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Enlacements d&apos;intervalles et représentation de Gassner

J. Y. Le Dimet

Introduction

Le calcul différentiel libre introduit par Fox a permis de construire diverses

représentations des groupes de tresses: représentation de Magnus, de Burau et

représentation de Gassner pour le groupe des tresses pures [B].
L&apos;existence du calcul différentiel libre tient essentiellement au fait suivant: l&apos;idéal

d&apos;augmentation I(F) de l&apos;algèbre Z[F] du groupe libre F à n générateurs est un

Z[F] -module libre de rang n.

Considérons maintenant la clôture algébrique G du groupe libre F (voir [L]). Ce

groupe G - qui est décrit ci-dessous et dans [LD] comme le groupe fondamental du
localisé &quot;fini&quot; d&apos;un bouquet de n cercles - est mal connu: on sait, par exemple, que
H,(G) est isomorphe à Ht{F) pour i 1,2, mais on ignore tout de Ht(G) pour
i &gt; 2. Il semble donc difficile dans ces conditions de décrire l&apos;idéal d&apos;augmentation

I{G) et d&apos;étendre à G le calcul différentiel libre.
On démontre cependant dans ce qui suit, que l&apos;idéal I(G) a la propriété suivante.

Soit A l&apos;anneau des fractions rationnelles à coefficients entiers en n variables

t\,t2,..-,tn, dont les dénominateurs valent ± 1 pour tx t2 — • • • tn 1. Alors
A ®G I(G) est isomorphe à An. Ceci nous permet de construire une sorte de calcul
différentiel sur G à valeurs dans A.

Rappelons maintenant qu&apos;un enlacement de n intervalles est constitué de n arcs
orientés disjoints de la boule de dimension 3 dont les extémités sont contenues dans

le bord [LD]. Les classes de cobordisme de ces objets forment un groupe Cn qui
contient le groupe Pn des tresses pures. Comme application de ce qui précède, nous
montrons que la représentation de Gassner du groupe Pn se prolonge à une

représentation F du groupe Cn dans le groupe GLn(A). Dans la pratique, le calcul,

pour un enlacement donné e9 de la matrice F(e) est aisé, du moins si cet enlacement

ne présente pas trop de croisements.
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1. Dérivation

Soit En le localisé fini d&apos;un bouquet de n cercles et soit / \JnSx-±En l&apos;ap-

phcation canonique [LD] Cet espace est caractérise par les propriétés suivantes

(1) En est limite inductive de complexes finis Xp, p &gt; 0, tels que Xo \Jn S1 et

pour tout p ^ 0

H*(Xp) ~*^*(^r/7+i) est un isomorphisme et

nx (Xp) -* 71] (Xp + est normalement surjectif

(n) En est universel pour la propriété (î) au sens suivant pour toute application

/ de \jn S] dans un complexe fini Y qui induit un isomorphisme entière et

une application normalement surjective au niveau des groupes fondamentaux,

il existe une application g de Y dans En9 unique à homotopie près, telle

que g °f=l
On désignera par xl9x2 xn des générateurs du groupe libre F nl(\/n S1)

et l&apos;on notera G n](En) II est clair que HX(F) est isomorphe à H{(G) et que
H2(F) H2(G) =0 On en déduit que /* F-&gt; G est injective (voir [LD]) et dans la

suite, le groupe F sera considéré comme un sous-groupe de G

Signalons que dans [L], J Levme introduit la notion de groupe algébriquement
clos et prouve que G est la clôture algébrique du groupe libre F

Rappelons maintenant une notion due a P Cohn [C] Soit A un anneau muni
d&apos;une augmentation e A -+ Z Le localise universel A de e est bien défini par les

propriétés suivantes

(î) il existe un diagramme commutatif

A
1 V
A -+ Z

tel que pour toute matrice m a coefficients dans A, m®A est inversible si

et seulement si m (g) Z est inversible,

(n) l&apos;anneau A est universel pour la propriété (î)

Remarque. En fait, la propriété (î) est équivalente à

(i)&apos; tout élément a de A tel que e(a) ± 1 est inversible dans A
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Pour voir cela, donnons-nous une matrice m — (atJ), 1 &lt; i &lt; p, 1 &lt;j &lt; p,
d&apos;éléments de A telle que det e(m) ± 1 et considérons le système d&apos;équations linéaires:

m (S)

où les bt sont des éléments de A
Le développement du déterminant de e(m) par rapport à la première colonne

montre qu&apos;il existe des entiers qu q2, •.., qp tels que:

