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Rotation sets and monotone periodic orbits for annulus
homeomorphisms

PHILIP BOYLAND*

Abstract. If fis a homeomorphism of the annulus and p/q is a rational in lowest terms that is contained
in the rotation set of f then f has a (p, g)-topologically monotone periodic orbit. In addition, if f has a
p/g-period orbit that is not topologically monotone then the Farey interval of p/q is contained in the
rotation set of f.

Section 1

There are many theorems which give information about periodic orbits for maps
of the annulus. The Poincaré—Birkhoff theorem implies that an area preserving
homeomophism always has periodic orbits with rotation numbers equal to every
rational number between the rotation numbers of the boundary circles. With the
addition of the monotone twist hypothesis, one gets more information. In this case,
the Aubry—Mather theorem yields the existence of periodic orbits whose radial
order is preserved by the map. Such orbits are called monotone or Birkhoff ([K]).

Using topological techniques Hall showed that whenever a monotone twist map
has a p/g-periodic orbit, it has a monotone p/q-periodic orbit ((H1]). In [H2] he
pointed out the appropriate generalization of this notion to a homeomorphism of
the annulus and asked whether the appropriate version of the Aubry—Mather
theorem for periodic orbits was true in this more general context. Recently, Le
Calvez answered this to the affirmative under the area preserving hypothesis ([LC])).
This paper contains a proof of the general case. In addition, it is shown that if the
homeomorphism has a p/g-periodic orbit that is not “topologically monotone”
then a certain interval depending on simple arithmetic properties of p/q must be in
the rotation set. This second result was proved for monotone twist maps without
the area preserving hypothesis in [Bd1] using Lemma 4 of [B + H].

The main tool used in the proofs is the Thurston—Nielsen theory of surface
automorphisms. The proofs are clarified and simplified by encoding the theorem in
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204 PHILIP BOYLAND

a statement about a partial order on the set of periodic orbits for homeomorphisms
of the annulus. This partial order is the analog of the partial order in Sharkovski’s
Theorem. For background information on this partial order on braid types see [ Bd2].

If p and ¢ are relatively prime integers, define m/n to be the maximum of
{r/s:rls <plq, s <qand (r,s) = 1} and k/I to be the minimum of {r/s : r/s > p/q,
s <q and (r,s) =1}. The Farey interval of p/q is I(p/q) =[m/n, k/I]. The only
property of Farey intervals we will use is that the endpoints of the Farey interval
satisfy mg — pn = —1 and kq — pl/ = 1. The endpoints of the Farey interval are the
last two convergents of the continued fraction of p/q if the last partial quotient is
made equal to one (see [HW], chapter 3). The notation p( /) means the rotation set

of f.

MAIN THEOREM. If f is an orientation and boundary preserving homeomor-
phism of the annulus and p|q € p( f) with p and q positive and relatively prime then
f has a (p, q)-topolagically monotone periodic orbit. If f has a (p, q)-orbit that is not
topologically monotone then I(p/q) < p( f).

Recalling the interpretation of rotation number as a frequency of oscillation,
one could make an analogy between this result and the fact that an oscillating
physical system or field that supports a complicated vibration at a given frequency
must also support the simplest, least excited state with that frequency (cf. [Hg]).

It is natural to ask whether there is a similar theorem about irrational numbers
in the rotation set. One version of this might be: If « is an irrational number with
« € p( f) does f have a minimal set on which the dynamics are semiconjugate to
rigid rotation on a circle? Under the monotone twist hypothesis the answer is yes.
One way to prove this is by taking Hausdorff limits of monotone periodic orbits
((KD.

