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On the trigonometry of symmetric spaces

ENRICO LEUZINGER

1. Introduction

Symmetric spaces were introduced, classified and intensively studied by Elie Cartan
more than sixty years ago (cf. e.g. [Cal], [Ca2], [Ca3]). However, the understanding
of their geometry is still in an infancy state, with the striking exception of the spaces
of constant curvature. In the study of Euclidean, spherical and hyperbolic geometry
triangles play a crucial role. Actually, these three geometries are characterized by
the same congruence theorem, “side-angle-side”, for triangles, which is equivalent
to the fact that the underlying space has constant sectional curvature. The theorem
states that the congruence class of a geodesic triangle o/ #% is completely determined
by two of its sides, e€.g. a = 8%, b = %, and the enclosed angle y at . The third
side ¢ and the angles « and f can be computed from a, b and y. This is the essence
of the “laws of trigonometry”, the law of cosines and the law of sines.

Various applications of spherical and hyperbolic geometry rest on the effective-
ness of these formulae. To understand and to generalize them is one of the aims of
the present work. We shall develop a “trigonometry” for arbitrary (irreducible)
Riemannian symmetric spaces of non-compact type. This involves a detailed study
of (generic) triangles together with their congruence classes in such spaces.

The Riemannian symmetric spaces of rank 1 are precisely the non-Euclidean
two-point homogeneous spaces. Their trigonometry has been studied by B. A.
Rozenfeld and more recently by W.-Y. Hsiang, cf. [Roz] and [Hsi]. A different
approach using models in projective spaces has been given by U. Brehm, cf. [Bre].

A Riemannian symmetric space S is centrally symmetric with respect to any of
its points. This implies that the group of isometries /(S) operates transitively. The
geometry of S is therefore intimately connected with the geometry of its group of
isometries, which in turn is a semisimple Lie group. Thus to study symmetric spaces
we have at our disposal on the one hand Riemannian geometry and on the other
hand the rich structure theory of semisimple Lie groups.

Let S be a Riemannian symmetric space of non-compact type. A flat in S is a
maximal, totally geodesic submanifold with sectional curvature zero. It is also the
orbit of a group conjugate to a certain abelian subgroup 4 of G = [,(S), the
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connected component of the identity in I(S). A Weyl chamber in S is an (open)
cone in a flat of S. We shall define the set CS = G/M of all Weyl chambers of S and
will show that it is a trivial homogeneous bundle over S : K/M - G/M - S = G/K.
Here M is the subgroup of the isotropy group K consisting of those elements which
fix a chosen basic Weyl chamber c,.

The approach taken in our work is to translate geometric configurations given
by points of S into group theoretic relations. A key idea is to relate the geometry
of S to that of the Weyl chamber bundle CS.

We call a geodesic triangle o/ #% regular if the geodesic segments o/ B, BE, €.
lie on regular geodesics, i.e. geodesics which are contained in precisely one flat. A
regular geodesic triangle /4% in S with a distinguished segment /% is called
marked. In order to obtain geometric quantities, i.e. quantities independent of a
particular representative of a congruence class, we determine the space of invariants
for the relative position of two points and also that of two Weyl chambers with a
common apex. These invariants (which actually are points in certain orbit spaces)
will allow us to define appropriate notions of side and angle for a congruence class
of marked, regular geodesic triangles.

To every congruence class of marked triangles we shall thus associate six
geometric quantities, namely three sides a;, a,, a; and three angles k,, k,, kj.
However, these quantities cannot be arbitrary. In order to derive from a triangle
their representatives must satisfy a characteristic relation, namely a,k,a,k,a:ks M
=M, which is a kind of “closing condition” in the Weyl chamber bundle. It is
called fundamental relation and will be one of our basic tools.

It turns out that two marked, regular geodesic triangles are congruent essentially
if two sides and the enclosed angle of one triangle coincide with the corresponding
elements of the other. This is a generalization of the above mentioned classical
congruence theorem SAS in hyperbolic geometry. We thus obtain a set of defining
quantities. By trigonometry of S is meant a (minimal) set of functional relations which
allows us to deduce from the three defining quantities of a triangle the three
remaining ones. In classical geometry these are the law of cosines and the law of sines.

We obtain the generalized laws of cosines from the fundamental relation by
using Invariant Theory for symmetric spaces and the Cartan decomposition of G.

In hyperbolic geometry the laws of sines can be interpreted as an integral of the
geodesic flow (the ‘“‘angle of parallelism’). The corresponding generalizations are
integrals of the Weyl chamber flow which is a certain action of the abelian
subgroup 4 of G (determined by the choice of ¢,) that generalizes the geodesic flow.
We construct such integrals (the “subtended angle of a flat”) and deduce the
generalized laws of sines from them.

Finally, we compute in detail the trigonometry of the space of Euclidean
structures on R”, i.e. of SL(n, R)/SO(n), to illustrate the general concepts.
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We emphasize that we are dealing only with symmetric spaces of non-compact
type. Since there is no Iwasawa decomposition for compact groups, our global
method to derive the laws of sines does not work for the dual spaces of compact type.

There is only one symmetric space of compact type and higher rank whose
trigonometry has been investigated, the Lie group SU(3), cf. [Asl]. It would be
interesting to have a geometric analogue of the subtended angle for symmetric spaces
of compact type. Such an object should lead to a global formulation of the laws of
sines also for these spaces.

The present paper is part of the author’s dissertation [Leu). I wish to express my
gratitude to Hans-Christoph Im Hof from the University of Basel for his friendly
support and criticism.

2. The Weyl chamber bundle of a symmetric space of non-compact type

In this section we describe some (essentially) known aspects of the geometry of
symmetric spaces (of non-compact type) and of the structure of semisimple Lie
groups that will be used later. Further we introduce the Weyl chamber bundle and
relate its geometry to various Lie group decompositions.

By S we denote an irreducible Riemannian symmetric space of non-compact type
with base point x,.

2.1. Flats and Weyl chambers

DEFINITIONS. A flat in S is a complete, connected, totally geodesic subman-
ifold of S with sectional curvature zero and of maximal possible dimension.

All flats are congruent, i.e. there is an isometry' of S which maps a given flat onto
an arbitrary one. The common dimension of all flats is called the rank of S, cf. [Hel]
Ch. V.6. If S has rank 1, then flats are just geodesics and the sectional curvature is
bounded away from zero.

Every geodesic y in S is contained in at least one flat. A geodesic y is called regular
if it is contained in exactly one flat. Otherwise y is called singular. We fix a point x
in S and a flat F through x. The singular geodesics through x in F form a union of
finitely many isometrically embedded hyperplanes. We call a connected component
of the complement of these hyperplanes a Weyl chamber in F — S. The point x is
called the apex of the Weyl chamber.

We may write S = G/K. Then G = I,(S), the connected component of the iden-
tity in the group of isometries of S, is a non-compact, connected, semisimple,
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real Lie group with trivial centre. The isotropy group K of x, is a maximal compact
subgroup of G.

The geodesic symmetry s, at the base point x, of S defines an involutive
automorphism o of G. The eigenspace decomposition of its differential is a Cartan
decomposition of the Lie algebra g of G, g =k @ p, where k is the Lie algebra of K
and p= T, S.

We choose a maximal abelian subspace a in p. Let Q denote the set of restricted
roots of (g, a) (cf. [Hel], Ch. VI.3). The kernel of any one of the restricted roots
a € Q defines a hyperplane #,:={H € a|a(H) =0} in the vector space a. The set
a;:={Hea|doeQ a(H)=0} is a union of hyperplanes, decomposing a into
finitely many connected components, called the Weyl chambers of a. These are
open, convex cones in a. We fix one of these chambers and denote it by a*. Each
H e a™ is contained in precisely one maximal abelian subspace of p, namely in a.
Equivalently, the centralizer of H in p coincides with a. The following proposition
is of fundamental importance:

PROPOSITION (E. Cartan). Let a* denote the closure of a* in a, then

p=J Ad(k)a".
ke K

For the proof see [Hel], Ch. V, Thm. 6.7 and Ch. VII, Prop. 2.12.

Geometrically this proposition means that the isotropy group K operates
transitively on the set of Weyl chambers in p. Moreover, if the rank of Sis 1 (i.e.
dim a = 1) it says that rank 1 spaces are isotropic. Thus a symmetric space of any
rank can be called “Weyl chamber isotropic”.

A flat F, through x, corresponds to a maximal abelian subspace a of p. More
precisely, Fy = Ax, is the orbit under the abelian group 4:=expacG.

The Weyl chambers defined above (as subsets of the manifold S) are images of
Weyl chambers defined by restricted roots under the exponential map Exp,  and
under left translations t(g) in S. Since for symmetric spaces of non-compact type
Exp,, is a difffomorphism, we can identify Weyl chambers in a with those Weyl
chambers in the flat F, which have apex x,.

