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Immersions tendues de surfaces dans E3

François Haab

1. Introduction

Une immersion lisse / : M -? E3 d&apos;une surface compacte M sans bord de

caractéristique d&apos;Euler #(M) dans l&apos;espace euclidien à 3 dimensions E3 est tendue

(tight) si la courbure totale absolue (normalisée) de/

1/2* f
JM

atteint l&apos;infimum 4 — %(M) (pris dans l&apos;espace des immersions de M).
Une application continue (en particulier une immersion) d&apos;une surface M dans

E&quot; est tendue si elle satisfait la TPP propriété de Banchoff exigeant que la préimage

f~l(H) de tout demi-espace H de E&quot; soit connexe.
Nicolaas Kuiper [17, 18] inaugura en 1960 l&apos;étude des immersions tendues dans

E3 établissant:

(1) Toutes les surfaces orientables et les surfaces non orientables de caractéristique

d&apos;Euler strictement plus petite que-1 possèdent des immersions tendues dans
E3.

(2) Le plan projectif P2 et la bouteille de Klein K2 font exception en ne se

laissant pas immerger différentiablement de façon tendue dans E3.

Dans ce travail nous résoudrons la conjecture de Kuiper pour l&apos;unique surface

restante, celle de caractéristique-1 obtenue en attachant une anse d&apos;indice 1 à P2.

THÉORÈME A. Le plan projectif avec une anse ne possède pas d&apos;immersion

tendue dans l&apos;espace à trois dimensions E3.

La courbure totale absolue t(/) de toute immersion/du plan projectif avec une
anse est donc plus grande que cinq; l&apos;infimum de t(/), égal à cinq, n&apos;est jamais
atteint.

Kuiper a établi [20] qu&apos;il n&apos;existe même pas d&apos;immersion continue tendue de P2

et K2 dans E3.
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La classe des applications localement C°°-stables au sens de Thom est un peu
plus grande que celle des immersions. Par exemple une application localement
C°°-stable d&apos;une surface dans E3 est une immersion excepté en un nombre fini de

parapluies de Whitney. Toutes les surfaces, en particulier les trois exceptions P2, K2

et P2#K2, possèdent [19] des applications tendues C°°-stables dans E3.

Dans cet article nous utiliserons notamment des notions de théorie de Morse, de

singularités d&apos;applications stables dans le plan et de &quot;top-cycles&quot; de Kuiper.
Nous étudierons les profils (contours apparents) des immersions tendues. Nous

chercherons ensuite des obstructions à la factorisation d&apos;applications stables
tendues F : M -&gt; E2 par des immersions tendues / : M -» E3 suivies de projections
orthogonales pour obtenir le théorème A.

Je tiens à remercier Nicolaas Kuiper et Paulo Sad de l&apos;intérêt manifesté à ce

travail, en particulier de leurs nombreuses suggestions qui ont permis de clarifier la

présentation des résultats. Je remercie également l&apos;IMPA pour son hospitalité
durant l&apos;élaboration de parties substantielles de ce travail.

2. Définitions et résultats connus

La théorie de la courbure totale absolue ([25], p. 98) fournit l&apos;inégalité t(/)
(l/2n) JM \K\ dA &gt; 4 — x(M) où K désigne la courbure de Gauss de/. Les immersions

pour lesquelles nous avons égalité sont appelées tendues (l&apos;infimum est [24]
égal à t(/) sur n&apos;importe quelle classe d&apos;homotopie régulière d&apos;immersion

/ : M -&gt; E3). Cette définition est la première d&apos;une série de conditions équivalentes.
Nous rappelons d&apos;abord en (1) et (2) deux autres définitions de t(/). Les

définitions (4) et (5) formulées sans hypothèse de différentiabilité sont équivalentes
dans ce contexte. Pour les surfaces immergées toutes ces définitions sont équivalentes.

Le livre [7] est une bonne introduction aux différentes caractérisations des

immersions tendues.