For a general homeomorphism the answer is no. In [Hn1], Handel constructed
an area preserving, C*-diffeomorphism, A, with an irrational « € p(h) such that
every point with rotation number « is contained in a single minimal set, X. The set
X is the Hausdorff limit of topologically monotone periodic orbits but /4 restricted
to X is not semiconjugate to rigid rotation by « on a circle. The set X is
topologically a pseudocircle. This leads to: What type of minimal sets with rotation
number « must f possess when « is an irrational in the rotation set of f (cf [Bd4])?
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Section 2

We begin with some basic notation and definitions. A homeomorphism f of the
annulus 4 = S' x [0, 1] will always be isotopic to the identity. A lift to the universal
cover A =R x [0, 1] is denoted f, and T : 4 — 4 given by T(x, y) = (x + 1, y) is the
deck transformation. The projection onto the first factor is n, : 4 - R.

Given X% € A we define its rotation number under £ as

p(%,f) = lim

n— oo

nx(fn(f)) — 7Tx(f)
n

if the limit exists. Note that we include the dependence on the lift in our definition
of rotation number. The set of rotation numbers of f is

p(F) = {p(x.]): % € ).

A theorem of Handel ([Hn3]) states that p( f) is a closed set. A periodic orbit, o(x),
is called a (p, ¢)-periodic orbit if its period is ¢ and there are lifts ¥ and f with
T-? f4(%) = %. Note that if x is a (p, q)-periodic orbit there always exists a p’ with
0 < p’/q <1 such that x is also a (p’/q)-periodic orbit.

Remark. One may define the rotation interval for any point X as

, lim sup

n-— oo n

5%, T) = [lim inf

(S"®) —m () . 1 (f*(%) — n,(%)
n— oo n ]
and then define p(f) = | ) (%, ). A theorem of Franks ([F1]) and Handel ((Hn2])
shows that p/q € 5(f) with p and g relatively prime implies that f has a (p, q)-pe-
riodic orbit. Thus 5(f)NQ = p(f) nQ and since p( f) is closed, a simple argu-
ment yields p( f) = p(f).

We next define braid types and the partial order. Fix a copy of the annulus
minus #» interior points and call it 4,. The group of isotopy classes of orientation
preserving homeomorphisms of 4, is denoted G,. The isotopies fix the boundary
setwise but not necessarily pointwise. If f: 4 - 4 is a homeomorphism with a
period n-periodic orbit o(x, ') < Int (4), let A, =4 —o(x,f) and f, =/, . Pick a
homeomorphism 4 : A, — A,, and let [Af,.h~'] denote the isotopy class in G,. Define
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the braid type of o(x, /), denoted bt(x, f ), to be the conjugacy class of [Af. A~ '] in
G,. By passing to the conjugacy class we have made bt(x, ) independent of the
choice of homeomorphism 4. For o(x, f) contained in a boundary circle of A4, we
have to modify the definition of braid type slightly. If, for example,
o(x,f)=S'x {1} welet A =S" x [0, 1 + ¢] for some ¢ >0 and choose /: 4 - 4, a
homeomorphism extending f. Define bt(x, f) = bt(x, f) and note that this is inde-
pendent of the choice of the extension. The set of all possible braid types on the
annulus is called BT. Given a homeomorphism f: A — A4 define its set of braid types
as bt( f) = {bt(x,f}: o(x, f) is a periodic orbit}.

We define a relation on BT as follows. If «, f € BT, a =  if and only if
o € bt( f) implies B € bt( f) for all homeomorphisms f. The first proposition says
that this relation is, in fact, a partial order. This is stated without proof in [Bd2].
It relies on a result of Brunovsky [Br] which says that, given N >0, an isotopy
between Kupka—Smale diffeomorphisms f, and f; can always be approximated by
a diffeotopy with the property that all orbits of period less than N undergo only
saddle node and flip bifurcations. Further, all bifurcations involving orbits of
period less than N occur at a finite number of distinct parameter values.

PROPOSITION 1. The relation (BT, <) is a partial order.

Proof. 1t is obvious from the definition that « <« and that « <f and g <y
implies o < y. We must therefore show that « <  and f < « implies a = . For this
it suffices to show that a« = f and o # B implies the existence of some f with
Bebt(f) but a ¢ bt(f), i.e. f #a.