2.2. Decompositions of semisimple Lie groups
The connected, non-compact, semisimple Lie group G = I,(S) can be written as
G = KA™K,

i.e. each g € G can be written as g = k,ak, with k,,k, € K and a unique ae 4*.
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This decomposition of G is called a Cartan decomposition, cf. [Hel] Ch.IX.1.

Later we shall need more precise information on the factors k, and k, in this
decomposition. For any H € a let Z,(H):={k € K| Ad (k)H = H} be the central-
izer of H in K.

LEMMA. Suppose that a =exp H € A+

(a) If g =k,ak,=kiak}, then k1 =k, mod Z(H).

(b) If k= k;m for some m € Z(H), then k;, = m ™'k, for the same m € Z (H).

(c) Set k:=k,k, and k' :=kk’, then we also have k" = k. This means that in the
(polar-) decomposition g = pk:=k,ak{ 'k the factors p and k are unique.

Proof. We first note that for the point gK in the symmetric space S = G/K
Exp,, Ad (k;)H = k,aK = gK = k' aK = Exp,  Ad (k})H.

As Exp, is a diffeomorphism we get Ad (k,)H = Ad (k})H or Ad (k; 'k})H = H.
Thus k;'kye Z,(H) which proves (a). Statements (b) and (c) easily follow:
k,ak,=kiak and k7 =k m for m e Z,(H) implies kiak’, =k ,mak’, = k,amk’=
k,ak, thus k5 =m 'k, and k' =k k= kmm 'k, =k, k, =k. O

The choice of the Weyl chamber a* in a defines an ordering in the set
Q < Hom (a, R) of all restricted roots. For a € 2 we denote the corresponding root
space by g,. We set Q+:={a € Q |a(H) >0 forall Hea*}, thenn:=%,.,. g, is a
nilpotent subalgebra of g. Let K, A, N denote the analytic subgroups of G corre-
sponding to the subalgebras k, a, n. The map

K xAxN-G;(k,a,n) kan

is an analytic diffeomorphism called the Iwasawa decomposition of G. A proof can
be found in [Hel] Ch. IX.1.

The Weyl group W of S is generated by the reflections in the walls of the basic
Weyl chamber a*. It operates simply transitively on the set of all Weyl chambers
in a and is isomorphic to M’/M where M’ is the normalizer and M the centralizer
of a in K. The group P:=MAN is a closed subgroup of G. For each element w of
the Weyl group W we fix a representative m,, € M’. Then G is the disjoint union of
double cosets of P, ;

G=\) Pm,P.

weW

This is called the Bruhat decomposition. 1t is related to P-orbits in the homogeneous
space G/P. There is one principal orbit whose dimension is the dimension of G/P.
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It gives rise to the so-called “big cell” Pm,. P in the Bruhat decomposition, which
is an open and dense double coset in G. We have Pm,.P = Nm,. P and if we fix a
representative m* for m,. the decomposition becomes unique: If g € Nm*P with
g =nm*p, then n € N and p € P are uniquely determined by g.

For more details and proofs see [War] Ch. 1.2 or [Hel] Ch. IX.

REMARK. The geometric significance of the Lie group decompositions treated
in this section is most clearly seen in terms of the set CS of all Weyl chambers of
S. We turn to the detailed study of this set in the subsequent paragraph.

2.3. The trivial bundle structure of the Weyl chamber bundle

If the rank of the symmetric space S is 1, then the isotropy group K acts
transitively on the unit tangent sphere at x,. For symmetric spaces of higher rank
this is no longer true. However, K still acts transitively on the set of Weyl chambers
with apex x, (by the Proposition in Section 2.1). This observation leads to the study
of the set CS of all Weyl chambers of S (first introduced and investigated by H.-C.
Im Hof in [TH1]).

We fix a maximal abelian subspace a in p=T7, S. In a we choose a Weyl
chamber a*, which in turn determines a Weyl chamber ¢, in S with apex x,. Let M
denote the centralizer and M’ the normalizer of a in K. We recall two properties of
Weyl chambers, which will be used repeatedly.

PROPOSITION. (a) All Weyl chambers with apex x, in S (or, equivalently, all
Weyl chambers in p) constitute a homogeneous space isomorphic to K/M with base
point eM corresponding to c,. (b) The Weyl group W:=M’|M operates simply
transitively on the set of all Weyl chambers in Fy= Ax, with apex x,.

For a proof see [Hel] Ch. VII, Theorem 2.12, Ch. V, Lemma 6.3.

DEFINITION. We denote by CS the set of all Weyl chambers of S. To obtain
it, we let F run through all flats of S and x, for each F, through all points of F.

In this way we can associate to each Weyl chamber on the one hand a point
in S, namely its apex, and on the other hand a flat F, which completely contains
1t.

THEOREM 1. Let S be a symmetric space of non-compact type with base point
Xo. If S = G/K, then CS is a homogeneous space isomorphic to G/M.
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Proof. Let F, denote the flat which supports ¢,. Choose ¢ € CS with apex, say
x, and supporting flat, say F. Then, since G operates transitively, gx = x, for some
suitable g € G. The image of the flat F under this g is a flat gF which contains x,.
An element k € K transforms gF into F,, kgF = F,. The two Weyl chambers kgc
and ¢, have the same apex and the same supporting flat, so there is an m’ € M’ such
that m’kgc = ¢,. To determine the isotropy group of ¢, we suppose that gc, = ¢;.
Then we first have gx, = x, thus g € K, moreover gF, = F, and thus g € M’. As the
Weyl group operates simply transitively on the set of Weyl chambers in F, with
apex Xx,, it follows that g e M. O

DEFINITION. Let k, denote the projection onto the K-component of the
Iwasawa decomposition: k,: G = KAN - K; g =kan — ky(g):=k. We call two
Weyl chambers g, M and g, M asymptotic if they have the same K-component in
their respective Iwasawa decompositions, i.e. if ky(g,)M = k,(g,) M.

Let P=MAN be the minimal parabolic subgroup of G associated to the
Iwasawa decomposition G = KAN. The map f:G/P—->K/M; gP — ky(gM is a
diffeomorphism: From the definition of P and k, it immediately follows that f is
one-to-one and onto. Moreover, df|,, :k@®a@®n/m®a@®n=k/m—k/m is onto
and therefore df|,r is also onto for every g € G. We interpret a point of G/P
as an equivalence class of asymptotic Weyl chambers using the diffeomorphism
B : G/P - K/M. Geometrically, the map f associates to each point gP the unique
Weyl chamber k,(g)M whose apex is the base point x, € S and which is asymptotic
to the chamber gM.

The map which associates to each Weyl chamber its apex is the projection map
7 of the bundle n : G/M — G/K; gM > gK. This bundle structure turns out to be
particularly simple. Namely, both the Cartan and the Iwasawa decomposition give
rise to a trivial bundle structure of CS over S.

DEFINITION. Let g e G and take the Cartan decomposition g =kak =
kak —'k. We define k(g):=k € K; see the Lemma in Section 2.2.

THEOREM 2. For CS = G/M and S = G/K the two maps

D :CS>S xK/M; gM — (gK, k(g)M) and
D,.CS->SXK/M; gM— (gK, ky(g)M) are diffeomorphisms.
Proof. @ is onto: Let (hK, kM) be given. There exist k € K and H € a* such

that hK = Exp,, Ad (k)H. Then for a = exp H we have hK = kaK = kak ~'kK. Set
g:=kak ~'k. Then ®.(gM) = (hK, kM).
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@ is one-to-one: Let g M =kak;'ky\M and g,M = k,a,k; 'k, M be two
Weyl chambers with @.(g, M) = &-(g,M). This is equivalent to k,a,k; 'k, K=
k,a,k5 'k, K and k, M = k, M i.e. there exist k € K and m € M such that k,a,k; 'k,
=k,a,k5 'k,k and k, = k,m. We now deduce from the uniqueness of the factors in
the Cartan decomposition (see the Lemma in Section 2.2) that k, = k,k, and
therefore k,m = k, = k,k. Thus k =m e M, and ®_ is one-to-one.

& is regular: Since CS is homogeneous it suffices to show that @ is regular at
eM. Let m denote the Lie algebra of M. We have &.(eM) = (eK, eM) and

T,uCS =g/m=p®k/m, Tokemy(S x K/IM) = p@® (k/m).

With these identifications we find that d®. |, (X +L)=X+ L for Xep and
L e k/m. Hence d®|.,, is onto. As both tangent spaces have the same dimension
@, is regular at eM.

@, is a diffeomorphism: In [IHI1] it is proved that & :G/M - G/K x G/P;
gM — (gK, gP) is a diffeomorphism. As we have seen above, there is a diffeomor-
phism f:G/P = K/M. Since @, = (Id x ) - ® the theorem is proved. O

COROLLARY. The Weyl chamber bundle CS of an (irreducible) symmetric
space S of non-compact type is diffeomorphic to a trivial bundle over S with canonical
fibre K/M.

