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Stable constant mean curvature tori and the isoperimetric problem in
three space forms

MANUEL RITORE* AND ANTONIO ROSt

Introduction

Let Y : M > N be an immersion of an orientable surface into a three dimen-
sional oriented Riemannian manifold. Then y has constant mean curvature if and
only if it is a critical point of the area functional for any compactly supported
variation that preserves the volume enclosed by the surface. In this context we say
that the constant mean curvature immersion ¥ is stable if the second variation
formula of the area, which we call henceforth the index form of y, is non negative
for all variations of the above type. Otherwise, ¥ is stable if for any f € C*(M) with
compact support such that {,, fd4 =0, we have

1(£.1) =JM {IVfP = (Ric (§) +|o’)f?} d4 20, (1)

where Vf'is the gradient of £, £ is the unit normal vector field of the immersion, Ric
is the Ricci curvature of the ambient manifold N, and |o|* is the square of the norm
of the second fundamental form ¢ of . For more details see [3].

We are interested in studying stability when the metric induced on M is
complete. If the ambient manifold is a simply connected complete space form N(c)
of constant sectional curvature c, then it has been proved by Barbosa and do
Carmo [2], Barbosa, do Carmo and Eschenburg [3], El Soufi and Ilias [8], and
Heintze [13] that the only compact stable surface with no boundary is the umbilical
sphere. In fact this result has been proved for arbitrary dimension.

Let ¥ : M —» N be a stable constant mean curvature immersion of a complete
orientable surface into a three dimensional oriented Riemannian manifold. Then
the following interesting, although partial results, are known:

*Supported by DGICYT grant PG89-08823714.
tPartially supported by DGICYT grant PS87-0115-C03-02.
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THEOREM 1. If N is compact and has positive Ricci curvature, then
(1) M is compact and connected, and
(i1) genus (M) < 3.

THEOREM 2. If N is complete, has non negative Ricci curvature, positive
injectivity radius and its sectional curvature is bounded from above, then either Y is
totally geodesic or

(i) M is compact and connected, and

(i1) genus (M) < 5.

The compactness in Theorem 1 follows from the results of Fischer-Colbrie [9]
and Lopez and Ros [20, Th. 4], and in Theorem 2 from the sharper results of
Frensel [11], and da Silveira [25, Th. 1.6]; see also [4]. The connectedness of M is
easy to prove, in both theorems, because otherwise we could construct a non
identically zero locally constant function with vanishing mean value contradicting
the inequality (1). Connectedness is relevant in stability problems in two different
ways: first, the connected components of an unstable surface could be stable and
second, some interesting stable surfaces appear as solutions to the isoperimetric
problem (see below) and in general these surfaces are not connected.

The genus estimate in Theorems 1 and 2 is obtained by El Soufi and Ilias [§],
Frensel [11] and Yau [28)]. If the genus of the surface is 4 or 5 we conclude easily
from their proof that M must be a minimal surface.

Theorem 1 is applied to elliptic space forms and Theorem 2 to the flat ones. In
particular taking N equal to the Euclidean 3-space or to the unit 3-sphere, we
obtain the results of Lopez and Ros [20], Palmer [22], and da Silveira [25].

These results give a classification of complete stable constant mean curvature
immersions in R? and in S3(1). When the ambient manifold N(c), ¢ =0, is not
simply connected the problem is unsolved. We can easily construct flat stable
constant mean curvature tori in some quotients or R* and S3(1). More interesting
examples have been found in flat three dimensional tori by Ross [24], who has
proved that the classical Schwarz minimal surfaces of genus three are stable. Also,
from the informal argument exposed by Frankel at the end of [10], it is natural to
hope that the Poincaré dodecahedral space, an elliptic space form which is covered
120 times by the three sphere, contains a stable embedded constant mean curvature,
in fact minimal, surface of genus two.

In this paper we first prove that

“stable constant mean curvature tori in three space forms are flat™.

In the flat case these tori are quotients of a plane or of the flat circular cylinder
in R?. In the elliptic one the tori must be a quotient of a Clifford torus
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S'(a) x S*(b) = S°(1), with a®>+ b*>=1. In the hyperbolic case, the tori are quo-
tients of horospheres or of tubes about geodesics.

Our next result gives the classification of complete stable constant mean
curvature surfaces in the three dimensional real projective space with its standard
metric. More precisely

“an orientable complete stable constant mean curvature surface in RP3(1) is a
geodesic sphere, a twofold covering of a real projective plane or an embedded flat
tube of radius r, with n/6 <r < n/3, about a geodesic”. ‘

We also prove that any stable constant mean curvature surface of genus 2 or 3 in
an elliptic space form covered 3 or 4 times by the three sphere S3(1) must be
embedded.

