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Rational tori, semisimple orbits and the topology of
hyperplane complements

G. 1. LEHRER

0. Introduction

Let G be a connected reductive group defined over the finite field F, of ¢
clements. Let F be the associated Frobenius endomorphism of G and for any
F-stable subgroup H of G write H” for the fixed-point subgroup of F on H. If 4
is the Lie algebra of G, we also write F for the corresponding Frobenius endomor-
phism of . It is well known that the G*-conjugacy classes of F-stable maximal tori
of G correspond to F-conjugacy classes in the Weyl group W of G. Thus it might
be expected that functions which are defined on F-stable maximal tori (e.g.
functions which count rational tori or rational semisimple classes or elements) may
be evaluated in terms of the character theory of W. We give two general formulae
of this nature and apply them to various situations, among which is the particular
case of counting regular semisimple classes in G (resp. orbits in the Lie algebra
%¥), both with and without sign. A corollary of our results is that if ¢ is the
alternating character of W, and M, is the complexified hyperplane complement
corresponding to W (cf. [L1]) then & does not occur in the cohomology modules
H*(M,,). This generalises a combinatorial result of Stanley (cf. [S], [LS]), which
amounts to this statement for type A. The corresponding combinatorial statements
are obtained in the general case by using the work of Orlik-Solomon [OS] to deduce
that ¢ does not occur in H*(L(%/,,)) where L(s/,, ) is the lattice of intersections of
the hyperplanes in the arrangement &/, which corresponds to W.

As a corollary of our method, we obtain the curious statement that if G is
semisimple, the number of regular semisimple classes of G is always odd, regard-
less of the characteristic. Another consequence of our method is a direct and simple
proof that the number of unipotent (resp. nilpotent) elements in G© (resp. 4F) is
equal to the number of F-stable maximal tori of G¥ and that these numbers are
equal to g2V, where 2N is the number of roots of G with respect to a maximal torus.
This proof depends on the fact (cf. (1.16) below) that the sum of the cardinalities
of the rational points of the F-stable maximal tori of G is equal to |G*|, and the
corresponding result for 4. Since this treatment is independent of the Steinberg
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representation, it provides an alternative approach to the Steinberg character
through the invariant theory of W.

In the final section (§5), we define maps from the set of rational semisimple
classes of G (resp. orbits of %) to the conjugacy classes of W. This amounts to a
“rational classification” of semisimple classes. Our earlier results are then applied to
give a formula for the number of semisimple classes (resp. orbits) of a given type.
We compute this explicitly for split semisimple orbits and Coxeter semisimple orbits
(i.e. rational semisimple orbits which correspond respectively to the trivial and
Coxeter class of W). The split case leads to a divisibility property for the set
{m,,...,m;} of exponents of a Weyl group which may classify an only slightly
larger set of integer sequences. The Coxeter case also leads to some interesting
number theoretical observations.

1. Some computations in the ring A(W)

Let C(W) be the ring of complex-valued class functions on the finite group W.
(1.1) DEFINITION. Let ¢ be an indeterminate. Then define
AW) =C(W)[t, 1 7']
and
B(W) = C(W)lt, 11l

Clearly A(W) is a subring of B(W). In C(W) we have the usual inner pro-
duct of class functions: for ¢,y € C(W), (D, ¥>p =|W| "' Z,cw ¢WW(w). If
a=X,. .0t and B =X, , B;t’ are elements of B(W), we write {a, B> =<, Oy =
Tz BOwt eCllt, t 7). If a, B € A(W), then clearly <{a, B> € Cl[t,¢t™']. For
w e W and f e B(W), we write f(w) =X, fi(w)t' e C[[¢, t "]}, where f=Z,_, fit".
Again if fe A(W), then f(w) e C[t, ¢ '].

Note that 4(W) and B(W) may be thought of as the rings of class functions on
W with values in C[z, t '] and C[[t, t']] respectively, and the inner products above
are just the usual ones. Sometimes we shall “evaluate” f(¢) € A(W), by substituting
a € C* for 1. We then write f(a; w) = Z¥_ _, f,(w)a’, where f(t) =ZF_ _, fit"

The most common source of elements of B(W) is revealed in

(1.2) DEFINITION. Let M = @;.; M, be a Z-graded W-module, where the
M; are finite dimensional. Define the corresponding element of B(W) by
Py (D) = Z wit',
ieZ
where p; is the trace of W on M,.
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(1.3) LEMMA. Let V be a finite dimensional complex vector space which is a
module for the finite group W. Let A = A(V) and S = S(V) be the exterior and
symmetric algebras on V respectively. Then A and S are graded CW-modules and
we have the following formula in B(W).

P,(—0Ps(t) =1.
Proof. We have, for we W,

Py(—t;w)~' =det (1 —wr) !

4 1
- 1— At where 4,, ..., A, are the eigenvalues of @ on V
i=1 — A

=[] A+ A4t +A72+-->)

i=1

= Ps(t, W). D

The formula of (1.3) clearly holds also when ¥V is a real vector space, or more
generally, when V is defined over any subfield of C, since the coefficients of all the
power series treated lie in the smaller field.

Now take G to be as in the introduction: G is connected, reductive and defined
over F,. Let T, be a fixed maximally split maximal torus of G and let W be the
Weyl group of G with respect to T, i.e. W = Ng(T,)/T,. Since F stabilizes T, it
defines an action on W, which we also denote by F. Now both W and F act on the
real vector space V = Y(T,) ®; R where Y(T,) is the cocharacter group of T,.
Moreover it is known (see, e.g. [C, §2.9] or [Stl, §11]) that the F-action on V is
given by F = gF,, where F, is an automorphism of finite order and ¢ is the prime
power introduced above.