(1) Notons que dans le cadre de la théorie des variétés différentiables sans bord
immergées dans En, on peut définir t(/) comme suit pour une immersion

/: M -?E3. Le fibre en sphère E(M) des vecteurs unités normaux à M (localement
M est identifiée à f(M) car/est une immersion) n&apos;est rien d&apos;autre que le revêtement
orientable à deux feuillets de M. Rappelons que l&apos;application de Gauss
G : E(M) -&gt;S2 envoie un point Ç € (TXM)± pour un certain x e M sur le vecteur
parallèle à Ç passant par l&apos;origine. La courbure totale absolue (de Lipchitz-Killing)
est la moitié de l&apos;aire totale sur la sphère S2 couverte par l&apos;image de l&apos;application de
Gauss.

(2) La projection orthogonale z* sur la droite parallèle àzeS2 induit pour
presque tout z e S2 une fonction hauteur A2 z*o/:M-»R non dégénérée. Soit
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\iz fi(hz) son nombre de points critiques. La courbure totale absolue est la valeur

moyenne (expectation value e) t(/) eznz.

(3) Une immersion /: M -* E3 est tendue si, et seulement si, toute fonction
hauteur de Morse (obtenue à partir de l&apos;immersion/par projection) est polaire, i.e

possède un seul maximum et un seul minimum. Rappelons que presque toute
fonction hauteur est de Morse.

(4) Une application continue / : M -&gt; E3 est tendue si, et seulement si, la

préimage f~\H) de tout demi-espace fermé (ou ouvert) H de E3 est connexe (TPP
propriété de Banchofï).

(5) Une application continue/: M-&gt;E3 est tendue si, et seulement si, l&apos;homo-

morphisme induit en homologie de Cech H*(f~l(H), ^2) -&gt;//*(M, 22) est injectif
pour chaque demi-espace H.

Un plan îtcE3 passant par/(x) est un support {global) de f(M) au point x, si

/(M) est entièrement contenue dans un des demi-espaces déterminés par n. Un plan
n passant par f(x) est un support local de f{M) en x, s&apos;il existe un voisinage U de

x tel que/(£/) est contenue dans un des demi-espaces fermés déterminés par n et si

f(dU) est à l&apos;intérieur de ce demi-espace.

Enonçons une propriété des immersions tendues équivalente à la définition, ceci

dans le cas d&apos;un plongement.

LEMME 2.1. Si une immersion /: M -»E3 est tendue, tout plan support local de

f(M) est un support global de f(M).

Soit X cz E3, notons 2tf(X) le plus petit fermé convexe qui contient X. Le bord
dJf(X) de la fermeture convexe est appelé enveloppe convexe de X. Un &quot;top-set&quot; est

la préimage Tz de la valeur maximale d&apos;une fonction hauteur hz : M -? R, z e S2.

L&apos;étude des &quot;top-sets&quot; T2, en particulier ceux dont la fermeture convexe J^f(Tz) est

un disque fermé 2-dimensionnel, est essentielle pour la compréhension des immersions

tendues. Rappelons [17] que si/est tendue et Jfff(Tz) 2-dimensionnelle, alors

dJff(Tz) e/(r2) et/restreint à y =f-\dJff(Tz)) est un plongement. De plus si le

disque J^f(Tz) n&apos;est pas entièrement inclu dans f(Tz), y ne sépare pas M. Les

courbes y intéressantes sont exactement celles qui ne séparent pas M, comme par
exemple le cercle inférieur on supérieur d&apos;un tore de révolution. La courbe y est

appelée un &quot;top-cycle&quot; lorsqu&apos;elle ne sépare pas M. Un &quot;top-cycle&quot; n&apos;est donc pas
homologue à zéro. En outre son voisinage tubulaire est orientable. Nous pouvons
maintenant énoncer un théorème de structure dû à Kuiper [17].

