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Relative cyclic homology and the Bass conjecture

JAMES A. SCHAFER

0. Introduction

Let A be an arbitrary ring with unit. If P is a finitely generated projective
A-module one would like to associate to P a rank function generalizing the
function which assigns to the free A-module A4” the integer n. Since in the
commutative case n is the trace of the identity endomorphism of A", one wishes to
define a trace for endomorphisms of finitely generated projective 4-modules in the
case of non-commutative 4. This was achieved independently by Hattori and
Stallings [6, 11]. Unfortunately in order for the ‘trace” to have the natural
property of a trace function i.e., for the trace of ab to be equal to the trace of ba,
one is forced to have the trace take values not in 4 but in 4/[A4, A] where [4, A] is
the subgroup of A4 generated by all commutators ab-ba. The resulting trace
function tr, : End, (P) > A/[A4, A] has many of the properties of the trace func-
tion in the commutative case, including additivity, commutativity, and linearity.
For details, see [2]. We note in particular,

1. Functoriality: If a : A — B, then a induces a map

a:AJ[A, A] - B/[B, B]

and if u € End ,P) then trp o , 5 (u ®id) = a, (trp (u)).
2. Linearity: Suppose P = P, @ P, and u € End , (P) restricts to u, € End, (P,)
and to u, € End, (P,) then

trp(u) =trp (u) +trp,(uy).

This last property allows one to note that if the P is a finitely generated projective
A-module and one defines the rank r, of P to be tr, (id,), then if P is a direct
summand of the free 4-module F and e:F—F is the idempotent defining
P, that is P =e(F), then rp =tr, (¢). Also since e € M, (4) for some d and
the matrix defining e only involves finitely many elements of A4, we see
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from property 1 there exists a finitely generated subring A" of 4 and a finitely
generated projective 4’-module so that r, =« (rp), where a is the natural map of
A’ into A.

If R is any commutative ring and G an arbitrary group, then it is easy to see for
the group ring R(G), T(G) = RG/[RG, RG] is the free R-module with one generator
for each conjugacy class of G. (For g, heG, gh—hg=h"'g’h—g’ where
g = h ~'g’). One denotes the component of r, on the conjugacy class s by r,(s). The
Bass Conjecture [3] is then as follows:

Let G be an arbitrary group and R any subring of the complex numbers C. Let
D={deZ|3aeZ witha/de QnR}. If 1 #5 € G is such that order (s) ¢ D, then
re(s) =0 for any finitely generated projective RG-module P.

This paper is concerned with showing how relative cyclic homology can be used
to obtain results on this conjecture. In the first section we describe the relative cyclic
homology of a pair of k-algebras (4, S) as defined by L. Kadison [7]. If S =k1,
this is nothing more than ordinary cyclic homology of A. The second and third
sections are concerned with the case (A4, S) =(kG, kH) where k is a field of
characteristic zero and H is a normal subgroup of the group G. Here we generalize
to the case HC,(kG, kH) a result of Burghelea [4] calculating HC , (kG). We are
much indebted to Marciniak’s [9] algebraic proof of this result of Burghelea. Finally
we use this calculation to obtain results on the Bass conjecture. In particular we
show

THEOREM. If s has an infinite order in G|G, where G, is the nth term of the
lower central series for G, then rp(s) =0 for any finitely generated projective
QG-module P.

1. Relative tensor products and relative cyclic homology

Let A be a k-algebra and S a subalgebra containing k - 1 ,. The n-fold circular
tensor product of 4 over S, ®%2Aor A ®sA -+ ®g A (n factors), is defined to the
the ordinary n-fold tensor product ®% 4 modulo the k-submodule generated by
{(5a)) ® - ®a,—a,® - ® (a,s)} for all s €S and q; € A. This of course can
be more generally defined for S bimodules and seen in the case n =2 is easily seen
to be the ordinary tensor product over S®, S”. Note the 1-fold tensor product of
A over § is nothing more than A/[A4, S]. For details see [7].

Given a k-algebra 4 and a subalgebra S containing S containing k - 1, define a
cyclic set Z (A4, S) as follows. Z,(4, S) = ®% A and the maps are
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di(ao®"'®an)=ao®"'®ai®aiai+1®"'®am 0<i<n,
=a,6,® - Qa,_,, i=n,

S,»(a0®"'®a,,)=ao®"'®a,-®l®ai+1®---®an, 0<i<n,

and 7,(ap ® - ®a)=a,® & ap.

The first two maps clearly form a simplicial k-module for Z (4, S) and the
proof the addition of ¢, gives a cyclic set is exactly as in the non-relative case if one
recalls the tensor product is a circular tensor product.