The isoperimetric problem is one of the great global problems in Riemannian
geometry. A part of it can be stated as follows: if N is a 3-dimensional compact
Riemannian manifold, given a positive number V, with 0 < ¥V < volume (), find the
embedded compact surfaces of least area which enclose a domain of volume V. In
this form the problem has always a smooth compact solution because of the existence
result of Almgrem [1] and the regularity theorem of Taylor [27]; this solution has
constant mean curvature and is stable. The same result holds if N is a complete non
compact flat three manifold. The solution of this problem may be condensed in a
function called the isoperimetric profile of N which associates to each positive number
V the area A4 of the surface of least area enclosing a volume V. For simply connected
complete space forms the problem was solved by Schmidt [26]. In the metric product
S%(1) x R it was solved by Pedrosa [23], see also [4]. For complete flat three
manifolds the problem is reduced to classical differential geometry and is, essentially,
unsolved. The case of flat three dimensional tori seems to be specially complicate and
attractive.

As an application of our results, we solve the isoperimetric problem for the real
projective space, a problem proposed by do Carmo [4], and for oriented complete
flat three manifolds with cyclic fundamental group. In both cases the surfaces
of least area enclosing a given volume are geodesic spheres or flat tubes about
geodesics.

The authors wish to thank F. Morgan for his valuable information about the
isoperimetric problem, and to the referee for his comments.

1. Stability of constant mean curvature tori

Let (M, ds?) be a compact orientable Riemannian surface and N(c) a complete
oriented three dimensional Riemannian manifold with constant sectional curvature
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c. If y : M - N(c) is an isometric immersion with constant mean curvature H and
second fundamental form g, we can consider on M the associated holomorphic
quadratic differential ¢>° such that, if z = x + iy is a local conformal coordinate in
M, then

62’0 = 40-(629 az) dZZ = {a(ax’ ax) - O'(ay, ay) - 2i6(6x’ ay)} dzz‘

It follows that ¢>°(p) = 0 if and only if p is an umbilic point of the immersion and
that either all the points are umbilic or the umbilic points are isolated. Suppose
that 5% = 4(c + H?) > 0. Then at an umbilic point p of M the Gauss curvature is
given by K(p) =b%/4>0 and, so, the totally umbilical case corresponds to
genus (M) =0. If M is a surface of genus g >0 the number of umbilic points,
counted with their multiplicity, is 4g — 4 and, in particular, constant mean curva-
ture tori have no umbilic points. If we denote by P the finite set of umbilic points
of Y, we can consider on M\P the flat metric ds} = b|6>|, which is conformal to
ds®. If w is the function on M\P defined by ds? = (exp (2w)/b?) ds3, then

A,w + sinh (w) cosh (w) =0, (2),

where 4, is the Laplacian of the flat metric ds3. Moreover, if we denote by k;,,
i =1, 2, the principal curvatures of the immersion ¢ and by K the Gauss curvature
of the metric ds?, then

k;=H + (b/2) exp (—2w), i=1,2, and K=(b*4)(1—exp(—4w)), (3)

so K =0 if and only if w =0. For more details see [7], [14] and [18].
When the ambient space is N(c) then, using the Gauss equation, the index form
(1) is given by

I(f.1) =L {IVofI? — ®* —2K)f?} dA, (4)

for all fe C*(M).

As w satisfies the sinh-Gordon equation (2) and at umbilic points w goes to
+ o0, if w # 0 its zeros are given by a finite set of C'-immersed circles in M, see [6].
Now we will prove that stability implies a restriction on the nodal sets of w.

THEOREM 3. Let y : M — N(c) be an immersion with constant mean curvature
H from a compact orientable surface of positive genus into an oriented three space
form N(c). Let K be the Gauss curvature of M. Suppose that b = 4(c + H?) > 0.
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If K # 0 and  is stable, then the open set {p € M | K(p) < 0} is connected and each
connected component of {p € M| K(p) > 0} must contain one umbilic point at least.

Proof. If f is a function compactly supported in M\ P then, as outside of the
set of umbilic points we have from (3) that 2 — 2K = b2 cosh (2w) exp (—2w) =
b*(cosh? w + sinh? w) exp (—2w), the index form (4) can be written

If.f) = j {[Vo.f 2 = (cosh? w + sinh® w) f2) dA,, (5)

where the length of the gradient of f and the measure are taken with respect to the
flat metric ds3.