±

Posons alors c =lf{allql et remplaçons le système (S) par un système équivalent

dans lequel le coefficient de zx dans la première ligne est c. Mais c étant
inversible dans A, on multiplie cette ligne par c&quot;1 et l&apos;on voit, en poursuivant
cette méthode, que (S) possède une unique solution. Ce qui prouve que m est

inversible dans A.
On pose désormais A Z[F/F&apos;] Z[G/G&apos;] où F&apos; (resp. G&apos;) est le groupe des

commutateurs de F (resp. G). Les localisés universels des augmentations A -&gt; Z et

Z[G] -*Z seront désignés respectivement A et AG. Enfin, on notera tl912,..., tn les

images des générateurs xux29... ,xn dans F/F&apos;. L&apos;anneau A est donc formé des

polynômes de Laurent à coefficients entiers en les in et il est clair que A est l&apos;anneau

constitué des fractions a/b d&apos;éléments de A tels que s(b) ±1.

(1.1) PROPOSITION. Soit I(G) l&apos;idéal d&apos;augmentation du groupe G. Alors le

AG-module AG ®G/(G) est libre de rang n.

Plus précisément, l&apos;application v : AG^AG ®G/(G) définie par v(al9 a2,... ,an)
Z&quot; at (g) (xt — 1) est un isomorphisme.

Démonstration. On rappelle la propriété suivante (voir [V], Theorem 1.13):
soient X et Y des complexes finis, / : X -? Y une application qui induit un isomorphisme

en homologie entière et soit AY le localisé universel de l&apos;augmentation

s : Z[rc,(y)] -&gt;Z. Alors/^ : H^(X9 Ay)^H^(Y, AY) est un isomorphisme.
Ainsi, tout entier p &gt; 0, on dispose d&apos;un isomorphisme
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D&apos;autre part, AG est un Ax -module pour tout entier p et l&apos;espace En est limite
inductive des Xp. Il s&apos;ensuit que l^ : H^{\Jn S\ AG) ^H^{En, AG) est un iso-

morphisme. Un argument classique de suite spectrale montre alors que HX(F, AG)
est isomorphe à HX(G, AG) et que H2(F, AG) H2(G, AG) 0.

Soit I(F) l&apos;idéal d&apos;augmentation de F. Les suites exactes

&gt;Z-&gt;0, (1)

0-&gt;/(G)-Z[G]-?/-&gt;() (!&apos;)

deviennent, après tensorisation par AG :

AG^&gt;Z-+0, (2)

AG^Z-+0 (2&apos;)

La comparaison de (2) et (2&apos;) prouve que l&apos;inclusion F-+G induit un isomor-

phisme AG ®FI(F) -&gt; AG ®G I(G). On termine le démonstration en notant que /(F)
est le Z[F]-module libre engendré par les x, — 1, 1 ^ / &lt; n ([HS], p. 196).

L&apos;abélianisation a : G -&gt; G\Gf F\F&apos; induit un morphisme d&apos;anneaux AG -? A et

A hérite ainsi d&apos;une structure de AG -module. On en déduit le.

(1.2) COROLLAIRE. L&apos;application u : An-*A ®GI{G) définie par

est un isomorphisme de A-modules.
DÉFINITION. Pour tout entier /, 1 &lt; / ^ «, l&apos;application d/dxt :G-&gt;A

est définie ainsi: pour tout élément g de G, dg/dxt est la /eme composante
du u~l(\ ® (g — 1)) dans /T. On dira que dg/ôxt est la dérivée de g par rapport à

xt.

(1.3) PROPOSITION. Lût dérivation a les propriétés suivantes:

(1) Pour tout élément g de G, on a
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(2) Pour tous les entiers i et j compris entre 1 et n,

-—¦ ôy (symbole de Kronecker).
CjX^

(3) Pour tous les g et h de G,

dgh dg ôh

où a : G -+GJG&apos; est Vapplication canonique.

(4) Pour tout élément g de G:

(5) Soit ç un automorphisme de G et soit yx (p(xj, \ &lt;&gt; i &lt; n. Alors pour tout g
de G on a:

Sxt i
Jt&lt;.

n fyk dx,
&apos;

Démonstration. Les propriétés 1 et 2 sont claires.

La propriété 3 provient de l&apos;identité: 1 ® (gh - 1) 1 ® (g - 1) + 1 ®g(h - 1)

qui s&apos;écrit aussi: 1 ® (gh — 1) 1 ® (g — 1) + tx(g) 1 ® (h — 1)).

La propriété 4 s&apos;obtient de 3 en remarquant que dljdxj 0.

Pour démontrer 5, commençons par noter que yuy2, • • • ,yn constitutent un
système de générateurs du groupe libre q&gt;(F) dont la clôture algébrique est aussi G.