One now defines the cyclic homology of the pair (4, S) in the usual way when
one has a cyclic set, i.e., one forms the Tsygan double complex from the cyclic set
and then defines cyclic homolgy as the homology of this double complex. Recall the
Tsygan complex W,,, is formed as follows. Let T, =( - )t,, W,,=Z,, p,q 20,

%%k
q .
d,,=> (-1)'d:Z2,-Z,_,, peven,
i=0
91 ]
d,,=Y (-1'd:Z,-2Z,_,, podd,
i=0
dy,=1-T,:Z,-2,, q odd,
dy,=1+T,+T:+ - +T5:Z,-Z,  qeven
The odd columns are acyclic and the even columns give the Hochschild homology
of the complex. Note that everything is functorial in the pair (4, S).

2. The complex Z  (kG, kH)

Let G be a group and H be an arbitrary subgroup. Let H act on G by conjugation
(*g = p ~'gp) and let (G), be the orbit space. Denote by A, the free k-module with
one generator for each element of (G) i.e., for every H-conjugacy class of G.

PROPOSITION 1. Suppose H is normal in G, then G|H acts (on the right) of Ay
by conjugation.

Proof. If g=,g" ie. g =h~'gh for some he H then °g’ =, °g since by
normality hp = ph’, h’ € H and so

vg’=(h")"'p " 'gph’=(h""")’gh".

Therefore G acts on A, and clearly H acts trivially. O
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We will continue with the assumption that H is normal in G. For g € G, let g
denote the image of g in A, and g denote the image of g in G/H.

Let S,(G/H) denote the homogeneous Bar construction for G/H. Define a
simplicial set, S, (kG, kH) as S,(kG,kH) = Ay Qg/u S,(G/H),

dE® (%, ..., %) =@ F,..., %..., %), 0<i<n,

S;(8® Xy, ..., X)) =8RXo, ..., %, Xy ..., X)), 0<i<n.
Define a map 1, : S,(kG, kH) — S, (kG, kH) by

Tn(g®()209 . 9-£n) =g—®(g~_l'ina£0’ L afn-—l)’ n =z O
PROPOSITION 2. With respect to the above maps, S.(kG, kH) forms a cyclic
k-module.

Proof. It is immediate that these maps form a cyclic k-module as soon as one
sees that 7, is well-defined. As for this it is clear that changing x; in its coset modulo
H affects nothing, while if ¢ =g’, then there exists h € H with g’ =h ~'gh, and
hence g’=h"'gh =h ~'(ghg ~"g = h’g. Therefore § =g’ in G/H. O
Define a map

as follows.

ao(& g/ (%)) = x4 'gxo modulo [kG, kH],

an(g— ®G/H (5605 L] in)) =xn—‘gx0 ® xO— : X ® e ® x;—ll Xn-

THEOREM 1. «, is an isomorphism of cyclic k-modules.

Proof. (i) a, is well defined.
(a) a, is independent of the H-conjugacy class of g. Let g’ =h ~'gh.
For a,, we have
xo '8'xo=xq 'h~ 'ghx,
=x¢ 'h~"xoxq 'gx0xg 'hx,
=xq 'gxo(xq "hxo)xg 'h ~'x, mod [kG, kH]
= xq 'gx, mod [kG, kH].



218 JAMES A. SCHAFER

For a,,n = 1, recall the right hand side in the definition for a,, is the circular tensor
product of kG over kH. Hence

Tlg X @x 7' ® - Rx, ) x,
=x;'h 7 'ghxg @ x¢ ' x, ® - ® x,7 !, x,
=x,7 h 7 x,( gx)xe T @ x5 e ® - ® X, x,
= (X, 'gxo)(xg "hxo) ® x5 'x; ® -+ ® X, x,(x7 h T lxn)
= (x,; 'gxo)xg 'hxo) ® x5 'x; ® - ® x, X, xR T X, ® X x,
= (x, 'gxo)(x¢ 'hxo)(xg 'h %) ®xg ' X, ® - @ x,7 1 x,
=x,'g% ®x5 ' X, & ® x, ! x,.
(b) a, 1s independent of the coset representatives of G/H. For ay, if xq = hx,
then

s =1

xo " 'gxo=x¢"'h " ghx,
=x0 'h ™ 'xoxq 'gxoxq ' hx,

= x, 'gx, mod [kG, kH].
For a,,n =1 if x; =hx;,i=0,...,n—1 then

xn—lgx0® ®xt——lhx ®x lh—l x+l® ®xn—1x
=x,'gx® - ®x T\ hxx Th T, ®x7 X R ®x,7 ) x,

with an obvious modification for i =0. For i = n, we have

X7 lgxg ®xg "X, ® - ®x, A
X7 'h T lgxe ® xg ey ® - ® x,7 Y x, (7 Vhx,,)
=07 "hx)x;7 th gy @ x5 ® - ® x,7 X,

