ERNST-ULRICH GEKELER*

Introduction

As is well known since Deuring’s pioneering work [5], there is a close relationship
between the theory of elliptic curves in positive characteristic p, and the arithmetic
of the definite quaternion algebra H( p) over Q ramified at p. Deuring’s results relied
heavily on Eichler’s class number formula for H(p) [8], proved shortly before by
analytical means. A more geometrical interpretation (and independent proof) of
these results has later been given by Igusa [16], and in particular by Deligne and
Rapoport [2]. The main feature is that supersingular elliptic curves (i.e., special
points on a certain modular scheme) are in 1-1 correspondence with the set of left
ideal classes in a maximal order of H( p). That correspondence may be used to derive
properties of the modular scheme from those of H(p), but also vice versa.

Now the question arises whether the same type of relationship holds if one
replaces “elliptic curves” by objects that in many other respects behave similarly,
namely by “Drinfeld modules™. In this case, instead of H(p), one considers division
algebras D = D(r, 4, 00) of dimension r? over their center K (a global field of positive
characteristic), and that ramify at precisely two places £, oo of K, with invariants
1/r, —1/r, respectively.

Let 4 be the subring of K of elements regular away from oo. It turns out that
(definitions to be given below) “supersingular Drinfeld A4-modules of rank r in
characteristic £

(i) have maximal A4-orders B in D as their endomorphism rings;
(it) their isomorphism classes correspond to the left ideal classes of a fixed
A-order B.

In some cases, enough is known about the modular schemes for Drinfeld
modules to be able to count the number of supersingular points. This way, we

* During the preparation of the paper, the author has been supported by a Heisenberg grant of DFG.
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arrive at class number formulas for D(r, 4, c0) that could not be obtained other-
wise. This is notably the case if r =2 [14], or if K is a rational function field F,(T)
and “00” is the usual place at infinity. The latter case will be treated in detail. In
particular, we shall describe the associated modular scheme and its supersingular
locus. The principal result, Theorem 5.13, is an explicit expression for the number
of ideal classes with a fixed weight. We also obtain the Mass formula 5.11, which
generalizes Deuring’s formula

Y 1/#(Aut (E)) =(p — 1)/24.

Recall that the sum on the left hand side is over the supersingular classes of elliptic
curves in characteristic p, and (p — 1)/24 is one half the value of the Riemann zeta
function at —1, deprived from its Euler factor at p.

Besides the relationship with Drinfeld modules mentioned above, our proof
relies on

(a) the transfer principle (3.5);
(b) the reducedness of the supersingular locus (4.3);
(c) some calculations (see Section 6) special to the case of a polynomial ring A.

From (b) and (c) we derive the Mass formula, which, combined with (a), yields the
theorem. But note that both (a) and (b) do not depend on specific assumptions on
A.

In principle, our Drinfeld module interpretation of the division algebra D
should also allow to determine its type number ( =number of conjugacy classes of
maximal orders). At least, Proposition 7.5 yields a geometrical description of the set
of types. As an example, we present the case r =2, which is quite analogous with
the elliptic curve case. However, for r > 2, further research is needed for a
numerical evaluation through zeta values and commutative class numbers.

Some of the results of this paper (e.g. Theorem 5.13) have been announced in
the C.R. note [13].

1. Notations

Throughout, K will denote a function field in one variable over the finite field [,
with g elements, of characteristic p. We assume that [, is the exact constant field of
K. We fix, once for all, a place “o0” of K, and let 4 be the subring of elements of
K regular away from oo. The places of K different from co are in 1-1 correspon-



318 ERNST-ULRICH GEKELER

dence with the maximal ideals (*“‘primes’’) of 4. We will not distinguish between the
two concepts; for 4 such a prime, F, is the field 4/4. Associated with oo, we have
the normalized absolute value “|?|” and the degree function “deg” on K defined by
deg x =log, |x|. The basic example is given by

(1.1) K=F,(T) a rational function field, co the usual place at infinity, and
A =F_[T] the polynomial ring.

