Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 67 (1992)

Artikel: Enlacements d'intervalles et représentation de Gassner.

Autor: le Dimet, J.Y.

DOI: https://doi.org/10.5169/seals-51097

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 03.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Enlacements d'intervalles et représentation de Gassner

J. Y. LE DIMET

Introduction

Le calcul différentiel libre introduit par Fox a permis de construire diverses représentations des groupes de tresses: représentation de Magnus, de Burau et représentation de Gassner pour le groupe des tresses pures [B].

L'existence du calcul différentiel libre tient essentiellement au fait suivant: l'idéal d'augmentation I(F) de l'algèbre $\mathbb{Z}[F]$ du groupe libre F à n générateurs est un $\mathbb{Z}[F]$ -module libre de rang n.

Considérons maintenant la clôture algébrique G du groupe libre F (voir [L]). Ce groupe G – qui est décrit ci-dessous et dans [LD] comme le groupe fondamental du localisé "fini" d'un bouquet de n cercles – est mal connu: on sait, par exemple, que $H_i(G)$ est isomorphe à $H_i(F)$ pour i = 1, 2, mais on ignore tout de $H_i(G)$ pour i > 2. Il semble donc difficile dans ces conditions de décrire l'idéal d'augmentation I(G) et d'étendre à G le calcul différentiel libre.

On démontre cependant dans ce qui suit, que l'idéal I(G) a la propriété suivante. Soit Λ l'anneau des fractions rationnelles à coefficients entiers en n variables t_1, t_2, \ldots, t_n , dont les dénominateurs valent ± 1 pour $t_1 = t_2 = \cdots = t_n = 1$. Alors $\Lambda \otimes_G I(G)$ est isomorphe à Λ^n . Ceci nous permet de construire une sorte de calcul différentiel sur G à valeurs dans Λ .

Rappelons maintenant qu'un enlacement de n intervalles est constitué de n arcs orientés disjoints de la boule de dimension 3 dont les extémités sont contenues dans le bord [LD]. Les classes de cobordisme de ces objets forment un groupe C_n qui contient le groupe P_n des tresses pures. Comme application de ce qui précède, nous montrons que la représentation de Gassner du groupe P_n se prolonge à une représentation Γ du groupe C_n dans le groupe $GL_n(\Lambda)$. Dans la pratique, le calcul, pour un enlacement donné e, de la matrice $\Gamma(e)$ est aisé, du moins si cet enlacement ne présente pas trop de croisements.

1. Dérivation

Soit E_n le localisé fini d'un bouquet de n cercles et soit $l: \bigvee_n S^1 \to E_n$ l'application canonique [LD]. Cet espace est caractérisé par les propriétés suivantes:

(i) E_n est limite inductive de complexes finis X_p , $p \ge 0$, tels que $X_0 = \bigvee_n S^1$ et pour tout $p \ge 0$:

$$H_*(X_p) \to H_*(X_{p+1})$$
 est un isomorphisme et $\pi_1(X_p) \to \pi_1(X_{p+1})$ est normalement surjectif.

(ii) E_n est universel pour la propriété (i) au sens suivant: pour toute application f de $\bigvee_n S^1$ dans un complexe fini Y qui induit un isomorphisme entière et une application normalement surjective au niveau des groupes fondamentaux, il existe une application g de Y dans E_n , unique à homotopie près, telle que $g \circ f = l$.

On désignera par x_1, x_2, \ldots, x_n des générateurs du groupe libre $F = \pi_1(\bigvee_n S^1)$ et l'on notera $G = \pi_1(E_n)$. Il est clair que $H_1(F)$ est isomorphe à $H_1(G)$ et que $H_2(F) = H_2(G) = 0$. On en déduit que $l_*: F \to G$ est injective (voir [LD]) et dans la suite, le groupe F sera considéré comme un sous-groupe de G.

Signalons que dans [L], J. Levine introduit la notion de groupe algébriquement clos et prouve que G est la clôture algébrique du groupe libre F.