A

__'xn_~ lgxo ® x0~ lxl ® e ® xn——ll Xp-
(c) The map is linear in both variables and since

(gp, Ko, - - ., X)) > x,7'p~ 'gpx, ® xg ' x ® - ® Xp 21X,
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as does (g, p(%,, ..., X,)) we obtain a well defined k-linear map
Uy Ay g S (G/H) > Z (kG, kH).

(i) To show a, is an isomorphism of k-modules one constructs an inverse as
follows. Define a map

ﬂ* : Z*(kG, kH) —-»AH®G/H S*(G/H)
Y By(g mod [kG, kH)) =g @ g (1) for g € G,

ﬂn(J’o® T ®yn) =1 Yuo Qg (T,f’l’f]f’zs ces P P nzl.

This is well defined. For f, because gh-hg— (E — Eg—r) ® () = g_h ® (D) -
hg ® (1) = 0 since gh =, hg. For B,, let y, be replaced by hy, fori =0, ..., n. Then

Bu(3o®@ - @ hy; ® - @)=

‘.(hyi)"'yny0®G/H(T’y~l’ﬁljj2:"~’.i71”'Eyyi,~-"ﬁl'.'ﬁyt yn)
ﬁn()’()@"'@}’i—lh@"‘@yn):

“(Yiah) - yado ®G/H(T,J71a)~’lfz,---,f1"’)71'—15"',---,}71"‘}7n)-

The terms to the right of the tensor product sign are equal since these are elements
of the coset space G/H and not G, while the terms to the left of the tensor product
are equal for i#1 by associativity of the product in G and for i=1 since

hy " Yo= gy Yoh
Both composmons are the identity. For n =10, By0,(g ® (%)) = Bo(xg ' gxo

mod [kG, kH]) = x5 ' g%, ® (1) =3 ®(%,),  while  aof,(g mod [kG, kH]) =
#o(g ® (1)) = g mod [kG, kH]. For n > 0,
Brtta(8 ® (Fos - -+ %) = PBul(x 8% ® X5 ' %, ® - ® x,'1 X,)
=x¢ 'gxo® (1, %5 %), Xg 'Kpy . .., Ko 'K)
=g ®(Xo, ..., X,),
B (Yo ®  ® y,) =“nm Qo (L, 71, PiFas o s Fio )
=1 ) TV I @ ® By,
=1 ® " Q.
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(iii) &, is an isomorphism of cyclic k-modules. The calculation that a, com-
mutes with d; and s; is immediate as is the calculation that «, commutes with ¢,
which we give anyway.

tnan(g®(i0’ tet in) = tn(xn“lgxo ® xO— 1xl ® U ® xn_—ll xn)

IR | S -1 3 —1 S ... A —1
"xn—lxn ®xn gx0®x0 xl ® ®xn—2xn—la
while

anrn(g_®(i05 § &8 afn) =an(g_®(g~_l-in’j‘0’ . e ax~n—l)

—1 S —1 S —1 S 5 -1
=xn——1xn ®xn gx0®x0 Xy ® ®xn—2xn»l' D

S,.(kG,kH) is clearly functorial in mappings of pairs of groups (G, H) with
H normal in G and it is obvious a, is a natural equivalence of the functors
S,(kG, kH) and Z (kG, kH).

3. The cyclic homology of the complex S, (kG, kH)

In this section we more or less follow Marciniak’s algebraic proof [9] of
Burghelea’s calculation [4] of the cyclic homology of kG keeping track of the
modifications demanded in the relative case.

Let T(G) denote the G-conjugacy classes of G. For ¢ € T(G), let A, denote the
k-submodule of A, generated by [g] for g € c. It is obvious A4, is a G/H submodule
of Ay and A, = X A, as k(G/H)-modules. Moreover it is clear from the definitions
that d,, s; and t, respect this decomposition, i.e., as cyclic k-modules

SykG, kH)= Y A, Ry S, (G/H)

7(G)

where the maps defining the cyclic structure on the right hand side of the equation
are given by the same formulas as on the left. Again this isomorphism is functorial
in the pair (G, H).