LEMME 2.2. Soit f:M-+E3 une immersion tendue d&apos;une surface compacte
connexe sans bord M non homèomorphe à S2. M est alors la réunion de deux ouverts
non vides disjoints M+ et M~ et d&apos;un nombre fini de &quot;top-cycles&quot; yx,.. yk tel que:
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(a) /restreint à M+ est un plongement sur le complément, dans dJff(M), d&apos;un

nombre fini de disques plans fermés convexes Dï9. Dk où

y,=f-l(dD,), i l,...,*.

(b) La courbure de Gauss K est non négative sur M+ et non positive sur M~.

Deux &quot;top-cycles&quot; yx et y2 d&apos;une immersion tendue (différentiable) sont des

courbes disjointes car en un éventuel point commun x€yxny2 l&apos;unique plan
tangent en f(x) devrait coïncider avec les plans distincts qui supportent les images
des deux &quot;top-cycles&quot;, les images de &quot;top-cycles&quot; distincts étant toujours supportées

par des plans distincts. Kuiper utilise le fait qu&apos;il existerait exactement 1 (resp. 2)
&quot;top-cycle&quot; pour réfuter l&apos;existence d&apos;une immersion tendue du plan projectif (resp.
de la bouteille de Klein) dans E3. Le nombre de &quot;top-cycles&quot; d&apos;une immersion

tendue/: M-»E3 satisfait certaines restrictions [6].

THÉORÈME 2.3. Le nombre a(/) de &quot;top-cycles&quot; d&apos;une immersion tendue

/: M-»E3 d&apos;une surface connexe sans bord satisfait aux inégalités suivantes:

(a) Si M est orientable de genre g &gt; 1, alors 2 &lt; a(/) &lt; 2 — x(M) 2g. Toutes

ces valeurs de a(/) peuvent être atteintes.

(b) Si M est non orientable, alors 2 ^ a(/) ^ 1 - %(M).

COROLLAIRE 2.4. Une immersion tendue du plan projectif avec une anse

possède exactement deux &quot;top-cycles&quot; y, et y2.

Cecil et Ryan ont montré en outre qu&apos;une immersion tendue d&apos;une surface de

caractéristique impaire x{M) &lt; — 1 possède 1 — x(M &quot;top-cycles&quot;, si et seulement
s&apos;il existe une immersion tendue de P2 # K2 dans E3. Ainsi admettant le théorème A
nous obtenons:

(bl) Si M est non orientable et x(Af) impaire, alors 2 ^ a(/) ^ —

(b2) Si M est non orientable et /(M) paire; alors 2^a(/) ^ 1—

Toutes ces valeurs de a(/) peuvent être atteintes.

3. Le contour apparent des surfaces immergées de façon tendue dans E3

Soit En R&quot; l&apos;espace euclidien à n dimensions muni d&apos;un produit scalaire et de

la structure compatible d&apos;espace vectoriel avec une origine O. Notons nz : E3 -? E2 la
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projection orthogonale sur le plan E2 orthogonal à z e S2 et passant par l&apos;origine O,

y*:En-~*R la projection orthogonale sur la direction parallèle à yeSn~l et

hy y* o/la fonction hauteur dans la direction dejeS&quot;&quot;1 associée à l&apos;immersion

/: M-^E&quot;. Crit(hy) désignera l&apos;ensemble critique de hy.
Une application F : M -&gt;E2 est excellente (2-générique) si tous ses points

critiques sont du type pli ou cusp. L&apos;ensemble critique I{F) c M est alors une
union de cercles plongés. F|Z(F) est une immersion sur l&apos;ensemble EU0(F) c M des

points de type pli. L&apos;ensemble £U(F) des points cuspidaux est fini et les images par
F des points de cusp sont les points de rebroussement de F(I(F)).

