

Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft
Band: 67 (1992)

Artikel: Relative cyclic homology and the Bass conjecture.
Autor: Schafer, James A.
DOI: <https://doi.org/10.5169/seals-51092>

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. [Mehr erfahren](#)

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. [En savoir plus](#)

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. [Find out more](#)

Download PDF: 25.01.2026

ETH-Bibliothek Zürich, E-Periodica, <https://www.e-periodica.ch>

Relative cyclic homology and the Bass conjecture

JAMES A. SCHAFER

0. Introduction

Let A be an arbitrary ring with unit. If P is a finitely generated projective A -module one would like to associate to P a rank function generalizing the function which assigns to the free A -module A^n the integer n . Since in the commutative case n is the trace of the identity endomorphism of A^n , one wishes to define a trace for endomorphisms of finitely generated projective A -modules in the case of non-commutative A . This was achieved independently by Hattori and Stallings [6, 11]. Unfortunately in order for the “trace” to have the natural property of a trace function i.e., for the trace of ab to be equal to the trace of ba , one is forced to have the trace take values not in A but in $A/[A, A]$ where $[A, A]$ is the subgroup of A generated by all commutators $ab-ba$. The resulting trace function $\text{tr}_P : \text{End}_A(P) \rightarrow A/[A, A]$ has many of the properties of the trace function in the commutative case, including additivity, commutativity, and linearity. For details, see [2]. We note in particular,

1. *Functionality*: If $\alpha : A \rightarrow B$, then α induces a map

$$\alpha : A/[A, A] \rightarrow B/[B, B]$$

and if $u \in \text{End}_A(P)$ then $\text{tr}_{P \otimes_A B}(u \otimes \text{id}) = \alpha_*(\text{tr}_P(u))$.

2. *Linearity*: Suppose $P = P_1 \oplus P_2$ and $u \in \text{End}_A(P)$ restricts to $u_1 \in \text{End}_A(P_1)$ and to $u_2 \in \text{End}_A(P_2)$ then

$$\text{tr}_P(u) = \text{tr}_{P_1}(u_1) + \text{tr}_{P_2}(u_2).$$

This last property allows one to note that if the P is a finitely generated projective A -module and one defines the rank r_P of P to be $\text{tr}_P(\text{id}_P)$, then if P is a direct summand of the free A -module F and $e : F \rightarrow F$ is the idempotent defining P , that is $P = e(F)$, then $r_P = \text{tr}_F(e)$. Also since $e \in M_d(A)$ for some d and the matrix defining e only involves finitely many elements of A , we see

from property 1 there exists a finitely generated subring A' of A and a finitely generated projective A' -module so that $r_p = \alpha_*(r_{P'})$, where α is the natural map of A' into A .

If R is any commutative ring and G an arbitrary group, then it is easy to see for the group ring $R(G)$, $T(G) = RG/[RG, RG]$ is the free R -module with one generator for each conjugacy class of G . (For $\hat{g}, h \in G$, $gh - hg = h^{-1}g'h - g'$ where $g = h^{-1}g'$). One denotes the component of r_P on the conjugacy class s by $r_P(s)$. The *Bass Conjecture* [3] is then as follows:

Let G be an arbitrary group and R any subring of the complex numbers \mathbb{C} . Let $D = \{d \in \mathbb{Z} \mid \exists a \in \mathbb{Z} \text{ with } a/d \in \mathbb{Q} \cap R\}$. If $1 \neq s \in G$ is such that $\text{order}(s) \notin D$, then $r_P(s) = 0$ for any finitely generated projective RG -module P .

This paper is concerned with showing how relative cyclic homology can be used to obtain results on this conjecture. In the first section we describe the relative cyclic homology of a pair of k -algebras (A, S) as defined by L. Kadison [7]. If $S = k1_A$, this is nothing more than ordinary cyclic homology of A . The second and third sections are concerned with the case $(A, S) = (kG, kH)$ where k is a field of characteristic zero and H is a normal subgroup of the group G . Here we generalize to the case $HC_*(kG, kH)$ a result of Burghelea [4] calculating $HC_*(kG)$. We are much indebted to Marciniak's [9] algebraic proof of this result of Burghelea. Finally we use this calculation to obtain results on the Bass conjecture. In particular we show

THEOREM. *If s has an infinite order in G/G_n where G_n is the n th term of the lower central series for G , then $r_P(s) = 0$ for any finitely generated projective QG -module P .*

1. Relative tensor products and relative cyclic homology

Let A be a k -algebra and S a subalgebra containing $k \cdot 1_A$. The n -fold circular tensor product of A over S , $\hat{\otimes}_S^n A$ or $A \hat{\otimes}_S A \cdots \hat{\otimes}_S A$ (n factors), is defined to be the ordinary n -fold tensor product $\hat{\otimes}_S^n A$ modulo the k -submodule generated by $\{(sa_0) \otimes \cdots \otimes a_n - a_0 \otimes \cdots \otimes (a_n s)\}$ for all $s \in S$ and $a_i \in A$. This of course can be more generally defined for S bimodules and seen in the case $n = 2$ is easily seen to be the ordinary tensor product over $S \otimes_k S^{op}$. Note the 1-fold tensor product of A over S is nothing more than $A/[A, S]$. For details see [7].