Then deg x agrees with the degree of the polynomial x € A4.
For any r € N and prime 4, the central division algebra D = D(r, £) over K is
determined up to isomorphism by the following data:

(1.2) (i) dimg (D) =r?,
(i) inv, (D) =1/r,
(iii) invy, (D) = —1/r,
(iv) inv, (D) =0, if v # £, .

(“inv,”) is the local invariant at the place v of K, cf. [17].) We call these algebras
of Drinfeld type; as we will see, their ideal theory is related to Drinfeld A-modules.

(1.3) An order in D will be a maximal 4-order in D, i.e., a subring B of D that
(i) contains A; (ii) is finitely generated as an 4-module; (iii) satisfies KB = D, and
is maximal with these properties. A left ideal of B is an A-lattice 0 # £ = D that
satisfies B¢ < £. Two left ideals ¢, £’ are in the same class if there exists f € D* such
that £’ = ¢f. The right order of ¢ is B’ ={fe€ D | 4f = ¢}. For the convenience of
the reader, we collect the most important properties (which are well known and
hold in much greater generality):

(1.4) (i) The type number t(D) of conjugacy classes of orders in D is finite.

(it) Fix an order B in D. The number of left ideal classes of B is finite and
independent of B, therefore an invariant of D. It is called the class number h(D).

(iii) Each order B’ in D is the right order B of some left ideal ¢ of B. In
particular, ¢(D) < h(D).

All the orders B’ in D contain the unit group F} of 4, which “generically’ is the
full unit group of B’. We define the weight w(£) of a left ideal ¢ of B as

w($) = #((B)*) /(g — D).

(1.5) Finally, we let {(s) be the zeta function of K [18]. It is a rational function
P(g~%)/(1 —q~*)(1 —q"'~%) in ¢ . The polynomial P(X) has integral coefficients,
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degree 2g (where g is the genus of K), and satisfies P(1) = class number of K. For
a finite set S of places of K, we put

{ks(s) = H (1 — g =89 (s).

ve S

In practice, S will be {4, o0}, so

(1—-g~%)(1 —g~*)
(1-¢=)(1—-q'79 "~

Cks(8) = P(g™°) (1.6)

where d and d, are the degrees of £ and oo, respectively. Thus for the example (1.1)
and S as above,

(ks =(1—g ™) (1—g"' ).

2. Review of Drinfeld modules

In positive characteristic p, the additive group scheme G, has non-trivial module
structures, due to the existence of non-scalar endomorphisms. More precisely, let 7,
be the Frobenius endomorphism x — x”. For any field L of characteristic p, the
ring of L-endomorphisms End, (G,) is the non-commutative polynomial ring
L{z,} with the commutator rule 7,x =x’r, for constants xe L. We put
t=1,=1), if ¢ = p/. Let now L be equipped with an 4-structure y : 4 » L, i.e., L
is an extension of K or of some [,.

(2.1) A Drinfeld A-module of rank r over L is a structure of 4-module on
G, | L, given by a ring homomorphism

¢ :4—-End, (G,) =L{z,},
n— ¢,

(necessarily taking its values in L{t}), such that for 0 #£n € 4, ¢, = Z g;(¢, n)7’, the
following conditions are satisfied:

(i) go(¢, n) = y(n),
(ii) deg, ¢, =r - degn.
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The characteristic of ¢ (or of L) is 4, if F, = L, and oo if K = L. Morphisms of
Drinfeld modules are morphisms of group schemes compatible with the A4-actions.
We put End, (¢) for the ring of L-endomorphisms of ¢, i.e., for the centralizer of
¢(A) in L{z}. Further, for 0 #n € 4, we denote by ,¢ the scheme in 4-modules
ker ¢,. Conditions (i) and (ii) imply that it is flat and finite of degree |n|". For an
ideal » of A4, we put ,¢ = (), ¢, n running through ». It is étale if and only if » is
relatively prime with the characteristic of L. In this latter case, the abstract
A-module of points of ,¢ over the algebraic closure L of L is isomorphic with
(A/#)". Also, one may define Drinfeld modules, morphisms, the schemes ,¢ ...
over arbitrary A4-schemes. Thus one has level structures, modular schemes. . . for
Drinfeld modules. For all of this, see [6], [11], [1].