If T, = gT,g ~' is F-stable, then F(g) ~'g € N = Ng(T,). Moreover if n: N - W
is the canonical map, the G*-conjugacy class of ¢T, is determined by the F-con-
jugacy class of n(F(g) 'g), where w, and w, (€ W) are said to be F-conjugate if
w, = F(x)w,x ! for some x € W. Thus, if F(g) "'ge N and n(F(g) 'g) =weW,
we say that 2T, is “w-twisted”, or obtained from 7, by twisting by w € W. Note
that here w is determined only up to F-conjugacy in W, so we sometimes write
“(w)-twisted” where (w) denotes the F-conjugacy classes of w € W. In this case,
the action of F on #T, is equivalent to the action of w=!'F on T, (since
F(Int g(x)) = Int g(w ~'F(x))). The facts in the last two paragraphs may all be
found in [Sp-St].

The next result is well-known (see, e.g. [C, (3.3)] and [Sp—St, §(2.7))).
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(1.4) LEMMA. (i) Let T=T, be an F-stable maximal torus of G which is
obtained from T, by twisting by w € W. Then |T%| =Ty 'F| =det, (g — F5''w) =
qP(—q ', Fy'w) where V =Y(T,) ® R, A = A(V) is as in (1.3) and we regard
V as a W-module, where W = (W, F,).

(i1) Let (w) be an F-conjugacy class in W. Then the number of (w)-twisted
F-stable maximal tori of G is |G*|/(|T8"||Cw.r(W)|) where Cy (W) ={xe W |
F(x)wx ~'=w}.

We say that a subalgebra J of ¥ is a toral subalgebra if it is of the form
g =Lie (T), where T is a maximal torus of G. For any closed subgroup H of G,
we have Lie (gHg ~') = Ad g - Lie (H). It follows that all the toral subalgebras of ¥
are conjugate under Ad G; however since Ng(Lie T) is in general larger than
N;(T,), we do not have a bijection between the maximal tori of G and the toral
subalgebras of ¥ = Lie G.

Note that since Lie (T') is a vector space (7 a maximal torus), it follows from the
uniqueness of the [, -structure on Lie (T') that for T F-stable,

|(Lie (T))"|=q"  where r =dim T =rank G. (1.5)

Now let S be the symmetric algebra on V = Y(T,) ®; R; let I be the ring of
W-invariant elements of S and let J be the ideal of S generated by the W-invariants
of positive degree. Since F, normalises W (on V'), F, acts on I and so on S/J. Thus
V, S, I and S/J are all W-modules, where W = (W, F,>, and the W action
preserves the grading on the last three spaces. It is known [Ch] that as W-module,
S/J is the regular respresentation. The polynomial Pg,(f) € A(W) is important in
the representation theory of G*. If y is an irreducible character of W, the degree
d,(q) of the corresponding principal series representation of G” is a polynomial in
g, called the generic degree of x. The polynomial {Pg,,(q), x> w is closely related to
d,(q), and is called the fake degree of y.

(1.6) PROPOSITION. We have (S/J)®1 =S as graded W-modules.

Proof. This is essentially a result of Chevalley [Ch, p. 781, in proof of Theorem
B] who proves the statement without the W-equivariance; but equivariance is also
immediate from Chevalley’s proof. O

(1.7) COROLLARY. We have, in the ring B(W),

PS/J(t)Pl(t) = Ps(t)-

Now F, acts in degree-preserving fashion on I. It follows that the basic
invariants (homogeneous algebraically independent generators of 1) I,, . . ., I, may
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be chosen to be eigenvectors for the Fy-action. Write d; = degree (/;) and FyI; = ¢,1,,
where ¢; is a root of unity.

(1.8) LEMMA. (i) For any w € W we have

P, (t; Fg'w) =[] (1 —g%)~ 1.

j=1
(i1) With G as above, we have, for any w € W,
IGFl — q2N+rPI(q—l; Fo—lw)—l

where N is the number of positive roots and r is the rank of G.

Proof. (i) is clear from the above remarks, the fact that w acts trivially on 7 and
the observation that since P,(t; Fy 'w) is a real polynomial and the ¢; are roots of
unity, we may replace ¢; by ¢;7' in the given formula.

(ii) follows from the standard formula for |G*| (see, e.g. [C, §(2.9)]) together
with some rearrangement, using (i) above and the relation X;_,d,=2N+r. O

(1.9) COROLLARY (i) With the above notation, we have for any w e W
|GF| = QZNPS/J(‘]‘I; FJIW)|T5|

for any element w e W.
(ii) The number t(w) of w-twisted maximal tori of G is q¢*NPs,(q~"; F5 'w)/
|Cw.r(W))-

Proof. By (1.8)(ii), we have

|GFI - q2N+ rPI(q——l; Fa—lw)—~l
=‘12]V+r1)S/J(q—I§Fo—lW)Ps(q_l)“l (by (1.7))
=q*N*"Pg,(q " Fo 'W)P,(—q~'; Fg'w) (by (1.3))
=q*"Pg,(q~ " Fg'w)|T5|  (by (1.4)(i)).

This proves (i), and (ii) follows immediately from (i) and (1.4)(i). O

We remark that since Pg,(q) and P,(q ") lie in the ring B(W), (i) is to be
thought of as an equation in B(W).
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Suppose g is any F-class function on W, i.e. g is a function on W which is
constant on F-conjugacy classes. Define an associated function § on W = (W, F,)
by

5(x) = g(w) if x=Fy'w(weW),
F9=0 otherwise.