Given a k -algebra A and a subalgebra S containing S containing $k \cdot 1_A$ define a cyclic set $Z_*(A, S)$ as follows. $Z_n(A, S) = \hat{\otimes}_S^n A$ and the maps are

$$\begin{aligned}
d_i(a_0 \hat{\otimes} \cdots \hat{\otimes} a_n) &= a_0 \hat{\otimes} \cdots \hat{\otimes} a_i \hat{\otimes} a_i a_{i+1} \hat{\otimes} \cdots \hat{\otimes} a_n, \quad 0 \leq i < n, \\
&= a_n a_0 \hat{\otimes} \cdots \hat{\otimes} a_{n-1}, \quad i = n,
\end{aligned}$$

$$s_i(a_0 \hat{\otimes} \cdots \hat{\otimes} a_n) = a_0 \hat{\otimes} \cdots \hat{\otimes} a_i \hat{\otimes} 1 \hat{\otimes} a_{i+1} \hat{\otimes} \cdots \hat{\otimes} a_n, \quad 0 \leq i \leq n,$$

and $t_n(a_0 \hat{\otimes} \cdots \hat{\otimes} a_n) = a_n \hat{\otimes} \cdots \hat{\otimes} a_0$.

The first two maps clearly form a simplicial k -module for $Z_*(A, S)$ and the proof the addition of t_n gives a cyclic set is exactly as in the non-relative case if one recalls the tensor product is a circular tensor product.

One now defines the cyclic homology of the pair (A, S) in the usual way when one has a cyclic set, i.e., one forms the Tsygan double complex from the cyclic set and then defines cyclic homology as the homology of this double complex. Recall the Tsygan complex $W_{*,*}$ is formed as follows. Let $T_p = (-1)t_p$, $W_{p,q} = Z_p$, $p, q \geq 0$,

$$\begin{aligned}
d'_{p,q} &= \sum_{i=0}^q (-1)^i d_i : Z_q \rightarrow Z_{q-1}, \quad p \text{ even}, \\
d'_{p,q} &= \sum_{i=0}^{q-1} (-1)^i d_i : Z_q \rightarrow Z_{q-1}, \quad p \text{ odd}, \\
d''_{p,q} &= 1 - T_p : Z_p \rightarrow Z_p, \quad q \text{ odd}, \\
d''_{p,q} &= 1 + T_p + T_p^2 + \cdots + T_p^p : Z_p \rightarrow Z_p, \quad q \text{ even}.
\end{aligned}$$

The odd columns are acyclic and the even columns give the Hochschild homology of the complex. Note that everything is functorial in the pair (A, S) .

2. The complex $Z_*(kG, kH)$

Let G be a group and H be an arbitrary subgroup. Let H act on G by conjugation (${}^{\rho}g = \rho^{-1}g\rho$) and let $(G)_H$ be the orbit space. Denote by Λ_H the free k -module with one generator for each element of $(G)_H$ i.e., for every H -conjugacy class of G .

PROPOSITION 1. *Suppose H is normal in G , then G/H acts (on the right) of Λ_H by conjugation.*

Proof. If $g \equiv_H g'$ i.e. $g' = h^{-1}gh$ for some $h \in H$ then ${}^{\rho}g' \equiv_H {}^{\rho}g$ since by normality $h\rho = \rho h'$, $h' \in H$ and so

$${}^{\rho}g' = (h')^{-1}\rho^{-1}g\rho h' = (h'^{-1})^{\rho}gh'.$$

Therefore G acts on Λ_H and clearly H acts trivially. \square

We will continue with the assumption that H is normal in G . For $g \in G$, let \bar{g} denote the image of g in Λ_H and \tilde{g} denote the image of g in G/H .

Let $S_*(G/H)$ denote the homogeneous Bar construction for G/H . Define a simplicial set, $S_*(kG, kH)$ as $S_n(kG, kH) = \Lambda_H \otimes_{G/H} S_n(G/H)$,

$$d_i(\bar{g} \otimes (\tilde{x}_0, \dots, \tilde{x}_n)) = \bar{g} \otimes (\tilde{x}_0, \dots, \hat{\tilde{x}_i}, \dots, \tilde{x}_n), \quad 0 \leq i \leq n,$$

$$s_i(\bar{g} \otimes (\tilde{x}_0, \dots, \tilde{x}_n)) = \bar{g} \otimes (\tilde{x}_0, \dots, \tilde{x}_i, \tilde{x}_i, \dots, \tilde{x}_n), \quad 0 \leq i \leq n.$$