Rappelons maintenant une notion dûe à P. Cohn [C]. Soit A un anneau muni d'une augmentation $\varepsilon: A \to \mathbb{Z}$. Le localisé universel Λ de ε est bien défini par les propriétés suivantes:

(i) il existe un diagramme commutatif:

$$\begin{array}{c} A \\ \downarrow & \searrow^{\varepsilon} \\ \Lambda \to \mathbb{Z} \end{array}$$

tel que pour toute matrice m à coefficients dans A, $m \otimes \Lambda$ est inversible si et seulement si $m \otimes \mathbb{Z}$ est inversible;

(ii) l'anneau 1 est universel pour la propriété (i).

Remarque. En fait, la propriété (i) est équivalente à:

(i)' tout élément a de A tel que $\varepsilon(a) = \pm 1$ est inversible dans Λ .

Pour voir cela, donnons-nous une matrice $m=(a_{ij}),\ 1\leq i\leq p,\ 1\leq j\leq p,$ d'éléments de A telle que det $\varepsilon(m)=\pm 1$ et considérons le système d'équations linéaires:

$$m \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_p \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_p \end{pmatrix} \tag{S}$$

où les b_i sont des éléments de A

Le développement du déterminant de $\varepsilon(m)$ par rapport à la première colonne montre qu'il existe des entiers q_1, q_2, \ldots, q_p tels que:

$$\varepsilon(a_{11})q_1+\varepsilon(a_{21})q_2+\cdots+\varepsilon(a_{p1})q_p=\pm 1.$$

Posons alors $c = \sum_{i=1}^{p} a_{ii} q_i$ et remplaçons le système (S) par un système équivalent dans lequel le coefficient de z_1 dans la première ligne est c. Mais c étant inversible dans Λ , on multiplie cette ligne par c^{-1} et l'on voit, en poursuivant cette méthode, que (S) possède une unique solution. Ce qui prouve que m est inversible dans Λ .

On pose désormais $A = \mathbb{Z}[F/F'] = \mathbb{Z}[G/G']$ où F' (resp. G') est le groupe des commutateurs de F (resp. G). Les localisés universels des augmentations $A \to \mathbb{Z}$ et $\mathbb{Z}[G] \to \mathbb{Z}$ seront désignés respectivement A et A_G . Enfin, on notera t_1, t_2, \ldots, t_n les images des générateurs x_1, x_2, \ldots, x_n dans F/F'. L'anneau A est donc formé des polynômes de Laurent à coefficients entiers en les t_i , et il est clair que A est l'anneau constitué des fractions a/b d'éléments de A tels que $\varepsilon(b) = \pm 1$.

(1.1) PROPOSITION. Soit I(G) l'idéal d'augmentation du groupe G. Alors le Λ_G -module $\Lambda_G \otimes_G I(G)$ est libre de rang n.

Plus précisément, l'application $v: \Lambda_G^n \cong \Lambda_G \otimes_G I(G)$ définie par $v(a_1, a_2, \ldots, a_n) = \Sigma_1^n a_i \otimes (x_i - 1)$ est un isomorphisme.

Démonstration. On rappelle la propriété suivante (voir [V], Theorem 1.13): soient X et Y des complexes finis, $f: X \to Y$ une application qui induit un isomorphisme en homologie entière et soit Λ_Y le localisé universel de l'augmentation $\varepsilon: \mathbb{Z}[\pi_1(Y)] \to \mathbb{Z}$. Alors $f_*: H_*(X, \Lambda_Y) \cong H_*(Y, \Lambda_Y)$ est un isomorphisme.