DÉFINITION 3.1. Lorsque F:M-&gt;E2 est 2-générique, l&apos;image du pli
I(F) {Ct}{^0 s&apos;appelle le contour apparent de F. Le contour apparent de F est

monotone s&apos;il possède une composante F(C0) convexe (par rapport à F{M)) et si les

restrictions F\Ct (i &gt; 0) sont des immersions localement concaves (par rapport à

THÉORÈME 3.2. Soit une application 2-générique F&apos; : M&apos; -&gt; E2, le contour
apparent de F est monotone si et seulement si F est tendue, i.e satisfait la TPP propriété.

Preuve. Nécessité: Supposons par l&apos;absurde que F : M-+E2 n&apos;est pas tendue. Il
existe un demi plan H {y e E2 \ z*(y) &gt; c} dont la préimage F~l(H) possède au
moins deux composantes connexes Ul et U2. La fonction hauteur z* o F possède un
maximum local dans chacun des £/,; ils appartiennent à F(IU0(F)). La courbe

F(IU0(F)) est localement convexe par rapport à F (M) au voisinage de la préimage
de la valeur maximale de z* o F\v(i 1, 2). La composante Co du pli possède donc
deux maxima locaux de z* o F. Ainsi F(C0) n&apos;est pas convexe. Contradiction.

Suffisance: Tout &quot;top-set&quot; Tz est connexe (car il satisfait (7.10 [7]) la TPP
propriété) et appartient à Zh0(F). Il est donc immergé dans une droite (z*)~l(c),
par conséquent plongé sur un ensemble convexe (point ou segment). L&apos;union des

&quot;top-sets&quot;, F~l(dJtF(M)), est un cercle plongé sur la courbe convexe ôJfF(M).
Ce cercle est une composante, notée Co, du pli de F. Si M /S2, considérons un
point x e Il0(F)\C0 et un voisinage connexe Ux de x sur lequel F est équivalent à

la forme canonique (jc,y)h+ (x,y2). Exigeons que Z(F)nUx soit connexe. Aucun
segment de droite [ji,}^] CE2 avec ses extrémités sur F(I(F)nUx) ne divise
F(UX), car F satisfait la TPP propriété. L&apos;intersection de [yx, y2] avec F(I(F) n Ux)
se réduit à {yi&lt;uy2}. Le contour apparent est donc localement convexe. Il est

concave relativement à l&apos;intérieur de F(UX), x eIU0(F)\C0 vu que F est tendue.

Presque toute projection orthogonale n2 :E3-+EZ d&apos;une application C°°-stable
tendue d&apos;une surface dans E3 est 2-générique tendue dans Ez. Toute surface M
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possède ainsi par [19] des applications 2-génériques tendues dans E2. Les figures 1,

3, 4 et 5 représentent le contour apparent d&apos;applications tendues de surfaces de

caractéristique 1, —1 et —3 dans le plan.
Introduisons quelques notations pour énoncer un résultat de Levine [22]

déterminant le genre de la surface M à partir de l&apos;image du pli de F.

Soit C une composante connexe de Z(F), F 2-générique, g F\c est une
immersion excepté aux points cuspidaux. La composée de h g&apos;/\g&apos;\: C\IlA(F)
-?S1 et de l&apos;application de S1 dans S1 el0\-+e2ie s&apos;étend différentiablement en une

application kc : C -* S1 pour chaque composante connexe C de IÏ(F). Orientons les

courbes Ct de Il(F) de façon que l&apos;image F (M) de la surface se trouve à gauche de

l&apos;image de la courbe de pli F(El(F)) pour définir le degré r(Ct) de kC[. Notons
k : El(F)-&gt;Sl l&apos;application égale à kC[ sur chaque composante Ct de Il(F). Le

degré de k est la somme des degrés des kCr

THÉORÈME 3.3. Soit F : M-+E2 une application stable (ou simplement 2-

générique) d&apos;une surface compacte sans bord dans le plan, le degré de k égale la

caractéristique d&apos;Euler de M.