2.2. EXAMPLE. If A =F,[T] as in (1.1), a rank r Drinfeld A-module ¢ is
determined by ¢,, which must have the form

¢r=yT)+4t+ -+ A4t (4 el)
with the single condition 4, # 0.

(2.3) Let now £ be a prime of 4. A Drinfeld module ¢ in characteristic £ is
called supersingular if ,¢ is local, or equivalently, 49(L) =0. This is also equivalent
with End (¢) being projective of rank r? as an 4-module [7], [12]. Therefore, rank
one Drinfeld modules are always supersingular. Also, in the situation of (2.2), the
module ¢ in characteristic (7)) determined by ¢, = A,7" is s.s.. All the s.s. Drinfeld
modules in characteristic £ may be defined over some finite extension L of the
“prime field” F,. If m is the order of 4 in the class group Pic 4 of 4, one may
actually take the extension L of [, of degree m’=m-r ([12], Prop. 4.2). In
particular, the set X(r, z) of [ -isomorphism classes of supersingular Drinfeld
modules of rank r is finite.

The connection with D(r, £) is through the next theorem, which is similar to
Deuring’s theorem on elliptic curves:

2.4. THEOREM ([12], Theorem 4.3). Let ¢ be a supersingular Drinfeld module
of rank r over the A-field L of characteristic 4, and suppose that L is large enough
such that End; (¢) = End (¢).

(i) The K-algebra End (¢) ® K is isomorphic with D(r, ).
(ii) B:=End (¢) is an order (i.e., maximal) in End (¢) ® K.
(iii) There is a canonical bijection from the set LI(B) of left ideal classes of B to

2(r, £).
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We briefly describe the bijection: For b € B, let ,¢ be the subscheme ker 4 of G,
and for a left ideal £ = B, ,¢ =(),¢ (b €¢). The latter is the kernel of some
morphism ¢ — ¢’ of Drinfeld modules, where ¢? is uniquely determined up to
isomorphism. Moreover, ¢ is supersingular, its class depends only on the left ideal
class of 4, and the induced map (4) — (¢”) from LI(B) to Z(r, 4) is bijective.

Thus LI(B) may be described through X(r, £). Our strategy will be to identify
2(r, #) with a certain set of geometric points on a suitable modular scheme.
Classical geometric arguments will then lead to the determination of its cardinality.
The corresponding modular schemes are sufficiently well known for that purpose in
the cases (at least):

(a) r=2,
(b) 4 =F,[T].

In case (a), ie., if D is the quaternion algebra ramified in £ and co, all the
ingredients for a discussion a la Deligne—Rapoport are available [10], [11]:

— Drinfeld module analogues M, () of Hecke modular curves with conductor
75

— structure of the special fiber (only ordinary double points on My(4) x F,,
and these agree with the supersingular points);

— calculation of the genus of M,(4).

Some complications arise, however, from the existence of non-principal ideals in A.
Using this approach, one can prove the following result (for details, see [14]):

2.5. THEOREM. Let B be an order in D = D(2, £).
(1) The weight w(£) of a left ideal ¢ of Bis 1 or q + 1. Let h, (h,) be the number
of ideal classes (£) with w(6) =1 (W(£) = q + 1), respectively.
(i) If at least one of the degrees d of 4 and d,, of o is even, we have
h,=d,P(1)P(q)Q and h,=0.
If d and d_, are odd, we have
hy=d, P(1)[P(9)Q — P(—1)/(g+1)] and h,=d,P(1)P(—1).

Here,

_(g'= g% —1)

=" -D
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(iii) In any case, the mass formula holds:

Y, W@~ =d,P(1)P(g)Q.

¢ € LI(B)

Note that by (1.5) and (1.6), dP(1) is the order of the class group Pic 4,
whereas P(q)Q = {4 s(—1). Our mass formula therefore ‘““agrees” with Deuring’s
(see also (5.11)).