Ainsi, tout entier $p \ge 0$, on dispose d'un isomorphisme

$$H_*\left(\bigvee_n S^1, \Lambda_{X_p}\right) \cong H_*(X_p, \Lambda_{X_p}).$$

D'autre part, Λ_G est un Λ_{X_p} -module pour tout entier p et l'espace E_n est limite inductive des X_p . Il s'ensuit que $l_*: H_*(\bigvee_n S^1, \Lambda_G) \cong H_*(E_n, \Lambda_G)$ est un isomorphisme. Un argument classique de suite spectrale montre alors que $H_1(F, \Lambda_G)$ est isomorphe à $H_1(G, \Lambda_G)$ et que $H_2(F, \Lambda_G) = H_2(G, \Lambda_G) = 0$.

Soit I(F) l'idéal d'augmentation de F. Les suites exactes

$$0 \to I(F) \to \mathbb{Z}[F] \to \mathbb{Z} \to 0,\tag{1}$$

$$0 \to I(G) \to \mathbb{Z}[G] \to \mathbb{Z} \to 0 \tag{1'}$$

deviennent, après tensorisation par Λ_G :

$$0 \to H_1(F, \Lambda_G) \to \Lambda_G \otimes_F I(F) \to \Lambda_G \to \mathbb{Z} \to 0, \tag{2}$$

$$0 \to H_1(G, \Lambda_G) \to \Lambda_G \otimes_G I(G) \to \Lambda_G \to \mathbb{Z} \to 0 \tag{2'}$$

La comparaison de (2) et (2') prouve que l'inclusion $F \to G$ induit un isomorphisme $\Lambda_G \otimes_F I(F) \to \Lambda_G \otimes_G I(G)$. On termine le démonstration en notant que I(F) est le $\mathbb{Z}[F]$ -module libre engendré par les $x_i - 1$, $1 \le i \le n$ ([HS], p. 196).

L'abélianisation $\alpha: G \to G/G' = F/F'$ induit un morphisme d'anneaux $\Lambda_G \to \Lambda$ et Λ hérite ainsi d'une structure de Λ_G -module. On en déduit le.

(1.2) COROLLAIRE. L'application $u: \Lambda^n \to \Lambda \otimes_G I(G)$ définie par

$$u(\lambda_1, \lambda_2, \ldots, \lambda_n) = \sum_{1 \le i \le n} \lambda_i \otimes (x_i - 1)$$

est un isomorphisme de Λ -modules.

DÉFINITION. Pour tout entier i, $1 \le i \le n$, l'application $\partial/\partial x_i : G \to \Lambda$ est définie ainsi: pour tout élément g de G, $\partial g/\partial x_i$ est la $i^{\text{éme}}$ composante du $u^{-1}(1 \otimes (g-1))$ dans Λ^n . On dira que $\partial g/\partial x_i$ est la dérivée de g par rapport à x_i .

- (1.3) PROPOSITION. La dérivation a les propriétés suivantes:
- (1) Pour tout élément g de G, on a

$$1 \otimes (g-1) = \sum_{i=1}^{n} \frac{\partial g}{\partial x_{i}} \otimes (x_{i}-1).$$

(2) Pour tous les entiers i et j compris entre 1 et n,

$$\frac{\partial x_j}{\partial x_i} = \delta_{ij} \quad (symbole \ de \ Kronecker).$$

(3) Pour tous les g et h de G,

$$\frac{\partial gh}{\partial x_i} = \frac{\partial g}{\partial x_i} + \alpha(g) \frac{\partial h}{\partial x_i}$$

où $\alpha: G \to G/G'$ est l'application canonique.

(4) Pour tout élément g de G:

$$\frac{\partial g^{-1}}{\partial x_i} = -\alpha(g)^{-1} \frac{\partial g}{\partial x_i}.$$

(5) Soit φ un automorphisme de G et soit $y_i = \varphi(x_i)$, $1 \le i \le n$. Alors pour tout g de G on a:

$$\frac{\partial g}{\partial x_i} = \sum_{1 \le k \le n} \frac{\partial g}{\partial y_k} \frac{\partial y_k}{\partial x_i}.$$

Démonstration. Les propriétés 1 et 2 sont claires.