Using standard constructions (e.g. section 6 of [F3]) we may find Axiom A (and
thus Kupka—Smale) maps f, and f, with o ¢ bt(f,) and B ¢ bt( f;) and B € bt(f)).
Let N be larger than the period of « or . Use Brunovsky’s theorem to obtain a nice
diffeotopy, f,, between f, and f,. Now let puo=inf {u: o € bt( f,) or p e bt(f,)}.
There must be a bifurcation occurring for f, . If this bifurcation is a saddle node,
then the two orbits created as u increases have the same braid type which must be
p as a = p. If the bifurcation is a flip, then the orbit that persists through the
bifurcation was present for u < y, and thus cannot have type « or . The doubled
orbit must therefore have type f. In either case, picking ¢ > 0 small enough to that
no bifurcation of period less than N happens between u, and u,+ 2¢, we have
B ebt(f,,+) but a¢bt(f, ... O

Since a braid type is essentially an isotopy class, in order to understand this
partial order one needs a good understanding of isotopy classes on surfaces. This is
provided by the Thurston—Nielsen Theory (see [T) or [FLP] for more details). This
theory provides a “prime decomposition theorem” for isotopy classes. If a class is
irreducible, it is either finite order or pseudo-Anosov. In the first case there is a map
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¢ in the class that satisfies ¢” =id for some n. In the second case, there is a
pseudo-Anosov map ¢ in the isotopy class. As the Thurston type of an isotopy class
is unchanged by conjugacy, it makes sense to speak of reducible, irreducible, finite
order and pseudo-Anosov braid types.

Following Handel ((Hn3]) we say that a map is “pseudo-Anosov relative to a
finite invariant set K if it satisfies all the properties of a pseudo-Anosov homeomor-
phism except the associated stable and unstable foliations may have 1-pronged
singularities at points in K. Note that these maps are the same as the “generalized
pseudo-Anosov maps” of Geber and Katok ([GK]).

There are several features of pseudo-Anosov maps that will be important here.
The first two follow from the existence of a Markov partition ([FLP], exposé¢ 10).
First, pseudo-Anosov maps have finitely many periodic orbits of each period and
second, each point is nonwandering under iteration. Another useful property is that
¢"(I') # T for all n #0 when I' is any homotopically nontrivial simple closed curve
that is not boundary parallel ((M] and [HT]). This implies that if ¢ : 4 > A4 is
pseudo-Anosov rel a periodic orbit, o(x, f), and y is a simple arc connecting two
points on o(x, ), then ¢"(y) %y for all » #0. One can see this by choosing a
smooth model for ¢ (using [GK]), blowing up the points of o(x, /) to boundary
circles (see [Hn4]) and then observing that the behaviour of y under iteration is
easily understood by examining the behaviour of a simple closed curve I" obtained
from y as shown in figure 1.

A braid type, S, is said to be of type (p, ¢) if one (and hence all) periodic orbits,
o(x, f), with bt(x, f) = f are of type (p, q). If B is a pseudo-Anosov ( p, g)-braid type
we say that the map ¢ with lift ¢ represents p if ¢ : A — A has a periodic orbit, o(x),
with bt(x, ¢) = and T-?P%X) = % for any lift ¥ of x and ¢ is pseudo-Anosov
rel o(x). Handel has shown ([Hn3]) that p(¢) is a closed interval (closely related
results were proved by Fried [Frl], Lemma 3 and [Fr2], Theorem 4). We may

Figure 1
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thus define the rotation interval of B as pi(f) = p(¢). Since any two isotopic
pseudo-Anosov maps are conjugate ([FLP)], exposé 12), this definition is indepen-
dent of the choice of ¢, however, it does depend on the choice of ¢. More precisely,
it depends on the fact that we have treated f as a (p, q)-braid type and ignored the
fact that B is also a (p + kg, g)-braid type for any k € Z. To avoid this ambiguity
we shall always assume that the p and g in the notation “(p, ¢)-braid type” and
“(p, 9)-perodic orbit” satisfy 0 <p/q < 1.