In case (b), if the rank r is strictly greater than two, these arguments do not
apply. In what follows, we will develop what is needed to handle that case.

3. Transfer principle

In this section, all the Drinfeld modules ¢ are defined over the A-field
L= F/,, and End (¢) = End, (¢). The automorphism group Aut (¢) is the finite
subgroup of elements of L* that commute with all the operators ¢,,n € A. As
is easily seen, this is the multiplicative group of some extension of F, of degree
s, say. We call s = s(¢) the size and w = w(¢p) =(¢° — 1)/(q — 1) the weight of ¢.
Since Aut (¢) generates a commutative subfield of End (¢), it follows that

(3.1) s(¢) is a divisor of r = rank (¢).

(3.2) The map £+ ¢? of (2.4) induces an isomorphism of the right order B’
of ¢ with End (¢%) [12, 3.8]. In particular, the unit group (B?)* is isomorphic
with Aut (¢7). Therefore, w(£) as defined in (1.4) agrees with w(¢?).

3.3. LEMMA. The size of a supersingular Drinfeld module ¢ over L is always
relatively prime with d and d,,. (Recall that d and d,, are the degrees of s and o,
respectively.)

Proof. By assumption, the constant field extension K, of K of degree s = s(¢)
embeds into D =End (¢)® K. As is well known [17], this means that the
ramified places 4 and oo extend uniquely to K. This in turn implies (s, d)=
1=(s,d,).

In what follows, ¢ will be a divisor of s = size (¢). Let 4, and K, = Quot (4,) be
the constant field extensions of degree ¢ of 4 and K, respectively. As stated above,
there are unique extensions to K, of 4 and co, denoted by £, and co. Having chosen
an embedding of F, = 4,/#, into L, the rank r Drinfeld A-module ¢ : 4 — L{t}
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has a unique extension to a Drinfeld 4,-module ¢’: A4, —» L{t}. Since ¢, = ¢,
(n € A), and F . is the exact constant field of K|,

(3.4) (i) r'=rank(¢’) =r/t,
(i) s’ =size (¢') =s/t,

(iii) ¢’ is supersingular if and only if ¢ is.

We put 2(r, 4, q, s) for the set of L-isomorphism classes of supersingular Drinfeld
A-modules of rank r and size s over L = l}“-'ﬁ. Thus X(r, ) is the disjoint union of
the 2(r, £, q,s), s running through the divisors of r coprime with d and d.
Furthermore, the lift ¢ — ¢’ defines a map

£, 2(r, p,q,5) > 2(r/t, £,, 9", 5]0).
3.5. PROPOSITION. /¢, is bijective.

Proof. The inverse of £, is given by restricting ¢’ to A.

Clearly, the decomposition according to sizes and the above ‘““transfer principle”
also apply to the study of ideal classes of D(r, ). It would be interesting to know
to what extent this generalizes to division algebras not necessarily of Drinfeld type.
In our case, considering simultaneously 4 and all its extensions 4,, we will use an
induction procedure to calculate

a(r, £, 9, 8) = #2Z(r, 4, q, s). (3.6)

4. The supersingular locus

Let M’ be the coarse modular scheme for rank r Drinfeld modules in character-
istic £ [6], [1]. It is the fiber product with L = [_F/, of the A-scheme called M'(1) in
[11]. The L-valued points of M" correspond bijectively to the L-classes of rank r
Drinfeld modules. Recall that 4 is the degree and m the order of £ in Pic 4, i.e.,
2" =(f)with fed. Fori=1,...,r—1, let

(4.1) H;(¢) = coefficient of /" in the polynomial ¢, in z.

This is a modular form of weight ¢" — 1 [15], [11], the i-th Hasse invariant.
(Clearly, it depends on the choice of the generator f of 4™, but this doesn’t matter.)
We have the trivial equivalences

(4.2) ¢ supersingular <> ¢, a monomial const.T’” in 1< H/($) =0,
i=1,...,r—1.
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Therefore, we define the supersingular locus ¥ = Z(r, ) in M" as the zero locus of
the r — 1 forms H;(¢). It is a finite subscheme of M" with the set Z(r, ) of (2.3) as
its L-valued points. The double use of the symbol X(r, 4) is justified by the next
proposition.