La propriété 3 provient de l'identité: $1 \otimes (gh-1) = 1 \otimes (g-1) + 1 \otimes g(h-1)$ qui s'écrit aussi: $1 \otimes (gh-1) = 1 \otimes (g-1) + \alpha(g) (1 \otimes (h-1))$.

La propriété 4 s'obtient de 3 en remarquant que $\partial 1/\partial x_j = 0$.

Pour démontrer 5, commençons par noter que y_1, y_2, \ldots, y_n constitutent un système de générateurs du groupe libre $\varphi(F)$ dont la clôture algébrique est aussi G. Pour tout élément g de G, on a donc les relations suivantes:

$$1 \otimes (g-1) = \sum_{1 \le i \le n} \frac{\partial g}{\partial x_i} \otimes (x_i - 1) = \sum_{1 \le k \le n} \frac{\partial g}{\partial y_k} \otimes (y_k - 1)$$
 (R)

Mais, d'une part

$$\frac{\partial g}{\partial y_k} \otimes (y_k - 1) = \frac{\partial g}{\partial y_k} (1 \otimes (y_k - 1)),$$

et d'autre part on a aussi:

$$1 \otimes (y_k - 1) = \sum_{1 \le i \le n} \frac{\partial y_k}{\partial x_i} \otimes (x_i - 1)$$

pour tout k = 1, 2, ..., n. Par conséquent, les relations (R) s'écrivent:

$$1 \otimes (g-1) = \sum_{1 \le i \le n} \frac{\partial g}{\partial x_i} \otimes (x_i - 1) = \sum_{1 \le k \le n} \left[\sum_{1 \le i \le n} \frac{\partial g}{\partial y_k} \frac{\partial y_k}{\partial x_i} \otimes (x_i - 1) \right]$$
$$= \sum_{1 \le i \le n} \left(\sum_{1 \le k \le n} \frac{\partial g}{\partial y_k} \frac{\partial y_k}{\partial x_i} \right) \otimes (x_i - 1),$$

ce qui prouve la formule annoncée.

(1.4) PROPOSITION. Soit G" le second groupe dérivé de G et soit g un élément quelconque de G. Si g est dans G", alors $\partial g/\partial x_i = 0$ pour tout i = 1, 2, ..., n. De plus, si $\partial g/\partial x_i = 0$ pour tout i = 1, 2, ..., n, alors g est dans G'.

Démonstration. La suite spectrale de Hochschild-Serre ([BR] ou [HS], p. 198) d'une suite exacte $1 \rightarrow N \rightarrow H \rightarrow Q \rightarrow 1$ de groupes fournit la suite exacte de $\mathbb{Z}[Q]$ -modules:

$$0 \to N/N' \xrightarrow{\mu} \mathbb{Z}[Q] \otimes_H I(H) \to I(Q) \to 0$$

où l'application μ est définie par $\mu(nN') = 1 \otimes (n-1)$ pour tout élément n de N. Ce résultat appliqué à: $1 \to G' \to G \to G/G' \to 1$ nous donne la suite exacte de A-modules:

$$0 \to G'/G'' \xrightarrow{\mu} A \otimes_G I(G) \to I(G/G') \to 0.$$

Mais l'anneau Λ est un Λ -module plat. Par conséquent, la suite exacte précédente nous fournit, après tensorisation par Λ , le diagramme communtatif ci-dessous où les lignes horizontales sont exactes et les flèches a, b, c sont induites par l'inclusion de Λ dans Λ :

$$0 \longrightarrow G'/G'' \longrightarrow A \otimes_G I(G) \longrightarrow I(G/G') \longrightarrow 0$$

$$\downarrow a \downarrow \qquad \qquad \downarrow c \downarrow \qquad \qquad \downarrow c$$

$$0 \longrightarrow A \otimes_A G'/G'' \longrightarrow A \otimes_G I(G) \longrightarrow A \otimes_A I(G/G') \longrightarrow 0$$
(D)

Le diagramme (D) montre que pour tout g de G', $1 \otimes (g-1) = b(\mu(gG'')) = 0$. Donc, si g est dans G'', $\partial g/\partial x_i = 0$ pour tout i, $1 \le i \le n$.

