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On the trigonometry of symmetric spaces

Enrico Leuzinger

1. Introduction

Symmetric spaces were introduced, classified and intensively studied by Éhe Cartan
more than sixty years ago (cf e g [Cal], [Ca2], [Ca3]) However, the understanding
of their geometry îs still m an infancy state, with the stnking exception of the spaces
of constant curvature In the study of Euchdean, sphencal and hyperbohc geometry
triangles play a crucial rôle Actually, thèse three geometnes are charactenzed by
the same congruence theorem, &quot;side-angle-side&quot;, for triangles, which îs équivalent
to the fact that the underlying space has constant sectional curvature The theorem
states that the congruence class of a géodésie triangle ségft^ îs completely determined
by two of îts sides, e g a ^^, b «s/#, and the enclosed angle y at %&gt; The third
side c and the angles a and /? can be computed from a, b and y This îs the essence

of the &quot;laws of trigonometry&quot;, the law of cosines and the law of sines
Vanous applications of sphencal and hyperbohc geometry rest on the effective-

ness of thèse formulae To understand and to generahze them îs one of the aims of
the présent work We shall develop a &quot;trigonometry&quot; for arbitrary (irreducible)
Riemanman symmetric spaces of non-compact type This involves a detailed study
of (genenc) triangles together with their congruence classes m such spaces

The Riemanman symmetric spaces of rank 1 are precisely the non-Euclidean

two-point homogeneous spaces Their trigonometry has been studied by B A
Rozenfeld and more recently by W -Y Hsiang, cf [Roz] and [Hsi] A différent
approach usmg models in projective spaces has been given by U Brehm, cf [Bre]

A Riemanman symmetric space S îs centrally symmetric with respect to any of
îts points This implies that the group of isometries 7(5) opérâtes transitively The

geometry of S is therefore intimately connected with the geometry of îts grôup of
isometries, which in turn is a semisimple Lie group Thus to study symmetric spaces
we hâve at our disposai on the one hand Riemanman geometry and on the other
hand the nch structure theory of semisimple Lie groups

Let S be a Riemanman symmetric space of non-compact type Aflat m S is a

maximal, totally géodésie submamfold with sectional curvature zéro It is also the

orbit of a group conjugate to a certain abehan subgroup A of G I0(S), the
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connectée component of the îdentity in I(S) A Weyl chamber in S îs an (open)
cône m a flat of S We shall define the set CS G/M of ail Weyl chambers of S and
will show that ît îs a trivial homogeneous bundle over S K/M -? G/M -+S G/K
Hère M îs the subgroup of the isotropy group K consisting of those éléments which
fix a chosen basic Weyl chamber c0

The approach taken in our work îs to translate géométrie configurations given
by points of S into group theoretic relations A key idea îs to relate the geometry
of S to that of the Weyl chamber bundle CS

We call a géodésie triangle séffl^ regular if the géodésie segments ser$, 0b&lt;€, &lt;€sé

lie on regular geodesics, 1 e geodesics which are contained m precisely one flat A
regular géodésie triangle sé^ in S with a distinguished segment sé$b îs called
marked In order to obtam géométrie quantifies, 1 e quantities independent of a

particular représentative of a congruence class, we détermine the space of invariants
for the relative position of two points and also that of two Weyl chambers with a

common apex Thèse invariants (which actually are points m certain orbit spaces)

will allow us to define appropnate notions of side and angle for a congruence class

of marked, regular géodésie triangles
To every congruence class of marked triangles we shall thus associate six

géométrie quantities, namely three sides a,,a2,a3 and three angles k,,k2,k3
However, thèse quantities cannot be arbitrary In order to dérive from a triangle
their représentatives must satisfy a charactenstic relation, namely alkla2k2a3k3M

M, which îs a kind of &quot;closmg condition&quot; in the Weyl chamber bundle It îs

called fundamental relation and will be one of our basic tools

It turns out that two marked, regular géodésie triangles are congruent essentially

if two sides and the enclosed angle of one triangle coïncide with the correspondmg
éléments of the other This îs a generahzation of the above mentioned classical

congruence theorem SAS m hyperbohe geometry We thus obtain a set of defining

quantities By tngonometry of S îs meant a (minimal) set of functional relations which
allows us to deduce from the three defining quantities of a triangle the three

remaining ones In classical geometry thèse are the law of cosines and the law of sines

We obtain the generahzed laws of cosines from the fundamental relation by

usmg Invariant Theory for symmetnc spaces and the Cartan décomposition of G

In hyperbohe geometry the laws of sines can be interpreted as an intégral of the

géodésie flow (the &quot;angle of parallelism&quot;) The correspondmg generahzations are

intégrais of the Weyl chamber flow which îs a certain action of the abehan

subgroup A of G (determined by the choice of c0) that generalizes the géodésie flow
We construct such intégrais (the &quot;subtended angle of a flat&quot;) and deduce the

generahzed laws of sines from them

Fmally, we compute in détail the tngonometry of the space of Euchdean

structures on Rw, 1 e of SL(n9 R)/SO(n), to îllustrate the gênerai concepts
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We emphasize that we are dealing only with symmetric spaces of non-compact
type. Since there is no Iwasawa décomposition for compact groups, our global
method to dérive the laws of sines does not work for the dual spaces of compact type.

There is only one symmetric space of compact type and higher rank whose

trigonometry has been investigated, the Lie group SU(3), cf. [Asl]. It would be

interesting to hâve a géométrie analogue of the subtended angle for symmetric spaces
of compact type. Such an object should lead to a global formulation of the laws of
sines also for thèse spaces.

The présent paper is part of the author&apos;s dissertation [Leu]. I wish to express my
gratitude to Hans-Christoph Im Hof from the University of Basel for his friendly
support and criticism.

2. The Weyl chamber bundle of a symmetric space of non-compact type

In this section we describe some (essentially) known aspects of the geometry of
symmetric spaces (of non-compact type) and of the structure of semisimple Lie

groups that will be used later. Further we introduce the Weyl chamber bundle and
relate its geometry to various Lie group décompositions.

By S we dénote an irreducible Riemannian symmetric space of non-compact type
with base point x0.

2.1. Fiats and Weyl chambers

DEFINITIONS. Aflat in S is a complète, connected, totally géodésie subman-

ifold of 5&quot; with sectional curvature zéro and of maximal possible dimension.

Ail flats are congruent, i.e. there is an isometry of S which maps a given flat onto
an arbitrary one. The common dimension of ail flats is called the rank of S, cf. [Hel]
Ch. V.6. If S has rank 1, then flats are just geodesics and the sectional curvature is

bounded away from zéro.

Every géodésie y in 5 is contained in at least one flat. A géodésie y is called regular
if it is contained in exactly one flat. Otherwise y is called singular. We fix a point x
in S and a flat F through x. The singular geodesics through x in F form a union of
finitely many isometrically embedded hyperplanes. We call a connected component
of the complément of thèse hyperplanes a Weyl chamber in F a S. The point x is

called the apex of the Weyl chamber.

We may write S G/K. Then G I0(S), the connected component of the iden-

tity in the group of isometries of S, is a non-compact, connected, semisimple,
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real Lie group with trivial centre. The isotropy group K of jc0 is a maximal compact
subgroup of G.

The géodésie symmetry sQ at the base point x0 of S defines an involutive
automorphism a of G. The eigenspace décomposition of its differential is a Cartan
décomposition of the Lie algebra g of G, g k © p, where k is the Lie algebra of K
and P^TXQS.

We choose a maximal abelian subspace a in p. Let Q dénote the set of restricted

roots of (g, a) (cf. [Hel], Ch. VI.3). The kernel of any one of the restricted roots
a g Q defines a hyperplane Jfa := {H g a | a(H) 0} in the vector space a. The set

a5 := {H g a | 3a g Q, a(H) 0} is a union of hyperplanes, decomposing a into
finitely many connected components, called the Weyl chambers of a. Thèse are

open, convex cônes in a. We fix one of thèse chambers and dénote it by a+. Each

//ea+ is contained in precisely one maximal abelian subspace of p, namely in a.

Equivalently, the centralizer of H in p coincides with a. The following proposition
is of fundamental importance:

PROPOSITION (É. Cartan). Let a+ dénote the closure of a+ in a, then

For the proof see [Hel], Ch. V, Thm. 6.7 and Ch. VII, Prop. 2.12.

Geometrically this proposition means that the isotropy group K opérâtes

transitively on the set of Weyl chambers in p. Moreover, if the rank of 5 is 1 (i.e.
dim a 1) it says that rank 1 spaces are isotropic. Thus a symmetric space of any
rank can be called &quot;Weyl chamber isotropic&quot;.

A flat Fo through x0 corresponds to a maximal abelian subspace a of p. More

precisely, Fo Ax0 is the orbit under the abelian group A «= exp acG.
The Weyl chambers defined above (as subsets of the manifold S) are images of

Weyl chambers defined by restricted roots under the exponential map Exp^ and

under left translations r(g) in S. Since for symmetric spaces of non-compact type

ExpXQ is a diffeomorphism, we can identify Weyl chambers in a with those Weyl
chambers in the flat Fo which hâve apex x0.