Braid types will be used to define the notion of a topologically monotone
periodic orbit. If T, : 4 > 4 is defined by z — z + (p/q, 0), let T,,: A — A be the
projection. Define a,, € BT to be the braid type of a periodic orbit of 7,,. A
periodic orbit is topologically monotone if bt(x, f') = a,,. One can check that if f
is monotone twist, a periodic orbit is topological monotone if and only if it is
Birkhoff in the usual sense ([H2]). For the braid type a,,, we define pi(x,,) = p/q.

The next proposition collects together some useful properties of the objects we
have defined. Parts (1) and (2) are essentially folklore. They are contained in [Bd3]
and were also known to Smillie. However, they do not seem to have a published
proof.

PROPOSITION 2. Let B € BT be a (p, q)-braid type with p and q positive and
relatively prime then

(1) B is irreducible.

(2) B=ua,, if and only if B is finite order.

(3) B ebt(f) implies pi(B) < p(f).

(4) If B is pseudo-Anosov and ¢ represents B then bt(¢) = {0 € BT: 0 < B}.

Proof. (1) Assume that p is reducible. This implies the existence of a home-
omorphism ¢ : 4 - A with a periodic orbit o(x, ) with bt(x, ) = B and a family
of simple closed curves I' = {I',, ..., I', } that are pairwise disjoint and nonhomo-
topic and satisfy ' € 4 —o(x,f) and Y(I') =TI. In addition, if D, is the disk
bounded by I';, D; contains at least 2 but no more than g — 1 elements of o(x, f).
Renumbering if necessary, let I'; be such that x e B, and I''nB, =9 if i #1.

Let 0, denote the inner boundary of A. Now if d, was contained in B, then since
¥(0,) = 0, we would have y(B,) = B, and thus o(x, ¥) < B,, a contradiction. We
may therefore lift B, to a compact B < 4. If we let k be the least positive integer
with y*(I';) = I'y, then Y*(B) = B + (m, 0) for some integer m. It is easy to see
that this implies that p(x, §) = m/k. But since x is (p, ¢)-periodic for ¥, p/q = m/k
and thus since p and q are relatively prime, ¢ = k. But using the definition of &, this
implies that o(x, ¥) n B, = x, a contradiction.

(2) Once again, let Y : 4 >4 be a homeomorphism with a periodic orbit
o(x, ) with bt(x,y) =p. If p =a,, then Y9 ~id rel o(x, ), and thus B is finite
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order. On the other hand, if f§ is finite order, we may find a y that represents g with
Y?=1id. If we let D denote the disk obtained by collapsing the inner boundary of
A to a point, the induced map y': D — D is a homeomorphism that satisfies
¥’?=1id. Using a theorem of Brouwer ([ Bw]), Karekjarto ([Kj]) and Eilenberg ([E})
this implies that ¥’ is topologically conjugate to R,, and thus f =a,,.

(3) This is a direct consequence of Proposition 1.2 of [Hn3].

(4) This is a direct consequence of the application on page 531 of [TH]. O

Section 3. The main result on (BT, <) is
THEOREM 1. If B is a (p, q)-braid type then B = o,,,. Further, if B #a,, then
I(p/q) < pi(B).

The main theorem stated in the introduction is an easy consequence of Theorem
1, the definition of < and Proposition 2. For the proof of Theorem 1 we shall need
the following lemma. Its proof came from a discussion with John Franks.

LEMMA 1. If f: A — A is an orientation and boundary preserving homeomor-
phism with fT = Tf and 0 ¢ convex hull (p( f)) then A|f is an annulus.

Proof. A theorem of Franks ([F1]) states that if f has a nonwandering point it
has a fixed point. Thus 0 ¢ p(f) implies that given x € 4 there exists an ¢ >0 so
that for all n # 0, f"(B,(x)) N B.(x) = 0. This gives charts for 4/f.