4.3. PROPOSITION. The scheme Z(r, f) is reduced.

Proof. This is more or less a restatement of (a special case of) the results given
in [6], Sections 4 and 5. We show how (4.3) follows from loc. cit., using the
terminology given there. Also, the next few references are with respect to loc. cit.
Let ¢ correspond to x € X(r, £)(L), and let & be an infinitesimal deformation, i.e.,
a Drinfeld module over the dual numbers L[e¢], where €2 = 0. Now the deformation
theory of ¢ agrees with that of its 4-divisible module (Prop. 5.4), and,
since ¢ is supersingular, with that of its formal A,-module (Prop. 4.5,
A, = completion of 4 at £). Let & € 4 be a prime element, and write ¢,, $., for the
corresponding formal module operators derived from ¢, ¢, respectively. The super-
singularity condition translates to ¢, = const.t™ + higher terms. Proposition 4.2
implies that ¢ is isomorphic with some formal module y given by

Ye=¢.+¢ > 19 (1, €l).

1<is<r-—1
Let ¢ correspond to the L[e]-valued point ¥ of M’, and suppose that
X factors through 2(r, £) (%)

(i.e., ¢ supersingular, too). If m =1, we may take n =f, and (%) says ¢, =0,
i=1,...,r—1.Itis not hard to see that also for m > 1, (%) implies the vanishing
of the ¢,. That means, each deformation X of x in Z(r, £) is constant, which gives
the assertion.

4.4. REMARK. The analogous result in the elliptic curve case states that
Deuring’s polynomial

2
H,)= Y C) Al (p #2 prime, s =(p — 1)/2)

0<i<s

has only simple roots (see [16]). It is also equivalent with the fact that the two
irreducible components of the Hecke modular curve X,(p) x F, intersect transver-
sally in supersingular points [2].
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5. The case of a polynomial ring

From now on, we assume that A4 is the polynomial ring F [T]. Let the
prime ideal 4 be generated by the monic irreducible polynomial p of degree
d. (p=charF, will not further be used.) All our Drinfeld modules will be
defined over L =T 4- Two such, ¢, ¢, given by the coefficients 4;, 4; of ¢, ¢7,
respectively (compare (2.2)), are isomorphic if and only if there exists ¢ € L* such
that

M =c? ', (i=1,...,r =rank (¢) = rank (¢")). (5.1)

Now consider 4, as an indeterminate of weight e, = (¢* — 1)/(q — 1). Let M = M" be
the scheme Proj L[A,,...,4,] and M = M’ ¢ M the open subscheme defined by
A, #0. From (5.1) it follows that M is the modular scheme considered in the last
section. (The ‘“natural” weight for the indeterminate A, would be ¢‘ — 1. Dividing
through the ged ¢ — 1 doesn’t of course change the resulting M.) Later on, we will
need the following observation:

(5.2) For natural numbers i, j, we have
ilje@-D]@g-1<ele.
This implies that the greatest common divisor of ¢; and ¢; is e,, where k = gcd (i, j).

Next, we specify the supersingular locus X =2(r, ) on m. If ¢ is given by
A=(A,...,4)€eL’, e,

¢r =9T) + ) A7,

¢, may be written

¢p = Z g i (.&.)T i’

1<i<rd

where g;(4) depends polynomially on A. More precisely, g;(4) is an isobaric
polynomial of weight e;, and

Hi(¢) = H;(4) = gi(4), (5.3)

of weight f; = (¢ —1)/(q — 1), is the i-th Hasse invariant.



326 ERNST-ULRICH GEKELER

54. LEMMA. The M-locus Vyg(H,,...,H,_,\) of H,, ..., H,_, is contained
in M.

Proof. Let A=(4y,...,4,0,...,0)eL"” with 4; #0, 0 <i <r. Then H;(4) is
the leading coefficient of ¢,, where ¢ is the rank i Drinfeld module defined by 4.
Therefore, H,(4) #0, ie., Vy(H,,...,H, _,,1,)=0.