2.2. Décompositions of semisimple Lie groups

The connected, non-compact, semisimple Lie group G I0(S) can be written as

G KÂ+K,

i.e. each g g G can be written as g klak2 with kl9k2eK and a unique aeA +
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This décomposition of G is called a Carton décomposition, cf. [Hel] Ch.IX.l.
Later we shall need more précise information on the factors kx and k2 in this

décomposition. For any H e a let ZK(H) := {k e K | Ad (k)H H} be the central-
izer of H in K.

LEMMA. Suppose that a exp H e A+.
(a) If g kxak2 k&apos;xak2, then k\ kx mod ZK(H).
(b) Ifk\ kxmfor some m e ZK(H)y then k&apos;2 m~lk2for the same m e ZK(H).
(c) Set tc--=kxk2 and tc/--=k\k2, then we also hâve le&apos; le. This means that in the

(polar-) décomposition g =ptc:=kxakx~lk the factors p and le are unique.

Proof We first note that for the point gK in the symmetric space S G/K

ExpJCo Ad (kx)H kxaK gK k\aK ExpJCo Ad (k\)H.

As ExpXQ is a diffeomorphism we get Ad (kx)H Ad (k\)H or Ad (kx~lk\)H H.
Thus kx~lk\eZK(H) which proves (a). Statements (b) and (c) easily follow:
kxak2 k\ak2 and k\ kxm for m e ZK(H) implies k\ak2 kxmak2 kxamk2
kx ak2 thus k2 m ~ lk2 and fc&apos; k\ k2 kx mm ~ lk2 kx k2 le. D

The choice of the Weyl chamber a+ in a defines an ordering in the set

Q ci Hom (a, R) of ail restricted roots. For a e Q we dénote the corresponding root
space by &amp;. We set Q + «= {a e Q \ ol(H) &gt; 0 for ail H e a+}, then n:=SaeD+ ga is a

nilpotent subalgebra of g. Let K,A,N dénote the analytic subgroups of G

corresponding to the subalgebras k, a, n. The map

K x A x N -+ G; (k, a, ri) \-* kan

is an analytic diffeomorphism called the Iwasawa décomposition of G. A proof can
be found in [Hel] Ch. IX. 1.

The Weyl group W of S is generated by the reflections in the walls of the basic

Weyl chamber a+. It opérâtes simply transitively on the set of ail Weyl chambers

in a and is isomorphic to M&apos;\M where M&apos;is the normalizer and M the centralizer

of a in K. The group P -= MAN is a closed subgroup of G. For each élément w of
the Weyl group W we fix a représentative mw e M&apos;. Then G is the disjoint union of
double cosets of P,

G U PmwP.
weW

This is called the Bruhat décomposition. It is related to P-orbits in the homogeneous

space G /P. There is one principal orbit whose dimension is the dimension of G /P.
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It gives rise to the so-called &quot;big cell&quot; Pmw*P in the Bruhat décomposition, which
is an open and dense double coset in G. We hâve Pmw*P Nmw*P and if we fîx a

représentative m* for mw* the décomposition becomes unique: If g eNm*P with
g—nm *p, then n e N and p e P are uniquely determined by g.

For more détails and proofs see [War] Ch. 1.2 or [Hel] Ch. IX.

REMARK. The géométrie significance of the Lie group décompositions treated
in this section is most clearly seen in terms of the set CS of ail Weyl chambers of
S. We turn to the detailed study of this set in the subséquent paragraph.

2.3. The trivial bundle structure of the Weyl chamber bundle

If the rank of the symmetric space S is 1, then the isotropy group K acts

transitively on the unit tangent sphère at jc0 For symmetric spaces of higher rank
this is no longer true. However, K still acts transitively on the set of Weyl chambers

with apex x0 (by the Proposition in Section 2.1). This observation leads to the study
of the set CS of ail Weyl chambers of S (flrst introduced and investigated by H.-C.
Im Hof in [IH1]).

We fix a maximal abelian subspace a in p ^ TXQS. In a we choose a Weyl
chamber a+, which in turn détermines a Weyl chamber c0 in S with apex x0. Let M
dénote the centralizer and M&apos; the normalizer of a in K. We recall two properties of
Weyl chambers, which will be used repeatedly.

PROPOSITION, (a) Ail Weyl chambers with apex x0 in S (or, equivalently, ail
Weyl chambers in p) constitute a homogeneous space isomorphic to K/M with base

point eM corresponding to c0. (b) The Weyl group W&apos;—M&apos;\M opérâtes simply
transitively on the set of ail Weyl chambers in Fo Ax0 with apex xQ.

For a proof see [Hel] Ch. VII, Theorem 2.12, Ch. V, Lemma 6.3.

DEFINITION. We dénote by CS the set of ail Weyl chambers of S. To obtain

it, we let F run through ail flats of S and jc, for each F, through ail points of F.

In this way we can associate to each Weyl chamber on the one hand a point
in S, namely its apex, and on the other hand a flat F, which completely contains

it.

THEOREM 1. Let S be a symmetric space of non-compact type with base point
xQ. If S G/K, then CS is a homogeneous space isomorphic to G/M.
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Proof. Let Fo dénote the flat which supports c0. Choose c e CS with apex, say

x, and supporting flat, say F. Then, since G opérâtes transitively, gx x0 for some
suitable g g G. The image of the flat F under this g is a flat gF which contains x0.
An élément k e K transforms gF into Fo, kgF Fo. The two Weyl chambers kgc
and c0 hâve the same apex and the same supporting flat, so there isanm&apos;eM&apos; such

that m&apos;kgc c0. To détermine the isotropy group of c0 we suppose that gc0 c0.
Then we first hâve gx0 x0 thus g e K, moreover gF0 Fo and thus g e M&apos;. As the

Weyl group opérâtes simply transitively on the set of Weyl chambers in Fo with
apex x0, it follows that g e M.

DEFINITION. Let k0 dénote the projection onto the A^-component of the
Iwasawa décomposition: k0: G KAN -+K\ g kan \-^ko(g)-=k. We call two
Weyl chambers gxM and g2M asymptotic if they hâve the same ÀT-component in
their respective Iwasawa décompositions, i.e. if ko(gx)M ko(g2)M.

Let P MAN be the minimal parabolic subgroup of G associated to the
Iwasawa décomposition G KAN. The map P : G/P -&gt;K/M; gP \-^ko(g)M is a

diffeomorphism: From the définition of P and k0 it immediately follows that P is

one-to-one and onto. Moreover, dp\eP : k®a©n/m©a®n ^ k/m-? k/m is onto
and therefore dp\gP is also onto for every geG. We interpret a point of G/P
as an équivalence class of asymptotic Weyl chambers using the diffeomorphism
P : G/P-+K/M. Geometrically, the map P associâtes to each point gP the unique
Weyl chamber ko(g)M whose apex is the base point xoe S and which is asymptotic
to the chamber gM.

The map which associâtes to each Weyl chamber its apex is the projection map
n of the bundle n : G/M-+G/K; gM h-&gt;gK. This bundle structure turns out to be

particularly simple. Namely, both the Cartan and the Iwasawa décomposition give
rise to a trivial bundle structure of CS over S.

DEFINITION. Let geG and take the Cartan décomposition g kak&apos;

kak~l£. We define k(g)-=fceK; see the Lemma in Section 2.2.

THEOREM 2. For CS G/M and S G/K the two maps

&lt;PC:CS^S x K/M; gM h&gt; (gK, k(g)M) and

&amp;f:CS-&gt;S x K/M; gM \-+ (gK, ko(g)M) are diffeomorphisms.

Proof. &lt;PC is onto: Let (hK, fcM) be given. There exist k e K and //ea+ such

that hK ExpXo Ad (k)H. Then for a expH we hâve hK kaK kak ~ lEK Set

x£. Then &amp;c(gM)=(hK, IcM).
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&lt;PC is one-to-one: Let gxM kxaxkx~llcxM and g2M k2a2k2xU2M be two
Weyl chambers with &lt;Pc(gxM) &lt;Pc(g2M). This is équivalent to kxaxkxxîcxK
k2a2k2xlc2K and kxM £&quot;2M i.e. there exist k e K and m e M such that kxaxkx~{ttx

k2a2k2xlc2k and £, fc2m. We now deduce from the uniqueness of the factors in
the Cartan décomposition (see the Lemma in Section 2.2) that £, £,&amp;, and
therefore fc2m =kx fc2k. Thus k =m e M, and &lt;PC is one-to-one.

&lt;PC is regular: Since CS is homogeneous it suffices to show that $c is regular at
eM. Let m dénote the Lie algebra of M. We hâve &lt;Pc(eM) (eÀ^, eM) and

With thèse identifications we find that d&lt;Pc\eM(X + L) X + L for Jep and

L ek/m. Hence ^c|eM is onto. As both tangent spaces hâve the same dimension
&lt;PC is regular at eM.

&lt;P, is a diffeomorphism: In [IH1] it is proved that &lt;P : G/M-+G/K x G/P;
gM h-&gt; (gÂ^, ^P) is a diffeomorphism. As we hâve seen above, there is a diffeomor-

phism /? : G/P ^ K/M. Since &lt;P7 (Id x fi) o &lt;p the theorem is proved.

