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Enlacements d’intervalles et représentation de Gassner

J. Y. LE DIMET

Introduction

Le calcul différentiel libre introduit par Fox a permis de construire diverses
représentations des groupes de tresses: représentation de Magnus, de Burau et
représentation de Gassner pour le groupe des tresses pures [B].

L’existence du calcul différentiel libre tient essentiellement au fait suivant: I’idéal
d’augmentation I(F) de l'algébre Z[F] du groupe libre F a n générateurs est un
Z[F]}-module libre de rang n.

Considérons maintenant la cloture algébrique G du groupe libre F (voir [L]). Ce
groupe G — qui est décrit ci-dessous et dans [LD] comme le groupe fondamental du
localisé “fini”” d’un bouquet de n cercles — est mal connu: on sait, par exemple, que
H,(G) est isomorphe a H,(F) pour i = 1,2, mais on ignore tout de H,(G) pour
i > 2. Il semble donc difficile dans ces conditions de décrire I'idéal d’augmentation
I(G) et d’étendre a G le calcul différentiel libre.

On démontre cependant dans ce qui suit, que 1’idéal I(G) a la propriété suivante.
Soit A I'anneau des fractions rationnelles a coefficients entiers en n variables
ty, ..., t,, dont les dénominateurs valent +1 pour ¢, =¢,=---=1¢,=1. Alors
A ®¢ I(G) est isomorphe a A”. Ceci nous permet de construire une sorte de calcul
différentiel sur G a valeurs dans A.

Rappelons maintenant qu’un enlacement de » intervalles est constitué de n arcs
orientés disjoints de la boule de dimension 3 dont les extémités sont contenues dans
le bord [LD]. Les classes de cobordisme de ces objets forment un groupe C, qui
contient le groupe P, des tresses pures. Comme application de ce qui préceéde, nous
montrons que la représentation de Gassner du groupe P, se prolonge a une
représentation I' du groupe C, dans le groupe GL,(A). Dans la pratique, le calcul,
pour un enlacement donné e, de la matrice I'(e) est aisé, du moins si cet enlacement
ne présente pas trop de croisements.
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1. Dérivation

Soit E, le localis¢ fini d’'un bouquet de n cercles et soit I:\/,, S'> E, l'ap-
plication canonique [LD]. Cet espace est caractérisé par les propriétés suivantes:

(i) E, est limite inductive de complexes finis X,, p 20, tels que X, =\/, S' et
pour tout p = 0:

H, (X,)—> H(X,,) est un isomorphisme et

m(X,) = m (X, ) est normalement surjectif.

(i1) E, est universel pour la propriété (i) au sens suivant: pour toute application
fde \/, S' dans un complexe fini ¥ qui induit un isomorphisme entiére et
une application normalement surjective au niveau des groupes fondamen-
taux, il existe une application g de Y dans E,, unique & homotopie prés, telle

que gof=1

On désignera par x,, x, . . ., x, des générateurs du groupe libre F =n,(\/, S")
et 'on notera G = n,(E,). Il est clair que H,(F) est isomorphe a H,(G) et que
H,(F) = H,(G) = 0. On en déduit que /,, : F - G est injective (voir [LD]) et dans la
suite, le groupe F sera considéré comme un sous-groupe de G.

Signalons que dans [L], J. Levine introduit la notion de groupe algébriquement
clos et prouve que G est la cloture algébrique du groupe libre F.

Rappelons maintenant une notion die a P. Cohn [C]. Soit 4 un anneau muni
d’une augmentation ¢ : 4 - Z. Le localisé universel A de ¢ est bien défini par les
propriétés suivantes:

(i) il existe un diagramme commutatif:

tel que pour toute matrice m a coefficients dans 4, m ® A est inversible si
et seulement si m ® Z est inversible;
(i) ’'anneau A est universel pour la propriété (i).

Remarque. En fait, la propriété (i) est équivalente a:
(i)’ tout élément a de A4 tel que &(a) = +1 est inversible dans A.
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Pour voir cela, donnons-nous une matrice m = (a;), 1 <i <p, 1 <j <p, d’¢l¢é-
ments de A4 telle que det e(m) = +1 et considérons le systéme d’équations linéaires:

’Zl 3 fbl 3
z b
m :2 - :2 (S)
Zp b,
. J " J

ou les b; sont des ¢léments de A
Le développement du déterminant de &(m) par rapport a la premiére colonne
montre qu’il existe des entiers ¢, g,, . . ., g, tels que:

&an)q +&ax)g + - - +ea,)g, = £ 1.

Posons alors ¢ = X a;,q; et remplagons le systéme (S) par un systéme équiva-
lent dans lequel le coefficient de z; dans la premiére ligne est ¢. Mais ¢ étant
inversible dans A, on multiplie cette ligne par ¢~' et I'on voit, en poursuivant
cette méthode, que (S) posséde une unique solution. Ce qui prouve que m est
inversible dans A.