Define a map $\tau_n : S_n(kG, kH) \rightarrow S_n(kG, kH)$ by

$$\tau_n(\bar{g} \otimes (\tilde{x}_0, \dots, \tilde{x}_n)) = \bar{g} \otimes (\tilde{g}^{-1}\tilde{x}_n, \tilde{x}_0, \dots, \tilde{x}_{n-1}), \quad n \geq 0.$$

PROPOSITION 2. *With respect to the above maps, $S_*(kG, kH)$ forms a cyclic k -module.*

Proof. It is immediate that these maps form a cyclic k -module as soon as one sees that τ_n is well-defined. As for this it is clear that changing x_i in its coset modulo H affects nothing, while if $\bar{g} = \bar{g}'$, then there exists $h \in H$ with $g' = h^{-1}gh$, and hence $g' = h^{-1}gh = h^{-1}(ghg^{-1})g = h'g$. Therefore $\tilde{g} = \tilde{g}'$ in G/H . \square

Define a map

$$\alpha_n : \Lambda_H \otimes_{G/H} S_n(G/H) \rightarrow Z_n(kG, kH)$$

as follows.

$$\alpha_0(\bar{g} \otimes_{G/H} (\tilde{x}_0)) = x_0^{-1}gx_0 \text{ modulo } [kG, kH],$$

$$\alpha_n(\bar{g} \otimes_{G/H} (\tilde{x}_0, \dots, \tilde{x}_n)) = x_n^{-1}gx_0 \hat{\otimes} x_0^{-1}x_1 \hat{\otimes} \dots \hat{\otimes} x_{n-1}^{-1}x_n.$$

THEOREM 1. α_* is an isomorphism of cyclic k -modules.

Proof. (i) α_* is well defined.

(a) α_* is independent of the H -conjugacy class of g . Let $g' = h^{-1}gh$.

For α_0 , we have

$$\begin{aligned} x_0^{-1}g'x_0 &= x_0^{-1}h^{-1}ghx_0 \\ &= x_0^{-1}h^{-1}x_0x_0^{-1}gx_0x_0^{-1}hx_0 \\ &= x_0^{-1}gx_0(x_0^{-1}hx_0)x_0^{-1}h^{-1}x_0 \text{ mod } [kG, kH] \\ &= x_0^{-1}gx_0 \text{ mod } [kG, kH]. \end{aligned}$$

For α_n , $n \geq 1$, recall the right hand side in the definition for α_n is the circular tensor product of kG over kH . Hence

$$\begin{aligned}
 & x_n^{-1} g' x_0 \hat{\otimes} x_0^{-1} x_1 \hat{\otimes} \cdots \hat{\otimes} x_{n-1}^{-1} x_n \\
 &= x_n^{-1} h^{-1} g h x_0 \hat{\otimes} x_0^{-1} x_1 \hat{\otimes} \cdots \hat{\otimes} x_{n-1}^{-1} x_n \\
 &= x_n^{-1} h^{-1} x_n (x_n^{-1} g x_0) x_0^{-1} h x_0 \hat{\otimes} x_0^{-1} x_1 \hat{\otimes} \cdots \hat{\otimes} x_{n-1}^{-1} x_n \\
 &= (x_n^{-1} g x_0) (x_0^{-1} h x_0) \hat{\otimes} x_0^{-1} x_1 \hat{\otimes} \cdots \hat{\otimes} x_{n-1}^{-1} x_n (x_n^{-1} h^{-1} x_n) \\
 &= (x_n^{-1} g x_0) (x_0^{-1} h x_0) \hat{\otimes} x_0^{-1} x_1 \hat{\otimes} \cdots \hat{\otimes} x_{n-2}^{-1} x_{n-1} x_{n-1}^{-1} h^{-1} x_{n-1} \hat{\otimes} x_{n-1}^{-1} x_n \\
 &= (x_n^{-1} g x_0) (x_0^{-1} h x_0) (x_0^{-1} h^{-1} x_0) \hat{\otimes} x_0^{-1} x_1 \hat{\otimes} \cdots \hat{\otimes} x_{n-1}^{-1} x_n \\
 &= x_n^{-1} g x_0 \hat{\otimes} x_0^{-1} x_1 \hat{\otimes} \cdots \hat{\otimes} x_{n-1}^{-1} x_n.
 \end{aligned}$$

(b) α_* is independent of the coset representatives of G/H . For x_0' , if $x_0' = h x_0$ then

$$\begin{aligned}
 x_0'^{-1} g x_0' &= x_0^{-1} h^{-1} g h x_0 \\
 &= x_0^{-1} h^{-1} x_0 x_0^{-1} g x_0 x_0^{-1} h x_0 \\
 &= x_0^{-1} g x_0 \text{ mod } [kG, kH].
 \end{aligned}$$