Let N be the projective (r — 1)-space over L with projective coordinates
£iy...,¢,, and let n:N— M be defined by n(£,:...:¢,)=(A:...:4,), where
A; =5, We further let u(e;) be the group of e;-th roots of unity in L,

G*= [] we), G=G*xule,)

1<si<r

G acts effectively on N through (..c;..)(..:e;:..)=(.:ce;:..), and = is
the associated quotient morphism. If N =Spec L[/,,...,¢,_;] denotes the
complement of Vg(4,) in N, the quotient N* = N/G* is the affine space
Spec L[4, ...,4,_,], and

M = N|G = N*/ule,),

where ¢ € u(e,) acts on N* by ¢(.., 4;,..) =(..,c %4, ..). Define the schemes X *
and £ as the fiber products

T*=3XxN*  S=Z* xN,
M N*

respectively. Hence in the diagram

5 > N » N
| | I fer
I, — X* > N*— N/G* (5.5)

all the rectangles are cartesian, where the upper (lower) vertical arrows are
quotients by G* (u(e,)), respectively. In what follows, “points” of these schemes are
points over L =F,.

5.6. LEMMA. Let x € N*(L) and ¢ be the Drinfeld module associated with
n,(x). The stabilizer of x in u(e,) has order w(¢).
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Proof. Let x =(4;,...,4,_,). Then w(¢) =(¢°— 1)/(g — 1) with s =s(¢p)=
max {t|4;#0=1¢|i,i=1,...,r—1}. The stabilizer is the subgroup {c € u(e,) |
Ai#0=c%=1,i=1,...,r}, which has order gcd ({e; | 4, #0} U{e,}). The latter
equals w(¢), as follows from (5.2).

In particular, Z* is in general not reduced; from (4.3) and the above we see that
its points occur with multiplicity w(x) = w(¢). Next, fori=1,...,r — 1, we define
the functions H¥ on N* by

H:—k(}.l, . .,/1,._1) =Hi(A'l,"‘9lr—l’ l).

It is clear that their common zero locus X = V,.(H¥,..., H*_ ) is contained in
2* and agrees set-theoretically with Z*.

5.7. PROPOSITION. X is the reduced scheme XY, underlying X*.

It has to be shown that X is reduced. Since the proof is somewhat technical and
doesn’t connect with the present material, it will be given in the next section. Note
however that the reducedness in points of size 1 results directly from (5.6).

Finally, we define the polynomial #,(i=1,...,r —1) by

A, ... t)=H(, ..., 4),

where 4; =¢7. Then H, is homogeneous of degree f; = (4 — 1)/(q¢ — 1), and from
(5.4) and (5.7),

Z~= Vﬁ(ﬁlﬁ""ﬁr——l)'

Its degree (number of points counted with multiplicity) is therefore given by

deg(5)= [ /- (5.8)

I1<si<r

On the other hand, (5.6) implies that the multiplicity of y € £ in the fiber
Y X, N =23* x o N is w(n(y)) times its multiplicity in £. Together with (4.3), this
yields

deg (£) =deg(m) ¥ w(x)~! (5.9

xeZX
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with

deg(m)= [] e

1<isr

Let r, be the largest divisor of r coprime with d, so the possible sizes of
supersingular rank r Drinfeld modules over L are the divisors of r,. Putting
O = O(r, £, q) for the measure of X = Z(r, z),

O=@-1"' Y w=y Nldd) (5.10)

s
xeZX slry q —1

and comparing with (1.6), we arrive at the

5.11. Mass formula:

o pmg=@-D"" Il @ -DNg"*""'=D=@-D"" [] les(—D.

l<i<r 1<i<r

Since this depends only on d = deg £, we will also denote it by O(r, d, q).