REMARK. The trivial bundle structure of the Weyl chamber bundle general-
izes the trivial bundle structure of the unit tangent bundle of a hyperbolic space, for
in the rank 1 case Weyl chambers are unit tangent vectors resp. geodesic rays. We
regard the Weyl chamber bundle as a generalization of the unit tangent bundle, a
point of view that proves to be of fundamental importance.

2.4. Geometric interpretations

We turn to geometric interpretations of various Lie group decompositions that
will be used later.

If we start from the basic Weyl chamber ¢, =eM, then we can reach an
arbitrary Weyl chamber gM in two ways (corresponding to the Iwasawa and to the
Cartan decomposition, respectively). Starting with the Iwasawa decomposition
g = k,bn, we first map the basic Weyl chamber c, = eM with apex x, to koM (see
Figure 1), then koM is displaced in the flat k, F;, by means of kobk ! to the chamber
kobM and finally transformed with (kob)n(kob) ~' to gM. Note, that koM, kobM
and gM belong to the same asymptoticity class gP.
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gM=k0bnM

—— em— c——
——
o

Figure 1. The Iwasawa decomposition.

Figure 2. The Cartan decomposition.
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Figure 3. The Bruhat decomposition.

We can interpret the Cartan decomposition similarly (see Figure 2). We take a
Weyl chamber gM. Let g = kak —'k be the Cartan decomposition of g. Then the
basic chamber c, is first rotated by means of k into the flat kF,. Next it is translated
along this flat by means of kak ~' to the chamber kaM. Finally this chamber is
rotated by ka(k ~'k)(ka) ! to gM.

In Section 5 we shall also use the geometric interpretation of the big cell in the
Bruhat decomposition (cf. Section 2.2). To describe it we define a horocycle in the
symmetric space S = G/K to be an orbit of a group conjugate to the nilpotent
group N. Let g be an element of G in the big cell Pm*P < G and let g = nm*q be
its Bruhat decomposition. The element g € P can be written as ¢ = an’m with a € A4,
n’ € N and m € M. The Weyl chamber gM =nm*qM = nm*an’M (see Figure 3) is
obtained from the basic Weyl chamber ¢, = M by first displacing M by means of n
along the horocycle N - x, to the chamber nM. This chamber is mapped to its
opposite nm* M, translated along the supporting flat by means of a conjugate of a
to nm*aM, and finally displaced by means of a conjugate of n” along the horocycle
“centered at gP”.

2.5. The Weyl chamber flow on CS and a class of symplectic manifolds

The following action of the abelian group A4 =expa on the Weyl chamber
bundle CS = G/M generalizes the geodesic flow.
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DEFINITION. The map ¢ : 4 x G/M - G/M; (a,gM) — gaM = (gag gM
is called the Weyl chamber flow. Note that for m € M we have (gm)aM = gamM =
gaM so that ¢ is well defined.

Geometrically, ¢ displaces a Weyl chamber along its supporting flat to an
asymptotic Weyl chamber in the same flat. H.-C. Im Hof has shown in [TH2] that
the Weyl chamber flow is an Anosov action, thus generalizing the same property of
the geodesic flow of hyperbolic spaces. The ¢-orbit of a Weyl chamber gM € G/M
is the flat given by {gaM € G/M |a e A} = gAM.

DEFINITION. A directed flat is a flat with a distinguished class of asymptotic
Weyl chambers.

REMARK. The set of ¢-orbits, i.e. G/AM, coincides with the set of all directed
flats in S. It is an /-fold covering space of the set G/AM’ of all flats in S; where /
is the order of the Weyl group W = M’/M, which in turn is isomorphic to the
covering group of this covering.

There is another generalization of a property of the set of all geodesics of a
hyperbolic space. Namely,

THEOREM 3. The set G/AM of all directed flats in an (irreducible) symmetric
space of non-compact type S =G/K is a homogeneous symplectic manifold of
dimension 2(dim S — rank §).

A detailed proof of this theorem can be found in [Leu].

REMARK. The theorem above is a special case of the following general
situation. For an arbitrary Lie group G the co-adjoint action Ad* of G on
g* = Hom (g, R) is given by Ad* (g)é(X) = &(Ad (g ")X) with £ eg*, X eg. It is
well-known that there exists a canonical symplectic structure on a co-adjoint orbit
(Kirillov—Kostant—Souriau, cf. [GSt], Proposition 25.2). In our case, the group G
is semisimple so that the Killing-form x of g is non-degenerate and hence induces
an isomorphism between g and g*. Thus, for H € a,, H*:=x(H, -) e g* and for
X e g we have ‘

Ad* () H*(X) = H*(Ad (g ")X) = x(H, Ad (g~ )X) = x(Ad (9)H, X).
The G-orbit of H* is given by G - H* = {Ad* (g)H* |g € G} =~ G/AM. Hence the

manifold of flats is a co-adjoint orbit of G and the symplectic structure we refer to
in Theorem 3 is precisely the canonical symplectic structure on such an orbit.
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3. Congruence classes of marked triangles

For many questions concerning symmetric spaces it is sufficient to work with
G = 1,(S), the connected component of the identity in the group of isometries of a
Riemannian symmetric space S. But in studying geometric quantities of triangles it
will be essential to work with I(S), the full group of isometries of S.

Using the transitive operation of I(S) on the Weyl chamber bundle CS we
obtain another model for this space: Let M* denote the set of all elements in /(S)
which fix the basic Weyl chamber, then CS = I(S)/M*. Since the compact group
M* also plays an important role in connection with triangles, we first study some
of its algebraic properties.

3.1. Algebraic preliminaries
DEFINITION. By K we denote the full isotropy group of the base point x, € S.

As usual, we identify T, S with pcg. We recall that the linear isotropy
representation of K on p is given by K, = Ad (K)|, = O(p). Since an isometry is
completely defined by its value and its differential at a given point, the linear
isotropy representation is faithful and K, = K.

DEFINITION. For each element v of K let i, denote the inner automorphism
of I(S) given by conjugation with v, i.e. i,(g) = vgv ~'. We further denote by Int (K)
the group of all inner automorphisms of K and by Aut®(K) the group of all
automorphisms of K which extend to G.

The structure of K was determined by Elie Cartan.

PROPOSITION (E. Cartan). Let s, be the geodesic symmetry at x, and let i,,j[ K
represent the cosets of Int(K) in Aut® (K) for j=1,...,r. Then

K= v (KuseK).

For a proof see [Wol], Theorem 8.8.1 or [Ca2].

DEFINITION. There is a unique element w* in the Weyl group W = M’/M of
S, mapping the Weyl chamber ¢, corresponding to M to its opposite chamber c§.
We have w* = m*M for some m* € M’ = Ng(a).
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REMARK. By our identifications, m*M may be considered both as an element
of the Weyl group and as a Weyl chamber in the basic flat. w* has order 2, thus
(W*)? = e or, equivalently, (m*)? € M. Details can be found in [Bou] Ch. V, Ex. 6.2.

DEFINITION. Let a be a fixed maximal abelian subspace of p and let a* be a
fixed Weyl chamber in a. We denote the normalizer of a* in K by M*,

REMARK. The quotient manifold I(S)/M* = I(S)nG/M*"G =G/M =CS
yields another model for the Weyl chamber bundle.

In the next Lemma we describe the structure of M* in more detail:

LEMMA 1. Using the notation of the Proposition above, we have

M* = () v; - (M Usym*M).

j=1

Proof. Let i,,j| x € Aut? (K). Since Ad (v; ")a™ is a Weyl chamber in p, we have
Ad (v; )a* = Ad (k)a™ for some k € K, i.e. Ad (v;k)a* =a*. Thus v,k € M* and
I =1, mod Int (K). By choosing appropriate representatives we can therefore
assume that v; e M* for every j. By the above Proposition it is then enough to
consider the following two cases: (1) v;h € M* for h € K. Then by our assumption
heM* and so heM since M*NnK=M. (2) v;soheM* for he K. Then
Soh = hsy € M*. Since Ad (h)a® = Ad (s;)a* = Ad (m*)a® we conclude from the
uniqueness of m* modulo M that h e m*M. O

Let k € K. As both G = [(S) and K are connected subgroups of the group 1(S),
i |k is an automorphism of K and i|s is an automorphism of G. We use i to
denote also these restrictions. The following property of the elements of M* will be
used later.

LEMMA 2. For an element v € M* consider i, € Aut (G). Then i, leaves the
Iwasawa decomposition of G invariant. More precisely: If G = KAN is the Iwasawa
decomposition of G (determined by the choice of the basic Weyl chamber that defines
M*), then i,(K) = K, i,(4) = A, i,(N) = N.

Moreover i,(M) S M, i.e. M is a normal subgroup of finite index in M¥*.