For α_n , $n \geq 1$ if $x_i' = h x_i$, $i = 0, \dots, n-1$ then

$$\begin{aligned}
 & x_n^{-1} g x_0 \hat{\otimes} \cdots \hat{\otimes} x_{i-1}^{-1} h x_i \hat{\otimes} x_i^{-1} h^{-1} x_{i+1} \hat{\otimes} \cdots \hat{\otimes} x_{n-1}^{-1} x_n \\
 &= x_n^{-1} g x_0 \hat{\otimes} \cdots \hat{\otimes} x_{i-1}^{-1} h x_i x_i^{-1} h^{-1} x_i \hat{\otimes} x_i^{-1} x_{i+1} \hat{\otimes} \cdots \hat{\otimes} x_{n-1}^{-1} x_n
 \end{aligned}$$

with an obvious modification for $i = 0$. For $i = n$, we have

$$\begin{aligned}
 & x_n^{-1} h^{-1} g x_0 \hat{\otimes} x_0^{-1} x_1 \hat{\otimes} \cdots \hat{\otimes} x_{n-1}^{-1} h x_n \\
 &= x_n^{-1} h^{-1} g x_0 \hat{\otimes} x_0^{-1} x_1 \hat{\otimes} \cdots \hat{\otimes} x_{n-1}^{-1} x_n (x_n^{-1} h x_n) \\
 &= (x_n^{-1} h x_n) x_n^{-1} h^{-1} g x_0 \hat{\otimes} x_0^{-1} x_1 \hat{\otimes} \cdots \hat{\otimes} x_{n-1}^{-1} x_n \\
 &= x_n^{-1} g x_0 \hat{\otimes} x_0^{-1} x_1 \hat{\otimes} \cdots \hat{\otimes} x_{n-1}^{-1} x_n.
 \end{aligned}$$

(c) The map is linear in both variables and since

$$(g\rho, (\tilde{x}_0, \dots, \tilde{x}_n)) \rightarrow x_n^{-1} \rho^{-1} g \rho x_0 \hat{\otimes} x_0^{-1} x_1 \hat{\otimes} \cdots \hat{\otimes} x_{n-1}^{-1} x_n$$

as does $(\bar{g}, \rho(\tilde{x}_0, \dots, \tilde{x}_n))$ we obtain a well defined k -linear map

$$\alpha_* : \Lambda_H \otimes_{G/H} S_*(G/H) \rightarrow Z_*(kG, kH).$$

(ii) To show α_* is an isomorphism of k -modules one constructs an inverse as follows. Define a map

$$\beta_* : Z_*(kG, kH) \rightarrow \Lambda_H \otimes_{G/H} S_*(G/H)$$

by $\beta_0(g \bmod [kG, kH]) = \bar{g} \otimes_{G/H} (\tilde{1}) \quad \text{for } g \in G,$

$$\beta_n(y_0 \hat{\otimes} \cdots \hat{\otimes} y_n) = \overline{y_1 \cdots y_n y_0} \otimes_{G/H} (\tilde{1}, \tilde{y}_1, \tilde{y}_1 \tilde{y}_2, \dots, \tilde{y}_1 \cdots \tilde{y}_n), \quad n \geq 1.$$

This is well defined. For β_0 because $gh - hg \rightarrow (\overline{gh} - \overline{hg}) \otimes (\tilde{1}) = \overline{gh} \otimes (\tilde{1}) - \overline{hg} \otimes (\tilde{1}) = 0$ since $gh \equiv_H hg$. For β_n , let y_i be replaced by hy_i for $i = 0, \dots, n$. Then

$$\begin{aligned} \beta_n(y_0 \hat{\otimes} \cdots \hat{\otimes} hy_i \hat{\otimes} \cdots \hat{\otimes} y_n) &= \\ &\overline{y_1 \cdots (hy_i) \cdots y_n y_0} \otimes_{G/H} (\tilde{1}, \tilde{y}_1, \tilde{y}_1 \tilde{y}_2, \dots, \tilde{y}_1 \cdots \tilde{h} \tilde{y}_i, \dots, \tilde{y}_1 \cdots \tilde{h} \tilde{y}_i \cdots \tilde{y}_n), \\ \beta_n(y_0 \hat{\otimes} \cdots \hat{\otimes} y_{i-1} h \hat{\otimes} \cdots \hat{\otimes} y_n) &= \\ &\overline{y_1 \cdots (y_{i-1} h) \cdots y_n y_0} \otimes_{G/H} (\tilde{1}, \tilde{y}_1, \tilde{y}_1 \tilde{y}_2, \dots, \tilde{y}_1 \cdots \tilde{y}_{i-1} \tilde{h} \cdots, \dots, \tilde{y}_1 \cdots \tilde{y}_n). \end{aligned}$$

The terms to the right of the tensor product sign are equal since these are elements of the coset space G/H and not G , while the terms to the left of the tensor product are equal for $i \neq 1$ by associativity of the product in G and for $i = 1$ since $hy_1 \cdots y_0 \equiv_H y_1 \cdots y_0 h$.