5.12. REMARK. The number @ is in fact the Haar measure of a certain adelic
double coset associated with the algebra D [3]. The word “mass’ is an erroneous
but commonly used translation of the german word “MaB” = “‘measure” [9].

Now it is easy to calculate the class number a(r, # g, 5). Recall it is the number
of classes of supersingular Drinfeld 4-modules of rank r and size s in characteristic
#, or, equivalently, the number of left ideal classes of size s in a maximal order B
in D(r, £).

Let u(i) be the Mébius function: u(i) =(—1)" if i is a product of n different
prime factors, and u(i) =0 if a square divides i.

5.13. THEOREM. o(r, #, q, s) = a(r, d, g, s) depends only on the degree d of 4.
It is given by

jd—l

o(r,d,q,s) =

l|(r]/s) 0<j<r -1
J = 0(is)
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Proof. First note that in the situation of (3.5), we have

a(r, ., 4, 8) = a(r/t, f1, 4", s[0). (*)

If r, =1, only s = 1 contributes to the measure in (5.10), so (5.11) gives the result.
Now let r, > 1. For s > 1, the inversion formula reads

1=— ) u@).

1#ils

Therefore,

00.d,q) —o(r. prg, Dig— 1) =y ZoLodd

1#s]|r qs—l
a(r, £, q, ) -
=- ) sﬁ—] 2. M)
1#s|ry, 4 — 1#£i|s

I N (LY )

g’ —1

Il

l#ilrl S|6(|)
§ = i

=— Y wiOwli, p,,q"),

l;éi|r|

1.e.,

o(r, .9, 1) = (g = 1) Y, u()O(r/i,d, q").

ilry

The right hand side depends only on the degree d of 4. Hence (5.11) yields the
wanted formula for s =1 and, together with (x), for general s.

6. Proof of (5.7)

Let ¢ be the Drinfeld module over L = F, defined by

¢T = Z A‘iti

0<is<r

where Ao =7(T) and 4, = 1. Write

d)p = Z giti'

0<i<rd
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Then go=y(p) =0, g,,=1and g,,=H,; (i = .,r—1). We will show the non-
singularity of the functional matrix

0H,
(———’) in supersingular points 4 =(4,,...,4,_,, 1).

7

First, we have ¢, o ¢, = ¢, ¢, in L{r}. Equating the t*-coefficients yields

[k]gk+ Z (gnAk n_gzk n)'k-—n):O' (61)

n<k

Here, k is any non-negative integer, [k] is the residue of 7% — T in F.,<L and
Ai=0ifi¢{0,...,r},g,=0if i ¢{0,...,rd}, respectively. Note that

k] =0 if and only if k is divisible by d. (6.2)

We abbreviate dg, /04; by a, ;. Applying 8/04; to (6.1) gives

[k]ak’j"' Z an,j Zn—n_gzj—j=0

n<k

since g, =0. Now, if 4 is as above and supersingular, g, ;=1 if k —j=rd and
g« _; = 0 otherwise, i.c.,

. 0 (k d+j
Ko, + Y aip, =0 &#rd+)

= i 6.3
k—rs<n<k ' ] (k=rd+.]) ( )

Put for the moment h, =g,,.;_,.

6.4. LEMMA. Let 0<i,j <r. Then

0 (j<i)
( )(') L (=

In particular, the matrix is nonsingular.

Proof. Since 4, =1, (6.3) gives a linear recursion for g, _, ; in terms of a, ; with
n>k —r. This shows that a,_, ;=0 as long as k >rd+j, and a,_, ;=1 for
k =rd +j. Putting k =rd + i gives the assertion.
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6.5. LEMMA. Consider 4; as indeterminate and the g, as elements of the
polynomial ring L[A,, ..., 4, ). If id < k < (i + 1)d, g lies in the ideal generated by
H,...  H,.

Proof. Ifk =id, g, = H,. If k > id, [k] # 0 by (6.2). Now use (6.1) and induction.