COROLLARY. The Weyl chamber bundle CS of an (irreduciblé) symmetric

space S of non-compact type is diffeomorphic to a trivial bundle over S with canonical

fibre KlM.

REMARK. The trivial bundle structure of the Weyl chamber bundle general-
izes the trivial bundle structure of the unit tangent bundle of a hyperbolic space, for
in the rank 1 case Weyl chambers are unit tangent vectors resp. géodésie rays. We

regard the Weyl chamber bundle as a generalization of the unit tangent bundle, a

point of view that proves to be of fundamental importance.

2.4. Géométrie interprétations

We turn to géométrie interprétations of vanous Lie group décompositions that

will be used later.

If we start from the basic Weyl chamber c0 eM, then we can reach an

arbitrary Weyl chamber gM in two ways (corresponding to the Iwasawa and to the

Cartan décomposition, respectively). Starting with the Iwasawa décomposition

g kobn, we first map the basic Weyl chamber c0 eM with apex x0 to k0M (see

Figure 1), then k0M is displaced in the flat k0F0 by means oîk0bkôl to the chamber

kobM and finally transformed with (kob)n(kob)~l to gM. Note, that k0M, kobM
and gM belong to the same asymptoticity class gP.
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kobnM

k0M

Figure 1. The Iwasawa décomposition.

Figure 2. The Cartan décomposition.
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nm*antM

xo M

Figure 3. The Bruhat décomposition.

We can interpret the Cartan décomposition similarly (see Figure 2). We take a
Weyl chamber gM. Let g kak~l£ be the Cartan décomposition of g. Then the
basic chamber c0 is fîrst rotated by means of A: into the flat kF0. Next it is translated
along this flat by means of kak ~x to the chamber kaM. Finally this chamber is

rotated by ka(k~llc)(ka)~l to gM.
In Section 5 we shall also use the géométrie interprétation of the big cell in the

Bruhat décomposition (cf. Section 2.2). To describe it we define a horocycle in the

symmetric space S G/K to be an orbit of a group conjugate to the nilpotent
group N. Let g be an élément of G in the big cell Pm*P c G and let g nm*q be

its Bruhat décomposition. The élément q e P can be written as q an&apos;m with a e A,
n&apos; g N and m e M. The Weyl chamber gM nm*qM nm*an&apos;M (see Figure 3) is
obtained from the basic Weyl chamber c0 M by first displacing M by means of n

along the horocycle N • x0 to the chamber nM. This chamber is mapped to its
opposite nm*M, translated along the supporting flat by means of a conjugate of a
to nm*aM, and finally displaced by means of a conjugate of n&apos; along the horocycle
&quot;centered at gP&quot;.

2.5. The Weyl chamber flow on CS and a class of symplectic manifolds

The following action of the abelian group A exp a on the Weyl chamber
bundle CS G/M generalizes the géodésie flow.
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DEFINITION. The map q&gt; : A x G/M-^G/M; (a, gM) \-&gt; gaM (gag~l)gM
is called the Weyl chamberflow. Note that for m g M we hâve (gm)aM gamM —

gaM so that &lt;p is well defined.

Geometrically, cp displaces a Weyl chamber along its supporting flat to an

asymptotic Weyl chamber in the same flat. H.-C. Im Hof has shown in [IH2] that
the Weyl chamber flow is an Anosov action, thus generalizing the same property of
the géodésie flow of hyperbolic spaces. The cp-orbit of a Weyl chamber gM e G/M
is the flat given by {gaM g G/M \a g A} gAM.

DEFINITION. A directedflat is a flat with a distinguished class of asymptotic
Weyl chambers.

REMARK. The set of &lt;p-orbits, i.e. G/AM, coincides with the set of ail directed
flats in S. It is an /-fold covering space of the set G/AM&apos; of ail flats in S; where /
is the order of the Weyl group W M&apos;\M, which in turn is isomorphic to the

covering group of this covering.

There is another generalization of a property of the set of ail geodesics of a

hyperbolic space. Namely,

THEOREM 3. The set G/AM of ail directed flats in an (irreducible) symmetric

space of non-compact type S G/K is a homogeneous symplectic manifold of
dimension 2(dim S — rank S).

A detailed proof of this theorem can be found in [Leu].

REMARK. The theorem above is a spécial case of the following gênerai
situation. For an arbitrary Lie group G the co-adjoint action Ad* of G on

g* Hom (g, R) is given by Ad* (g)Ç(X) &lt;J(Ad (g~l)X) with ^eg*,Jeg. It is

well-known that there exists a canonical symplectic structure on a co-adjoint orbit
(Kirillov-Kostant-Souriau, cf. [GSt], Proposition 25.2). In our case, the group G

is semisimple so that the Killing-form k of g is non-degenerate and hence induces

an isomorphism between g and g*. Thus, for H g ar, H*&gt;=k(H9 •) eg* and for
X g g we hâve

Ad* (g)H*(X) H*(Ad (g-l)X) k(H9 Ad (g~&apos;)X) *(Ad (g)H, X).

The G-orbit of H* is given by G H* {Ad* (g)H* \ g g G} s G/AM. Hence the

manifold of flats is a co-adjoint orbit of G and the symplectic structure we refer to
in Theorem 3 is precisely the canonical symplectic structure on such an orbit.
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3. Congruence classes of marked triangles

For many questions concerning symmetric spaces it is sufficient to work with
G 70(5), the connectée component of the identity in the group of isometries of a
Riemannian symmetric space 5. But in studying géométrie quantities of triangles it
will be essential to work with 7(5), the full group of isometries of 5.

Using the transitive opération of 7(5) on the Weyl chamber bundle CS we
obtain another model for this space: Let M* dénote the set of ail éléments in 7(5)
which flx the basic Weyl chamber, then CS 7(5)/M*. Since the compact group
M* also plays an important rôle in connection with triangles, we first study some
of its algebraic properties.

3.1. Algebraic preliminaries

DEFINITION. By K we dénote the full isotropy group of the base point x0 e 5.

As usual, we identify TXQS with p c g. We recall that the linear isotropy
représentation of K on p is given by K^ Ad (K)|p c 0(p). Since an isometry is

completely defined by its value and its differential at a given point, the linear

isotropy représentation is faithful and K^ £ K.

DEFINITION. For each élément v of K let iv dénote the inner automorphism
of 7(5) given by conjugation with v, i.e. iv(g) vgv~KWe further dénote by Int (K)
the group of ail inner automorphisms of K and by AutG (K) the group of ail

automorphisms of K which extend to G.

The structure of K was determined by Élie Cartan.

PROPOSITION (É. Cartan). Let s0 be the géodésie symmetry at x0 and let iVj\K

represent the cosets of \ni(K) in AutG (K)forj=l,...9 r. Then

K= U Vj
7=1

For a proof see [Wol], Theorem 8.8.1 or [Ca2].

DEFINITION. There is a unique élément w* in the Weyl group W M&apos;\M of
5, mapping the Weyl chamber c0 corresponding to M to its opposite chamber cjjf.

We hâve w* m*M for some m* e M&apos; NK(a).
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REMARK. By our identifications, m*M may be considered both as an élément
of the Weyl group and as a Weyl chamber in the basic flat. w* has order 2, thus
(w*)2 e or, equivalently, (m*)2 e M. Détails can be found in [Bou] Ch. V, Ex. 6.2.

DEFINITION. Let a be a fixed maximal abelian subspace of p and let a+ be a

fixed Weyl chamber in a. We dénote the normalizer of a+ in K by M*.

REMARK. The quotient manifold I(S)/M* ^ I(S) n G/M* n G G/M CS
yields another model for the Weyl chamber bundle.

In the next Lemma we describe the structure of M* in more détail:

LEMMA 1. Using the notation of the Proposition above, we hâve

r

M*= (J Vj &apos;(Mvsom*M).
7=1

Proof. Let *„ |^ e AutG (K). Since Ad (v~l)*+ is a Weyl chamber in p, we hâve
Ad (t?7!)a+ Ad (£)a+ f°r some keK, i.e. Ad (Vjk)a+ a+. Thus v/ e M* and
iv k iv mod Int (K). By choosing appropriate représentatives we can therefore
assume that v} g M* for every j. By the above Proposition it is then enough to
consider the following two cases: (l)^eM* for h e K. Then by our assumption
h g M* and so heM since M*nK M. (2) VjSoheM* for h e K. Then
soh hs0 e M*. Since Ad (/*)a+ Ad (^0)a+ Ad (m*)a+ we conclude from the

uniqueness of m* modulo M that h g m*M.

Let k e K. As both G I0(S) and K are connected subgroups of the group I(S),
ik \K is an automorphism of K and ik \G is an automorphism of G. We use ik to
dénote also thèse restrictions. The following property of the éléments of M* will be

used later.