The main work lies in showing that 4 /fis Hausdorff. For this we must show that
given x and y ¢ o(x, f), there exists ¢ > 0 so that f"(B.(x)) nf™(B.(y)) = 0 for all m
and n. Equivalently, B,(y) nf"(B,(x)) = ¢ for all n. We assume that p(f) < (0, o)
(the other case being similar) and claim there exists an M such that for all z and
In| > M,

[ (f(2)) — 7 (2)] > 2.

This claim easily implies that for any € < 1/2 and |j| > M, B,(y) nf?B,(x)) = . While
for |j| < M, continuity and the fact that x ¢ o(y) imply that there exists an ¢ < 1/2
with f/(B,(x)) nB,(y) = 0. Thus granted the claim we are done.

To prove the claim, note that p( f) = (0, o) implies that there exists a 4 > 0 so
that for any z € 4 there is an N’(z) so that

nx(fn(z)) - 7l"x(z) >3

n
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for all » 2 N’(z). Thus using continuity, there exists &z) and N(z) so that
d(y, z) <¢&(z) implies

1 (SYO(P) — 1) = Dy, fN) > 2.5,

Thus using compactness, there are z;, ¢; and N, for i=1,...,k so that | ) B,(z,)
covers [0,1] x[0,1] =4 and x € B, (z;) implies that D(z, f") > 2. Let B, (z;) = B..
Now let N =max {N,;} and C =sup {D(z,f/):0<j<N and ze 4}. Since
Tf =fT and A4 is compact, C is finite. Pick m > max {C, 2} and let M = mAN.
Given z and n > M, let i, be so that z € B, and let z, = f™io(z). Next let i, be so
that z, is contained in an integer translate of B; and let z, = f"1(z,). Continue until
i, which satisfies

k—1 k
Y, Ny<n but ) N, 2n.

=1 I=1

Define j by j =n—Xf_! N,. We then have

i
D(Zafn) =D(Zsti°) + - +D(Zk_1,fN’k“) +D(Zk,fj) >2m—-C>?2

which proves the claim.
Thus A/f is a compact surface. Its easy to check that its first homology is Z and
so its an annulus. O

Proof of Theorem 1. We prove the second assertion first. By virtue of Proposi-
tion 2(1) and (2), B is pseudo-Anosov. Let ¢ and ¢ represent f with bt(x, ¢) = B.
If we let I(p/q) = [m/n, k/I] then since pi(f) is a closed interval, it suffices to show
that {m/n, k/lI} € p(P).

We proceed by contradiction and assume that m/n ¢ p(@), the case k/I ¢ p(§) is
similar. By Lemma 1, A/¢”T "™ is an annulus which we denote B. Let X = 4 be the
total lift of o(x, ¢). Because o(x, ¢) is of type (p/q), the elements of X can be
labeled as {%;} which satisfy ¢(%,)=%,,, and T(%) =%_,. Since m/n is an
endpoint of the Farey interval of p/g, mg —np = —1 and so ¢"T"(x;) = X, ;.
Thus if n : 4 — B is the projection, n(X) is a single point.

Because T and ¢ commute, T~?¢7 induces a map on B, which will be denoted
Y. It is clear that y(n(X)) = n(X). As is well known, since n(X) is a single point and
¥ is orientation preserving this implies that  ~id rel n(X) (where, as above, we
allow isotopies that may not fix the boundary pointwise). One way to finish the
proof is to obtain a contradiction using results of Fried which show that ¥ is flow

equivalent to ¢ ([Fr3], pp. 561-562) and is thus psuedo-Anosov ([Fr4], Lemma on
Page 261). A direct proof can be given as follows.
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Let 7 : [0, 1] = A4 be a simple arc connecting X, to %, with §((0, 1)) N X = @. Since
¢ and thus ¢7 is pseudo-Anosov, then using the remarks before Proposition 2,
T ~7¢(5) is not isotopic to 7 rel X. On the other hand, if y is the projection of 7 to
B, then since ¥ ~id rel n(X), we have y(y) ~ y rel (X). Lifting this isotopy to A4 yields
a contradiction.