Let I' be an arbitrary group and y € I' a central element. Define a cyclic k-module,
Z,.I,y) by Z,(I',y) =k ® S,(I') with d; and s; induced from S_(I') and

Tn(1®(YO’yla' ""yn)) = 1®(y-1)’n9‘))05' "s))n-l)'

The proof this is a cyclic k-module is immediate and clearly this construction is
functorial in pairs (I, y) with y central in I
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For each ¢ € T(G) choose z € ¢ and let Stab (Z) denote the isotropy group of
z € (G)y contained in G = G/H. Since there is a bijection of the right coset space
Stab (2)\G — ¢ induced by § — 72, it follows immediately that this map induces an
isomorphism

k(Stab ()\G) - A,

of right G/H-modules. Since k ® gup ) k(G) = k(Stab (2)\G) as right G-modules
via the map 1 ® g — (Stab (2))g, we obtain for each n an isomorphism

(k @ stab ) K(G/H)) ®gn S,(G/H) > A, ®gu S,(G/H).

Since the left hand side is isomorphic to k & g «S.(G/H) we have an isomor-
phism of k-modules

k ®Stab 2) Sn(G/H) —')Ac ®G/H Sn(G/H)

given by 1 Qs ;) (Fos - - - » %n) 2 Z Qg (Fos - - - » X,). If one defines a cyclic struc-
ture on kK Qg () S.(G/H) by inducing the simplicial structure from S,(G/H) and
the cyclic map being defined to be

fn(l ®Stab(z) (50: s s-in)) =1 ®(’Z~_—]j'n,f0, s ’-in——l)a

one sees immediately that the above map is an isomorphism of cyclic k-modules.
Consider the map of cyclic k-modules

p:Z,(Stab (2), 2) =k @suap @ S,(Stab (2)) =k ®stabz) S.(G/H)

induced by the inclusion of Stab (Z) - G/H. We wish to show p induces an iso-
morphism on cyclic homology and this will follow from the following observation.

Observation. One knows that if one has a map of filtered differential complexes
which incudes an isomorphism on any level of the associated spectral sequences
then it induces an isomorphism on homology. In particular by applying this remark
to the vertical filtration on the associated Tsygan complexes of two cyclic sets one
concludes that a map of cyclic sets inducing an isomorphism in Hochschild
homology induces an isomorphism in cyclic homology. (This follows immediately
from the natural Connes sequence relating Hochshild and cyclic homology. How-
ever it is more useful in this follow as one can apply it also to the associated
horizontal filtration of the Tsygan complex as in [9].)



222 JAMES A. SCHAFER

PROPOSITION 1. p : Z,(Stab (2), 2) >k Qsiab () S.(G/H) induces an isomor-
phism in cyclic homology.

Proof. Since both S, (Stab (2)) and S, (G/H) are k(Stab (2))-projective resolu-
tions of k, the Hochschild homology of both sides is H,(Stab (2), k), and p induces
an isomorphism on Hochschild homology since the inclusion map induces a chain
lift of the id,. O

PROPOSITION 2. Let z € G, then Stab (2) = C;(z2)H/H < G/H, where Cg;(2)
denotes the centralizer of z in G.

Proof. Immediate. O

Combining the above maps we obtain the following. Let {z} be a set of

representatives of the G-conjugacy classes of G. For each z € {z} we have a map of
cyclic k-modules

p.: % (Co(2)H/H, Hz) > Z ,(kG, kH)

given by 1® %y, ..., %) =X, 12 ® x5 ' %, ® - - ® x,7 1, x,,.
The above results give

PROPOSITION 3. Let H be normal in G, then the map

Dp.:Y 2 . (Cs(2)H/H, Hz) > Z ,(kG, kH)

induces an isomorphism on cyclic homology.
Remarks on functoriality. 1t is clear that if f: (G, H) - (G’, H’), then

Z (Co(2)H/H, Hz) —— Z ,(kG, kH)
|7 |/

Z (Co(f)H'|H, H'fz) —2— Z, (kG’, kH’) commutes,

where the map f naturally induces both a map f:G/H —G’/H’ and a map
f:(G)y = (G")y which is f equivariant. Hence we obtain a map f: Stab ()=
Cs(2)H/H — Stab (fz) = C; (fz)H’/H’ inducing the f above. Unfortunately sum-
ming over the G-conjugacy classes is not possible as the map f is in general not
one-to-one. However if we fix the group G and a set of representatives {z} of the
conjugacy classes of G we obtain a well defined natural transformation @ p, of the
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functors & (N) =X Z ,(Cs(z2)N/N, Nz) and Z ,(N) = Z (kG, kN) defined on the
category of normal subgroups of G and inclusion maps and which induces isomor-
phisms in cyclic homology.