On pose désormais A = Z[F/F’'] = Z[G/G’] ou F’ (resp. G’) est le groupe des
commutateurs de F (resp. G). Les localisés universels des augmentations 4 — Z et
Z|G] — Z seront désignés respectivement A et A.. Enfin, on notera ¢,,¢,,...,1¢, les
images des générateurs x,, X,, ..., x, dans F/F’. L’anneau A est donc formé des
polynomes de Laurent a coefficients entiers en les z;, et il est clair que A est I'anneau
constitué des fractions a/b d’éléments de A tels que &(b) = +1.

(1.1) PROPOSITION. Soit I(G) ’idéal d’augmentation du groupe G. Alors le
Ag-module Ag; ®;I(G) est libre de rang n.

Plus précisément, I’application v : A S A; ®; I(G) définie par v(a,, a,, .. ., a,)
=27 a; ®(x; — 1) est un isomorphisme.

Démonstration. On rappelle la propriété suivante (voir [V], Theorem 1.13):
soient X et Y des complexes finis, f : X - Y une application qui induit un isomor-
phisme en homologie entiére et soit A, le localis¢ universel de ’augmentation
¢:Z[m(Y)] > Z. Alors f,: H, (X, Ay) S H (Y, Ay) est un isomorphisme.

Ainsi, tout entier p = 0, on dispose d’un isomorphisme

H*(\/ s, Axp)ﬁi H (X, Ay).



Enlacements d’intervalles et représentation de Gassner 309

D’autre part, A est un A, -module pour tout entier p et I'espace E, est limite
inductive des X,. Il s’ensuit que /[, :H, (\/,S' Ag) S H,(E,, Ag) est un iso-
morphisme. Un argument classique de suite spectrale montre alors que H,(F, Ag)
est isomorphe & H,(G, A;) et que H,(F, Ag) = H,(G, Ag) =0.

Soit I(F) I'idéal d’augmentation de F. Les suites exactes

0->I(F)->Z[F]-Z -0, (1)

0-I(G) »Z[G] »Z -0 (1)
deviennent, aprés tensorisation par Ag:

0 H,(F, Ag) > Ag @ I(F) > Ag > Z -0, (2)

0->H,(G,A5) > A; @6 I1(G) > A5 > Z -0 (2)

La comparaison de (2) et (2") prouve que 'inclusion F — G induit un isomor-
phisme Ag ®  I(F) - Ag ®¢ I(G). On termine le démonstration en notant que I(F)
est le Z[F]-module libre engendré par les x; — 1, 1 <i < n ([HS], p. 196).

L’abélianisation « : G - G /G’ = F/F’ induit un morphisme d’anneaux A; — 4 et
A hérite ainsi d’une structure de A -module. On en déduit le.

(1.2) COROLLAIRE. L’application u : A" - A ® I(G) définie par

Uy, Aps oo s )= Y AL ®(x,—1)

1<i<n

est un isomorphisme de A-modules.

DEFINITION. Pour tout entier i, 1<i<n, lapplication 8/dx;:G— A
est définie ainsi: pour tout élément g de G, dg/dx; est la i°™ composante
duu~'(1®(g — 1)) dans A”. On dira que dg/0x; est la dérivée de g par rapport a
X

(1.3) PROPOSITION. La dérivation a les propriétés suivantes:

(1) Pour tout éléement g de G, on a

n ag
1®(g—1)—;a—xi ® (x; — 1).
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(2) Pour tous les entiers i et j compris entre 1 et n,

i

o i (symbole de Kronecker).

(3) Pour tous les g et h de G,

ogh og oh
ox;, 5;, +o(g) 0x;

ou o :G—>G|G’ est I'application canonique.

(4) Pour tout élément g de G:

og ! _, 0g

Fr —a(g) 15;-

(5) Soit ¢ un automorphisme de G et soit y, = @(x;), 1 <i < n. Alors pour tout g
de G on a:

%8 _ 98
ax,- lskgnaykaxi.

Démonstration. Les propriétés 1 et 2 sont claires.

La propriété 3 provient de l'identité: 1®@(gh—1)=1®@((g—-1)+1®@gh —1)
qui s’écrit aussi: 1@ (gh— 1) =1®(g—1)+a(g) (1®(h —1)).

La propriété 4 s’obtient de 3 en remarquant que d1/0x; = 0.