Proof. The claim on the invariance of K is obvious. To see that i,(4) < 4, we
only have to observe that a is spanned by vectors in a*, so that Ad (v)a = a. Since
i, © €xpl, = exp|, © Ad (v) the claim is proved. We show now that i,(N) = N. Since v
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is an isometry of S, Ad (v) permutes the root hyperplanes and therefore the induced
map Ad*(v) in Hom (a, R) permutes the roots. For a positive restricted root
aeQ" and Hea* we have B(H):=Ad* (v)a(H) =a(Ad (v ")H) >0 so that
peQ*. We conclude that Ad (v) permutes the root spaces g, for 1 € Q* and
Ad (v)n=Ad (VI q+ g = n. Combining this with exp o Ad (v)|, = i, ° exp|, shows
that i,(N) = N. In order to prove the last claim let m e M and H ea*. If we
set H':=Ad(@v " Hea*, then we have Ad (vmv—")H =Ad (v) Ad (m)H' =
Ad (v)H'=H. As i,(K) < K and M nK = M, the claim follows. , O

The following actions of M* are needed below.

DEFINITION. The group M* acts on K/M by (v, kM) — v - kM :=i (k)M =
vkv—'M and on A" by (v, a) — v - a:=i,(exp H) = exp Ad (v)H.

We use both the notations M* - kM and k for the M*-orbit {i,(k)M |v € M*}
of kM in K/M. Similarly we use M* - g and a for {i,(a) | v € M*}, the (finite) orbit
of ae A+ under M*.

3.2. Intervals and angles in a symmetric space

We consider a pair of points, say (&, #), in a Riemannian symmetric space S
of non-compact type. As S is a Hadamard manifold there exists a unique geodesic
y joining &/ and 4.

Let us assume that y is regular (cf. Section 2.1). Then y is contained in a unique
Weyl chamber ¢ with apex /. By the facts stated in Section 2.3 there is an isometry
of S which maps the chamber ¢ to a (chosen) basic Weyl chamber ¢, = A4 * - x, with
apex xo. The pair («/, #) can thus be mapped isometrically to the pair (&, %)
with o/, = x, and %, =a - x, for a unique ae 4.

However, this ‘“measurement’ is unique only up to the action of the group M*
defined in the previous paragraph. An element v € M* maps the basic Weyl
chamber ¢, to itself but does not necessarily leave it pointwise fixed.

In order to obtain a geometric quantity for a pair of points (i.e. a map that is
constant on congruence classes) we make the

DEFINITION. We define the interval associated to the congruence class of the
pair of points (&7, #) to be the orbit a=M*-a={i,(a) |[v e M*} in 4+.

Similarly we can associate a geometric quantity to an ordered pair of Weyl
chambers (c,, ¢,) with the same apex x.
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First there is an isometry which maps the (ordered) pair (c,, ¢,) to the pair
(co, ¢) with common apex x, (cf. Section 2.3). Again this isometry is unique only up
to the left action of M*. Then, as the isotropy group K of x, acts transitively on the
set of Weyl chambers with apex x,, there is a k € K such that ¢ = kc,. Here k is
unique modulo M (cf. Section 2.3).

DEFINITION. We define the oriented angle associated to the congruence class
of the ordered pair of Weyl chambers (c,, ¢,) to be the orbit

k=M* kM = {i,(k)M |v e M*} in K/M.
We collect the previous remarks in the

PROPOSITION. Let S be a Riemannian symmetric space of non-compact type.
Then:

(1) The space of invariants for the relative position of pairs of points (both

situated on a regular geodesic) is isomorphic to the space of orbits M*\A .

(it) The space of invariants for the relative position of ordered pairs of Weyl

chambers (with common apex) is isomorphic to the space of orbits M*\K/M.

3.3. A congruence theorem for marked triangles

DEFINITION. Three points &/, #, ¢ in a Riemannian symmetric space S of
non-compact type define a geodesic triangle I = {o/, B, €}. The triangle J is
called regular if the geodesic segments /B, #% and €./ lic on regular geodesics.

A geodesic triangle {/, #, €} determines six directed geodesic segments: o/ %,
BA, BEC, €B, €4, €. In order to associate well defined geometric quantities to
a geodesic triangle we make the following

DEFINITION. A (regular) geodesic triangle {</, &, €} is called marked if one
of its segments is distinguished, say «/#. The so marked geodesic triangle is
denoted by «/#%¢. Two marked geodesic triangles o/#% and P6% in S are
congruent if there exists an isometry of S which maps A %€ to P6F, i.e. the
isometry must respect the marking. A congruence class of marked, regular geodesic
triangles is called a marked, regular triangle of S and the set of all marked, regular
triangles in S is denoted by A(S). A geometric quantity of a marked, regular triangle
of S is a map from A(S) into an arbitrary set X.

We first look for conditions of congruence for two marked, regular geodesic
triangles. To fix ideas, we assume that the regular triangle {/, #, ¥} is marked by
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o/ #B. As the group of isometries of .S operates transitively on the set CS of all Weyl
chambers there is an isometry g € I(S) which maps /%% to a geodesic triangle
A ByE, With /= gof =x, and o, B, = g(AB) € c,, where ¢, denotes the basic
Weyl chamber with apex x,, identified with eM (cf. Section 2). Thus, o/, = x,,
Ao =a,x, and a; 'é, = Exp, Ad (k,)H, = k,a,x,, where a, and a, = exp H, are in
A% and k, € K is unique modulo M.

Note that the triangle «/,%,%, is not uniquely determined. If we replace the
isometry g above by vg for some isometry v € M*, the normalizer of a* in the full
isotropy group K, then we obtain a congruent marked, geodesic triangle whose
marked side is also contained in ¢,.

DEFINITION. To the o/#-marked geodesic triangle o&/#% we associate the
marking-data

M* : (ala klMa (12) = {(iv(al)a iv(kl)Ma iv(a2)) I vE M*}

Note the simultaneous action of M* on the three components.
The following theorem states that these data actually characterize a congruence
class.

THEOREM 1. Two marked, regular geodesic triangles I, and J, are congruent
if and only if the corresponding marking-data are the same:

M* ) (al, klM, (12) = M* : (bl’ th, bz).

Proof. Suppose first that 7, and , are congruent, then the corresponding data
are equal by the isometry invariance of the definition. For the converse suppose,
that 7, = A BE is o/ B-marked and T, = DEF is D& -marked with b, =va,v !,
h, = vk,v~'m, b, = va,v " for some v € M* and m € M. Without loss of generality
we have @ = x,=0vx, =04, & = b, x, =va,v " 'x,=va,;x, =v#. By Lemma 2 in
Section 3.1 there is an m’ € M with % = b, h b,x, = va,v~"vk,v ™ 'mva,v ~'x,=
va, k,a,v ~'m’x, = va, k,a,x, = vé. Hence 26F = v/ %€ and both triangles are
congruent. O

If the directed segments /&, B€, €/ are considered as pairs of points, then
they define three intervals a,, a,, @, in the sense of the previous paragraph. In order
to define also angles for the congruence class A of the marked, regular geodesic
triangle /%% we choose two Weyl chambers for each vertex. To do this in
coincidence with the marking data we take the chambers (a, - ¢o, a1k, - ¢;) at &.
Thus we get k, = M* - k; M as the (exterior) angle at &.
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The marked, geodesic triangle o/ #¥ is naturally oriented: o - % - € — /. We
next determine the angles at € and .o/ with respect to this orientation. Suppose that
M* - (a,, k; M, a,) arises from the marking by means of .«/%. Then we may assume
(by Theorem 1) that & =xy, # =a,x,, € = a,k,a,x,. Now marking the triangle
with #%, we observe that ki 'a;'B =k ~'xy=xo, ki'a; '€ = a,xy, ki'lay'of =
Exp,, Ad (k;)H; for a;=exp Hy€ A* and k, € K mod M. From this we conclude
that marking &/ #% with #% leads to the marking-data M* - (a,, k, M, a;). In the
same way we get M* - (a,, k; M, a,) for the third segment ¥.«/ compatible with the
orientation.

REMARK. The moduli space A(S) o M*\(4* x K/M x A*) of marked tri-
angles has quite a complicated structure in general. For real hyperbolic spaces,
however, we can identify it with R* x [0, 7/2] x R*. In that particular case the
above theorem becomes a classical congruence theorem in hyperbolic geometry:

Two geodesic triangles A and A" in H"R are congruent if and only if two sides and
the enclosed angle of one triangle coincide with the corresponding elements of the
other.

DEFINITION. In analogy with this classical case we define the sides of the
triangle A e A(S) to be the M*-orbits a,=M*-q,,a,=M*-a,,a;=M*-a; in
M*\A4 *. And we define the (exterior) angles of the triangle A € A(S) to be the
M*-orbits k; = M* -k, M, k,=M* -k, M, ky=M* - k; M in M*\K/M.

Summing up our discussion we can attach six geometric quantities to any
marked, regular triangle A € A(S). Namely, the three sides a,, a,, a; and the three
exterior angles k,, k,, k;. However, it is obvious (already from classical geometry)
that these six quantities cannot be arbitrary. In order to be the sides and angles of
a triangle they must satisfy some kind of “closing condition”. In the next paragraph
we shall derive a basic relation among representatives of the six quantities, which is
characteristic for triangles (in the sense that this relation is necessary and sufficient
for the corresponding sides and angles to be those of a triangle).