COROLLAIRE 3.4. Si M est une surface différente de S2, le contour apparent
d&apos;une application 2-générique tendue F : M -&gt; E2 possède de 2 à 3-#(M) composantes
connexes. Le degré r(C,) de kCi est un entier strictement négatif pour toutes les

composantes C, du pli Zl(F), exceptée celle dénommée Co dont Vimage F(C0)
constitue Venveloppe convexe de F(M). Son degré r(C0) — 2, en outre

Preuve. Comme le contour apparent de F est monotone et vu le choix de
l&apos;orientation des composantes de pli Cn le degré r(Ct) est strictement négatif si

/ &gt; 0. Le degré r(C0) de kCo est 2 car F(C0) est convexe (se rappeler que
k =h o (et0 \—&gt; e2ie)). Le pli I(F) possède donc vu 3.3 au moins 2 et au plus
3 — %(M) composantes connexes. De plus

X (l))YJ(l)X() D
(C,)&gt;0 /

Réservons le mot profil pour le contour apparent d&apos;une application 2-générique
Fz nzof obtenue en composant une immersion /:M-&gt;E3 et une projection
nz:E*-&gt;Ez.

Soit / : M -&gt; E3 une immersion d&apos;une surface compacte connexe M sans bord
dans E3. L&apos;application composée Fz nz o/est 2-générique pour presque toutes les

directions de projections z e S2 (Choisir un atlas de M tel que sur toute carte la
restriction de / soit un plongement et appliquer [23]).
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COROLLAIRE 3.5. Sif:M-+E3 est une immersion tendue, Fz=nzof est

nécessairement tendue. Ainsi, pour presque tous les z e S2, Fz est 2-générique tendue.

Dans ce cas son profil Fz(Il(Fz)) est monotone et satisfait les propriétés de 3.4.

COROLLAIRE 3.6. Soit f:M-&gt;E3 une immersion tendue; y,zeS2 des

points pour lesquels Fz =nz of et Fy ny °/ sont des applications 2-génériques

et x =y az e S2nEyr\Ez. L&apos;ensemble Crit (hx) Il(Fy) nIl(Fz) possède alors
4 — x(M) composantes connexes homéomorphes soit à un point soit à un intervalle

fermé.

Preuve. Par monotonicité du contour apparent de Fy la somme

^ctczii(F KQ)!» Qui Par 3.4 est égale à 4 — x(M), compte le nombre de composantes

connexes de l&apos;ensemble critique de hx pour tout x e Ey.

Soit F Fz =nz of 2-générique, la normale à la surface en/(/?) ef(Ih0(F)) et

z g S2 déterminent un plan dont l&apos;intersection avec la surface immergée f(M) est

une courbe lisse au voisinage de/(/?). La courbure de cette courbe enf(p) est la

courbure transverse k0(p). La courbure du profil en F(p) e F(IU0(F)) est la

courbure radial kc(p).

LEMME 3.7 (formule de Koenderink [12]). Dans la situation décrite ci-dessus

K{p) kc(p)k0(p) et ke(p)*0.

COROLLAIRE 3.8. Soit une immersion f : M -&gt;E3, choisissons zeS2 tel que
F Fz nz of soit 2-générique et y e Ez. La fonction hy est de Morse si et seulement

si y* o F\z\in est de Morse. Elles possèdent les mêmes points critiques.

Preuve: Rappelons que p est un point critique non dégénéré de hy (resp. de

y* °F\zHn) s* et seulement si K{p) (resp. kc{p)) est non nulle. La formule de

Koenderink permet alors de conclure.

4. Fonctions de Morse et fonctions minimalement dégénérées sur les surfaces à bords

Une fonction réelle ç sur une variété à bord (M, ÔM) est une fonction de Morse
possédant la propriété B si:

(1) &lt;p\j&amp; est de Morse.

(2) cp ne possède pas de points critique sur dM.
(3) ij/ q&gt;\dM est une fonction de Morse sur dM.
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Un point critique p de \j/ est {+)-critique (resp. (-)-critique) si gradp&lt;p entre
dans M (resp. sort de M). Le nombre de Morse augmenté d&apos;indice k, noté fik9 est la

somme du nombre fik((p) de points critiques d&apos;indice k de q&gt; dans M et du nombre
de points (-h)-critiques de ifr d&apos;indice k.