Pour démontrer 5, commengons par noter que y,, y,, ..., J, constitutent un
systéme de générateurs du groupe libre ¢(F) dont la cloture algebrique est aussi G.
Pour tout élément g de G, on a donc les relations suivantes:

0 0
1I®E-)= Y 2 ow—-1)= Y £

| <7< n 0X; 1<T<nOVi

(e — 1 (R)

Mais, d’une part

% oy 1= _
5, ® D=3 1@~ 1)

et d’autre part on a aussi:

1®-D= 3 2 g1

1<i<n 6xi
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pour tout k =1,2,...,n Par conséquent, les relations (R) s’écrivent:

l8G-= 3 Fow-n= 3 | ¥ EXew-1)

1<i<n0X; 1sksn|1<7sn OV OX;
0g 6}’1:)

= U ®x,~——1,

ls;Sn<15;Snayk Ox; ( )

ce qui prouve la formule annoncée.

(1.4) PROPOSITION. Soit G” le second groupe dérivé de G et soit g un élément
queiconque de G. Si g est dans G", alors 0g[0x; =0 pour tout i = 1,2, ..., n. De plus,
si 0g/0x; =0 pour tout i =1,2...,n, alors g est dans G’.

Démonstration. La suite spectrale de Hochschild-Serre ([BR] ou [HS], p. 198)
d’une suite exacte 1 - N - H - Q — 1 de groupes fournit la suite exacte de Z[Q]-
modules:

0 N/N' 5 Z[0) @, I(H) - I(Q) 0

ou l'application u est définie par u(nN’) = 1 ® (n — 1) pour tout élément n de N.
Ce résultat appliqué a: 1 >G> G - G/G’— 1 nous donne la suite exacte de
A-modules:

0-G'/G" 5 A ® 4 I(G) = [(G/G") —O.

Mais I’anneau A est un 4-module plat. Par conséquent, la suite exacte précé-
dente nous fournit, aprés tensorisation par A, le diagramme communtatif ci-dessous
ou les lignes horizontales sont exactes et les fléches q, b, ¢ sont induites par
linclusion de A dans A:

0—> G'/G" —ARsIG)—> IG/G) —0

| | | ®

0—A®,G/G"— AR I(G) — AR, I(G/G") —>0

Le diagramme (D) montre que pour tout g de G', 1 ® (g — 1) = b(u(gG")) = 0.
Donc, si g est dans G”, dg/0x; =0 pour tout i, 1 <i <n.

Supposons maintenant que 1®(g—1)=0. Alors, 1®(a(g) —1) =0 dans
A®,I(G/G). Mais 1® (a(g) — 1) = c(a(g) — 1), et il est facile de voir que I'appli-
cation ¢ est injective, ce qui termine la démonstration.
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NOTATIONS. On notera Auty(G) le groupe de automorphismes de G qui
induisent l'identité sur I’abélianis¢ G/G’. Pour tout élément ¢ de Aut,(G), on
désignera par p(¢) la matrice n x n a coefficients dans A dont le terme d’indice (i, j)
est 0p(x;)/0x;.

Le résultat qui suit généralise [B], Theorem 3.9.

(1.5) THEOREME. L’application

p e p(e)
est un morphisme du groupe Auty(G) dans le groupe GL,(A).

Démonstration. Tout élément ¢ de Aut,(G) induit I'identité sur A, donc induit
un automorphisme @ du A-module A ®; I(G). Pour tout entier i =1,2...,n, on
a, dans 4 ®.; I(G):

Sl
F1®x - 1) =18@x) - = ¥ L g 1

1<j<n axj

Par conséquent, p(¢) est clairement la matrice de ’automorphisme u~'o @ o u
de A" ou u : A" 3 A @ I(G) est I'isomorphisme défini au Corollaire 1.2.

Remarque. Soit Aut,(G/G") le groupe des automorphismes de G/G” qui sont
induits par les éléments de Auty(G), et soit p : Aut,(G) = Auty(G/G") I'application
canonique. Si un élément ¢ de Auty(G) est dans le noyau de p, alors, pour tout i,
1<i<n, o(x;)=x; (mod. G"). Mais d’aprés la Proposition (1.4), ceci implique
que, pour tout j=1,2...,n, (0x;7'o(x;))/0x; =0. Les formules établies dans la
Proposition 1.3 montrent alors que J¢(x;)/0x; = d7, ce qui signifie que p(¢p) est
I'identité de GL,(A).

Il s’ensuit que p se factorise a travers p”: Auty(G/G") - GL,(A), mais nous
ignorons si, comme dans le cas du groupe libre, p” est une injection, (voir [B],

p. 117).

2. Application aux enlacements d’intervalles

Soit n un entier strictement positif et soient a,, a,, . . ., a,, n points appartenant
a lintérieur du disque D2 Un enlacement de n intervalles est un plongement e
transverse au bord (différentiable ou semi-linéaire) de I/ x {1,2...,n} dans D*> x I
tel que f(j,i) =(a;,j) pour j=0,1eti=1,2,...,n (voir [LD]).