Both compositions are the identity. For $n = 0$, $\beta_0 \alpha_0(\bar{g} \otimes (\tilde{x}_0)) = \beta_0(x_0^{-1} g x_0 \bmod [kG, kH]) = x_0^{-1} g x_0 \otimes (\tilde{1}) = \bar{g} \otimes (\tilde{x}_0)$, while $\alpha_0 \beta_0(g \bmod [kG, kH]) = \alpha_0(\bar{g} \otimes (\tilde{1})) = g \bmod [kG, kH]$. For $n > 0$,

$$\begin{aligned} \beta_n \alpha_n(\bar{g} \otimes (\tilde{x}_0, \dots, \tilde{x}_n)) &= \beta_n(x_n^{-1} g x_0 \hat{\otimes} x_0^{-1} x_1 \hat{\otimes} \cdots \hat{\otimes} x_{n-1}^{-1} x_n) \\ &= \overline{x_0^{-1} g x_0} \otimes (\tilde{1}, \tilde{x}_0^{-1} \tilde{x}_1, \tilde{x}_0^{-1} \tilde{x}_2, \dots, \tilde{x}_0^{-1} \tilde{x}_n) \\ &= \bar{g} \otimes (\tilde{x}_0, \dots, \tilde{x}_n), \end{aligned}$$

$$\begin{aligned} \alpha_n \beta_n(y_0 \hat{\otimes} \cdots \hat{\otimes} y_n) &= \alpha_n(\overline{y_1 \cdots y_n y_0} \otimes_{G/H} (\tilde{1}, \tilde{y}_1, \tilde{y}_1 \tilde{y}_2, \dots, \tilde{y}_1 \cdots \tilde{y}_n)) \\ &= (y_1 \cdots y_n)^{-1} y_1 \cdots y_n y_0 \hat{\otimes} y_1 \hat{\otimes} \cdots \hat{\otimes} y_n \\ &= y_0 \hat{\otimes} \cdots \hat{\otimes} y_n. \end{aligned}$$

(iii) α_* is an isomorphism of cyclic k -modules. The calculation that α_* commutes with d_i and s_i is immediate as is the calculation that α_* commutes with t_n which we give anyway.

$$\begin{aligned} t_n \alpha_n(\bar{g} \otimes (\tilde{x}_0, \dots, \tilde{x}_n)) &= t_n(x_n^{-1} g x_0 \hat{\otimes} x_0^{-1} x_1 \hat{\otimes} \dots \hat{\otimes} x_{n-1}^{-1} x_n) \\ &= x_{n-1}^{-1} x_n \hat{\otimes} x_n^{-1} g x_0 \hat{\otimes} x_0^{-1} x_1 \hat{\otimes} \dots \hat{\otimes} x_{n-2}^{-1} x_{n-1}, \end{aligned}$$

while

$$\begin{aligned} \alpha_n \tau_n(\bar{g} \otimes (\tilde{x}_0, \dots, \tilde{x}_n)) &= \alpha_n(\bar{g} \otimes (\tilde{g}^{-1} \tilde{x}_n, \tilde{x}_0, \dots, \tilde{x}_{n-1})) \\ &= x_{n-1}^{-1} x_n \hat{\otimes} x_n^{-1} g x_0 \hat{\otimes} x_0^{-1} x_1 \hat{\otimes} \dots \hat{\otimes} x_{n-2}^{-1} x_{n-1}. \quad \square \end{aligned}$$

$S_*(kG, kH)$ is clearly functorial in mappings of pairs of groups (G, H) with H normal in G and it is obvious α_* is a natural equivalence of the functors $S_*(kG, kH)$ and $Z_*(kG, kH)$.

3. The cyclic homology of the complex $S_*(kG, kH)$

In this section we more or less follow Marciniak's algebraic proof [9] of Burghhelea's calculation [4] of the cyclic homology of kG keeping track of the modifications demanded in the relative case.

Let $T(G)$ denote the G -conjugacy classes of G . For $c \in T(G)$, let Λ_c denote the k -submodule of Λ_H generated by $[g]$ for $g \in c$. It is obvious Λ_c is a G/H submodule of Λ_H and $\Lambda_H \cong \sum \Lambda_c$ as $k(G/H)$ -modules. Moreover it is clear from the definitions that d_i , s_i and τ_n respect this decomposition, i.e., as cyclic k -modules

$$S_*(kG, kH) \cong \sum_{T(G)} \Lambda_c \hat{\otimes}_{G/H} S_*(G/H)$$

where the maps defining the cyclic structure on the right hand side of the equation are given by the same formulas as on the left. Again this isomorphism is functorial in the pair (G, H) .