Let Q be a connected component of {p € M | K(p) # 0} without umbilic points.
As sign (K) = sign (w), the function f on M defined by

fe sinh (w), on Q,
o, on M\Q,

is in the Sobolev space H'(M). Moreover, umbilic points cannot lie at the boundary
of Q because the Gauss curvature is positive for the first kind of points and zero for
the second one. So f has compact support in M\ P. Hence integrating by parts and
using (2) we obtain

M

fM Vof2 dAo = L (Vof, Vosinh (w)> ddg = — J £ A, sinh (w) dA,
= —j sinh (w) A, sinh (w) dA4,
Q
= ——L {sinh (w){sinh (w)|Vow[* + cosh (w) dow}} dA,
= L sinh? (w) {cosh? w — |V, w|*} dA,.
From this last equality and (5) we conclude that
ICS,f) =J {sinh? w(cosh? w — [V,w|*) — (cosh? w + sinh? w) sinh® w} dA4,
Q

= -J' sinh? w(sinh? w + [V ow[?) d4, < 0.
Q
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If we could find two connected components of {p € M | K(p) #0} without
umbilic points, we would get two functions in H'(M), f,, f, whose supports are
disjoint and such that I(f;, f;) <0, i = 1, 2. So, a certain linear combination of both
functions will give another function f with {,,fd4 =0 and I(f,f) <0, which is
impossible by the stability of . At this point the theorem follows directly because
the set {p € M | K(p) <0} is nonvoid, by the Gauss—Bonnet theorem, and does not
contain umbilic points. O

If genus (M) = 1, we obtain the following stronger conclusion, without restric-
tions on the values of ¢ and H.

COROLLARY 4. Let Y : (M, ds?) — N(c) be an isometric immersion with con-
stant mean curvature H. If M is a torus and y is stable, then the metric ds? is flat.

Proof. Suppose first that b2 = 4(c + H?) > 0. As M has no umbilic points, we
conclude using Theorem 3 that the subset {p € M | K(p) > 0} is empty. So the result
follows from the Gauss—Bonnet theorem.

If ¢+ H?><0, then it follows from the Gauss equation that the curvature
of M is less than or equal to zero and, from the Gauss—Bonnet theorem, must be
identically zero. O

It is an elementary fact that a flat constant mean curvature surface in N(0) is
locally congruent to a plane or to a right circular cylinder in R?, in N(1) to a Clifford
torus, that is, to a product of circles on S3(1), and in N(—1) to a horosphere or to
a tube about a geodesic.

2. Stability of constant mean curvature surfaces in elliptic space forms

Every orientable three dimensional space form N(1) with positive sectional
curvature ¢ = 1 determines a finite Riemannian covering IT : S*(1) — N(1) from the
standard unit sphere S3(1) over N(1). In particular the real projective space RP3(1)
determines a two sheeted covering. In this section we shall obtain some information
about compact stable constant mean curvature surfaces in N(1) when the number
of sheets of IT is small.

We shall need the following result

THEOREM 5. If y : M — S3(1) is an immersion of a compact orientable surface,
then

J (1+ H? dA = 4n, (6)

and the equality holds if and only if M is an umbilic sphere.
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Moreover, if
j (1+ H?*)dA < 8, (7
M

then the immersion Y is an embedding.

For the first part of the theorem see [5]. The second statement is proved in [19]
if {4 (1+ H?)dA <8n. When (,, (1 + H?) dA = 8x the result is essentially due to
Kusner [17]. As it is not explicitly stated in [17], we explain briefly the proof of this
result. If ¥ is not an embedding, then there exists a point p in S*(1) such that
¥ ~!(p) contains exactly two points; see [19]. Now, taking sterographic projection
from the point p, we transform the immersion ¥ into a complete minimal surface
with finite total curvature in the Euclidean space R* and two embedded flat ends;
see [17]. But it follows from [17] that such a surface must be embedded, and so its
flat ends must be parallel. Hence we see that the linear function orthogonal to the
ends is a harmonic bounded function, and then it must be constant. The result
follows from this contradiction.

A compact surface of genus zero immersed with constant mean curvature in a
spherical three space form is totally umbilical and hence is stable. If the genus of the
surface is one the stability problem is solved by Theorem 3. From Theorem 1 it
remains to study the stability problem when the genus is 2 or 3. Some of our
arguments in the following result are similar to those used in [8], [19], [21] and [28].

THEOREM 6. Let  : M — N(1) be an immersion with constant mean curvature
H from a compact orientable surface of genus greater than one into an oriented elliptic
3-space form N(1). Suppose that the universal covering IT : S*(1) —» N(1) has k sheets
and that \ is stable. Then

(i) (1 + H?) Area (M) < 2n.
(ii) k = 3.
(iii) If k =3 or 4, the immersion  is an embedding and the induced morphism
between the fundamental groups Y, : m,(M) - n,(N(1)) is surjective.