We now have all the ingredients for the following

THEOREM. Let N be normal in G and let k be a field of characteristic zero, then

HC,(kG,kN)= @ H,(G.H@®HC,® @ H,G..k

ce TO(N) ce T®(N)
where T°(N) (resp. T (N)) =G-conjugacy classes [z) of G such that Nz is of finite
(resp. infinite) order in G/N, and G, = C;(z)N/(z)N = Stab (2)/(Nz).
Proof. We have seen we can calculate HC, (kG, kN) from the direct sum over
the G-conjucacy classes of the cyclic k-modules & ,(Cs(z)N/N, Nz). We can now

compute the cyclic homology of these cyclic sets as in Marciniak [9] or Burghelea
[4]. O

4. Applications to the traces of projective modules

Let A be a k-algebra. The Chern character is a natural transformation
ch, : K,(A) - HC,(A) which in dimension zero coincides with the Stong-Hattori
trace for finitely generated projective 4-modules. Karoubi [8] has produced a
lifting of ch,, chi:K,(A)—-> HC,, ,(4) commuting with the natural map
S:HC,, ,(4A) - HC,(A). Let S be a k-subalgebra of 4 containing k1,. We have a
natural map HC (A4) - HC (A, S) and we have the

PROPOSITION. The natural map HCy,(A) - HCy(A, S) is an isomorphism.

Proof. 1t is immediate from the definitions that both sides are A/[4, A] and the
induced map is induced from the identity of A. O

Consider the following commutative diagram.
HC,,(A) — HCy,(4, S)
chj l S l S”
ch =
Ky(A) —— HCy(A) ——— HC,(4, S).

Letting (A4, S) be (kG, kN) for N a normal subgroup of G and using the above
theorem computing the cyclic homology of the pair (kG, kN) one sees if one has
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vanishing theorems for some components of HC(kG,kN) one would obtain
vanishing theorems for traces of finitely generated projective kG -modules on certain
conjugacy classes. To this end we recall a theorem of Eckmann, used for the same
purpose in the non relative case. Recall hdy(G) = sup {k | H,(G, A) #0 for some
QG-module A4}.

THEOREM (Eckmann [5]). Let G have hdy(G) =n < o, and suppose G be-
longs to one of the following classes: (a) nilpotent groups; (b) torsion free solvable
groups; (c) linear groups, i.e., subgroups of GL,(F) where F is a field of characteristic
zero; (d) groups of cohomological dimension <2. Then if x is a central element of
infinite order, H;,(G[(x), Q) =0 for j 2 n (n =2 in case d). Using this result we have
the immediate

THEOREM. Let z € G. Suppose AN normal in G such that (i) Nz is of infinite
order in G|N, (ii) hdy(G/N) < oo, (iii) G/N is one of the types (a)—(d), then if P is
any finitely generated projective QG-module r(P), = 0.

Remark. By applying Eckmann’s result directly, i.e., the above result in the case
N = (1), one only obtains Z, _ y, r(P), = 0.

COROLLARY 1. Let G, be the nth term of the lower central series for G.
Suppose z has an infinite order in G|/G,, then for any finitely generated projective
QG-module P, r(P), =0.

Proof. Since G/G, is nilpotent, any finitely generated subgroup is polycylic and
hence has finite Hirsch number. But, on the class of solvable groups, hd,(G) equals
the Hirsch number [11] and therefore since homology commutes with direct limits
and any group is the direct limit of its finitely generated subgroups we have
hdy(G/G,) < oo. Hence the result. O

It is amusing that while the corollary to the last theorem says something about
nilpotent quotients of G, the following result says something about nilpotent
subgroups of G.

COROLLARY 2. Suppose G is a split extension of a finitely generated torsion
free nilpotent group N and an arbitrary group A. If 1 #z € N and P is any finitely
generated projective QG-module, then r(P), = 0.

Proof. N has an embedding in GL,(Z) as a group of unipotent matrices ([13],
p. 23). By a result of Swan [12] (see [13], p. 22), there exists ¢ : G - GL,,(Z) such
that ker (¢) "N =(1). Hence z has infinite order in G/ker ¢ < GL,(Z). Any
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unipotent subgroup of GL,(Z) is conjugate in GL,,(Q) to a subgroup of the group
of upper triangular matrices with diagonal entries equal to one and such a group
has cohomological dimension <n(n — 1). By a result of Alperin and Shalen [1]
G /ker ¢ has finite virtual cohomological dimension and hence hd,(G /ker @) < .
Hence G/ker ¢ is a linear group with hd, < oo and the result follows from the
theorem.

a
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