LEMMA 2. For an élément v g M* consider iv e Aut(G). Then iv leaves the

Iwasawa décomposition of G invariant. More précisely: If G KAN is the Iwasawa

décomposition of G (determined by the choice of the basic Weyl chamber that defines

M*), then iv(K) S K, iv(A) S A, iv(N) £ N.
Moreover iv(M) Ç M, i.e. M is a normal subgroup offinite index in M*.

Proof. The claim on the invariance of K is obvious. To see that iv(A) ç A, we

only hâve to observe that a is spanned by vectors in a+, so that Ad (v) a a. Since

4 o exp|a exp|a o Ad (v) the claim is proved. We show now that iv(N) Ç N. Since v
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is an isometry of S, Ad (v) permutes the root hyperplanes and therefore the mduced

map Ad* (v) in Hom (a, R) permutes the roots For a positive restncted root
&lt;xe&amp;+ and #ea+ we hâve p(H) =Ad* (v)&lt;x(H) =a(Ad (v~l)H) &gt; 0 so that
PeQ+ We conclude that Ad (v) permutes the root spaces gx for leQ+ and
Ad (v)n Ad (v)l,xen+ gx n Combining this with exp o Ad (v)\n iv o exp|n shows
that iv(N) çAT In order to prove the last claim let m e M and //ea+ If we
set H&apos; Ad (r - X)H e a+, then we hâve Ad (wm; - X)H Ad (y) Ad {m)H&apos;

Ad (t;)^&apos; H As iv(K)^K and MnK M, the claim follows

The following actions of M* are needed below

DEFINITION The group M* acts on K/M by (v, kM) \-±v kM =iv(k)M
vkv lM and on A + by (v, a) h-» v a zy(exp //) exp Ad (v)H

We use both the notations M* kM and k for the M*-orbit {iv(k)M \ v g M*}
of kM in K/M Similarly we use M* a and a for {iv(a) \ v e M*}, the (finite) orbit
of a e A+ under M*

3 2 Intervais and angles in a symmetnc space

We consider a pair of points, say (j/, J*), in a Riemanman symmetnc space S

of non-compact type As S is a Hadamard manifold there exists a unique géodésie

y joining se and ^
Let us assume that y is regular (cf Section 2 1) Then y is contained in a unique

Weyl chamber c with apex se By the facts stated in Section 2 3 there is an isometry
of S which maps the chamber c to a (chosen) basic Weyl chamber c0 A +

jc0 with

apex x0 The pair {se, 3$) can thus be mapped isometrically to the pair (s/0, @0)

with j/0 x0 and @0 a x0 for a unique ae^ +

However, this &quot;measurement&quot; is unique only up to the action of the group M*
defined in the previous paragraph An élément v eM* maps the basic Weyl
chamber cQ to îtself but does not necessanly leave ît pointwise fixed

In order to obtain a géométrie quantity for a pair of points (î e a map that is

constant on congruence classes) we make the

DEFINITION We define the interval associated to the congruence class of the

pair of points (se, 0S) to be the orbit a M* a {iv(a) \ v e M*} in A +

Similarly we can associate a géométrie quantity to an ordered pair of Weyl
chambers (c,, c2) with the same apex x
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First there is an isometry which maps the (ordered) pair (cx,c2) to the pair
(c0, c) with common apex x0 (cf. Section 2.3). Again this isometry is unique only up
to the left action of M*. Then, as the isotropy group K of x0 acts transitively on the
set of Weyl chambers with apex x0, there is a k e K such that c kc0. Hère k is

unique modulo M (cf. Section 2.3).

DEFINITION. We define the orientée angle associated to the congruence class

of the ordered pair of Weyl chambers (cx, c2) to be the orbit

k M* kM {iv(k)M \ v e M*} in K/M.

We collect the previous remarks in the

PROPOSITION. Let S be a Riemannian symmetric space of non-compact type.
Then:

(i) The space of invariants for the relative position of pairs of points (both
situated on a regular géodésie) is isomorphic to the space of orbits M*V4 +

(ii) The space of invariants for the relative position of ordered pairs of Weyl
chambers (with common apex) is isomorphic to the space of orbits M*\K/M.

3.3. A congruence theorem for marked triangles

DEFINITION. Three points se, 0b, &lt;€ in a Riemannian symmetric space S of
non-compact type define a géodésie triangle ZT {se, 0b,(€}. The triangle F is

called regular if the géodésie segments sé$è, 0$(€ and ^st lie on regular geodesics.

A géodésie triangle {se, $,%&gt;} détermines six directed géodésie segments:

^, ^J*, féV, $#&lt;€. In order to associate well defined géométrie quantities to
a géodésie triangle we make the following

DEFINITION. A (regular) géodésie triangle {se, @, &lt;€} is called marked if one
of its segments is distinguished, say sé$. The so marked géodésie triangle is

denoted by séffl^. Two marked géodésie triangles séffl^ and Q)ê^ in S are

congruent if there exists an isometry of S which maps séffl^ to $)ê!F, i.e. the

isometry must respect the marking. A congruence class of marked, regular géodésie

triangles is called a marked, regular triangle of S and the set of ail marked, regular
triangles in S is denoted by A (S). A géométrie quantity of a marked, regular triangle
of S is a map from A (S) into an arbitrary set X.

We first look for conditions of congruence for two marked, regular géodésie

triangles. To fix ideas, we assume that the regular triangle {se, $,&lt;&amp;} is marked by
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seJ*. As the group of isometries of S opérâtes transitively on the set CS of ail Weyl
chambers there is an isometry g e I(S) which maps sé0$&lt;€ to a géodésie triangle
es/o^o^o with ser0 gsé x0 and ^0J^0 g{sé0iï) e c0, where cQ dénotes the basic

Weyl chamber with apex jc0, identified with eM (cf. Section 2). Thus, srfo xo,
J*o ax x0 and a f 1(^0 ExpXo Ad (kx)H2 kx a2x0, where a, and a2 exp f/2 are in
A + and kx e K is unique modulo M.

Note that the triangle s/0^0^0 is not uniquely determined. If we replace the

isometry g above by vg for some isometry v e M*, the normalizer of a+ in the full
isotropy group K, then we obtain a congruent marked, géodésie triangle whose
marked side is also contained in c0.

DEFINITION. To the se01 -marked géodésie triangle sétf^ we associate the

marking-data

M* • (al9 k,M9 a2) {(/„(«,), iv(kx)M9 iv(a2)) \ v e M*}.

Note the simultaneous action of M* on the three components.
The following theorem states that thèse data actually characterize a congruence

class.

THEOREM 1. Two marked, regular géodésie triangles &amp;~x and 2T2 are congruent

if and only if the corresponding marking-data are the same:

M* • (ax,kxM, a2) M* • (é,, A,M, b2).

Proof Suppose first that ^ and &amp;~2 are congruent, then the corresponding data

are equal by the isometry invariance of the définition. For the converse suppose,
that Fx =3?^ is se0b-marked and ?r2 ®$&amp; is 9ê-marked with bx =vaxv~\
hx =vkxv~*ra, b2 va2v~l for some v e M* and m e M. Without loss of generality

we hâve 2 x0 vx0 vs/, S bx x0 vax v ~ lx0 vax x0 vâl. By Lemma 2 in
Section 3.1 there is an m&apos;e M with &amp; =bxhxb2x0 vaxv~lvkxv~lmva2v~lx0
vaxkxa2v-lm&apos;x0 vaxkxa2x0 v%. Hence 283F ^vséM^ and both triangles are

congruent. O

If the directed segments se10b, ^, &lt;€st are considered as pairs of points, then

they define three intervais a,, a2, a3 in the sensé of the previous paragraph. In order

to define also angles for the congruence class A of the marked, regular géodésie

triangle sé0bc€ we choose two Weyl chambers for each vertex. To do this in

coincidence with the marking data we take the chambers (ax • cQ,axkX&apos; c0) at @.

Thus we get k, M* kxM as the (exterior) angle at ^.
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The marked, géodésie triangle «s/W is naturally orientée: se -+ &amp; -? # -? se. We
next détermine the angles at ^ and se with respect to this orientation. Suppose that
M* • (a,, &amp;jM, 02) arises from the marking by means of sé@l. Then we may assume

(by Theorem 1) that se =x0, ^ =ûiX0, # alkla2x0. Now marking the triangle
with ^#, we observe that kfla^l^=k~lx0 x0, &amp;f ^f1(^ tf2Jt0, itf1ûfIj2/
ExpJCQ Ad (k2)H3 for a3 exp H3e A + and k2e K mod M. From this we conclude
that marking j/^^ with $&lt;€ leads to the marking-data M* • (a29 k2M, a3). In the

same way we get M* • (a3, k3M, ax) for the third segment &lt;€sé compatible with the
orientation.

REMARK. The moduli space A (S) c, M*\(A + x K/M x A +) of marked
triangles has quite a complicated structure in gênerai. For real hyperbolic spaces,
however, we can identify it with R+ x [0, n/2] x R+. In that particular case the
above theorem becomes a classical congruence theorem in hyperbolic geometry:

Two géodésie triangles A and A&apos; in //WR are congruent ifand only if two sides and
the enclosed angle of one triangle coincide with the corresponding éléments of the

other.