Let Γ be an arbitrary group and $\gamma \in \Gamma$ a central element. Define a cyclic k -module, $\mathcal{Z}_*(\Gamma, \gamma)$ by $\mathcal{Z}_n(\Gamma, \gamma) = k \otimes_{\Gamma} S_n(\Gamma)$ with d_i and s_i induced from $S_*(\Gamma)$ and

$$\tau_n(1 \otimes (\gamma_0, \gamma_1, \dots, \gamma_n)) = 1 \otimes (\gamma^{-1} \gamma_n, \gamma_0, \dots, \gamma_{n-1}).$$

The proof this is a cyclic k -module is immediate and clearly this construction is functorial in pairs (Γ, γ) with γ central in Γ .

For each $c \in T(G)$ choose $z \in c$ and let $\text{Stab}(\bar{z})$ denote the isotropy group of $\bar{z} \in (G)_H$ contained in $\tilde{G} = G/H$. Since there is a bijection of the right coset space $\text{Stab}(\bar{z}) \setminus \tilde{G} \rightarrow c$ induced by $\tilde{g} \rightarrow \bar{z}^g$, it follows immediately that this map induces an isomorphism

$$k(\text{Stab}(\bar{z}) \setminus \tilde{G}) \rightarrow \Lambda_c$$

of right G/H -modules. Since $k \hat{\otimes}_{\text{Stab}(z)} k(\tilde{G}) \cong k(\text{Stab}(\bar{z}) \setminus \tilde{G})$ as right \tilde{G} -modules via the map $1 \otimes \tilde{g} \rightarrow (\text{Stab}(\bar{z}))\tilde{g}$, we obtain for each n an isomorphism

$$(k \otimes_{\text{Stab}(z)} k(G/H)) \otimes_{G/H} S_n(G/H) \rightarrow \Lambda_c \otimes_{G/H} S_n(G/H).$$

Since the left hand side is isomorphic to $k \hat{\otimes}_{\text{Stab}(z)} S_n(G/H)$ we have an isomorphism of k -modules

$$k \otimes_{\text{Stab}(z)} S_n(G/H) \rightarrow \Lambda_c \otimes_{G/H} S_n(G/H)$$

given by $1 \otimes_{\text{Stab}(z)} (\tilde{x}_0, \dots, \tilde{x}_n) \rightarrow \bar{z} \otimes_{G/H} (\tilde{x}_0, \dots, \tilde{x}_n)$. If one defines a cyclic structure on $k \otimes_{\text{Stab}(z)} S_n(G/H)$ by inducing the simplicial structure from $S_n(G/H)$ and the cyclic map being defined to be

$$\tau_n(1 \otimes_{\text{Stab}(z)} (\tilde{x}_0, \dots, \tilde{x}_n)) = 1 \otimes (\tilde{z}^{-1} \tilde{x}_n, \tilde{x}_0, \dots, \tilde{x}_{n-1}),$$

one sees immediately that the above map is an isomorphism of cyclic k -modules.

Consider the map of cyclic k -modules

$$\rho : \mathcal{Z}_n(\text{Stab}(\bar{z}), \tilde{z}) = k \otimes_{\text{Stab}(z)} S_n(\text{Stab}(\bar{z})) \rightarrow k \otimes_{\text{Stab}(z)} S_n(G/H)$$

induced by the inclusion of $\text{Stab}(\bar{z}) \rightarrow G/H$. We wish to show ρ induces an isomorphism on cyclic homology and this will follow from the following observation.

Observation. One knows that if one has a map of filtered differential complexes which includes an isomorphism on any level of the associated spectral sequences then it induces an isomorphism on homology. In particular by applying this remark to the vertical filtration on the associated Tsygan complexes of two cyclic sets one concludes that a map of cyclic sets inducing an isomorphism in Hochschild homology induces an isomorphism in cyclic homology. (This follows immediately from the natural Connes sequence relating Hochschild and cyclic homology. However it is more useful in this follow as one can apply it also to the associated horizontal filtration of the Tsygan complex as in [9].)

PROPOSITION 1. $\rho : \mathcal{Z}_n(\text{Stab}(\bar{z}), \tilde{z}) \rightarrow k \otimes_{\text{Stab}(z)} S_n(G/H)$ induces an isomorphism in cyclic homology.

Proof. Since both $S_*(\text{Stab}(\bar{z}))$ and $S_*(G/H)$ are $k(\text{Stab}(\bar{z}))$ -projective resolutions of k , the Hochschild homology of both sides is $H_*(\text{Stab}(\bar{z}), k)$, and ρ induces an isomorphism on Hochschild homology since the inclusion map induces a chain lift of the id_k . \square

PROPOSITION 2. Let $z \in G$, then $\text{Stab}(\bar{z}) = C_G(z)H/H \subseteq G/H$, where $C_G(z)$ denotes the centralizer of z in G .

Proof. Immediate. \square

Combining the above maps we obtain the following. Let $\{z\}$ be a set of representatives of the G -conjugacy classes of G . For each $z \in \{z\}$ we have a map of cyclic k -modules

$$\rho_z : \mathcal{Z}_*(C_G(z)H/H, Hz) \rightarrow Z_*(kG, kH)$$

given by $1 \otimes (\tilde{x}_0, \dots, \tilde{x}_n) \rightarrow x_n^{-1}zx_0 \hat{\otimes} x_0^{-1}x_1 \hat{\otimes} \dots \hat{\otimes} x_{n-1}^{-1}x_n$.