It is easily checked that g is constant on the W-orbits in W. Moreover if g is
F-invariant then g is a class function on W. In the next statement, we use the
notation

Srw=|W["" Y f(xgkx) for functions f, g on W.
xe W

(1.10) THEOREM. With G, F, W etc. as above, let g be an F-class function on
W. Regard g as a function on the F-stable maximal tori of G by defining F(T) = g(w)
if T is w-twisted. Then

;g(t) = IFOIq2N<PS/.I(q~1)9 w

where the sum is over the F-stable maximal tori T of G, 2N is the number of roots of
G, W =<KW, F,>, F, is the periodic automorphism of the cocharacter group induced
by F and g is the function on W associated with g (see preamble above).

Proof. We have X.;g(T) =X, g(w)t(w), where t(w) is the number of (w)-
twisted maximal tori of G and the sum is over the F-conjugacy classes in W. The
number of elements of W in the F-conjugacy class (w) is |W||Cy. -(w)|~'. Hence
the sum may be written X, ., gw)t(w)|W|~'|Cy r(w)|. Using (1.9)(ii) it follows
that

;g(t) =|W|"' Y ¢*"Ps,(q7"; Fg 'w)g(w)

we W

=42N|W|_l Z P (g™ " Fg'w)g(Fg'w)
we W
= |F0|q2N<PS/J(q_1)’g—>W~ 4

Note that if g is F-invariant (i.e. is constant on the F-orbits of W) then g is a
class function, and {Pg,(g~"), §>w is evaluated in the ring 4(W). Moreover in the
split case (i.e. when F, is the identity map) the statement of (1.10) simplifies as
follows.



232 G. 1. LEHRER

(1.10)" COROLLARY. Suppose G (in (1.10)) is F-split. Then F-conjugacy
coincides with conjugacy and we have

2.8(T) =q*" P57 ") 8w
T
where the right hand side is evaluated in A(W).

(1.11) COROLLARY (Steinberg). The number of F-stable maximal tori of G is

2N

q
Proof. Take g =1, in (1.10). Then the required number is, by (1.10),

ll‘—'0|‘12N|VT/|_l ZWPS/J(qﬂ; Fy'w) =q2NPS/J(‘I“1;F6'leW)

where e, = |W|~' Z, .y w. But ey, is the projection onto the trivial component of
the representation of W on S/J. This is known to be (S/J),, which has dimension
1, and on which F, acts trivially. Thus Pg,(¢~"; F5'ep) =1, and the result
follows. O

(1.12) COROLLARY. Let ¢ be the alternating character of W. Then ¢ is
constant on F-conjuugacy classes and is F-invariant. Say that an F-stable maximal
torus of G is positive if it is w-twisted with e(w) = 1. Otherwise it is negative. Then the
number of F-stable positive tori is 3(q*" + q”) while the number of negative F-stable
maximal tori is 3(q* — q").

Proof. Take g to be ¢ in (1.10). If n, and n_ are respectively the numbers of
positive and negative rational maximal tori, then by (1.10) we have

n, —n_= |};‘0}Q'2N|I/T/I—l ZWPS/J(q_l; Fy'w)e(w) = (IZNPS/J(Q_]; Fi'ley)

where g, = |W|‘l Z,ewe(w)w. But g, is the projection onto the alternating
component of the representation of W on S/J. This is known to be (S/J)y, which
again has dimension 1 (its generator is the product of the positive coroots).
Moreover since F; preserves the set of positive roots it acts trivially on (S/J)y. It
follows that n, —n_=q*"-q=¥=¢". By (1.11) n, +n_=¢?", and the result
follows. O

(1.13) COROLLARY (Steinberg [St]). The number of unipotent elements in G*
is equal to the number of F-stable maximal tori in G, i.e. ¢*".
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Proof. Write t©(G) for the number of F-rational maximal tori of G, and write
#(G) for the number of unipotent elements in G¥. We show by induction on the
semisimple rank o(G) of G that ©(G) = u(G).

When a(G) =0, G is a torus and 17(G) = u(G) = 1.

We show first that

21T =l6"] (1.13.1)

where the sum is over the rational maximal tori of G. To prove (1.13.1) take g(w)
in (1.10) to be |TE|, where T, is w-twisted. Then by (1.10) the left hand side of
(1.13.1) is equal to ¢*¥|W|~' Z, .y Ps,(q~"; Fo 'w)|TL|. But by (1.9)(i), each
summand is equal to |G*|, whence (1.13.1).

Now

LT = X nls),
T seGF
s semisimple

where n(s) is the number of F-stable maximal tori of G which contain s. But s e T
if and only if T < Cg;(s)°. Thus we have

YT = Y w(Cs(9)?). (1.13.2)
T seGF
s semisimple

On the other hand, from the Jordan decomposition in G¥, we have

G l= Y  wCs(s)°) (1.13.3)
seGF
s semisimple

Here we use the fact that all unipotent elements in Cg(s) are in Cg(s)°.
Comparing (1.13.1), (1.13.2) and (1.13.3), we obtain

Y (Ce()) = ), u(Cs(5)°). (1.13.4)
seGF se GF
§ semisimple s semisimple

By induction on semisimple rank, we have (Cg;(s)?) = u(Cg(s)°) unless
s € Z(G). It follows from (1.13.4) that |Z(G)F|«(G) =|Z(G)*|u(G), whence the
result. O

(1.14) SCHOLIUM. Let y be a class function on G* satisfying

) 0 unless x is semisimple,
X)) =
’ +|Cor(x)|,  if x is semisimple
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where p is the characteristic of F, and for any integer k, k, is the highest power of p
dividing k. Then (y,y>gr=1.

Proof. The equation (1.13.2) (or (1.13.3)) amounts (by (1.11)) to Z y(x)?=
|G|, which is the required statement. O

The Lie algebra analogue of (1.13) can also be dealt with by our method.