LEMME 4.1. Les inégalités de Morse restent [5] valables pour les nombres de

Morse augmentés. En particulier

Soit M une surface compacte connexe et cp : M -? R une fonction de Morse qui
possède la propriété B si dM ^0. Nous notons M^^ a] la partie (p~l( — co,a] et

Ma le bord de M(_oo a]. Observons que Ma coïncide avec le niveau cp~l{a) lorsque
dM 0 et que M(_o0 a] peut être une surface à coins si dM=£0. Si a est une valeur

régulière de cp, Ma est une sous-variété à coins de dimension 1 de M.
Considérons d&apos;abord &lt;p avec un point critique (ou (+)-critique) d&apos;indice 1 dans

Ma_e. Passer un point critique (ou (-h)-critique) d&apos;indice 1 de Ma, c&apos;est effectuer

[4] une chirurgie d&apos;indice 1 sur Ma_e.
Nous distinguons trois cas:

Cas l-&gt;2: Deux composantes connexes de Ma_e sont connectées par la

chirurgie:

o—o —»
Cas 2 -&gt; 1 : Une composante connexe de Ma __ e est disconnectée par la chirurgie:

CD &gt; ÛD
Cas 1 -&gt; 1 : Une composante connexe de Ma _ e est transformée en une

composante connexe de Ma + e
:

Ce dernier cas ne peut se présenter que si M est non orientable. S&apos;il y a plusieurs
points critiques (ou (-h)-critiques) d&apos;indice 1 dans Ma nous les passons successivement

afin d&apos;établir la classification ci-dessus.

DÉFINITION 4.2. Un point critique (ou (-h)-critique) d&apos;indice 1 d&apos;une fonction

de Morse (satisfaisant la condition B au bord) sur une surface est de type I si



190 FRANÇOIS HAAB

l&apos;effet de la chirurgie est de modifier le nombre de composantes connexes du bord

(cas 1 -+2 et 2-* 1) et de type II sinon (cas 1 -? 1).

Notons fi{ (resp. fi&quot;) le nombre de points de critiques et (4-)-critiques de type
I (resp. II).

PROPOSITION 4.3. Soit une surface connexe compacte non orientable de genre
k percée de n trous (%(M) 2 — k — ri), et une fonction de Morse (p : M-+R
(possédant la propriété B). fi&quot; est congruent à k mod 2.

Preuve. Le nombre de composantes connexes de Mc _ e et Mc + e diffère de ± 1

lorsque nous passons un point critique ou -h)-critique de Mc d&apos;indice 0, 2 ou 1 de

type I. Ce nombre ne change pas si le point critique est de type II (et d&apos;indice 1).

Ainsi

Â&gt; + Ai + &amp; s/i mod 2 0)

D&apos;autre part par (4.1)

fio - fi\ + fii X(M) (2)

soustrayant (2) de (1)

fix- fi[ n - z(M) moâl

d&apos;où

fi1/ fix - fi\ n - x(M) k mod 2.

PROPOSITION 4.4. Une fonction de Morse q&gt; : M -» R satisfaisant la propriété
B au bord sur une surface compacte connexe non orientable de genre k possède au plus
k selles et points (+)-critiques de type IL

Preuve. Supposons que tous les points critiques et + -critiques possèdent des

valeurs distinctes. L&apos;ensemble Mc contient un chemin renversant l&apos;orientation de M
lorsque c est valeur critique d&apos;une selle ou d&apos;un point (-h)-critique de type II. Ces
fi&quot; chemins renversants l&apos;orientation peuvent posséder des parties communes dans
le bord de M si ôM # 0. Modifions si nécessaire ces chemins dans un voisinage Col
de ôM pour les rendre disjoints. Comme une surface (non orientable) compacte
connexe de genre k possède [14] au plus k chemins disjoints reversants l&apos;orientation,

nous obtenons que fi&quot; &lt;&gt;k. n
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Pour n&apos;importe quelle fonction de Morse non dégénérée avec des points
critiques isolés sur une variété compacte, les inégalités de Morse mettent en relation
les nombres de Betti de la variété et les nombres de points critiques de chaque
indice. Bott [3], puis Kirwan [15] ont étendu la théorie de Morse classique à des

classes plus générales de fonctions. Les fonctions non dégénérées au sens de Kirwan
sont dites minimalement dégénérées ([15], p. 121-137).