From Theorem 1 we know that, for A € A(S), two sides and the enclosed angle,
for example a,, a, and k,, are related to the defining quantities: M* - (a,, k; M, a,).

By trigonometry of the symmetric space S we mean a (minimal) set of functional
relations which allow us to deduce from the three defining quantities of a triangle
the third side and the two remaining angles. In classical (hyperbolic) geometry this
is achieved in using the functional relations usually called “law of cosines” and
“law of sines”. We shall extract such functional relations from a fundamental
formula (in the Weyl chamber bundle of S) to which we now turn.
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3.4. A fundamental relation in the Weyl chamber bundle

Let o/#% be a marked, regular geodesic triangle in a symmetric space S of
non-compact type. Without loss of generality let .« be the base point of S and
suppose that &/% lies in the basic Weyl chamber ¢, with apex x,.

Furthermore, let A be the congruence class of /%% and let a,, a,, a,, k,, k,,
k; be the sides and angles of A. We shall lift the triangle &/ 4% to a ‘““hexagon” in
the Weyl chamber bundle n : CS = G/M - S = G/K. To do this we trace the path
taken by the Weyl chamber ¢, moving along o/ #%¥ (cf. Figure 4).

First we identify ¢, with the base point M of G/M. Then we displace ¢, in its
supporting flat from o/ to the point Z € S. In CS this operation is described by the
Weyl chamber flow for a particular element: M ~ a, M for a unique a, € A *. The
isotropy group of 4, a,Ka;', operates transitively on the set of Weyl chambers
with apex 4, i.e. on the fibre n ~'(#) =n~"(a,K) = {a,kM | k € K}. As there is a
unique Weyl chamber ¢, containing the regular geodesic 4%, there is a k, € K such
that ¢, = a,k,M = (a,k,a; ")a, M, where k, is unique modulo M.

We next take the unique element a, € A* which translates ¢, along the unique
flat that contains the geodesic segment 4% to a chamber with apex € :a,k\M ~
a,k,a,M and n(a,k,a,M) = a,k,a,K = €. Note that this representation is indepen-
dent of the representative chosen for the coset k, M, namely, if we take k| = k,m for
some m € M we have a,k1a,M = a,k,ma,M = a,k,a,mM = a,k,a,M. An element

alklazM

kM
c< alklazkzaaM
a kak ak,M=M - ' 3 M
S ;
A B

Figure 4.
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of the isotropy group of € rotates our Weyl chamber to the new Weyl chamber ¢,
which contains the geodesic €./, i.e. a,kya,M ~ ¢, =a,k,a,k, M. This procedure
is repeated a final time. We first displace ¢, to & and then rotate it back to the basic
Weyl chamber c,: a,k,a,k,M ~ ak,ak,a,M ~ a k,a,k,a;k; M = M. Figure 4
summarizes the whole procedure.

REMARK. Every Weyl chamber is of the form gM =gmM = g’M. Suppose
that ghM =g’h’M = gmh’M. Then ghm’ = gmh’ for some m’ € M and therefore
h'=m~'hm’.

THEOREM 2. (a) Consider three intervals a,, a,, a, and three angles K, , k,, k;.
In order that these six geometric quantities are the sides and angles of a triangle
A € A(S) it is necessary and sufficient that there exist representatives a;, € a, = M* - g,
and kM ek, = M* -k, M, for i =1, 2, 3, which satisfy the relation

a1k|a2k2a3k3M = M.

(b) If, moreover, arkiaskyaikisM = M holds for some other representatives of
the sides and angles of A, then a, =vay~', k. =m; vk 'm, for i = 1,2, 3, where
veM* and m;e M.

(¢) In particular, aikiasksa3ksM = v(a, k,a,kyask)v ~'M = M and

M* - k' kyk, M = M* - k ok M.

Proof. If the a; and k; are sides and angles of some A, then we have already
verified the relation a,k,a,k,a;k; M = M for a chosen representative o/ #% € A. If
o BE is replaced by another representative, we know from Theorem 1 that there is
aveM*witha} =va,v™!, a5 =va,v ", k| = vk,v~'m, with m, e M. We thus have
(kraskim’) ' =aikia,=i(aka,m”) = i,(kyaskym)~! for some m”, m’,m e M.
Equivalently k%a’kim’ =i, (k,a;k;m). The claim now follows from Lemma 2 in
Section 3.1 and the uniqueness properties of the factors in the Cartan decomposi-
tion of G.

If, on the other hand, the relation a,k,a,k,a;k;M = M holds, then we can take
for A the congruence class of the geodesic triangle given by the three points & = x,,
& =a,x, and € =a,k,a,x,. O

DEFINITION. We call the equation a,k,a,k,a,ks M = M in CS the fundamen-
tal relation for the triangle A/ BE€ € A € A(S).

REMARKS. 1. Note the remarkable symmetry in the fundamental relation.
The base point appears only in the form of its isotropy subgroup K, but neither o/
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nor # nor ¢ is distinguished : a,k a,k,a:k; M = M < a,kakia,k'M = M <
askya k,a,k, M = M for kM =kiM =k, M.

2. Choosing suitable representatives in K/M allows us to write the fundamental
relation in the form: e = a,k,a,k,a3k;m = a,k,a,k,a;,k}.

3. We can transvect the basic Weyl chamber along the sides of a geodesic
triangle without rotating at the vertices and thus imitating parallel translation of
tangent vectors along the geodesic loop formed by the triangle. The angle
M* -k, k,k3; M in Theorem 2 can then be interpreted as the “holonomy-angle” of
the marked triangle A € A(S). In particular, for a geodesic triangle in the hy-
perbolic plane with angles o, B, y we obtain the angular defect of the triangle:
o=n—(a+ B +7Y).

4. Laws of cosines for symmetric spaces of non-compact type

Let S = G/K be an irreducible Riemannian symmetric space of non-compact
type with base point x,. We choose a basic Weyl chamber ¢, = 4 *x,. To a marked,
regular triangle A € A(S) we can associate sides a,, a,, a; € M*\4* and angles k,,
k,, k;e M*\K/M. These six quantities are linked by the fundamental relation
a,k,a,kyak;M = M. 1t is our aim in this section to compute a; € M*\4*, the
third side of A, from the defining quantities M* - (a,, k, M, a,) given by two sides
a,, a, and the enclosed angle k,.

DEFINITION. We call functional relations governing this laws of cosines.

4.1. Quadratic representations and Invariant Theory

By Theorem 2 and Remark 2 in Section 3.4 we may assume that the repre-
sentatives for the sides and the angles of A are chosen in such a way that the
fundamental relation becomes a,k,a,k,a;k;=e. In a first step we would like to
eliminate one of the three angles appearing in the fundamental relation. To that end
we embed S into G = [(S).

DEFINITION. Let g = i, denote the involution of G induced by the geodesic
symmetry at the base point x, of S and set Q : S o G; gK +— ga(g~"). This is an
embedding of S as a submanifold of G = I,(S). The map Q is called the quadratic
representation of S (see [Hel], p. 276 for the details).

Note that Q(G/K) cexpp. For g =a,k,a, =k3'as'k;' we obtain Q(gK)=
go(g V) =a k,aiki'a, =k;i'ay %k, = exp (Ad(k; ')(—2H,)). We see from these
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formulae that we should look for a set of K-invariant functions on p which
uniquely determine the element a; = exp (H;).

By Invariant Theory for symmetric spaces there are precisely r = rank (S)
homogeneous polynomials on p = T, S which are K-invariant and whose gradients
at every regular X e p are linearly independent. More precisely, for a maximal
abelian subalgebra a — p and the corresponding Weyl group W of S we have

PROPOSITION 1 (Chevalley restriction theorem). The R-algebra C(p) of
K-invariant C*-functions on p is isomorphic to the R-algebra C%,(a) of W-invariant
C*-functions on a.

PROPOSITION 2 (C. Chevalley). The R-algebra Py (a) of W-invariant poly-
nomials on a is generated by r =rank (S) algebraically independent homogeneous
polynomials p,, . ..,p, and 1.

PROPOSITION 3 (R. Steinberg). Let J be the Jacobian matrix of a basic set of
invariants of W (computed relative to any basis of a). Let H be any point of a. Then
the maximal number of linearly independent reflection hyperplanes containing H
coincides with the nullity of J at H.

The proofs can be found in [He2], Ch. II, Cor. 5.11., [War], Theorem 2.1.3.1.
or [Che] and [Ste], respectively.
We use the polynomials p,, ..., p, from Proposition 2 to define a map

p:a—>R’;  Hw- p(H):=(p(H),...,p(H)).

Note that since the polynomials p,, ..., p, are not unique, neither is the map p.