Supposons maintenant que $1 \otimes (g-1) = 0$. Alors, $1 \otimes (\alpha(g) - 1) = 0$ dans $\Lambda \otimes_A I(G/G')$. Mais $1 \otimes (\alpha(g) - 1) = c(\alpha(g) - 1)$, et il est facile de voir que l'application c est injective, ce qui termine la démonstration.

NOTATIONS. On notera $Aut_0(G)$ le groupe de automorphismes de G qui induisent l'identité sur l'abélianisé G/G'. Pour tout élément φ de $Aut_0(G)$, on désignera par $\rho(\varphi)$ la matrice $n \times n$ à coefficients dans Λ dont le terme d'indice (i, j) est $\partial \varphi(x_i)/\partial x_i$.

Le résultat qui suit généralise [B], Theorem 3.9.

(1.5) THÉORÈME. L'application

$$\rho: \varphi \mapsto \rho(\varphi)$$

est un morphisme du groupe $Aut_0(G)$ dans le groupe $GL_n(\Lambda)$.

Démonstration. Tout élément φ de $Aut_0(G)$ induit l'identité sur Λ , donc induit un automorphisme $\tilde{\varphi}$ du Λ -module $\Lambda \otimes_G I(G)$. Pour tout entier $i = 1, 2, \ldots, n$, on a, dans $\Lambda \otimes_G I(G)$:

$$\tilde{\varphi}(1 \otimes (x_i - 1)) = 1 \otimes (\varphi(x_i) - 1) = \sum_{1 \le j \le n} \frac{\partial \varphi(x_i)}{\partial x_j} \otimes (x_j - 1).$$

Par conséquent, $\rho(\varphi)$ est clairement la matrice de l'automorphisme $u^{-1} \circ \tilde{\varphi} \circ u$ de Λ^n où $u : \Lambda^n \hookrightarrow \Lambda \otimes_G I(G)$ est l'isomorphisme défini au Corollaire 1.2.

Remarque. Soit $Aut_0(G/G'')$ le groupe des automorphismes de G/G'' qui sont induits par les éléments de $Aut_0(G)$, et soit $p:Aut_0(G)\to Aut_0(G/G'')$ l'application canonique. Si un élément φ de $Aut_0(G)$ est dans le noyau de p, alors, pour tout i, $1 \le i \le n$, $\varphi(x_i) = x_i \pmod{G''}$. Mais d'après la Proposition (1.4), ceci implique que, pour tout $j = 1, 2 \ldots, n$, $(\partial x_i^{-1} \varphi(x_i))/\partial x_j = 0$. Les formules établies dans la Proposition 1.3 montrent alors que $\partial \varphi(x_i)/\partial x_j = \delta_i^j$, ce qui signifie que $\varphi(\varphi)$ est l'identité de $GL_n(\Lambda)$.

Il s'ensuit que ρ se factorise à travers $\rho'': Aut_0(G/G'') \to GL_n(\Lambda)$, mais nous ignorons si, comme dans le cas du groupe libre, ρ'' est une injection, (voir [B], p. 117).

2. Application aux enlacements d'intervalles

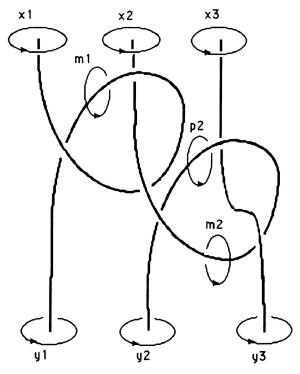
Soit *n* un entier strictement positif et soient a_1, a_2, \ldots, a_n , *n* points appartenant à l'intérieur du disque D^2 . Un *enlacement* de *n* intervalles est un plongement *e* transverse au bord (différentiable ou semi-linéaire) de $I \times \{1, 2, \ldots, n\}$ dans $D^2 \times I$ tel que $f(j, i) = (a_i, j)$ pour j = 0, 1 et $i = 1, 2, \ldots, n$ (voir [LD]).