(1.15) COROLLARY. With G as above, let 4 = Lie (G). Write v(9) for the
number of nilpotent elements of 4*. Then W(%) = 1(G) (=q*").

Proof. This is similar to that of (1.13). First observe that
Y |Lie T)F| =|%*] (1.15.1)
T

where the sum is over the F-rational maximal tori of G. For each summand is
equal to ¢" (r = rank G) and there are ¢g*" summands. So the left side is equal to
grtN = giim¥ = lgﬁl

Now argue as in (1.13). We have

Y |(LieT)*|= )Y  nX),
T Xe¥fF
X semisimple
where n(X) is the number of rational maximal tori 7 such that X € Lie 7. But
X eLie Tif and only if Lie T = C4(X) = {Y € ¢ | [Y, X] = 0}, and by Borel [B, pp.
225 and 321] C4(X) is the Lie algebra of the reductive group Cg;(X)°, where
Cs(X) ={g € G| Ad g(X) = X}. Thus we have

; |(Lie T)"] = XZW 1(Cg (X)°). (1.15.2)

Using the Jordan decompositon in ¢, we obtain (using Borel’s results [loc.cit.])

|¥F|= Y  w(Lie(Ce(X)°)). (1.15.3)
XXE'{,"FI
semisimpie

The proof is now completed as in (1.13) by induction on the semisimple rank
of G. O

To close this section we show how our result is used to prove the following
result, essentially due to Kawanaka [C, (7.6.8)].
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(1.16) COROLLARY (Kawanaka). Let ¥ be any function on G* which satis-
fies Y(su) = Y(s) where su=s - u is the Jordan decomposition of su (s semisimple, u
unipotent). Then

; WD |TF| = |GEKY, Y dgr

Proof. We have X, (Y, ¢ >TF|TFI =Xr L crrF N/(t) lz =Zccr L1 Ce(v°
Y(OF1(Ce(1)?) = (by (1.13)) Z,. g

Y=
V(OPCe(0) =Zcar Y (x) [ O

zte GE

2. Rational semisimple classes and orbits

Let G, T,, F etc be as in §1.

(2.1) PROPOSITION. Suppose f is a function defined on the F-stable semisimple
conjugacy classes of G. Then

> f@=w"Y T s

ce(Gg)F weWteTy

where (G )" denotes the set of F-stable semisimple conjugacy classes of G and f (1) is
the function f lifted from (G,)* to the set of elements of G whose conjugacy class is
fixed by F.

Proof. The F-stable semisimple conjugacy classes in G are in bijective corre-
spondence with (T,/W)* [C, §3.7]. The element ¢ € T, lies in an F-stable W-orbit if
and only if F(¢) = t* for some w € W, i.e. precisely when ¢ € T§" for some w € W.
Write 76" = | ), w T§¥; then the size of the W-orbit of t e Tg is |[W||W(1)|~",
where W(r) = {w e W |"t =t}. Thus we have

Y f@= Y fOWow" (2.1.1)

ce(Gy)F te TR

Moreover for te T§, #{we W |teTy"}=|W()| since te Ty NnTyF <
w,w; ! € W(f). Hence the right hand side of (2.1.1) may be written

SeTR/OWOIW " = T Y oW, (2.12)

w,

WEWIETO

which proves (2.1). O
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(2.2) THEOREM. Let f be a function defined on the F-stable semisimple con-
jugacy classes of G. Define the associated F-class function | on W by

fwm= Y f@

te T(‘;’_ 1r
(where f(t) denotes the value of f on the G-class of t, which is fixed by F, since for
teTy™'F, F(f) ="f). Then £ ce@yFf(€) = {fi 1>, where (G,,)F is the set of F-sta-
ble semisimple classes of G and the notation {, ), denotes inner product of complex
valued functions on W (defined for class functions as in (1.1); the general definition is
the same).

This is just a restatement of (2.1).

(2.3) COROLLARY (Steinberg). The number of F-stable semisimple classes of
G is |(Z°)*|q', where Z = Z(G) and | is the semisimple rank of G.

Proof. Let Sy = TynG’. Then T, = S,Z° and correspondingly Y(T,) ®; R =
Y(Z° ®, R® Y(S,) ®; R. Since F;'w fixes the two summands, it follows that
detyryyo,8 (7 — Fo 'w) =detyz0 g, 5 (g — Fg 'w) detys,) o, r (¢ — Fg 'w). But W
acts trivially on Y(Z°), so that the first factor is just |(Z°)*|. Moreover W acts irre-
ducibly on Y(S;) ®; R and detys,y g,z (@ —Fo'w) =Zi_o (=)' "'p,_;(Fo 'w)q’
where p; is the character of the j™ exterior power of the W-module V. The p; are
distinct and irreducible as W-modules (see [Bou, p. 127, ex. 3]), and hence as
W-modules.

Now take f(¢) =1 in (2.2). Then by (2.2) and (1.4)(1), the required number is

I
LDw=ZIW]" X Y (=D'"p_«(F5'w)q'

weWi=0
)
= ](ZO)Fl .ZO(“I)I—iPI—i(FO_leW)qi

where ey, = |W|‘1 Z,eww. But p,_;  is an irreducible character of W, distinct
from 1, unless i = /. The result follows. O

(2.3)’ REMARK. If G is such that G’ is simply connected, then centralizers of
semisimple elements of G are connected. Hence in this case the semisimple classes
of G¥ correspond bijectively to the F-stable semisimple classes of G.