The above results give

PROPOSITION 3. Let H be normal in G , then the map

$$\bigoplus \rho_z : \sum \mathcal{Z}_*(C_G(z)H/H, Hz) \rightarrow Z_*(kG, kH)$$

induces an isomorphism on cyclic homology.

Remarks on functoriality. It is clear that if $f : (G, H) \rightarrow (G', H')$, then

$$\begin{array}{ccc} \mathcal{Z}_*(C_G(z)H/H, Hz) & \xrightarrow{\rho_z} & Z_*(kG, kH) \\ \downarrow \tilde{f} & & \downarrow f \\ \mathcal{Z}_*(C_{G'}(fz)H'/H, H'fz) & \xrightarrow{\rho_{fz}} & Z_*(kG', kH') \end{array} \text{commutes,}$$

where the map f naturally induces both a map $\tilde{f} : G/H \rightarrow G'/H'$ and a map $\tilde{f} : (G)_H \rightarrow (G')_{H'}$ which is \tilde{f} equivariant. Hence we obtain a map $\tilde{f} : \text{Stab}(\bar{z}) = C_G(z)H/H \rightarrow \text{Stab}(\bar{fz}) = C_{G'}(fz)H'/H'$ inducing the \tilde{f} above. Unfortunately summing over the G -conjugacy classes is not possible as the map \tilde{f} is in general not one-to-one. However if we fix the group G and a set of representatives $\{z\}$ of the conjugacy classes of G we obtain a well defined natural transformation $\bigoplus \rho_z$ of the

functors $\mathcal{Z}_*(N) = \Sigma \mathcal{Z}_*(C_G(z)N/N, Nz)$ and $Z_*(N) = Z_*(kG, kN)$ defined on the category of normal subgroups of G and inclusion maps and which induces isomorphisms in cyclic homology.

We now have all the ingredients for the following

THEOREM. *Let N be normal in G and let k be a field of characteristic zero, then*

$$HC_*(kG, kN) \cong \bigoplus_{c \in T^0(N)} H_*(G_c, k) \otimes HC_*(k) \oplus \bigoplus_{c \in T^\infty(N)} H_*(G_c, k)$$

where $T^0(N)$ (resp. $T^\infty(N)$) = G -conjugacy classes $[z]$ of G such that Nz is of finite (resp. infinite) order in G/N , and $G_c = C_G(z)N/(z)N \cong \text{Stab}(\bar{z})/(Nz)$.

Proof. We have seen we can calculate $HC_*(kG, kN)$ from the direct sum over the G -conjugacy classes of the cyclic k -modules $\mathcal{Z}_*(C_G(z)N/N, Nz)$. We can now compute the cyclic homology of these cyclic sets as in Marciniak [9] or Burghelea [4]. \square

4. Applications to the traces of projective modules

Let A be a k -algebra. The Chern character is a natural transformation $ch_n : K_n(A) \rightarrow HC_n(A)$ which in dimension zero coincides with the Stong-Hattori trace for finitely generated projective A -modules. Karoubi [8] has produced a lifting of ch_n , $ch_n^t : K_n(A) \rightarrow HC_{n+2t}(A)$ commuting with the natural map $S : HC_{n+2}(A) \rightarrow HC_n(A)$. Let S be a k -subalgebra of A containing $k1_A$. We have a natural map $HC_*(A) \rightarrow HC_*(A, S)$ and we have the

PROPOSITION. *The natural map $HC_0(A) \rightarrow HC_0(A, S)$ is an isomorphism.*

Proof. It is immediate from the definitions that both sides are $A/[A, A]$ and the induced map is induced from the identity of A . \square

Consider the following commutative diagram.

$$\begin{array}{ccc} & HC_{2n}(A) & \longrightarrow HC_{2n}(A, S) \\ ch_0^n & \nearrow & \downarrow S^n & \downarrow S^n \\ K_0(A) & \xrightarrow{ch_0} & HC_0(A) & \xrightarrow{\cong} HC_0(A, S). \end{array}$$

Letting (A, S) be (kG, kN) for N a normal subgroup of G and using the above theorem computing the cyclic homology of the pair (kG, kN) one sees if one has

vanishing theorems for some components of $HC_*(kG, kN)$ one would obtain vanishing theorems for traces of finitely generated projective kG -modules on certain conjugacy classes. To this end we recall a theorem of Eckmann, used for the same purpose in the non relative case. Recall $hd_Q(G) = \sup \{k \mid H_k(G, A) \neq 0 \text{ for some } QG\text{-module } A\}$.