Let a,:=a\a, denote the set of regular elements in a (cf. Section 2.1). We know
from Geometric Invariant Theory that p separates the Weyl group orbits, i.e. if
p(H,) = p(H,) for H,, H, € a,, then there exists w € W such that H,=w - H, (cf.
[Spr], 2.4.8).

The map p, being constant on W-orbits, restricts to an injective map on a™.
Using Proposition 3, we conclude that p|,. is a diffeomorphism onto its image in
R". Let g denote the inverse of this diffeomorphism q:=(p|,+) ' : p(a*) - a™.

By Proposition 1 the map p has a unique K-invariant extension to p which we
again denote by p.

We set p,==|Jicx Ad (k)a*. Then S,:=Exp, , P, is the set of those points in S
which lie on only one flat through x,. Note that p(p,) = p(a*).

DEFINITION. We set C,:==expogop o (exp|,) ' : O(S,) > A4™.
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THEOREM 1 (Laws of Cosines; first version). Let S be a Riemannian symmet-
ric space of non-compact type and let a be a maximal abelian subspace of p=T, S
with Weyl group W. For algebraically independent, W -invariant polynomials
Pis---,D, on a let C, be the composite just defined.

Then the map

ry: AS)>MY\A*M* - (a,, kM, ay) —» M* - C,(Q(a,k,a,K)) = M* - a3

determines the third side a; = M* - a; € M*\A " of a given marked, regular triangle
A € A(S) from the defining quantities M* - (a,, k, M, a,).

Proof. As above we set g =a,k,a,=k;'ay'k;"'. The assumption that A is
regular implies that the vertex ¥ = gK of the representative o/ #%¥ € A lies in S,. We
use the fundamental relation and the K-invariance of p to compute

C1(Q(gK)) = C1(Q(ark,a,K)) = C,(Q(k5 'a5 k5 'K)) = C, (k5 'as %k;)
=exp e q o p(Ad (k5 ')(—2H;)) =exp e q o p(—2H3).

Let s, denote the geodesic symmetry at x, and let m*M denote the Weyl group
element that maps the basic Weyl chamber to its opposite (cf. Section 3.1). Then
Ad (sy)H; = — H, is in the opposite Weyl chamber and Ad (m*s,)H, is again in a™.
In particular p( — H;) = p(Ad (m*)(— H,)) = p(Ad (m*s,)H,). We insert this in the
above equation and get

C(Q(gK)) =exp e q o p(—2H;) =exp o g o p(Ad (m*s0)2H,)
=m*syai(m*s,) "' = im‘so(ag)'
It remains to check that the map C, is constant on M* - (a,, k,, a,), i.e. that the
map I', on A(S) is well defined. We used g =a,k,a,=k;'a;'k;'. Another

representative for M* - (a,, k,, a,) is of the form (i,(a,), i,(k;)m, i,(a,)) for suitable
v € M* and m € M. Using Lemma 2 of Section 3.1, we then get

’

g’ =va,v " 'vk,v  'mva,p ' = va,k,a,v " 'm for some m’ € M.

Thus

Q(g,K) = iv(alkla%krlal) = iu(k;la;sz) = lv(k;l)lv(a;z)lv(k3)
where i,(k;) € K.
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Similarly to the previous computation we obtain

C1(Q(g'K)) = Ci(QUi,(Jm'K)) = ippns,0(a3) € M* - ai,

and in conclusion M* - C,(Q(g’K)) = M* - C,(Q(gK)) so that I'; is actually a map
defined on A(S) as we claimed. Clearly M* - a2 determines M* - a,. O

In this first version of the laws of cosines the inverse of the exponential map is
involved rendering it inappropriate for most computations in explicit examples. We
therefore provide an alternative approach which is based on linear representations
of the semisimple group G.

4.2. Isometric embeddings in a fundamental symmetric space

We discuss the fundamental symmetric space #(n, C):=SL(n, C)/SU(n) in some
detail. We retain the general notation but use the subscript 0 to emphasize that we
are dealing with the special case Z(n, C).

Let 7, denote the unit matrix of rank n. The canonical involution g, induced by
the geodesic symmetry at the base point I, - SU(n) is given by a,: PSL(n, C) >
PSL(n, C); A — (A")~". It follows that the quadratic representation is of the form
Qo : P(n, C) » PSL(n, C); Qo(X - SUn)) = XX".

DEFINITION. Let o denote the canonical involution of G induced by the
geodesic symmetry at the base point of S. A representation p : G — PSL(n, C) is
called compatible with o if p - ¢ = 6, ° p modulo scalars.

We shall make use of the following

PROPOSITION 4 (1. Satake). Let S = G/K be an irreducible symmetric space S
of non-compact type and p : G — PSL(n, C) an irreducible faithful representation of G
compatible with a. Then #,, : S = G|/K — P(n, C); gK — p(g)p(g)' is an isometry and
R,(S) is a totally geodesic submanifold of the fundamental symmetric space P(n, C).

The proof can be found in [Sat].

DEFINITION. We call 2, the irreducible representation of S determined by p.

REMARK. There always exist faithful linear representations for G = I,(S):
Since G acts effectively on S and since the centre of G is contained in K, G has
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trivial centre. Therefore G can be identified (via the adjoint representation) with the
group of inner automorphisms of its Lie algebra, G =~ Ad G = Int (g).

Using the quadratic representation Q,, the set D of all positive definite diagonal
matrices with determinant 1 can be chosen as the basic flat in (n, C). Further, we
can identify the basic Weyl chamber in £(n, C) with D*, the set of real diagonal
matrices Diag (d,,d,,...,d,) e D withd,>d,>--->d, >0.

DEFINITION. Let m¢ represent the element in the Weyl group of 2(n, C)
which maps the basic Weyl chamber D * to its opposite D ~, i.e.

ima(Dlag (dl’ dz, e ey dn)) = D]ag (dn, dn——l’ ey d]).
We denote by 7 the composite map
=00 i,s: DT >D", Diag(d,,...,d,)— Diag(d; ', d;},...,d").

As 2, is an isometry and as Z,(S) is totally geodesic in Z(n, C) we can choose the
basic flat in the symmetric space S in such a way that it is embedded by £, into the
basic flat D of #(n, C).

LEMMA. Let m* and m{ denote representatives of the respective unique ele-
ments in the Weyl groups of S and P(n, C) which map the basic Weyl chambers A*
resp. D to their opposites. If p is a representation compatible with o, then

p Oim*A*':imaoplA*' andpoim'solA‘*:TOp;A*"

Proof. We denote by A~ the Weyl chamber in 4 < G opposite to 4*. As p is
an isometric embedding (cf. Proposition 4) with p(4) < D, we have p(4*)c D+
and p(4 ") < D~. Moreover, p(m*)p(4 H)p(m*) ' = p(i,.« (A1) = p(4A ). We see
from this that i, maps the subset p(4 ) into D ~. Thus there is an element w in
the Weyl group W, of 2(n, C) such that i .. (p(a)) = w - p(a) for all p(a) € p(A™)
(cf. [Hel], Ch. VII, Proposition 2.2). Hence i, is the restriction of w and since
W, operates simply transitively on the set of Weyl chambers in D, w is represented
by m§.

For the second claim of the lemma just observe that p oi,.,

iSolA'*‘:poiSOOim* A+=aoopoim*

A+=poim,,o
A+=00°im60p|A+=t°ptA+-

O

A+=p°6°im‘

Every matrix in 2(n, C) or, more precisely, in Qy(Z2(n, C)) can be diagonalized
by an element of SU(n). Thus a set of functionally independent SU(n)-invariant
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functions on 2(n, C) is given, for example, by the elementary symmetric polynomi-
als g; for j=1,...,n in the eigenvalues 4; of elements of #(n, C).

DEFINITION. We define maps p, : (n, C) »R"!; X  (0,(X), ..., 0, (X)),
and qo: po(?(n, C))->D7; (0,(X),...,0,_,(X)) — Diag (4,(X), . . ., ,(X)), with
LX) > -->4,(X)>0 for X € Z(n,C).

The elementary symmetric polynomials of a matrix with different eigenvalues
determine these eigenvalues up to permutation. Thus the map ¢, is one-to-one.
Note that g, p,: #(n, C) > D+ associates to a positive definite hermitian matrix
the set of its ordered eigenvalues. In particular g, o p, is SU(n)-invariant. The map
n:A—>A-K; a— akK is clearly one-to-one and we define the map:

DEFINITION. C,: S, cG/K—A"; C,(gK)=n""'oR, " o qyopo°R,(gK).

After these preliminary observations we again consider a marked, regular
triangle A € A(S) with sides a,, a,, a; and angles k,, k,, k; and with associated
fundamental relation a,k,a,k,a;k, =e.

THEOREM 2 (Laws of Cosines; second version). Let S be an irreducible
Riemannian symmetric space of non-compact type and let R, be an irreducible
representation of S. If C, is the map defined above, then the map

I,: A(S)>M"\4™; M* - (a,, kM, a;) —» M* - Cy(a,k,a,K) = a,

determines the third side a; = M?* - a; of a triangle A € A(S) uniquely from the
defining quantities M* - (a,, k, M, a,).