To prove the first assertion of the theorem, we may assume B # a,,, and thus it
is pseudo-Anosov. Let ¢, ¢ and x continue to be as in the first paragraph of the
proof. By the second assertion of the theorem which we have just proved, p/q is in
the interior of p(¢). Further, as noted in Section 2, ¢ has finitely many periodic orbits
of each period and each point of 4 is nonwandering under ¢. Under these
hypotheses, Theorem 3.3 of [F2] implies that ¢ has at least two (p, g)-periodic orbits
in the interior of 4 with nonzero Lerschetz index. One of these orbits might be o(x)
(actually not, see remarks after the proof) and we denote the second by o( ).

Since o(y) is a periodic orbit of a pseudo-Anosov map by Proposition 2(4),
bt(y,¥) < bt(x ). On the other hand, an argument using Brunovsky’s theorem
similar to the proof of Proposition 1 shows that for each braid type y, there is a
diffeomorphism of the annulus with only one periodic orbit of braid type y. Thus,
in particular, bt(x, ¢) # bt(y, ¢). Summarizing, we have shown that if f is a
pseudo-Anosov (p, g)-braid type then there is another (p, ¢)-braid type y # B with
y < B.

Now let S ={o € BT: ¢ is of type (p,q) and ¢ < f}. As noted in Section 2,
pseudo-Anosov maps have only finitely many periodic orbits of each period. Thus
using Proposition 2(4), S is finite. Let « € S be minimal in S, i.e. it satisfies y < «
implies y =a for any y € S. Using the result of the last paragraph, a is not
pseudo-Anosov so by Proposition 2(1) and (2), it is finite order and a =a,,. [

Remarks

(1) With reference to the 5th paragraph of the proof, we can apply the
Euler—Poincaré formula to the invariant foliation of ¢ (after blowing down the
boundary circles to points). This yields £ 2 — p = 2y(S?) = 4 where the sum is over
the singularities of the foliation and p is the number of prongs at the singularity
([FLP], pg. 75). Since o(x) is a periodic orbit, all the singularities at points of o(x)
must have the same number of prongs. There must be only one prong to obtain
X 2 — p =4. On the other hand, the Lefschetz index of a one-pronged singularity
that is fixed by a pseudo-Anosov map must be zero. Thus both the periodic orbits
given by Franks theorem are different from o(x).

(2) The proof given above of the second assertion of Theorem 1 was inspired
by the alternative characterization of flow equivalence given on page 561 of [Fr3].
The proof given has the merit of being somewhat self-contained. Also, Lemma 1
perhaps has some independent interest.
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Figure 2. The braid type f3)s.

One can also obtain the result directly using flow equivalence. Briefly, the
fact that m/n ¢ p(¢) implies that the cohomology class u € H'(M,) given by
u(av, + bv,) = na — mb is strictly positive on the homology directions of ¢. (Here M. ,,,
is the suspension manifold of ¢ and H,(M,) has generators v, in the annulus
direction and v, in the flow direction.)

This implies (Theorem D of [Frl]) the existence of a cross section to the
suspension flow that represents u. The value of the cohomology class just represents
the number of intersections of a homology class with the cross section. Thus, the fact
that mg — np = 1 means that the suspension of o(x) hits the cross section in just one
point. The return map to this cross section is conjugate to the map ¥ in the proof.

(3) The inclusion I( p/q) < pi(B) is, in general, the best one can do. There is a
braid type with I(p/q) = pi(B). Define B, to be the braid type obtained by rigidly
rotating by p/q and then doing a Dehn twist around two adjacent points on an
orbit. (See figure 2, the arcs between points are included to indicate the action of
the complement of the orbit). The braid type B, is the same as ot(m/n, k/I) given
in [Bd2] (where I(p/q) =[m/n, k/l]). For this braid type one can compute an
invariant train track and compute that p(¢) = I(p/q) directly.
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