DEFINITION. In analogy with this classical case we define the sides of the

triangle A € A(5) to be the M*-orbits a, M* • aua2 M* • a2, a3 M* • a3 in

M*\^4+. And we define the (exterior) angles of the triangle Ae A (S) to be the
M*-orbits kx M* kxM, k2 M* k2M, k3 M* k3M in M*\K/M.

Summing up our discussion we can attach six géométrie quantities to any
marked, regular triangle A e A (S). Namely, the three sides al9 a2, a3 and the three
exterior angles kl9 k2, k3. However, it is obvious (already from classical geometry)
that thèse six quantities cannot be arbitrary. In order to be the sides and angles of
a triangle they must satisfy some kind of &quot;closing condition&quot;. In the next paragraph
we shall dérive a basic relation among représentatives of the six quantities, which is

characteristic for triangles (in the sensé that this relation is necessary and sufficient
for the corresponding sides and angles to be those of a triangle).

From Theorem 1 we know that, for A g A (S), two sides and the enclosed angle,
for example a]9 a2 and kl9 are related to the defining quantities: M* • (au kYM, a2).

By trigonometry of the symmetric space S we mean a (minimal) set of functional
relations which allow us to deduce from the three defining quantities of a triangle
the third side and the two remaining angles. In classical (hyperbolic) geometry this
is achieved in using the functional relations usually called &quot;law of cosines&quot; and
&quot;law of sines&quot;. We shall extract such functional relations from a fundamental
formula (in the Weyl chamber bundle of S) to which we now turn.
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Let stf®^ be a marked, regular géodésie triangle in a symmetric space S of
non-compact type. Without loss of generality let s/ be the base point of S and

suppose that stf® lies in the basic Weyl chamber c0 with apex x0.
Furthermore, let A be the congruence class of $$&amp;&lt;€ and let a,, a2, a3, k,, k2,

k3 be the sides and angles of A. We shall lift the triangle séâW to a &quot;hexagon&quot; in
the Weyl chamber bundle n : CS G/M -+S G/K. To do this we trace the path
taken by the Weyl chamber c0 moving along sé®^ (cf. Figure 4).

First we identify c0 with the base point M of GjM. Then we displace c0 in its

supporting flat from ^ to the point @ e S. In CS this opération is described by the

Weyl chamber flow for a particular élément: M ~&gt; axM for a unique axeA+. The

isotropy group of J&gt;, a}Ka^\ opérâtes transitively on the set of Weyl chambers

with apex 0, i.e. on the fibre n~l(&lt;%) =n-\axK) {a{kM\ke K}. As there is a

unique Weyl chamber cx containing the regular géodésie 9M% there is a /c, e K such

that c, =alklM (alklal~l)alM, where kx is unique modulo M.
We next take the unique élément a2 e A + which translates c, along the unique

flat that contains the géodésie segment ^^ to a chamber with apex &lt;€ : axkxM *-*

alkla2M and n(alkla2M) alkla2K &lt;#. Note that this représentation is indepen-
dent of the représentative chosen for the coset kxM, namely, if we take k\=kxm for
some m e M we hâve axk\a2M axkxma2M axkxa2mM axkxa2M. An élément

a1k1a2k2a3M

a1k1a2k2a3k3M=M a,M

B

Figure 4.
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of the isotropy group of ^ rotâtes our Weyl chamber to the new Weyl chamber c2

which contains the géodésie &lt;€sé, i.e. axkxa2M -* c2 — axkxa2k2M. This procédure
is repeated a final time. We first displace c2 to se and then rotate it back to the basic

Weyl chamber c0 : axkxa2k2M ~&gt; axkxa2k2a3M ~&gt; axkxa2k2a3k3M M. Figure 4

summarizes the whole procédure.

REMARK. Every Weyl chamber is of the form gM =gmM g&apos;M. Suppose
that ghM= g&apos;h M= gmhM. Then ghm&apos;= gmh&apos; for some m&apos; e M and therefore
h&apos; =zm~lhm&apos;.

THEOREM 2. (a) Consider three intervais a,, a2, a3 and three angles kl9 k2, k3.
In order that thèse six géométrie quantities are the s ides and angles of a triangle
A e A(S) it is necessary and sufficient that there exist représentatives at g a, M* • at

and ktM e k, M* • k,M9 for i 1, 2, 3, which satisfy the relation

axkxa2k2a3k3M M.

(b) If moreover, afxk&apos;xa&apos;2k2a&apos;3k3M M holds for some other représentatives of
the sides and angles of A, then a\ — vatv ~l, k\ — m~}xvktv ~ xmtfor i 1,2, 3, where

v € M * and mj e M.
(c) In particular, a\k\a2k2azk3M v(axkxa2k2a3k3)v~lM M and

M* - k\k2k&apos;3M M* • kxk2k3M.

Proof If the a, and k, are sides and angles of some A, then we hâve already
verified the relation axkxa2k2a3k3M M for a chosen représentative stf^ e A. If
ja/J&quot;^ is replaced by another représentative, we know from Theorem 1 that there is

a v e M* with a\ =vaxv~\ a&apos;2 va2v~\ k\ =vkxv~lmx with mx g M. We thus hâve
(k2a3k3m&apos;)~x ==a\k\a2 iv(alkla2m&quot;) iv(k2a3k3rn)~l for some m&quot;, m&apos;, m e M.
Equivalently k2a&apos;3k3mf iv{k2a3k3m). The claim now foliows from Lemma 2 in
Section 3.1 and the uniqueness properties of the factors in the Cartan décomposition

of G.

If, on the other hand, the relation axkxa2k2a3k3M M holds, then we can take

for A the congruence class of the géodésie triangle given by the three points se x0,

$ =axx0 and ^ =axkxa2x0.

DEFINITION. We call the équation axkxa2k2a3k3M M in CS the fundamen-
tal relation for the triangle séffi^ g A g A (5).

REMARKS. 1. Note the remarkable symmetry in the fundamental relation.
The base point appears only in the form of its isotropy subgroup K, but neither se
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nor $ nor &lt;€ is distinguished : axkxa2k2a3k3M M o a2k2a3k3axk\M M o
a3lc3axlcxa2lc2M M for k,M — k&apos;,M =tc,M.

2. Choosing suitable représentatives in K/M allows us to write the fundamental
relation in the form: e alkla2k2a3k3m axkxa2k2a3k3.

3. We can transvect the basic Weyl chamber along the sides of a géodésie

triangle without rotating at the vertices and thus imitating parallel translation of
tangent vectors along the géodésie loop formed by the triangle. The angle
M* • kxk2k3M in Theorem 2 can then be interpreted as the &quot;holonomy-angle&quot; of
the marked triangle A g A (S). In particular, for a géodésie triangle in the hy-
perbolic plane with angles a, j8, y we obtain the angular defect of the triangle:

4. Laws of cosines for symmetric spaces of non-compact type

Let S G/K be an irreducible Riemannian symmetric space of non-compact
type with base point x0. We choose a basic Weyl chamber c0 A +x0. To a marked,
regular triangle A e A(S) we can associate sides a,, a2, a3 g M*\^4 + and angles k,,
k2, k3 g M*\K/M. Thèse six quantities are linked by the fundamental relation
axkxa2k2a3k3M M. It is our aim in this section to compute a3 g M*^4&quot;, the

third side of A, from the defîning quantities M* • (ax, kxM, a2) given by two sides

al9 a2 and the enclosed angle k,.

DEFINITION. We call functional relations governing this laws of cosines.

4.1. Quadraîic représentations and Invariant Theory

By Theorem 2 and Remark 2 in Section 3.4 we may assume that the
représentatives for the sides and the angles of A are chosen in such a way that the

fundamental relation becomes axkxa2k2a3k3 e. In a first step we would like to
eliminate one of the three angles appearing in the fundamental relation. To that end

we embed S into G I0(S).

DEFINITION. Let a iSQ dénote the involution of G induced by the géodésie

symmetry at the base point x0 of S and set Q : S c&gt; G; gK\-+ ga(g~l). This is an

embedding of S as a submanifold of G I0(S). The map Q is called the quadratic
représentation of S (see [Hel], p. 276 for the détails).

Note that Q(G/K) sexpp. For g =axkxa2 k3 la3 lk2 l we obtain Q(gK)
g(r(g-l)=axkxalkrlax=k3la3~2k3 exp(Ad(k3ï)(-2H3)). We see from thèse
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formulae that we should look for a set of ^-invariant functions on p which
uniquely détermine the élément a3 exp (H3).

By Invariant Theory for symmetric spaces there are precisely r rank (S)
homogeneous polynomials on p ^ TXQS which are ^-invariant and whose gradients
at every regular X e p are linearly independent. More precisely, for a maximal
abelian subalgebra acp and the corresponding Weyl group W of S we hâve

PROPOSITION 1 (Chevalley restriction theorem). The R-algebra C£(p) of
K-invariant C00-functions on p is isomorphic to the R-algebra CJ£(a) of W-invariant
C^-functions on a.

PROPOSITION 2 (C. Chevalley). The R-algebra Pw{*) of W-invariant
polynomials on a is generated by r rank (S) algebraically independent homogeneous

polynomials pu ,pr and 1.