Proof. Let g be the genus of M. It is a known fact (see [12, p. 261]) that there
exists a non compact meromorphic map ¢ : M — S*(1) c R? such that

degree (¢) <1+ I:%l—], (8)

where [x] is the greatest integer less than or equal to x. Composing ¢ with a
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conformal diffeomorphism of the Riemann sphere S2, we can suppose (see [19])
that

J¢M=&

Using this vectorial function as a test function in the index form (4) we obtain

0<1(¢,¢) = J:w {IFo]>—(*—2K)} d4
= 87 degree (¢) ——4J (1+ H*dA +8n(1 —g),
M

where in the last equality we have used that ¢ is a conformal map and the
Gauss—Bonnet theorem. Estimating the degree of ¢ by ( 8) we obtain

f(1+H§¢4sm<z—g+E?;q) 9)

If g = 4 the right hand side of this inequality is nonpositive and this contradiction
gives us the statement (ii) of Theorem 1. If g =2 or 3 we obtain statement (i) in our
theorem.

Let M be the pullback of M via the covering map IT : S3(1) - N(1). Note that
M is not necessarly connected. Associated to this surface we have naturally defined
an isometric immersion Y : M — S*(1) and a k-sheeted Riemannian covering
M — M. As { is locally congruent to y the new immersion has also constant mean
curvature H. Then, using the statement (i) above, we have

‘LU+H%M=kJ(LHWMAS%m (10)

If k <2, J should verify the equality in (6). But clearly genus (M) = g > 1, and this
contradiction proves (ii).
Now we prove (iii). Suppose that k£ < 4. From (6) we conclude that

4n(number of components of M) < J (1+ H?* dA < 2kn < 8. (1)
Jri

So it follows that M is connected: otherwise M would have precisely two connected
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components and, from Theorem S, each of these components should be an umbilic
sphere in S3(1), and this is impossible because genus (M) > 0. This fact is equiva-
lent to the surjectivity of Y, : m, (M) — n,;(N(1)). From (7) and (11) we obtain that
Y is an embedding and finally using the fact that , is surjective, we conclude that
also the immersion { is an embedding. g

As a consequence of the above results we can now state a complete solution of
the global stability problem in the three dimensional real projective space. This
space form is the only two sheeted quotient of the sphere S3(1).

COROLLARY 7. Let  : M — RP3(1) be a complete orientable constant mean
curvature surface immersed into the real projective space. If the immersion is stable,
then

(1) either M is a compact surface with genus (M) =0 and  is an embedded

geodesic sphere or a twofold covering of a totally geodesic projective plane,

(i1) or M is a compact surface of genus 1 and  is an embedded flat tube of radius

r, with /6 <r < m/3, about a geodesic.

Proof. From theorem 1 we have that M is a compact and connected surface
with genus (M) < 3. From theorem 6 we see that the cases genus (M) =2 or 3
cannot hold.

If genus (M) =0, then ¢ is a totally umbilic immersion and so we have (i).

If genus (M) = 1, then from Corollary 4, M is a flat torus. It is a standard and
simple fact that an immersion of this kind must be a finite Riemannian covering of
a tube of radius r, 0 < r < n/2, about a geodesic in RP3(1). Using (9) and (10) for
g =1 and k =2, we deduce that y is an embedding.

If T is a tube of radius r, 0 <r < /2, about a geodesic in S3(1), then T
is congruent to the standard embedding of the Clifford torus S!(cos (r)) x
S!(sin (r)) = $3(1) = R?* and the Jacobi operator of this surface is 4 + 1/cos? r +
1/sin? r. We obtain easily that the corresponding embedded tube in RP3(1) is given
from an intrinsic point of view by T = R?/I", where I is the lattice in R? generated
by the vectors (27 cos (r), 0) and (m cos (r), 7 sin (r)). As the eigenvalues of the
Laplacian of T are

m? (2n+m)2_nmEZ
cos? (r) sin?(r) ’

the tube T is stable if and only if

cos (r), sin (r) = 1/2,
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or, equivalently,

n/6<r<m/3. O

3. The isoperimetric problem

Among all embedded compact surfaces enclosing a given volume in an ori-
entable compact 3-manifold or in a complete flat 3-space form, there exists one of
least area; see [1]. This surface is a (M, ¢, §)-minimal set. Hence Taylor’s regularity
theorem [27] applies and so the only possible singularities of this surface occur
along curves where three sheets meet in an equiangular way or at some isolated
points where four of the above curves meet themselves. Since our surface separates
the three-manifold just in two regions (inside and outside), 1t is regular although
not necessarily connected. In this way we obtain an embedded compact constant
mean curvature surface which is stable. In this section we solve completely the
isoperimetric problem in the real projective space and in the flat manifold R*/S,,
where S, is the subgroup generated by a screw motion in R>.