Proof. We first observe that for g = a,k,a,=k;'a; k5!, we have

R,(gK) = p(g)p(8)' = pk3 p(as Nolks Npks ") plas Nptks ")
= p(ks) ~'p(a; ?)p(ks).

Hence by the SU(n)-invariance of g, ° p,

C,(gK)=n""o R, " o qo°po(plk;) ~'plasH)p(ks))

=n""oR,; ! oqy°po(plas?).
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If p(a;) =Diag(d,,...,d,) e D* with d,>--->d, >0, then by the definition of
T and the above Lemma
do © Po(p(as) ~*) = Diag ((d, %, d, 2y, .. .,d;?) =1(Diag(d3, . . ., d2))
=To0 p(a%) =p-° im‘so(ag) = Qp(im‘so(a?o)K)'

We substitute this into the above equation to obtain
Co(gK) =" o R, 0 Ry(imnso(@3)K) =T (ipyes(33)K) = ipye(a3).

As in Theorem 1 the result is independent of the choice of the representative. [

5. Laws of sines for symmetric spaces of non-compact type

The aim of this Section is to generalize the laws of sines of hyperbolic geometry
to arbitrary symmetric spaces S of non-compact type. Recall from Section 3 that
the sides of a marked, regular triangle A € A(S) are M*-orbits in 4" and that the
angles are M*-orbits in K/M.

For a triangle A e A(S) we consider two sides and two angles which are
adjacent to the third side, e.g. a,, a; and k,, k,.

We are looking for relations between these sides and these angles which allow
us, at least implicitly, to determine from the two sides and one angle, say k,,
adjacent to the third side a,, the second adjacent angle k,.

DEFINITION. We call functional relations by which this can be done laws of

sines.

5.1. Integrals for the Weyl chamber flow

For triangles in the hyperbolic plane we have the well-known equalities

sin o sin f§ sin y
sinha sinhbd sinhc¢’

These formulae can be derived from an integral of the geodesic flow of the
hyperbolic plane (cf. e.g. [Hsi] or [Leu]).
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DEFINITION. Given a group G operating on a set X and a map f: X > Y
from X into an arbitrary set Y, we call f an integral for the given G-action if f is
constant on the G-orbits.

In what follows we shall construct such integrals for the Weyl chamber flow,
which we defined in Section 2.5. They are integrals for the geodesic flow if the rank
of the symmetric space is 1.

Let gM € CS =G/M be a Weyl chamber and let g =hbn be the Iwasawa
decomposition of g with he K, be A and ne N. For g'=gM, m € M, we have
g =h’'b’n’ = hbnm = hmbni because M normalizes N and centralizes 4. We thus
have a well-defined map @ : G/M - K/M; gM — k,(g)M where ky(g) denotes the
K-component in the Iwasawa decomposition of g € G = KAN. Geometrically @
associates to a Weyl chamber its corresponding class of asymptotic Weyl chambers
(cf. Section 2.3).

Recall from Section 3.1 that there is a unique element w* in the Weyl group
W =M'|M of S which maps the Weyl chamber ¢, corresponding to M to its
opposite chamber c. We have w*=m*M for some m* e M’ = Ng(a) and
(m*?e M.

DEFINITION. For a Weyl chamber ¢ =gM € G/M we set c*:=gm*M. This
definition is independent of representatives, for M is a normal subgroup of M’, so
that gmm*M = gm*m’M = gm*M for some m,m’ e M.

Further, we define for the corresponding Weyl chambers gM and gm*M

hM=@(gM), h*M==@(gm*M), and H(gM)'-_— M*h;th

Again it is easy to see that these orbits are well defined.
We call IT1(gM) € M*\K/M the subtended angle of the flat g4 M with respect to
the base point x, of S (cf. Figure 5).

REMARK. Observe that the map IT : G/M - M\K/M; II(gM):= Mh'hM is
also well-defined. We shall make use of this observation in the formulation of the
laws of sines in the next paragraph. In hyperbolic geometry the subtended angle of
a geodesic not containing the base point x, is twice the angle of parallelism with
respect to x,.

THEOREM 1. The two maps O :G/M—->K/M and II:G/M - M*\K/M
defined above are integrals of the Weyl chamber flow ¢.
Moreover, @(kgM) = kO(gM) and TI(kgM) = I1(gM).
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hP =gP

h,P=gm*P

Figure 5.

Proof. We must show that, for gM € G/M and a € A, @(gM) = O(gaM) and
IH(gM) = II(gaM). To prove this, we consider the Iwasawa decomposition g = hbn.
As A normalizes N, we have ga = hbna = hban’ and @(gM) = hM = O(gaM).
Clearly O(kgM) = khM = kO(gM). As am* = m*a’ for some a’ € A, we also have
O(gam*M) = O(gm*a’M) = O(gm*M) and II(gaM) =M* - h'hM = [1(gM).

Finally it is clear from the definitions that @(kgM) = khM and O(kgm*M) =
kh,M. This gives II(kgM) = M* - (kh,)~'khM = I1(gM). O

REMARK. The subtended angles are precisely those orbits M* - kM for
which k € K*:= Kn Pm*P. To see this, simply note that, for g = hbn € G, gP = hP,
gm*P =h_P and we can therefore write h, =gm*p, h =gq for p,q e P. Now
h,'h € KnPm*P.

The set K*/M :={kM € K/M | k € K*} is a connected, open and dense subman-
ifold of K/M. This can be shown by using Proposition 1.2.3.5 in [War].

5.2. The laws of sines
We consider a marked, regular triangle A € A(S) with associated fundamental

relation written in the form a,k,a,M = k3 'a;'k; 'M (cf. Remark 1, Section 3.4).
We now use the map IT introduced in Section 5.1.
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THEOREM 2 (Laws of Sines). Let S be an irreducible Riemannian symmetric
space of non-compact type. For a representative of a marked triangle A € A (S) with
sides a,, a,, a; and angles k,, k,, K5 and fundamental relation as above the map

Z:Ax K/M—->M\K/M; (a, kM) — I(akM)
satisfies

2:(al’klj‘l) =E(a3—19k2_1M)9
Z(aZ’kZM) =Z(af], k;IM)’
Z(as, ksM) = Z(ay ', ki 'M).

Proof. By the Remark preceeding Theorem 1 the map X is well-defined.

We next verify the first equation in Theorem 2. Using Theorem 1 and the
fundamental relation we find @(a,k, M) = O(a,k,a,M) = O(k; 'a; 'k;'M); more-
over, there is an a, € A such that a,k,m*a, M = a,k,a,m*M = k3 'a;'ky'm*M
and therefore O(a,kym*M) = O(a,k,m*a,M) = O(k;'a;'k;'m*M). As also
O(kgM) = kO(gM) for any k € K, we obtain

Ok;'as'ky'M) = k3 '0as k3 'M),
Oks'lay'ks'm*M) =k;'O(a7'ky 'm*M).

If we set hyM:=0(a3'k;'M) and (k) M=6(a;'k;'m*M) then

M(a5'ks'M) = M(h) ;' hsM = I(k5 'as 'k5 ' M) = I1(a,k,a, M)
= (a,k, M).

Cyclic permutation of the representatives of sides and angles in the fundamental
relation completes the proof. .

REMARK. If we work with another representative of A, i.e. if we replace
a,kya,M by i,(a,k,a,)M for some v € M*, then the above computations lead to
G, (a5 'k )M) = Mi,((hy); ' hs)M = I1(i,(a, k,)M). Note that the associated sub-
tended angle is the same for both representatives and thus is a geometric quantity
associated to A.

We next investigate the extent to which the first equation in Theorem 2 actually
determines the second adjacent angle k, of the considered triangle A € A(S).
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Let us first look at the classical hyperbolic case. Given a geodesic triangle in the
hyperbolic plane H’R with sides b and ¢ and angles B and y, we have the law of
sines: sinh ¢ sin # =sinh b siny. If b, ¢ and B are given, then this equation in
general has two different solutions, y and n — 7.

The actual solution (for the considered triangle) is only determined by taking
the third side a — which is part of the defining quantities ¢, 8, a — into account. We
prove a generalization of this fact.

DEFINITION. For g € G let g =kna be the Iwasawa decomposition with
G = KNA (in this order!). We set A(g):=a.

THOEREM 3. Suppose that II(akM) = I(ak’M) and A(ak) = A(ak’) hold for
a'eA* and kM,k’'M € K/M. Then MkM = Mk'M.