PROPOSITION 3 (R. Steinberg). Let J be the Jacobian matrix of a basic set of
invariants of W (computed relative to any basis of a). Let H be any point of a. Then

the maximal number of linearly independent reflection hyperplanes containing H
coïncides with the nullity of J at H.

The proofs can be found in [He2], Ch. II, Cor. 5.11., [War], Theorem 2.1.3.1.

or [Che] and [Ste], respectively.
We use the polynomials /?,,..., pr from Proposition 2 to define a map

p : a -+ R&apos;; H ^ p{H) := (Pl (H),..., pr(H)).

Note that since the polynomials /?,,..., pr are not unique, neither is the map p.
Let ar:=a\a5 dénote the set of regular éléments in a (cf. Section 2.1). We know

from Géométrie Invariant Theory that p séparâtes the Weyl group orbits, i.e. if
/?(//,) =/?(//2) for //,, H2ear, then there exists w e W such that H2 w • Hî (cf.
[Spr], 2.4.8).

The map /?, being constant on W-orhits, restricts to an injective map on a+.
Using Proposition 3, we conclude that /?|a+ is a diffeomorphism onto its image in
Rr. Let q dénote the inverse of this diffeomorphism qm=(p\m+)~l :/?(a+) -&gt;a+.

By Proposition 1 the map p has a unique ^-invariant extension to p which we

again dénote by p.
We set pr:= [jk€K Ad (fc)a+. Then Sr.= ExpXQ pr is the set of those points in S

which lie on only one flat through x0. Note that p(pr) =p(a+).

DEFINITION. We set C, «= exp o q o p o (exp|Pr)
&quot;l

: Q(Sr) -» A +.
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THEOREM 1 (Laws of Cosines, first version) Let S be a Riemanman symmetnc

space of non-compact type and let a be a maximal abehan subspace ofp^TXQS
with Weyl group W For algebraically independent, W-invanant polynomials

pu ,pr on a let C, be the composite just defined
Then the map

rx A(S)-M*V4+,M* (auklM,a2)*-+M* Cx(Q(axkxa2K)) M* a\

détermines the third side a3 M* a3e M*\A + of a gwen marked, regular triangle
A g A (S) from the defining quantities IX/I* (a,, A:,M, a2)

Proof As above we set g axkxa2 k3la3lk2l The assumption that A îs

regular implies that the verte^ ^ gK of the représentative séM^ e A lies in Sr We

use the fundamental relation and the /^-invariance of p to compute

Cx(Q(axkxa2K)) Cx(Q(k3 xa3 xk2 [K)) Cx(k3 la3 2k3)

exp o q o p(Ad (k3 *)( - 2H3)) exp o q o p( - 2H3)

Let s0 dénote the géodésie symmetry at x0 and let m *M dénote the Weyl group
élément that maps the basic Weyl chamber to îts opposite (cf Section 3 1) Then
Ad Cso)//3 —H3is in the opposite Weyl chamber and Ad (m*so)H3 îs again in a+

In particular p(-H3) =p(Ad (m*)(-H3)) =/?(Ad (m*so)H3) We insert this in the

above équation and get

=expoq oP(-2H3) =expoq o/,(Ad (m*so)2H3)

m*soal(m*so) im.So(aj)

It remains to check that the map C, îs constant on M* (a,, kx, a2), î e that the

map T, on A(5) îs well defined We used g axkxa2 k3la3xk2l Another

représentative for M* (ax, kx, a2) îs of the form (iv(ax), iv(kx)m, iv(a2)) for suitable

v e M* and m e M Using Lemma 2 of Section 3 1, we then get

g&apos; vaxv&apos;lvkxv~lmva2v~l vaxkxa2v~lm/ for some m&apos; e M

Thus

Q{g&apos;K) iv{axkxa22kx-xax) i^k^&apos;a^k,) U^1)^&quot;2)^)

where iv(k3) e K
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Similarly to the previous computation we obtain

Ci(Q{g&apos;K)) Cx{Q(iv(g)m&apos;K)) im.SoV(a23) e M* • al

and in conclusion M* • Cx(Q(g&apos;K)) M* • Cx{Q{gK)) so that JT, is actually a map
defined on A (S) as we claimed. Clearly M* - a] détermines M* • a3.

In this first version of the laws of cosines the inverse of the exponential map is

involved rendering it inappropriate for most computations in explicit examples. We
therefore provide an alternative approach which is based on linear représentations
of the semisimple group G.

4.2. Isometric embeddings in a fundamental symmetric space

We discuss the fundamental symmetric space 0&gt;(n, C) &gt;=SL(n, C)/SU(n) in some
détail. We retain the gênerai notation but use the subscript 0 to emphasize that we

are dealing with the spécial case ^(«, C).
Let In dénote the unit matrix of rank n. The canonical involution &lt;x0 induced by

the géodésie symmetry at the base point /„ • SU(n) is given by a0 : PSL(n, C) -&gt;

PSL(n, C); A h-* (A&apos;)~l. It follows that the quadratic représentation is of the form
C) - PSL(n, C); Q0(X • SU(n)) XX*.

DEFINITION. Let a dénote the canonical involution of G induced by the

géodésie symmetry at the base point of 5*. A représentation p : G —*¦ PSL(n9 C) is

called compatible with a iî p ° o =o0° p modulo scalars.

We shall make use of the following

PROPOSITION 4 (I. Satake). Let S G/K be an irreducible symmetric space S

ofnon-compact type and p : G-*PSL(n, C) an irreducible faithful représentation of G

compatible with a. Then 0tp : S G\K-+&amp;{n, C); gK h&gt; p(g)p{gY is an isometry and
&amp;P(S) is a totally géodésie submanifold of the fundamental symmetric space 0*(n, C).

The proof can be found in [Sat].

DEFINITION. We call 0tp the irreducible représentation of S determined by p.

REMARK. There always exist faithful linear représentations for G I0(S):
Since G acts effectively on S and since the centre of G is contained in K, G has
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trivial centre Therefore G can be identified (via the adjoint représentation) with the

group of mner automorphisms of îts Lie algebra, G ^ Ad G s Int (g)

Using the quadratic représentation Qo, the set D of ail positive defimte diagonal
matrices with déterminant 1 can be chosen as the basic flat in 0&gt;(n, C) Further, we

can identify the basic Weyl chamber in 0&gt;{n, C) with Z) + the set of real diagonal
matrices Diag (dl9d2, ,dn)eD with dx&gt; d2&gt; &gt; dn &gt; 0

DEFINITION Let m? represent the élément in the Weyl group of 0&gt;(n, C)
which maps the basic Weyl chamber D + to îts opposite D~, î e

(dx ,d2, dn)) Diag (dn,dn_u

We dénote by t the composite map

As 0tp îs an isometry and as 0tp{S) îs totally géodésie in 0&gt;(n, C) we can choose the
basic flat m the symmetnc space S in such a way that ît îs embedded by 0tp mto the

basic flat D of 0&gt;(n, C)

LEMMA Let m* and mj dénote représentatives of the respective unique
éléments in the Weyl groups of S and 0&gt;{n, C) which map the basic Weyl chambers A +

resp Z&gt;+ to their opposites If p is a représentation compatible with &lt;r, then

P °^*U+ *m8°pU+ and p °im.5o|^4- =t o p\a +

Proof We dénote by A the Weyl chamber m A a G opposite to A + As p is

an isometric embedding (cf Proposition 4) with p(A) çD, we hâve p(A+) çD +

and p(A ~) ^D~ Moreover, p{m*)p{A +)p(m*)~x p(im*(A +)) p(A ~) We see

from this that /p(m*} maps the subset p(A +) into D Thus there is an élément w m
the Weyl group Wo of 0&gt;(n, C) such that ip(m*} (p(a)) w p(a) for ail p(a) ep(A+)
(cf [Hel], Ch VII, Proposition 2 2) Hence ip(m*) is the restriction of w and since

Wo opérâtes simply transitively on the set of Weyl chambers m D, w is represented

by m*
For the second claim of the lemma just observe that p o im*SQ\A+ =p°im.o

Every matnx m 0&gt;(n, C) or, more precisely, in Q0(^(n, C)) can be diagonahzed

by an élément of SU(n) Thus a set of functionally independent SU(n) -invariant
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fonctions on ^(/i, C) is given, for example, by the elementary symmetric polynomi-
als Gj for j 1,..., n in the eigenvalues X} of éléments of ^(«, C).

DEFINITION. We define maps/&gt;0 : ^(«, Q^R&quot;-1; Z m&gt; (ax{X\ an_x(X)l
and &lt;?0 : po(P(n, C)) -*Z) + ; (ax (J*f), ...,*„_, (JT)) ^ Diag (^ (JT),. kn(X)\ with

&gt; 0 for X e ^(«, C).