Pour tout élément g de G, on a donc les relations suivantes:

i®ùr-i)= Z jr®(*,-i)= I |^

Mais, d&apos;une part

et d&apos;autre part on a aussi:

[ &lt;£ i&lt;Ln u-*&gt;i
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pour tout k 1, 2,. n. Par conséquent, les relations (R) s&apos;écrivent:

\&lt;.k&lt;.

ce qui prouve la formule annoncée.

(1.4) PROPOSITION. Soit G&quot; le second groupe dérivé de G et soit g un élément

quelconque de G. Si g est dans G&apos;\ alors dg/dxl 0 pour tout i 1, 2,. n. De plus,
si dg/ôxt 0 pour tout / 1, 2...,«, alors g est dans Gf.

Démonstration. La suite spectrale de Hochschild-Serre ([BR] ou [HS], p. 198)
d&apos;une suite exacte \-+N-+H-+Q-+\ de groupes fournit la suite exacte de Z[Q]-
modules:

0 -&gt; N/N&apos; A Z[g] ® H I(H) -&gt; I(Q) -» 0

où l&apos;application pi est définie par ii(nNf) 1 ®(« — 1) pour tout élément n de N.
Ce résultat appliqué à: 1 -&gt;G&apos;-&gt;(5 -*G/G&apos;-&gt; 1 nous donne la suite exacte de

A -modules:

Mais l&apos;anneau A est un ^4-module plat. Par conséquent, la suite exacte précédente

nous fournit, après tensorisation par A, le diagramme communtatif ci-dessous

où les lignes horizontales sont exactes et les flèches a, b, c sont induites par
l&apos;inclusion de A dans A:

0 G/G&quot; &gt;A®GKG) KG/Gf) &gt;0

«J t[ cj (D)

0 A ®A G/G&quot; &gt; A ®G I(G) &gt; A ®A KG/G&apos;) 0

Le diagramme (D) montre que pour tout g de G\ 1 ® (g - 1) b(n(gG&quot;)) 0.

Donc, si g est dans G&quot;, dg/dxt 0 pour tout /, 1 ^ i ^ n.

Supposons maintenant que l®(g-l)=0. Alors, 1 ®(a(g) - 1) 0 dans

A ®A I(G/G&apos;). Mais 1 ® (&lt;x(g) - 1) c(oc(g) - 1), et il est facile de voir que l&apos;application

c est injective, ce qui termine la démonstration.
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NOTATIONS. On notera Auto(G) le groupe de automorphismes de G qui
induisent l&apos;identité sur l&apos;abélianisé G/G&apos;. Pour tout élément cp de Auto(G), on
désignera par p(cp) la matrice n x n à coefficients dans A dont le terme d&apos;indice (i,j)
est dq&gt;(xt)/dxr

Le résultat qui suit généralise [B], Theorem 3.9.

(1.5) THÉORÈME. L&apos;application

p\(p\-+ p(q&gt;)

est un morphisme du groupe Auto(G) dans le groupe GLn(A).

Démonstration. Tout élément &lt;p de Auto(G) induit l&apos;identité sur A, donc induit
un automorphisme &lt;p du A -module A®G I(G). Pour tout entier / 1, 2 ...,«, on
a, dans A ®

Par conséquent, p(cp) est clairement la matrice de l&apos;automorphisme u ~l ° &lt;p ° u

de ytw où w : An^A ®G/(G) est l&apos;isomorphisme défini au Corollaire 1.2.

Remarque. Soit Auto(G/G&quot;) le groupe des automorphismes de G/G&quot; qui sont
induits par les éléments de Auto(G), et soit p : Auto(G) -&gt;Auto(G/G&quot;) l&apos;application

canonique. Si un élément q&gt; de Auto(G) est dans le noyau de p, alors, pour tout /,

l &lt; i &lt; n, &lt;p(xt) x, (mod. G&quot;). Mais d&apos;après la Proposition (1.4), ceci implique
que, pour tout j 1, 2 ...,«, (dx~l&lt;p(xt))/dXj 0. Les formules établies dans la

Proposition 1.3 montrent alors que dcp(xl)ldxJ=ôJn ce qui signifie que p(q&gt;) est
l&apos;identité de GLn(A).

Il s&apos;ensuit que p se factorise à travers p&quot; : Auto(G/G&quot;) -+GLn(A)9 mais nous
ignorons si, comme dans le cas du groupe libre, p&quot; est une injection, (voir [B],

p. 117).

2. Application aux enlacements d&apos;intervalles

Soit n un entier strictement positif et soient ax, a2,..., an, n points appartenant
à l&apos;intérieur du disque D2. Un enlacement de n intervalles est un plongement e

transverse au bord (différentiable ou semi-linéaire) de/x{l,2...,«} dans D2 x I
tel que f(j\ i) (anj) pour j 0, 1 et i 1, 2,..., n (voir [LD]).