The next result is proved in a similar way to (2.2), using the statement (2.6)
which is proved below.
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(2.4) THEOREM. Let f be a function defined on the F-stable semisimple Ad G-
orbits of the Lie algebra 4. Define the associated F-class function f on W by

Jwy= ¥ 0.

XeLie(Tg 5

Then
Y (O =] Dy

Ce(9)F

where notation is analogous to that in (2.2).

(2.5) COROLLARY. The number of F-stable semisimple orbits in % is q’, where
r =dim T, =rank 4.

Proof. Take f(C)=1 in (24). The required number is then |W|'-
Zew |7 37| and the result follows from the fact that |7 3% =gq" for all we W
(here 7, = Lie (Ty). O

The proofs of (2.4) and (2.5) require the elementary fact that for any closed
subgroup H of G, Lie (gHg ') = Ad g Lie (H), and the following result which is
(3.16) of [Sp—St]. We include a proof for the reader’s convenience.

(2.6) PROPOSITION. With notation as in (2.4), the semisimple Ad G-orbits in
Y are parametrised by I /W (where W acts in F, via Ad). The F-stable orbits are
parametrised by (T o/W)F.

Proof. 1t is a result of Chevalley and Borel [B, (11.8)] that X € % is semisimple
if and only if X € Ad g(J,) for some g € G. Thus we have only to show that for X,
and X,eJ,, if X,=Adg(X,) for some g e G, then X,=Adn(X,) for some
ne N = Ng(T,).

For this, observe that if X, =Ad g(X,), then T, and ¥(T,) are both maximal
tori of Cg(X,)° whose Lie algebra is Cy4(X,) = {X € ¢ | [X, X,] =0}, by [B, (9.1)
and (13.19)]. Hence there exists x € C;(X,)° such that T,=*¢T,. Hence xg €
Ng(T,) = N, and clearly X, = Ad g(X,) = Ad (xg)X,. The statement about F-stable
orbits is clear. O

3. Regular semisimple classes and orbits

In this section we apply (2.2) and (2.4) to count the rational regular semisimple
orbits.
Let 725 = {t € Ty*| is regular semisimple} and define % similarly.

ors
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(3.1) DEFINITION. Define the F-class functions N,, and n,, on W by

N, (w) =|T5.""|

n,,w) = |72

ors

weW.

When G is F-split, n,; and N,, are class functions on W.

In the next section we shall see that the function #,, is related to the cohomology
of the hyperplane complement which corresponds to W when G is F-split, and
therefore is in some sense explictly known. The function N,, has been investigated
by Deriziotis [D] and recently by Fleischmann and Janiszczak [FJ] in the split
classical cases and likewise has a combinatorial description.

(3.2) THEOREM.
(1) The number of F-stable regular semisimple conjugacy classes in G is equal to

<N rs» 1>W
(i1) The number of F-stable regular semisimple Ad G-orbits in 9 is equal to

<nrs, 1>W

Both statements follow immediately from (2.2) and (2.4) by taking the function
fto be 1 on the regular semisimple orbits and zero elsewhere. O

For the rest of this section we assume that G’ is simply connected. This implies
that centralisers of semisimple elements are connected (see (2.3)” above).

A regular semisimple element x of G* lies in a unique maximal torus. Say that
x is positive if the corresponding torus is positive (see (1.12) above) and negative
otherwise. Any G*-conjugacy class of regular semisimple elements consists entirely
of either positive or negative elements and we speak of it as positive or negative
accordingly.

(3.3) THEOREM. Suppose G is such that G’ is simply connected. The number of
regular semisimple classes of G* counted with sign (i.e. the number of positive classes
minus the number of negative classes) is equal to (—1)'|(Z(G)°)*| where [ is the
semisimple rank of G.

Proof. In Theorem (2.2) take the function f to be

0 unless ¢ is regular,
&(c) if ¢ is regular

ﬂo={

for any F-stable semisimple conjugacy class of G.
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Then the required number is X, . _,r f(c), which we shall denote by E for the
rest of this proof. The associated class function f(see (2.2)) on W is clearly given
by

Fw) =e(w) | T2, 'F
= eW)N.,(w) (c.f. (3.1)). (3.3.1)

It follows from (2.2) that

E=<CeNy, Dw =N eow=|W|"" Y |Tokle(w)

we W

=W Y Y ). (3.3.2)

we WiteTyl

ors

Recall the notation of the proof of (2.1): T§' = | ),,c w T4*. Extending this, we
write

Tt = |) Tl ={teT,|tis regular and F(¢) =", some w € W}. (3.3.3)

ors
we Ww

We then have

Y ITeflew) = ¥ Y ewy= ¥ ¥ ew). (3.3.4)
we W weWteTy teTy welW
teTS’F

But for a fixed element 1 € T§, {we W |te Ty} is of the form W(r)w, for
some element w, € W, where W(t) ={we W |"r =1} (see (2.1)). Hence the inner
sum in (3.3.4) may be written

ZW e(w) = ;() e(w) = e(w,) ZW()e(w). (3.3.5)

Moreover it follows from Steinberg’s characterisation of regular semisimple
elements [St2, Prop. 3, p. 96] that if ¢ is not regular, then W(¢) contains a reflection,
whence the restriction of ¢ to W(r) is not equal to the identity representation. It
follows that the sum in (3.3.5) is zero unless ¢ is regular. Taking this into account,
(3.3.4) becomes

S |Tlew) = Y% e = ¥ |Ti|ew. (33.6)
we W te T, weW we W
re T8’
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Hence from (3.3.2) we deduce that

E=|W|"' ¥ |T3%ew) =<q'Pa(—q ' Fs'w)edw (cf. (1A)D). (33.7)

we W

In the proof of (2.3) it was shown that in the ring B(W)
{
I Pi(—q ") =|ZGD)| X (=1)'"p,_.q" (3.3.8)
i=0

where |(Z(G)°)”| is regarded as a polynomial in g, / is the semisimple rank of G and
p; is the jth exterior power of the reflection representation of W.