The elementary symmetric polynomials of a matrix with différent eigenvalues
détermine thèse eigenvalues up to permutation. Thus the map q0 is one-to-one.
Note that go°Po: ^(n&gt; Q -&gt; D+ associâtes to a positive definite hermitian matrix
the set of its ordered eigenvalues. In particular q0 o p0 is SU(n)-invariant. The map
n : A-+A • K; a h-&gt; aK is clearly one-to-one and we define the map:

DEFINITION. C2 : Sr c G/K -&gt;A+; C2(gK) ••= n ~l o mpx o q0 o Po o

After thèse preliminary observations we again consider a marked, regular
triangle Ae A (S) with sides al9a2,a3 and angles k1,k2,k3 and with associated

fundamental relation axkxa2k2a3k3 e.

THEOREM 2 (Laws of Cosines; second version). Let S be an irreducible
Riemannian symmetric space of non-compact type and let &amp;p be an irreducible

représentation of S. If C2 is the map defined above, then the map

r2 : A (S) - M*V4 +; M* • (ax, kxM, a2) h- M* • C2{axkxa2K) a3

détermines the third side a3 M* • a3 of a triangle A g A (S) uniquely from the

defining quantifies M* • (al9 kxM, a2).

Proof We first observe that for g axkxa2 k3~xa3xk2x, we hâve

P(g)p(g)&apos; P(k3x)p(a,

Hence by the SU(n)-invariance of q0op0

C2(gK) =n-lo®p~*oqQo Po(p(k3) ~ lp(a32)p(k3))

71
&quot;[

o m ~x o q0 o po(p(a32)).
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If p(a3) Diag (dx,..., dn) g D + with dx &gt; • • • &gt; dn &gt; 0, then by the définition of
t and the above Lemma

&lt;7o ° A&gt;(P(*3) ~2) Diag ((&lt;C2, d&apos;21,..., &lt;/f2) r(Diag (d2, d2n))

t o P(a2) p o im.SQ(a2) ®p(im*S0(a3)K).

We substitute this into the above équation to obtain

C2(gK) 7T-1 o a-i o ^(/m^o(fl3)/:) K-&apos;ft,,^)*) /m-50(a3).

As in Theorem 1 the resuit is independent of the choice of the représentative.

5. Laws of sines for symmetric spaces of non-compact type

The aim of this Section is to generalize the laws of sines of hyperbolic geometry
to arbitrary symmetric spaces S of non-compact type. Recall from Section 3 that
the sides of a marked, regular triangle À g A (S) are M*-orbits in A + and that the

angles are M*-orbits in K/M.
For a triangle À g A (S) we consider two sides and two angles which are

adjacent to the third side, e.g. a,, a3 and k1? k2.

We are looking for relations between thèse sides and thèse angles which allow

us, at least implicitly, to détermine from the two sides and one angle, say k,,
adjacent to the third side a2, the second adjacent angle k2.

DEFINITION. We call functional relations by which this can be done laws of
sines.

5.1. Intégrais for the Weyl chamber flow

For triangles in the hyperbolic plane we hâve the well-known equalities

sin a sin p sin y

sinhfl sinhà sinh c

Thèse formulae can be derived from an intégral of the géodésie flow of the

hyperbolic plane (cf. e.g. [Hsi] or [Leu]).
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DEFINITION. Given a group G operating on a set X and a map f:X-&gt;Y
from X into an arbitrary set F, we call/an intégral for the given G-action ify is

constant on the G-orbits.

In what follows we shall construct such intégrais for the Weyl chamber flow,
which we defined in Section 2.5. They are intégrais for the géodésie flow if the rank
of the symmetric space is 1.

Let gM e CS G /M be a Weyl chamber and let g hbn be the Iwasawa

décomposition of g with h e K, b e A and n e N. For g&apos; gM, m e M, we hâve
g&apos; h&apos;b&apos;n&apos; hbnm hmbn because M normalizes N and centralizes A. We thus
hâve a well-defined map 0 : G/M -+K/M; gM \-+kQ(g)M where &amp;0(g) dénotes the

A^-component in the Iwasawa décomposition of g e G KAN. Geometrically 0
associâtes to a Weyl chamber its corresponding class of asymptotic Weyl chambers

(cf. Section 2.3).
Recall from Section 3.1 that there is a unique élément w* in the Weyl group

W M&apos;\M of S which maps the Weyl chamber c0 corresponding to M to its

opposite chamber cj. We hâve w* m*M for some m* e M&apos;= NK(à) and

(m*)2eM.

DEFINITION. For a Weyl chamber c =gM s G/M we set c*-.= gm*M. This
définition is independent of représentatives, for M is a normal subgroup of M\ so

that gmm*M gm*m&apos;M gm*M for some m,m&apos;eM.

Further, we define for the corresponding Weyl chambers gM and gm*M

hM-.= 0(gMl hilLM&apos;-=0{gm*M\ and I7(gM):=M* • h~lhM.

Again it is easy to see that thèse orbits are well defined.
We call IJ{gM) e M*\K/M the subtended angle of the flat gAM with respect to

the base point x0 of S (cf. Figure 5).

REMARK. Observe that the map 77 : G/M-+M\K/M; n(gM):=Mh~lhM is

also well-defined. We shall make use of this observation in the formulation of the

laws of sines in the next paragraph. In hyperbolic geometry the subtended angle of
a géodésie not containing the base point x0 is twice the angle of parallelism with
respect to x0.

THEOREM 1. The two maps 0 :G/M-+K/M and 77 : G/M -&gt; M *\K/M
defined above are intégrais of the Weyl chamber flow &lt;f).

Moreover, 0(kgM) k0{gM) and Il{kgM) TI(gM).
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hM

Figure 5

Proof We must show that, for gM e G/M and a e A, 0(gM) 0{gaM) and

II(gM) FI(gaM) To prove this, we consider the Iwasawa décomposition g hbn
As A normahzes N, we hâve ga hbna hban&apos; and 0(gM) — hM 0(gaM)
Clearly 0(kgM) khM k0(gM) As am* =m*a&apos; for some af e A, we also have

0(gam*M) 0(gm*a&apos;M) 0(gm*M) and J7(gaM) M* h~lhM Il(gM)
Finally ît îs clear from the définitions that 0(kgM) =khM and 0(kgm*M)

kh^M This gives TI(kgM) M* (khJ~lkhM /7(gM)

REMARK The subtended angles are precisely those orbits M* kM for
which k eK* =KnPm*P To see this, simply note that, for g hbn e G, gP hP,

gm*P h
+ P and we can therefore wnte h^ gm*p, h gq for /?, q g P Now

h~lheKnPm*P
The set K*/M {kM g K/M \ k e K*} îs a connected, open and dense subman-

îfold of K/M This can be shown by using Proposition 12 3 5m [War]

5 2 The laws of sines

We consider a marked, regular triangle Ae A(S) with associated fundamental
relation wntten in the form alkla2M kîxaîxkïxM (cf Remark 1, Section 3 4)
We now use the map 77 mtroduced in Section 5 1
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THEOREM 2 (Laws of Sines). Let S be an irreducible Riemannian symmetric
space of non-compact type. For a représentative of a marked triangle A g A (S) with
sides ax, a2, a3 and angles kx, k2, k3 and fundamental relation as above the map

Z :A x K/M -&gt; M\K/M; (a, kM) h-&gt; Û{akM

satisfies

Proof By the Remark preceeding Theorem 1 the map Z is well-defined.
We next verify the first équation in Theorem 2. Using Theorem 1 and the

fundamental relation we find 0(axkxM) O(axkxa2M) O(k^laflk2~lM)&apos;, more-
over, there is an a2eA such that axkxm*a2M axkxa2m*M kïxa^xk2xm*M
and therefore 0(axklm*M) 0(axkxm*a&apos;2M) e(k^la^lk2lm*M). As also

0(kgM) k&amp;(gM) for any k e K, we obtain

If we set h3M:=0(aïxk2-lM) and (h3)i,M^0(ailk2lm*M) then

Û xaixk2xM) =Û{axkxa2M)

Cyclic permutation of the représentatives of sides and angles in the fundamental
relation complètes the proof.

REMARK. If we work with another représentative of A, i.e. if we replace

axkxa2M by iv(axkxa2)M for some v e M*, then the above computations lead to
n{iv{a^xk2x)M) Miv((h3)-xh3)M Ê(iv{axkx)M). Note that the associated sub-

tended angle is the same for both représentatives and thus is a géométrie quantity
associated to A.

We next investigate the extent to which the first équation in Theorem 2 actually
détermines the second adjacent angle k2 of the considered triangle A e A (S).
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Let us first look at the classical hyperbolic case. Given a géodésie triangle in the

hyperbolic plane H2R with sides b and c and angles (} and y, we hâve the law of
sines: sinh c sin /? sinh b sin y. If b, c and p are given, then this équation in
gênerai has two différent solutions, y and n —y.

The actual solution (for the considered triangle) is only determined by taking
the third side a - which is part of the deflning quantities c, /?, a - into account. We

prove a generalization of this fact.

DEFINITION. For g e G let g kna be the Iwasawa décomposition with
G=KNA (in this order!). We set A(g).= a.

THOEREM 3. Suppose that Û(akM) Û{ak&apos;M) and A(ak) A{akf) hold for
a~l g A+ and kM, k&apos;M e K/M. Then MkM Mk&apos;M.