Deux enlacements e, et e; sont dits cobordants s’il existe un plongement
standard sur le bord F:IxIx{l,2,...,n}>IxD?*x1I qui induit ¢, sur
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kxIx{l,2,...,n} pour k =0, 1. Les enlacements de n intervalles se composent
par empilement et les classes de cobordisme forment un groupe que I’on notera C,,.
Ce groupe contient le groupe P, des tresses pures ([LD], p. 29).

Notons Aut,(G) le sous-groupe de Auty(G) constitué des automorphismes ¢ tels
que @(x; x5 x,) =x,x, " x,. Il est construit dans [LD] un morphisme de
groupe y : C, = Aut,(G) de la fagon suivante. Soit ¢ un enlacement de » intervalles,
soit Y le complémentaire dans D? x I d’un voisinage tubulaire ouvert de I'image de
e et soit Y, =(D?> x k)nY, k =0, 1. Notons que I'inclusion de Y, dans Y induit un
isomorphisme en homologie entiére et une application normalement surjective au
niveau des m;, et que Y, (ainsi que Y,) a le type d’homotopie de \/, S'. Par
conséquent, I’application de localisation /: Y, — E, se prolonge 4 Y - E,.

Les images dans n,(Y), ainsi que dans le groupe G, des générateurs canoniques
YisVas- -5V, de m(Y;) sont conjuguées aux images des générateurs canoniques
X1, X2, ..., %X, de F=m,(Y,). On démontre qu’il existe un et un seul automor-
phisme ¢ de G tel que ¢(x;) =y;, i=1,2...,n De plus, ¢ ne dépend que de la
classe de cobordisme de e et, clairement, x,x, " X, =y, V2" " " Y, = @(X; X, * * * X,,).
On pose donc y(e) = o.

x1 x2 x3

O O D

yt y2 y3

— L’enlacement e —
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DEFINITION. La représentation de Gassner du groupe C, est I’application:
r:c,-GL,(A)

définie par I'(e) = p(y(e)) = (9y;/0x;).

Il faut noter que I' prolonge la représentation de Gassner du groupe P, des
tresses pures (voir [B], p. 119).

EXEMPLE. Soit e ’enlacement de trois intervalles figuré a la page précédente.
Le groupe =#,(Y) admet pour générateurs: x,, X5, X3, Vi, Va2, V3, M, My, p, €t les
relations sont: y, x, = X, m;, My, M, = X; My, Py X3 =Y Py, My My =X, My, Y, My =
my Py € y3 P2 =m, Y.

On calcule alors les dérivées de ces relations par rapport a x;, x, et x;. Pour
cela, on remarque que a(m;) =a(p;) =a(y;) =1, almy)=a(p,) =a(y,) =1,
a( y;) = t; et on utilise la Proposition (1.3).

On obtient ainsi, dans A4, un systéme linéaire dont les inconnues sont les dérivées
des générateurs autres que les Xx;.

La résolution de ce systéme nous donne:

- 3
l—2t1—t2+tlt2 tl(l—tl) 0
1“t1"“t2 1"11"’[2
Ie) = (A=86)A -, +83+055—124) —L(1—tL+E+05—13) —t3(1-1t)
(l—tl—tz)(l—t2+t2t3) (1“t1"t2)(1"'t2+t2t3) 1"‘[2+t2t3
(1-1)(1—-1) —15,(1—1;) P15
L =5 -6)(1-6+101) (I-t—)(—t+6t5) 1-6+6t)

Remarque. Soit p, la restriction de la représentation p a Aut,(G). Posons
gi=X1, £2=XXp...,8,=X;Xy°°"X, et définissons la représentation
B : Aut,(G) - GL,(A) par B(@) = (0¢(g:)/0g;), pour tout ¢ de Aut,(G).

La formule S de la Proposition (1.3) permet de vérifier aisément que, pour tout
¢ dans Aut,(G), on a B(¢) = Tp,(¢)T " ou T désigne la matrice

1 0 O 0 0

14 0 0 - 0

1 tl tlt2 O v O

1 4 4yt Hiht Lhity: -t _,
y
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D’autre part, la représentation f a les propriétés suivantes:

(a) la dernicre ligne de (d¢(g;)/dg;) est (0,0,...,0,1), car g, = ¢(g,).

(b) (s, -1, yt,—1,...,4t, - t,— 1) est vecteur propre de la matrice précé-
dente avec la valeur propre 1: cela provient de la formule 1 de la Proposition
(1.3), lue dans A.

Par conséquent le représentation B, donc la représentation p,, sont equlvalentes
a la représentation B’ : Aut,(G) —» GL, _ ,(A) définie par

d9(g;)
ﬁ( )—< agj )lsi,an—l

Comme dans le cas des tresses, la représentation de Gassner est donc équiva-
lente a une représentation de dimension n — 1.
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