THEOREM (Eckmann [5]). *Let G have $hd_Q(G) = n < \infty$, and suppose G belongs to one of the following classes: (a) nilpotent groups; (b) torsion free solvable groups; (c) linear groups, i.e., subgroups of $GL_n(F)$ where F is a field of characteristic zero; (d) groups of cohomological dimension ≤ 2 . Then if x is a central element of infinite order, $H_j(G/(x), Q) = 0$ for $j \geq n$ ($n = 2$ in case d). Using this result we have the immediate*

THEOREM. *Let $z \in G$. Suppose $\exists N$ normal in G such that (i) Nz is of infinite order in G/N , (ii) $hd_Q(G/N) < \infty$, (iii) G/N is one of the types (a)–(d), then if P is any finitely generated projective QG -module $r(P)_z = 0$.*

Remark. By applying Eckmann's result directly, i.e., the above result in the case $N = (1)$, one only obtains $\sum_{Ny=Nz} r(P)_y = 0$.

COROLLARY 1. *Let G_n be the n th term of the lower central series for G . Suppose z has an infinite order in G/G_n , then for any finitely generated projective QG -module P , $r(P)_z = 0$.*

Proof. Since G/G_n is nilpotent, any finitely generated subgroup is polycyclic and hence has finite Hirsch number. But, on the class of solvable groups, $hd_Q(G)$ equals the Hirsch number [11] and therefore since homology commutes with direct limits and any group is the direct limit of its finitely generated subgroups we have $hd_Q(G/G_n) < \infty$. Hence the result. \square

It is amusing that while the corollary to the last theorem says something about nilpotent quotients of G , the following result says something about nilpotent subgroups of G .

COROLLARY 2. *Suppose G is a split extension of a finitely generated torsion free nilpotent group N and an arbitrary group A . If $1 \neq z \in N$ and P is any finitely generated projective QG -module, then $r(P)_z = 0$.*

Proof. N has an embedding in $GL_n(\mathbb{Z})$ as a group of unipotent matrices ([13], p. 23). By a result of Swan [12] (see [13], p. 22), there exists $\varphi : G \rightarrow GL_m(\mathbb{Z})$ such that $\ker(\varphi) \cap N = (1)$. Hence z has infinite order in $G/\ker \varphi \subseteq GL_m(\mathbb{Z})$. Any

unipotent subgroup of $GL_m(\mathbb{Z})$ is conjugate in $GL_m(Q)$ to a subgroup of the group of upper triangular matrices with diagonal entries equal to one and such a group has cohomological dimension $\leq n(n-1)$. By a result of Alperin and Shalen [1] $G/\ker \varphi$ has finite virtual cohomological dimension and hence $hd_Q(G/\ker \varphi) < \infty$. Hence $G/\ker \varphi$ is a linear group with $hd_Q < \infty$ and the result follows from the theorem. \square

REFERENCES

- [1] R. ALPERIN and P. SHALEN, *Linear Groups of finite cohomological dimension*, Inventiones math. 66 (1982), 89–98.
- [2] H. BASS, *Euler characteristics and characters of discrete groups*, Inventiones mathematicae, 35 (1976), 155–196.
- [3] H. BASS, *Traces and Euler characteristics*, In: *Homological Group Theory* (ed. C. T. C. Wall), London Mathematical Society Lecture Note Series 36 (Cambridge University Press, 1979), pp. 1–26.
- [4] D. BURGHELEA, *The cyclic homology of group rings*, Comment. Math. Helv. 60 (1985), 354–365.
- [5] B. ECKMANN, *Cyclic homology of groups and the Bass conjecture*, Comment. Math. Helv. 61 (1986), 193–202.
- [6] A. HATTORI, *Rank element of a projective module*, Nagoya J. Math. 25 (1965), 113–120.
- [7] L. KADISON, *Cyclic homology of extension algebras with application to matrix algebras, algebraic K-theory, and nest algebras of operators*. Ph.D. thesis, U. of Cal. (Berkeley), 1989.
- [8] M. KAROUBI, *Homologie cyclique et K-theorie algébrique*, C.R. Acad. Sc. Paris 297 (1983), 447–450.
- [9] Z. MARCINIAK, *Cyclic homology of group rings*, In: *Geometric and Algebraic Topology*, Banach Center Publications, vol. 18, Warsaw, 1986, pp. 305–312.
- [10] U. STAMMBACH, *On the weak homological dimension of group rings of solvable groups*, J. London Math Soc. (2) 2 (1970), pp. 567–570.
- [11] J. STALLINGS, *Centerless groups – an algebraic formulation of Gottlieb's theorem*, Topology 4 (1965), 129–134.
- [12] R. G. SWAN, *Representations of polycyclic groups*, Proc. Am. Math. Soc. 18 (1967) 573–574.
- [13] B. A. F. WEHRFRITZ, *Infinite Linear Groups*, Berlin, Heidelberg, New York, Springer-Verlag, 1973.

Department of Mathematics
 University of Maryland 20740
 College Park, Maryland
 USA

Received July 19, 1990