Proof. We wuse the decompositions ak =hnb and ak’=h'n’b’. Then
b = A(ak) = A(ak’) = b’. Moreover let akm* =h,n b, and ak’'m* = h_ nib;. Put
M(akM) = MhyM = II(ak’M). We then obtain m'hgm =h;'h=nbym*b~'n"",
ho=(h}) " 'h"=nibim*(b’) ~'(n’) "', for some m,m’ € M. The uniqueness of the
factors in the Bruhat decomposition (cf. Section 2.2) implies that n =m,n’m, for
m,, m, € M. Thus h~'akM = nbM = m,n’'m,b’M =mn'b’M =m,(h’) "'ak’M. By
the uniqueness properties of the factors in the Cartan decomposition (cf. Section
2.2) we conclude that MkM = Mk’M. O

We now apply Theorem 3 to a marked, regular geodesic triangle o/ %% € A with
fundamental relation a,k,ak,a;k; M = M.

Observe that A(a;'k;') =A(k;'a;'k;") = A(a\k,a,) = A(a,k\)a,. Thus,
given the defining quantities M* - (a,, k; M, a,) for A, the element A(a;'k; ') e A is
fully determined. From this observation we deduce the following Corollary of
Theorem 3 to supplement Theorem 2:

COROLLARY. For a marked, regular geodesic triangle that represents a marked
triangle A € A(S) the equation 2(a,, k,M) = Z(as', k5 ' M) together with the defin-
ing quantities M* - (a,, k, M, a,) of A uniquely determines the angle k, = M* - k, M.

6. The space of Euclidean structures on R” as an example
We illustrate our methods for 2(n, R):=SL(n, R)/SO(n), the space of scalar

products (with determinant 1) on R”, for any »n 2 2. For the trigonometry of the
spaces SL(n, C)/SU(n) the interested reader is refered to [Leu).
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6.1. The orbit spaces M*\K/M and M*\A™*

The Riemannian symmetric space 2(n, R) can be identified with the set of the
positive definite n x n matrices with determinant one. SL(n, R) acts on #(n, R) by

SL(n, R) x Z(n, R) > P(n, R); (4, X)— AXA".

The geodesic symmetry s, at the base point 7,:=Diag(1,...,1), the n x n unit
matrix in 2(n, R), induces the involution i, (X) = a(X) = (X "), for X € SL(n, R).
The abelian group 4 in SL(n, R) can be chosen as the set of all diagonal

matrices with determinant 1, i.e. a = Diag (a,,...,a,); I1/_,a; = 1. A Weyl cham-
ber A* < A4 is given by those a € A4 for which ¢, > -->a,>0.
The matrix w = Diag(—1,1,...,1) defines an isometry that reverses orienta-

tion. If the rank of 2(n, R) is odd (i.e. for n even) then

K=SOWn)/{+1,}us,SOMm)/{+1,}va(SOMn)/{£1,}UseSOMn)/{+1,})
and if the rank of Z(n, R) is even K = SO(n) us,SO(n) (cf. [Ca2], p. 389).

We have M = {Diag(¢,,...,¢&,) |II}_, & =1,¢€{l, =1}}/{£1,} for n even
resp. M ={Diag (¢, ..., ¢,) |IIl_, & =1,¢ € {1, —1}} for n odd. From Lemma 1,
Section 3.1, we see that for n even

M*=Musym*M (M usym*M)
and for n odd

M*=Mus,m*M.

Moreover, for Diag (a,,...,a,) € At we compute

M* - Diag (a,, . . ., a,) = {Diag (a,, . . ., a,), Diag (a, ', ...,a; ")}.

Finally, we note that the group M is discrete; thus the connected manifold of
principal M-orbits in K/M has the same dimension as K = SO(n), i.e. sn(n — 1).
6.1.1. The laws of cosines for #(n, R)

Let o/#% be a regular, geodesic triangle in #£(n, R). Then the two sides
M* - a, M* - b and the angle M* - k&, M at £ are represented by the matrices

a =Diag(a,,...,a,), b=Diag(b,,...,b,)eA™"
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and k,; =[v/] € SO(n). The other representatives of Mk, M are all of the form
ki =[e0;v/] with ¢, 9, € {1, —1}.
Let v; denote the i-th row of k, and set

n
(v, Uj)b = Z blz(vikvjk'
k=1

We use Theorem 2 in Section 4 to compute the laws of cosines.
With the canonical matrix representation p = id of SL(n, R) and g = ak,b we get

R,(8K) = R(gK) = (ak,)b*(ak,)’,
@(gK)ij =aqa; (v, v )p-

Let ¢ =Diag(c;,...,c,) € AT represent the side /% of the triangle o/ #%.
The laws of cosines of P(n, R) are given by the (n — 1) = rank 2(n, R) equations

n

Y ¢} = trace (#(gK))™
= Z azgl Tt a?,,,(vi,’ Uiz)b(viza vi3)b v, s vim)b(vima i )b

where m =1,...,n — 1. The proof is by induction and straightforward.
Note that the additional equation IT7 _, (c,)? = 1 must be taken into account.

REMARK. The space 2(2, R) is the “hyperboloid”’-model for the real hyper-
bolic plane H?R and there is only one law of cosines, namely,

2 2
1, =trace Z(gK) = Y. al(v,,v,)p = Y, c}.

i=1 =
If we set aq,=e"?, a,=e "2, b, =e"2? by,=e" "7 ¢, =e"? c,=e "7 and
v, = (cos (¢/2), —sin (¢/2)), v, = (sin (¢/2), cos (¢/2)). Then the above equation
takes the form

e e B= e’l(cos2 % e + sin? 92? e"i’-) + e”‘l(sin2 % e'2 4+ cos? % e "'7)

e’2(e" - e—tl) . C082 ?e—-tz(eq __e—tl) + et, ) e e—tl+z2

= COS
2

2 ¢
2
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and we get the well-known formula (note that ¢ is the exterior angle at %)

cosh ¢, = sinh ¢, sinh 1,2 cos? % + cosh (¢, — t,)

= cosh ¢, cosh ¢, — cos (1 — ¢) sinh ¢, sinh ,.

6.1.2. The laws of sines for #(n, R)

We wish to compute the angle k, from the sides a, ¢ and the angle k, for the
congruence class of the triangle &/#% in #(n, R). As we already remarked above
the set of (principal) M-orbits in K/M has dimension in(n — 1). This is precisely the
number of laws of sines that we need to characterize the angle k,, represented by
the matrix k, = [w/] € SO(n), at the vertex 4.

Let (,) =(,)g denote the standard scalar product on R” and | | the norm
induced by it. For the diagonal matrix @ which represents a and for the column
vectors v/ of the orthogonal matrix k, = [v/] the matrix product av’ is defined.

We claim that

[(av’, av’)|  |(cw’, ew?)]
lav|[ av’]|  [lew’|| ew?|

with 1 <i <j < n are the sine laws for 2(n, R) we are looking for.
In order to prove this claim let gM be a Weyl chamber in C2(n,R)=
SL(n,R)/M. For 1 <i <j <n we define the functions

|G, x7)|
igi o — R: - =

R PR
where x’ is the i-th column of a representative of the Weyl chamber gM.

Note that these functions are well defined, since for g’ = gm, the columns of the
matrix g’ are those of g multiplied with a factor +1.

The functions &; are functionally independent as SO(n)-invariants of n vectors
in R” (cf. [Wey], Theorems 2.9.A and 2.17.A).

We next show that the functions %; are SO(n)-invariant integrals of the Weyl
chamber flow.

Let g = hak be the Cartan decomposition with 4, k € SO(n) and ae A*. We
write hak =[h -av', h - av?, ..., h - av"] and denote by x' the i-th column of the
matrix hak representing gM.
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First we have (x',x’)=(h-av’,h-av’) = (av’, av’), h being an orthogonal
matrix.

Furthermore the matrix akd with d € A* has the (i, j)-component (akd);=
a;dv/. Thus denoting the i-th column of akd by y‘, we find

(¥, y)) =dd; Y. aiv'v’ =dd(av', av’).
k=1

In conclusion we get:

|(x-", x| _ (a0, avf)l _ (v y9)]
x| e e’ ]| [y ]y

This proves that the in(n — 1) functions are SO(n)-invariant functionally indepen-
dent integrals of the Weyl chamber flow and we obtain the laws of sines mentioned
above.

REMARK. For n =2, i.e. Z(2,R) = H’R, we can write a = Diag (e"1/?, e ~"1/?),
C = Dlag (8’3/2, e—l3/2) and kl = Dﬂ/Z’ k2 = Dy/z € S0(2). Then (av l, avz) -
—sin f sinh ¢, and

i . _ ., B B ..
Hav‘ Hz = cos? Eetl + sin? _i_ e ", Havzuz = sin? 5 e’ + cos? _2_ e '
thus
(av',av?®) sinh ¢, sin 8
|av'| lav?]| ~ (1 +sinh? ¢, sin? B)'/2’

And finally we obtain the laws of sines for the hyperbolic plane in the well-known
form

sinh ¢, sin f sinh ¢, sin y
+ = . .
~ (1 +sinh?¢, sin? f)!/2 (1 + sinh? t; sin? y)'/?

sin y sin 8
sinh¢#, sinhiz;’

<> +sinh ¢, sin f =sinh t;siny < +
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