Let (V) be the function which determines the isoperimetric profile of the sphere
S3(1), that is, for any V € (0, 2n?), f(V) denotes the area of the geodesic sphere
in S3(1) which encloses a volume V. Let us denote by g(V) the function 2V
2(r%— V)2, To solve the equation f(V) =g(V) in [n?/4,n*/2] is equivalent to
finding the fixed points of the explicitly computable map f~'°g in the above
interval. A direct computation shows that |(f~'°g)’| <1, so there exists at least
one fixed point of f~'° g (because f(n*/4) < g(n?/4) and f(n?/2) > g(n?/2)); then
f~1og([n?/4, =?/2])) = [r?/4, n%/2] and we can conclude, from Banach’s fixed point
theorem, that there exists exactly one solution to f(V) = g(V) in (n3/4, n?/2). We
denote this solution by u. Approximately u =~ 4.1432835. Now we state our first
result:

THEOREM 8. The isoperimetric profile of RP*(1) is given by

f(V)a 1f0<VS/,l,
AV =12V vy, i u<Vsnioyp,
f(@*+ V), if 12 —pu<V<n?

Moreover, in the first case the solution of the isoperimetric problem is a geodesic ball,
in the second one the solution is a tubular neighborhood of a geodesic and in the last
one the solution of the problem is the outside of a geodesic ball.
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Proof. 1t is enough to compare area and volume among smooth domains in
RP*(1) bounded by stable constant mean curvature surfaces. By Corollary 7 these
surfaces are geodesic spheres or flat tubes of radius r, n/6 <r <n/3 about
geodesics. The tubes have area 4 =2 cos (r) sin (r) and they separate RP3(1) in
two connected open domains with volumes ¥, = n? cos? (r) and V, = n? sin? (r), so
that the relation between the area and the volume enclosed by the tubes is

2 2
A =2V'"3(rn?2 - V)12, whenever %— <V< 3% .

For geodesic balls in RP3(1) the relation between area and volume is, of course,
given by 4 =f(V) and for the outside of a geodesic ball by 4 = f(n?+ V). The
theorem follows directly from these relations. O

We consider now the flat manifold R*/S,, where S is the subgroup of isometries
of the Euclidean space generated by the screw motion

(x, y, x) = (x cos () — y sin (0), x sin (6) + y cos (0), z + A),

with 0 €[0,2n) and A >0. We wish to find the embeddings ¥ : M —R3/S, of
compact surfaces which are stable as constant mean curvature immersions. As there
are no compact totally geodesic surfaces in R*/S,;, by Theorem 2, M must be a
compact and connected surface. On the other hand, if M is a connected pullback
surface of M in the universal covering R*® of R3/S,, and § : M - R® is the
corresponding proper constant mean curvature embedding, then either M is com-
pact and, from Alexandrov theorem [14], ¥ is totally umbilical, or ¢ is a simply
periodic proper embedding inside a right circular cylinder in R? and from the results
of Korevaar, Kusner and Solomon [16, Th. 2.10], M is an embedded revolution
surface in R?. Consequently M must be a torus and, by Corollary 4, it is a quotient
of a right circular cylinder whose axis has to be the one of the screw motion. With
this result and single computations we have proved the following theorem:

THEOREM 9. The isoperimetric profile of R*/S, is given by

4nA’
347

(4n)' A3V, if0<V <

AV) =
4nA3
(4nAV)'2, if ’;4

<V.
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In the first case the domain of least area enclosing the volume V is the Euclidean ball
and in the second one the solution is the domain enclosed by the embedded torus
(S'(a) x R)/S,, for suitable values of a.

Remark. The classical Schwarz minimal £ -surface of genus three in the cubic
three-torus is a stable constant mean curvature surface, but the domain enclosed by
this surface is not a solution of the isoperimetric problem; see [24]. By continuity,
some of their constant mean curvature companions discovered by Karcher [15] are
also stable. In the same way it seems natural to hope that the Lawson constant
mean curvature surface of genus two [18], and some of their constant mean
curvature companions (see [15]) are stable in the space T2 x R, where T2 is the
square flat two dimensional torus. However, the best candidates to solve the
isoperimetric problem in these spaces are geodesic balls, tubular neighborhoods of
closed geodesics and slices bounded by a pair of parallel planes.
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