Thus p;, =¢, and for j #1 we have (p;, &)y = 0. Hence combining (3.3.7) and
(3.3.8) we obtain

{
E =|(Z(G))"| _Z,o( =D Xp,_i, e3¢ = (- D)Z(G))"|. 0

The next result is a restatement of (3.3.2) above. It does not require the extra
hypothesis of (3.3).

(3.4) COROLLARY. Suppose G is arbitrary. If N,, is the function (3.1), we
have (N, e>w = |(Z(G))|(~1)".

(3.5) COROLLARY. A semisimple simply connected group G has an odd num-
ber of rational regular semisimple conjugacy classes.

Proof. If G is semisimple then (Z(G)°)* = 1, whence the number E of (3.3) is
(—1)’. But the number of regular semisimple conjugacy classes is E + 2E~ where
E~ is the number of negative classes. O

It seems a little curious that (3.5) is independent of the characteristic.
The Lie algebra analogue of (3.4) is

(3.6) THEOREM. Suppose G is arbitrary, has non-zero semisimple rank, and
that for w € W, n,,(w) is as defined in (3.1). Then we have

{n,, ey =0.

Proof. Since this is analogous to the computation in the proof of (3.3), we given
only a sketch. The proof proceeds by showing that

(W=t Y | T8 lew) =W~ Y, |7 2E|e(w). (3.6.1)

we W we W
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This is the Lie algebra analogue of (3.3.6) and is proved in the same way (note
that the definition of regular used here is that no root annihilates the element
concerned).

The right hand side of (3.6.1) is {(n,,, ¢>y, while the left hand side is clearly
equal to zero unless W =1, since |7 ¢*|=q" for all w e W. O

4. Hyperplane complements

In this section we relate the function n,, of (3.1) to the topology of the complex
hyperplane complement M, (see [L1] for notation) corresponding to W, and
deduce from (3.7) a result for H*(M, ). As general references for the facts about
[-adic cohomology which we use here we cite [C, §7.1 and Appendix], Milne [M,
Ch. VI] and SGA4: [Springer Lecture Notes in Maths, §569]. For this section, we
take G to be F-split; i.e. the automorphism F; of §1 in trivial, or equivalently, F acts
on V via multiplication by g.

Let 9, be the toral subalgebra Lie 7, of 4. Then J,~ A" (affine space of
dimension r), where r is the rank of 4. Moreover the set 7 ,,, of regular semi-
simple elements of J, is just the hyperplane complement over F, corresponding to
W. Following [L1], we write M, for the corresponding complex hyperplane
complement.

(4.1) LEMMA. The function n,, of (3.1) is given by n,(w)=
22 (=Ditr WF, H(T,,,, Q,)), where H.(—, Q,) denotes l-adic cohomology with
compact supports.

This is just Grothendieck’s trace formula [C, p. 504], [M, Ch. VI] applied to the

computation of |7 2%|.

(4.2) LEMMA. Let o/ be a finite collection of F-stable hyperplanes in A’, Then
() H¥ (A" —Unes H, Q) =0 unless i =0, 1,...,r.
(i) All eigenvalues of F on H> ~ (A" — |y .« H, Q,) are equal to q" .

The proof may be found in [L3, (2, 4)].
Combining (4.1) and (4.2) we obtain

(4.3) COROLLARY. We have (if r =rank %) for w € W,
2r
nrs(w) =4q -’ Z (_q)l tr (W’ Hi‘(j:)rs’ @I ))
i=0

—¢" Y (=) ~'tr (v, HZ ~ (T, @)).
i=0
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This follows immediately from (4.2) and (4.1) since F commutes with w on 7
and since I, = A" (r =rank %) and Z,,, is the complement in 7, of the hyperplanes
defined by the roots of ¥ with respect to J,, which are all F-stable by our
assumption that G is F-split.

We say (cf. [L3]) that the characteristic p of F, is regular if the lattice of
reflecting hyperplane intersections of W remains the same on reduction mod p (over

F,).

(4.4) PROPOSITION. Given W and the group scheme G, if p is a regular prime
for W, we have

(1) dimg, (HY = (7,5, Q,)) = dime (H'(My,, C)) where H'(My,, C) denotes or-

dinary complex cohomology.
(ii) For w € W, we have

tr (W, HZ ™ '(Tops, @) = tr (w, H(M,, C)) € Z.

This is Theorem (1.5) of [L3].
Combining (4.4) and (4.3) we obtain

(4.5) COROLLARY. In the notation of (4.1) we have, if the characteristic is
regular,

2r

n,(w) =4q’ .ZO (—q)~"tr (w, H(My, C)).

Following the notation of [L1] we make the

(4.6) DEFINITION. If M, is the complex hyperplane complement corre-
sponding to W acting on C’, define the Poincaré series

Py, (1 W) = ‘_io tr(w, H(M,,,C)t!  (we W)

where H'(—, C) denotes complex deRham cohomology.

Thus P,,, € A(W) (the ring introduced in §1 above).
It is now clear that in case the characteristic is regular,

n,w) =q'Py,(—q~w) (weW). (4.7)
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The polynomials P, (t, w) have all been computed in the classical cases ([L1],
[L2], [FJ]).
As an immediate corollary of (4.7), we obtain

(4.8) THEOREM. If W is the Weyl group of a simple complex Lie algebra and
M, is the corresponding complex hyperplane complement, then

<Hi(MW7 C)s 8>W = 0

where ¢ is the alternating representation of W and H'(M, C) is the ordinary
cohomology group with complex coefficients.