Deux enlacements e_0 et e_1 sont dits *cobordants* s'il existe un plongement standard sur le bord $F: I \times I \times \{1, 2, ..., n\} \rightarrow I \times D^2 \times I$ qui induit e_k sur

 $k \times I \times \{1, 2, ..., n\}$ pour k = 0, 1. Les enlacements de n intervalles se composent par empilement et les classes de cobordisme forment un groupe que l'on notera C_n . Ce groupe contient le groupe P_n des tresses pures ([LD], p. 29).

Notons $Aut_1(G)$ le sous-groupe de $Aut_0(G)$ constitué des automorphismes φ tels que $\varphi(x_1x_2\cdots x_n)=x_1x_2\cdots x_n$. Il est construit dans [LD] un morphisme de groupe $\gamma:C_n\to Aut_1(G)$ de la façon suivante. Soit e un enlacement de n intervalles, soit Y le complémentaire dans $D^2\times I$ d'un voisinage tubulaire ouvert de l'image de e et soit $Y_k=(D^2\times k)\cap Y$, k=0,1. Notons que l'inclusion de Y_0 dans Y induit un isomorphisme en homologie entière et une application normalement surjective au niveau des π_1 , et que Y_0 (ainsi que Y_1) a le type d'homotopie de $\bigvee_n S^1$. Par conséquent, l'application de localisation $l:Y_0\to E_n$ se prolonge à $Y\to E_n$.

Les images dans $\pi_1(Y)$, ainsi que dans le groupe G, des générateurs canoniques y_1, y_2, \ldots, y_n de $\pi_1(Y_1)$ sont conjuguées aux images des générateurs canoniques x_1, x_2, \ldots, x_n de $F = \pi_1(Y_0)$. On démontre qu'il existe un et un seul automorphisme φ de G tel que $\varphi(x_i) = y_i$, $i = 1, 2, \ldots, n$. De plus, φ ne dépend que de la classe de cobordisme de e et, clairement, $x_1x_2 \cdots x_n = y_1y_2 \cdots y_n = \varphi(x_1x_2 \cdots x_n)$. On pose donc $\gamma(e) = \varphi$.



- L'enlacement e -

DÉFINITION. La représentation de Gassner du groupe C_n est l'application:

$$\Gamma: C_n \to GL_n(\Lambda)$$

définie par $\Gamma(e) = \rho(\gamma(e)) = (\partial y_i/\partial x_i)$.

Il faut noter que Γ prolonge la représentation de Gassner du groupe P_n des tresses pures (voir [B], p. 119).

EXEMPLE. Soit e l'enlacement de trois intervalles figuré à la page précèdente. Le groupe $\pi_1(Y)$ admet pour générateurs: $x_1, x_2, x_3, y_1, y_2, y_3, m_1, m_2, p_2$ et les relations sont: $y_1 x_1 = x_1 m_1, m_2 m_1 = x_1 m_2, p_2 x_3 = y_3 p_2, m_1 m_2 = x_2 m_1, y_2 m_2 = m_2 p_2$ et $y_3 p_2 = m_2 y_3$.

On calcule alors les dérivées de ces relations par rapport à x_1 , x_2 et x_3 . Pour cela, on remarque que $\alpha(m_1) = \alpha(p_1) = \alpha(y_1) = t_1$, $\alpha(m_2) = \alpha(p_2) = \alpha(y_2) = t_2$, $\alpha(y_3) = t_3$ et on utilise la Proposition (1.3).

On obtient ainsi, dans Λ , un système linéaire dont les inconnues sont les dérivées des générateurs autres que les x_i .