Proof. We use the décompositions ak — hnb and ak&apos; — h&apos;n&apos;b&apos;. Then
b A(ak) A(ak&apos;) b&apos;&apos;. Moreover let akm* =h^nlbl and ak&apos;m* h^n\b\. Put
Û{akM) Mh0M Û{ak&apos;M). We then obtain m&apos;hom h~lh nlblm*b-ln~\
ho (h +

)~lh&apos; n&apos;lb\m*(b/)~l(n/)~~l, for some m,m&apos;eM. The uniqueness of the

factors in the Bruhat décomposition (cf. Section 2.2) implies that n —mxrim2 for
mum2€ M. Thus h~YakM nbM mln/m2b&apos;M mxn&apos;b&apos;M — mx{h&apos;)~xak&apos;M. By
the uniqueness properties of the factors in the Cartan décomposition (cf. Section

2.2) we conclude that MkM Mk&apos;M.

We now apply Theorem 3 to a marked, regular géodésie triangle srfffl^ e À with
fundamental relation alkla2k2a3k3M M.

Observe that A(a^lk2l) A(k^la3lk2l) A^k^) A{axkx)a2. Thus,
given the defining quantities M* • (a,, kxM, a2) for A, the élément A(a^xk2}) e Aïs
fully determined. From this observation we deduce the following Corollary of
Theorem 3 to supplément Theorem 2:

COROLLARY. For a marked, regular géodésie triangle that represents a marked

triangle A e A(5) the équation Z(ax,kxM) ifaf!, k2xM) together with the defining

quantities M* • (ax, kxM, a2) of A uniquely détermines the angle k2 M* • k2M.

6. The space of Euclidean structures on R&quot; as an example

We illustrate our methods for 0&gt;(n, R)-=SL(n, R)/SO(n), the space of scalar

products (with déterminant 1) on Rw, for any n ^ 2. For the trigonometry of the

spaces SL(n, C)/SU(n) the interested reader is refered to [Leu].
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6.1. The orbit spaces M*\KjM and M*\A +

The Riemannian symmetric space ^(n, R) can be identifiée! with the set of the

positive definite n x n matrices with déterminant one. SL(n, R) acts on ^(«, R) by

SL(n, R) x »{jt, R) -0&gt;(n, R); (A, X) \-+ AXA&apos;.

The géodésie symmetry s0 at the base point /n:=Diag(l,..., 1), the n x n unit
matrix in 0&gt;{n, R), induces the involution iSQ{X) a(X) (X~x)\ for X e SL(n, R).

The abelian group A in SL(n9 R) can be chosen as the set of ail diagonal
matrices with déterminant 1, i.e. a Diag (#,,...,#„); ïl&quot;= at 1. A Weyl cham-
ber A + a A is given by those a e A for which ax &gt; • • • &gt; an &gt; 0.

The matrix œ Diag —1,1,...,1) defines an isometry that reverses orientation.

If the rank of ^(n, R) is odd (i.e. for n even) then

K SO(n)l{±In}vs0SO(n)/{±In}uœ(SO(n)/{±In}Kjs0SO(n)/{±In})

and if the rank of ^(/î, R) is even K SO(n) vs0SO(n) (cf. [Ca2], p. 389).

We hâve M {Diag (el5..., sn) |n^=1£f l9ete{\9 -\}}/{±In} for n even

resp. M {Diag(e,, ...,£„) 111&quot;^, st l,ete {1, —1}} for n odd. From Lemma 1,

Section 3.1, we see that for n even

M* M u som *M u œ(M usom *M)

and for n odd

Moreover, for Diag (ax,. an) e A + we compute

M* • Diag («,,. an) {Diag (*,,..., aj, Diag (a~\ «r1)}-

Finally, we note that the group M is discrète; thus the connected manifold of
principal M-orbits in K/M has the same dimension as K SO(n), i.e. \n(n — 1).

6.1.1. The laws of cosines for 0&gt;(n, R)

Let séffl^ be a regular, géodésie triangle in ^(«, R). Then the two sides

M* • a, M* - b and the angle M* • kx M at ^ are represented by the matrices

a Diag (a,,.. aj, 6 Diag (bx ,...,£„) 6 A +
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and kx =[v/] e SO(n). The other représentatives of MkxM are ail of the form
k\ faôjV/] with en &lt;5y e {1, - 1}.

Let vl dénote the /-th row of kx and set

We use Theorem 2 in Section 4 to compute the laws of cosines.

With the canonical matrix représentation p idof SL(n, R) and g akxb we get

Let c Diag (cx,. cn) e A + represent the side sé&lt;€ of the triangle
The laws of cosines of P(n, R) are given by the (n — 1) rank ^(n, R) équations

£ c?w trace (M{gK))m

where m 1,. « — 1. The proof is by induction and straightforward.
Note that the additional équation Iï£ (ck)2 1 must be taken into account.

REMARK. The space ^(2, R) is the &quot;hyperboloid&quot;-model for the real hyper-
bolic plane //2R and there is only one law of cosines, namely,

tx trace 0t{gK) £ a2(vn v,)b f c2.

If we set ax=eh/2, a2 e~h/2, bx=et2&apos;2, b2 e~tl12, cx=et3/2, c2 e~t3/2 and

vx (cos (0/2), —sin (0/2)), i;2 (sin (0/2), cos (0/2)). Then the above équation
takes the form

» + e -&apos;3 e&apos;i( cos2 - e&apos;2 -f sin2 - e ~t2 \ + e -&apos;»{ sin2 ^ e&apos;2 -f cos2 — e ~&apos;2

u&gt; _ 0 _cos2 — et2{eh — e~h) —co$—e~t2{etl —e~~x) +eh~t2 +
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and we get the well-known formula (note that &lt;f&gt; is the exterior angle at

cosh t3 sinh t{ sinh t2l cos2 — + cosh (/, — î2)

cosh tx cosh t2 — cos {n — &lt;/&gt;) sinh tx sinh t2.

6.1.2. r/ïe /aw^ of sines for 0&gt;(n, R)

We wish to compute the angle k2 from the sides a, c and the angle 1^ for the

congruence class of the triangle £/&amp;%&gt; in 0&gt;{n, R). As we already remarked above
the set of (principal) Af-orbits in KlM has dimension \n{n — 1). This is precisely the

number of laws of sines that we need to characterize the angle k2, represented by
the matrix k2 [w/] e SO(n), at the vertex c€.

Let )E dénote the standard scalar product on R&quot; and || || the norm
induced by it. For the diagonal matrix a which represents a and for the column
vectors vJ of the orthogonal matrix kx — [v/] the matrix product avJ is defined.

We claim that

\(av\avJ)\ _ \(cw\ cwJ)\

\\avl\\ \\avJ\\ \\cwl\\ \\cwJ\\

with 1 &lt;i&lt;j&lt;,n are the sine laws for £P{ny R) we are looking for.
In order to prove this claim let gM be a Weyl chamber in C^(n, R)

SL(n, R)/M. For 1 &lt; / &lt;j &lt;&gt; n we define the functions

: Câ?(n, R)

where xl is the /-th column of a représentative of the Weyl chamber gM.
Note that thèse functions are well defined, since for g&apos; gm, the columns of the

matrix g&apos; are those of g multiplied with a factor ±1.
The functions ^tJ are functionally independent as SO{n) -invariants of n vectors

in R&quot; (cf. [Wey], Theorems 2.9.A and 2.17.A).
We next show that the functions ^tJ are SO(n) -invariant intégrais of the Weyl

chamber flow.
Let g hak be the Cartan décomposition with h9k e SO(n) and a e A +. We

write hak — [h avl, h • av2,..., h • avn] and dénote by xl the /-th column of the

matrix hak representing gM.
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First we hâve (xl, xJ) (h • av\ h avJ) (av\ avJ), h being an orthogonal
matrix.

Furthermore the matrix akd with deA + has the (/,y)-component (akd)tJ
a^v/. Thus denoting the i-th column of akd by y\ we find

{y\yJ)=dldJ £
k= 1

In conclusion we get:

x&apos;I||jc|| |^&apos;||||a^|| ib&apos;lllb7!&apos;

This proves that the \n(n — 1) functions are SO(ri) -invariant functionally indepen-
dent intégrais of the Weyl chamber flow and we obtain the laws of sines mentioned
above.

REMARK. For n 2, i.e. 0&gt;(2, R) s H2R, we can write a Diag (e&apos;l/2, &lt;?~&apos;l/2),

c Diag (e/3/2, e~&apos;3/2) and A:! D^/2, k2 D7/2 e 50(2). Then (av\ av2)

— sin /? sinh r, and

o o R R

\avl |j2 cos2 ^ e/j + sin2 ^ ^-*&apos;», ||^2||2 sin2 - e&apos;1 -h cos2 - e~\

thus

(flt;1, «y2) sinh tx sin j8

And finally we obtain the laws of sines for the hyperbolic plane in the well-known
form

sinh tx sin /? sinh t3 sin y
2 -^ 1/21 + sinh2 tx sin2 jS)1/2 1 + sinh213 sin2 y)

sin y sin /?

± sinh /, sin p sinh /3 sin y o ± —
sinh tx sinh /3

&apos;
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