Proof. By (3.7) we have <{n,,, ¢> =0; it follows from (4.7) that
{(Py,,,€> =0 Iin the ring A(W).

But the coefficients of the polynomial (P, , &) are just (H(My, C), ), whence
the result. O

(4.9) REMARK. Although our proof of (4.8) is essentially by a “reduction
modulo p”’ argument, it may also be possible to give a purely combinatorial proof,
which presumably would to some extent be case by case.

(4.10) COROLLARY. Let & = L (W) be the lattice of hyperplane intersections
corresponding to W, this is a geometric lattice whose reduced homology is therefore
zero except in the top dimension. Then <ﬁt0p($), ey=0.

This is because by the results of Orlik and Solomon ([OS], see also [L3]),
Hop(2) = H (My).

(4.11) THEOREM. (i) The number of regular semisimple G*-orbits in 4% is
equal to

q——r _ZO ( —q)ldlm Hi('g-ors/W, Ql)

il

(i) If the characteristic is regular, this number is equal to

quMW/W('"q-l)

where Py, (1) is the Poincaré series of the orbit space My [W.
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Proof. By (3.2)(i1) the required number is (n,,, 1),, and by (4.3) this is equal to
g7 Y (—QKH( T Q) Dy =q7" ), (—¢) dim HI(T,,,, Q)Y
i=0 i=0

=q~" ), (=)' dim H{(Z,,,/W, Q)
i=0

by the transfer theorem for étale cohomology ([Sr, p. 53], [SGA4, XVII]).

If p is regular, then the results of [L3] apply and by (4.3) and (4.7) we have

s D =" T (=0) CH*~ (M, ©), .

I=

Applying the usual transfer theorem for complex cohomology yields the required
result. ]

The polynomials P, (t) have been computed by Brieskorn ([ Br], see also [L1]
and [L2]). They give the following formulae for the number of regular semisimple

orbits when G is semisimple:

Type Number of regular semisimple orbits ( for regular p)

Al ql_ql——l
BI’CI q1—22_1+2q1‘_2_”'+(——1)]
5 q'—q'~! (! odd)
"g'=¢ T+ (=1)'"(g—1) (even)

G, q*—2q+1

F, q*—2¢+2¢*+1
Es 4¢°—¢q’

E, q —q¢%+q—1
Ee q*—q'—q+1.

(4.12) COROLLARY. If q is as in (4.11), the number of regular semisimple
elements of 4F is

gim? <PS/J(q_1)9 PMW(_q_l)>W = IgFKPS/J(q_])’ PMW(‘q—l»W-
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This follows easily from (4.7) and (1.10) using the fact that each regular
semisimple element of %* lies in a unique F-stable toral subalgebra of ¢ and for
regular p, the number of such elements in Lie (T,)" is n, (w).

We close this section with a remark about regular primes. Suppose
¢ ={w,,..., o} is a set of fundamental weights for W and for each positive root
p € @ (the root system corresponding to W) we have an explicit expression
B =Zi_, azw;. The condition that p be regular is equivalent to the following:

(4.13). For any subset of the rows of the integer matrix M = (ag,), the rank of the
corresponding matrix is the same over F, as over Q.

(4.14) REMARK. If the characteristic is regular for 4, the formulae in the
above table prove that regular semisimple elements exist in %.

5. A rational classification of conjugacy classes

In this section we assume that G has simply connected derived group. This
implies by Steinberg’s theorem (cf. [C, Th. 3.5.6]) that the centralisers of semisimple
elements of G are connected. In the Lie algebra case we may replace this restriction
on G by stipulating that the characteristic is not a torsion prime for G. This also
ensures ([Sp—St, 3.19, p. 201]) that the centralisers of semisimple elements of & are
connected. We also assume that G is F-split.

We begin by defining a map

w: (Gg,)" = (W) (5.1

where (G,,)¥ denotes the set of F-stable semisimple conjugacy classes of G and (W)
denotes the set of conjugacy classes of W, as follows. For ¢ € (G,,)F there is an
element x € GFn¢, and by our assumption concerning the connected nature of
centralizers, x is determined up to conjugacy in G*. Thus Cg(x) is determined up
to Gf-conjugacy. Let T be a maximally split torus in Cg(x). This is an F-stable
maximal torus of G, whose G’ conjugacy class is determined by c. But this
GF-conjugacy class corresponds to a unique conjugacy class of W. We define w(c)
to be the conjugacy class determined by T.

(5.2) EXAMPLE. In type A (say GL,), a rational semisimple class ¢ has
characteristic polynomial f(c) over F,. We have a factorisation f(c) =1II, f over
F,, where the f; are irreducible over F,. Then w(c) is the partition (d{Y) where

d; = deg (/).
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(5.3) REMARK. The same construction yields maps (also denoted w) on the
set of all rational classes of G (by composing with the map from a class to its
semisimple part) and from (%4,,)" to (W). We shall be using these maps without
further comment.

Now let y be any class function on W. By composition with w, we may lift y to
the rational semisimple classes of G (or %) and using (2.2) we obtain immediately

(5.4) PROPOSITION. For any class function y on W, we have

Y 0©@) ={E Dy

ce(Gy)F

where j(w) =X, TF x(w(x)), and similarly in the Lie algebra 9.
To compute j(w) we shall require

(5.5) LEMMA. (i) The F -rank of T, is r — n(w) where r = dim T, = F -rank of
G, and n(w) is the smallest integer n such that w is a product of n reflections in W
(n(w) = dim (im (w — 1)) in the reflection representation).