Deux enlacements e0 et ex sont dits cobordants s&apos;il existe un plongement
standard sur le bord F : / x / x {1, 2,..., n} -? / x D2 x / qui induit ek sur
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fc x / x {1, 2,...,«} pour k 0, 1. Les enlacements de n intervalles se composent
par empilement et les classes de cobordisme forment un groupe que l&apos;on notera Cn.
Ce groupe contient le groupe Pn des tresses pures ([LD], p. 29).

Notons Autx(G) le sous-groupe de Auio(G) constitué des automorphismes &lt;p tels

que (p(xxx2-- - xn) =xxx2-- - xn. Il est construit dans [LD] un morphisme de

groupe y : Cn -+Autx(G) de la façon suivante. Soit e un enlacement de n intervalles,
soit Y le complémentaire dans D2 x I d&apos;un voisinage tubulaire ouvert de l&apos;image de

e et soit Yk (D2 x k) n Y, k 0, 1. Notons que l&apos;inclusion de Yo dans Y induit un
isomorphisme en homologie entière et une application normalement surjective au
niveau des nl9 et que Yo (ainsi que Y{) a le type d&apos;homotopie de \JnSl. Par

conséquent, l&apos;application de localisation / : Y0-+En se prolonge à Y -*En.
Les images dans nx{Y), ainsi que dans le groupe G, des générateurs canoniques

^Jj^-m^ de nx(Yx) sont conjuguées aux images des générateurs canoniques

xl5x2,..., xn de F nx(Y0). On démontre qu&apos;il existe un et un seul automor-
phisme cp de G tel que (p(xt) =yn i 1, 2. n. De plus, (p ne dépend que de la
classe de cobordisme de e et, clairement, xxx2 • • • xn yxy2 &apos; • &apos; yn &lt;p(xxx2 • • • xn).
On pose donc y(e) cp.

x1

y2

L&apos;enlacement e

y3
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DÉFINITION. La représentation de Gassner du groupe Cn est l&apos;application:

définie par F(e) p(y(e)) (dyJdXj).

Il faut noter que F prolonge la représentation de Gassner du groupe Pn des

tresses pures (voir [B], p. 119).

EXEMPLE. Soit e l&apos;enlacement de trois intervalles figuré à la page précédente.
Le groupe nx{Y) admet pour générateurs: xx,x2,x3, yx,y2,y3, rni9rn2, p2 et les

relations sont: yx xx xx mx, m2mx xx m2, p2x3 &gt;&gt;3 /?2, M\ w2 x2mx, y2m2

On calcule alors les dérivées de ces relations par rapport à je,, x2 et x3. Pour
cela, on remarque que oc(mx) oc(px) oc(yx) tx, cc{m2) &lt;x(p2) a(y2) /2,

a(j;3) t3 et on utilise la Proposition (1.3).
On obtient ainsi, dans A, un système linéaire dont les inconnues sont les dérivées

des générateurs autres que les xt.
La résolution de ce système nous donne:

\-tx-t2 1 - h - h
0

(1 - /i - h) (1 - h + /2/3) 0 - /i - /2) 0 - z2 + /2/3&gt; l - /2 + /2/

(I-/1-/2XI-/2 (1 ~ h ~ h) (1 - h + &apos;2*3) 1 ~ &apos;2 + hh

Remarque. Soit p, la restriction de la représentation p à ^w/^G). Posons

%\~x\&gt; gi — xix2&gt; • • - &gt;8n= xixi&apos;
&apos; xn et définissons la représentation

P : ^(G) -*GLn(A) par jS(^) (dcpigj/dgj), pour tout &lt;p de ^m/,(G).
La formule 5 de la Proposition (1.3) permet de vérifier aisément que, pour tout

&lt;p dans Autx(G)9 on a j?(&lt;p) Tpx{cp)T~x où 7* désigne la matrice

1

1

1

0

r,

0

0

0

0

0

0

0

0

ttt2
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D&apos;autre part, la représentation fi a les propriétés suivantes:

(a) la dernière ligne de (dcpig^/dgj) est (0, 0,..., 0, 1), car gn &lt;p(gn).

(b) (f, — 1, tx t2 — 1,..., t\ t2 &apos; &apos; &apos; tn — 1) est vecteur propre de la matrice précé¬

dente avec la valeur propre 1: cela provient de la formule 1 de la Proposition
(1.3), lue dans A.

Par conséquent le représentation /?, donc la représentation p,, sont équivalentes
à la représentation /T • Autx{G) -+GLn_x(A) définie par

Comme dans le cas des tresses, la représentation de Gassner est donc équivalente

à une représentation de dimension n — 1.
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