La résolution de ce système nous donne:

$$\Gamma(e) = \begin{bmatrix} \frac{1 - 2t_1 - t_2 + t_1 t_2}{1 - t_1 - t_2} & \frac{t_1 (1 - t_1)}{1 - t_1 - t_2} & 0 \\ \frac{(1 - t_2) (1 - t_2 + t_2^2 + t_2 t_3 - t_2^2 t_3)}{(1 - t_1 - t_2) (1 - t_2 + t_2 t_3)} & \frac{-t_2 (1 - t_2 + t_2^2 + t_2 t_3 - t_2^2 t_3)}{(1 - t_1 - t_2) (1 - t_2 + t_2 t_3)} & \frac{-t_2^2 (1 - t_2)}{1 - t_2 + t_2 t_3} \\ \frac{(1 - t_2) (1 - t_3)}{(1 - t_1 - t_2) (1 - t_2 + t_2 t_3)} & \frac{-t_2 (1 - t_3)}{(1 - t_1 - t_2) (1 - t_2 + t_2 t_3)} & \frac{t_2 t_3}{1 - t_2 + t_2 t_3} \end{bmatrix}$$

Remarque. Soit ρ_1 la restriction de la représentation ρ à $Aut_1(G)$. Posons $g_1 = x_1, \quad g_2 = x_1 x_2, \dots, g_n = x_1 x_2 \cdots x_n$ et définissons la représentation $\beta: Aut_1(G) \to GL_n(\Lambda)$ par $\beta(\varphi) = (\partial \varphi(g_i)/\partial g_i)$, pour tout φ de $Aut_1(G)$.

La formule 5 de la Proposition (1.3) permet de vérifier aisément que, pour tout φ dans $Aut_1(G)$, on a $\beta(\varphi) = T\rho_1(\varphi)T^{-1}$ où T désigne la matrice

$$\begin{pmatrix}
1 & 0 & 0 & 0 & \cdots & 0 \\
1 & t_1 & 0 & 0 & \cdots & 0 \\
1 & t_1 & t_1 t_2 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & & \vdots \\
1 & t_1 & t_1 t_2 & t_1 t_2 t_3 & \cdots & t_1 t_2 \cdots t_{n-1}
\end{pmatrix}$$

D'autre part, la représentation β a les propriétés suivantes:

- (a) la dernière ligne de $(\partial \varphi(g_i)/\partial g_i)$ est $(0, 0, \dots, 0, 1)$, car $g_n = \varphi(g_n)$.
- (b) $(t_1 1, t_1 t_2 1, \dots, t_1 t_2 \cdots t_n 1)$ est vecteur propre de la matrice précédente avec la valeur propre 1: cela provient de la formule 1 de la Proposition (1.3), lue dans Λ .

Par conséquent le représentation β , donc la représentation ρ_1 , sont équivalentes à la représentation $\beta': Aut_1(G) \to GL_{n-1}(\Lambda)$ définie par

$$\beta'(\varphi) = \left(\frac{\partial \varphi(g_i)}{\partial g_j}\right)_{1 \le i, j \le n-1}$$

Comme dans le cas des tresses, la représentation de Gassner est donc équivalente à une représentation de dimension n-1.

RÉFÉRENCES

- [B] BIRMAN, J. S., "Braids, links, and mapping class groups", Ann. Math. Studies 76, Princeton University Press 1974.
- [Br] Brown, K. S., "Cohomology of groups", Graduate Texts in Math. 87, Springer 1982.
- [L] LEVINE, J., Link concordance and algebraic closure II, Invent. Math. 96 (1989), 236-255
- [HS] HILTON, P. J., STAMMBACH, U., "A course in homological algebra", Graduate Texts in Math. 4, Springer 1971.
- [LD] LE DIMET, J. Y., Cobordisme d'enlacements de disques, Mem. Soc. Math. France 32 (1982).
- [V] Vogel, P., On the obstruction group in homology surgery, I.H.E.S., Publications Math. 55 (1982), 165-206

Départment de Mathématiques Université Blaise Pascal F-63177 AUBIÈRE Cedex

Received July 17, 1991