(il) For x € T yF, we have {w’ € T ¥} = Cyp.(x)w.

These facts are well-known.

We shall carry out the computation of the right hand side of (5.4) in the Lie
algebra case, in the case where the prime p is regular. The notation below is that of
[L3].

(5.6) THEOREM. Let y be a class function on W, and denote by y also the
induced function on the rational semisimple orbits of . Then

Y K =W XY WMy x(w)

ce (@ )F XeLweSy

where L is the lattice of hyperplane intersections corresponding to W and for X € L,
Wy is the corresponding parabolic subgroup of W, Ny is its normaliser, Sy is a set of
coset representatives for W in N which have minimal n-value in their coset (cf. [LS])
and My =X —Jycr vex Y.

Proof. In view of (5.4), we compute y(w) =X, TuF x(w(x)). Now by regularity,
we have, for w e W,

TuF= 11 MY (5.6.1)

Xelw
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where M, is {x € X |x ¢ Y for Y g X}. Moreover for x € My, Cy(x) = Wy, and
hence {w"|x € 7 §*} = Wyw. It follows that w(x) is the class in W, represented by
Sy n Wyw. Hence

iwy= 3 Y xSxnWyw).

XeLerM/{,VF

Thus

GDw=W" Y ¥ Y xSnWyw)

weWXeLerM}’F

=Tt X L MY S Wyew)

XelLweNy

=Wt Y Y [W||MY x(w),

XeLweSy

the last step following because N, = W, S, and W, acts trivially on M,. O
The above formula may be further refined using the fact ([L3]) that

(5.7) LEMMA. With notation as in (5.6), we have

MY |= 3 (X, Y)gom Y

YelLw
Y= X

where ,, is the Mobius function on the lattice L".

(5.8) COROLLARY. We have, in the notation of (5.6)

X o xo=[w"t Y Y Y [Wrlu (X, Vx(wgi™ .
ce(@,)F XeLweSy );,EZL;

We shall now give some examples of this computation for particular class
functions y.

(5.9) PROPOSITION. The number of F-rational semisimple classes c of § which
are split (i.e. such that w(c) = 1) is equal to
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provided that the characteristic is regular (where m,, . . ., m, are the exponents of the
Weyl group W).

Proof. Take y(w) (in (5.4)) to be 1 if w =1 and 0 otherwise. To compute
x(w(x)) for x e Ty, observe that y(w(x)) =0 unless w(x) =1, ie. unless
x = Ad gx’ for some x’ € 7 §. But x = Ad gx’ implies that x = Ad w’x’ for some
w e W, whence xeJ§. Hence w(x)=1 (for xe I yF) if and only if
x €T ENTYF, ie. if and only if w centralises x. Thus

Y. xw(x) = (T 5| = |kery, (w — 1)7].

wkF
xeﬂ'o

But kery (w—1) is an affine space of dimension r —n(w), so that
(79| =q"~"™. Hence the required number is |W|~' X, . ¢" "), which by
the formula of Shephard and Todd (proved by Solomon) gives the required
formulae. O

Note that (5.9) may also be proved from (5.6) or (5.8), which yield the formulae

W=t 3 W] |M%| (5.9.1)
XelL
and
W=t Y Y uX, V)| Wylgm ™ (59.2)
XelLYz2X

for the required number. The equivalence of all these formulae is easily established.

(5.10)0 COROLLARY. Let m,,...,m, be the set of exponents of a Weyl group.
Then for almost all primes q, the number

(g+my)---(q+m)
(I+m) - (1+m)

is an integer.

(5.11) QUESTION. To what extent does the property (5.10) characterise the
sets of exponents of Weyl groups?

For / < 3, one obtains the Weyl group exponents, and one additional sequence,
(1, 11). Although there are infinite sequences other than those which correspond to
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types A, B and D, one might ask whether these sequences classify some geometric
objects.

(5.12) COROLLARY. We have the following polynomial identity

n--- 1
ZfA(Q)zq(q+ ) n!(q +n )

Abn

where, for a partition A = 17122 - - k',

—1 (g —plA 1
fp =241 "(‘q p() +1)

!

and p(A) =Zr_, r,.

This follows immediately from (5.9) by applying it to the case of type A4, since
f,(q@) is the number of rational split semisimple classes of “type 4.
We conclude with a discussion of the “Coxeter case”.

(5.13) THEOREM. The number of rational semisimple orbits ¢ in G which are of
Coxeter type (i.e. such that w(c) is the Coxeter class of W) is equal to

g’ |Cw ()| Pas,, (—q "5 )

where vy is a Coxeter element of W (assuming regular characteristic) and r = rank (9).

Proof. Take y in (5.6) to be the function

(W) = 1 if w is a Coxeter element,
AL = 0 otherwise.

Now a Coxeter element y is in Sy only when W, =1, since otherwise W,
contains a reflection r and n(yr) < n(y). Thus by (5.6), the required number is

|W|~!# {Coxeter elements of W}|7 1% |.
The result follows from [L3] and (4.7) above. O

(5.14) EXAMPLES. (i) In type 4,_, the number of (5.13) is ([L1])

(o 3 wrara?).

il
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Note that this implies that (1//) Z,, u(d)q"? is an integer for all g, which follows
form Macmahon’s theorem.

(i1) In type B, the number is given (see [L2, (4,5)]) as follows. Write [ =2*/,, with
[, odd. Then the required number is

.

(

1
% Y ud)g)’®  if 1is odd,

d|?

q2k . 1 .

W if | = Zk, k> 0,

l ld . .

é_ld‘;v'/‘ u(d)q if 1is even, [, # 1.
1

Again this implies divisibility properties for the number theoretic functions

concerned.
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