End of the proof of (5.7): By the above, the functions 4, may be written
h; = X, u;, H, with some (r — 1, r — 1)-matrix (u;,) in L[4,,...,4,_,]. Thus

ah,- au,'k aI{k
on _ L ALY
oL~ 4 (axj kot Uik axj>

Evaluating at a supersingular 4 (i.e., where the H, vanish) shows that the nonsingu-
lar matrix (0h;/04;)(4) is the product of (u;,)(4) and (0H, /04;)(4). Hence the latter
is also nonsingular.

Again, the result generalizes the squarefreeness of Deuring’s polynomial (see

(4.4)).

7. Examples and complements

Recall that Z(r, £, g, s) corresponds bijectively to the subset of those left ideal
classes (£) of a fixed order B in D = D(r, z) for which w(¢) =(¢° — 1)/(g — 1), or,
equivalently, for which the order B/ has a unit group isomorphic with (F_,)*. In
such situations, one usually doesn’t know which unit groups actually occur. In our
case, the answer is given by

7.1. COROLLARY. Let d =deg s > 1. Then for each divisor s of r, there
exists a (maximal) A-order B in D(r, ) whose unit group is isomorphic with (F,)*.

Proof. From the above, we have to show that o(r, £, g, s) is positive. This
follows by an easy estimate from (5.13)

7.2. EXAMPLE. In the missing case d = 1, our formula gives o(r, £, g, s) =0 if
s <rand 1 if s =r, so the class number A(D) is one. Of course, this can be seen
directly, using a well known construction. Assume, without restriction, that 4 is the
ideal (T'). Then D may be constructed as the full quotient ring B® K of B = L{r},
where L is the extension of degree r of F, = F,. 4 is embedded in B by mapping T
to t", which makes B into a projective A-module (left or right) of rank r2
Moreover, B is a maximal A-order in B ® K. Since L{t} is left euclidean, its class
number is one.
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7.3. EXAMPLE. Let r, =1, i.e., each prime divisor of r divides d. Then

DG, ) =@ = DO @) = T Lxs(—i).

7.4. EXAMPLE (see also [4]). If r is prime then
(g — DO, £, 9) (d =0(r))
(g — DO, f, ) +(@"—9)/(g"— 1) (d#£0(r)).

In principle, the Drinfeld module description of D(r, £) also allows the determina-
tion of the type number. Namely

h(D(r, f)) =

7.5. PROPOSITION ([12], Prop. 4.6). (1) Each element of X(r, #) is isomorphic
to one defined over the extension L of degree r of F,. (ii) The bijection of (2.4) (iii)
induces a bijection of the set of conjugacy classes of maximal orders in D with the set
of orbits of X(r, s) under Gal (L|F,).

This latter set may be studied geometrically, using the description given in the
last section. Its cardinality is related to class numbers of certain abelian extensions
of K. We limit ourselves to give the result in the least complicated case where r =2
and char (F,) # 2. Here, D(r, #) is the quaternion algebra over K ramified in . and
0.

7.6. THEOREM ([12], see also [10]). Let the characteristic be different from 2.
The type number of D = D(2, ) is given by

1[q9— 1
~["2“‘1’+1+5(h1+h2)] (d odd)

2] ¢
H(D) = d
11g9—1 1
zl:qz 1 +-2-th (d even).

Here, h,, h,, h are the class numbers of the rings of A-integers in the quadratic field
extensions of K, namely:

hy, hy: the two extensions ramified in 4 and o;

h: the unique extension ramified in 4 and inert at .

Note that #(D) is less stable than A(D) in that it depends effectively on £ and not
only on its degree d.

(7.7) In determining the class number of D, our basic ingredients were the
transfer principle 3.5 and the mass formula 5.11 (or 2.5. (iii)). It seems possible that
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one can prove similar mass formulas in the general case, where A4 is any ring as
described in Section 2, i.e., a function ring with one place at infinity. Having both
ingredients available, the proof scheme of Theorem 5.13 could be applied. Also, the
transfer principle might turn out to hold for a larger class of algebras D than those
of Drinfeld type. Together with the properties of the zeta function of D [3], [4], this
would yield a method to attack the class number problem for that larger class.
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