DÉFINITION 4.5. Une fonction h : M -&gt;R C°° sur une variété compacte M est

minimalement dégénérée si les conditions suivantes sont satisfaites:

(1) L&apos;ensemble Crit (h) des points critiques de h est la réunion C d&apos;une famille
finie d&apos;ensembles fermés disjoints, sur lesquels h est constante. Les éléments C e C
sont appelés &quot;sous-ensembles critiques&quot; de h. Pour des fonctions h raisonables C est
l&apos;ensemble des composantes connexes de Crit (h).

(2) Pour tout C e C, il existe une sous-variété localement fermée Ec contenant
C et dont le fibre normal dans M est orienté. De plus

(a) C est le sous-ensemble de Zc sur lequel h est minimum.
(b) En tout point x e C, l&apos;espace tangent TXIC est maximal parmi tous les

sous-espaces de TXM sur lesquels le hessien Hx(h) est non défini négatif.
Une sous-variété satisfaisant ces propriétés est appelée variété minimisante pour

h le long de C.

Toutes les définitions et les résultats précédents s&apos;étendent sans modifications
aux fonctions minimalement dégénérées. De plus

LEMME 4.6. Soitf \ M —? E3 une immersion tendue d&apos;une surface M et z e S2 tel

que nz of\M-*Ez soit 2-génèrique. La fonction hauteur hx est minimalement
dégénérée pour tout x e EznS2.

L&apos;ensemble critique d&apos;une telle fonction hauteur hy9 y e E2 est constitué d&apos;intervalles

fermés et de points isolés. Dorénavant appelons également &quot;points critique&quot;

(resp. &quot;selles&quot;) les composantes critiques (resp. composantes critique d&apos;indice 1) de

5. Compléments sur les projections des immersions tendues et le type de leurs

points de pli

LEMME 5.1. Soitf : M -&gt; E3 une immersion tendue d&apos;une surface de genre &gt;0 et

x g S2 tel que la fonction hauteur hx soit de Morse. hx\M- satisfait la condition B au
bord et ne possède pas de points (4-) -critiques d&apos;indice 1.
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Preuve. Soit &lt;x(/) le nombre de &quot;top-cycles&quot; de/: M-&gt;E3 et ^(+)[M+] (resp.

ju,(+ )[M~]) le nombre de points (-h)-critiques d&apos;indice i de hx\M+ (resp. /**]*/-).
Comme/est tendue, hx possède deux extrema dans M+ et 2-#(M) selles dans

M~. Appliquons 4.1 à hx\M+ et hx\M_:

(1)

(2)

M+ est une sphère percée de a(/) trous, ainsi

X(M+)=2-a(/), (3)

4- (X(M) - 2). (4)

(resp. hx\M-) possède au moins a(/) points (-f)-critiques car

+]=&lt;*(/)&gt; 2; vu (1) et (3), (5)

-]=a(/)&gt;2; vu (2) et (4). (6)

D&apos;autre part la restriction de la fonction hauteur hx aux a(/) &quot;top-cycles&quot;, qui
constituent dM+ =3M~, possède exactement 2a(/) points critiques car
l&apos;immersion/plonge chaque &quot;top-cycle&quot; sur une courbe convexe. La somme des nombres
de points (4-)-critiques de hx\M + et hx\M- est donc égale à 2a(/). Ainsi hx\M+ et

^x\m- possèdent exactement a(/) points (-h)-critiques. (5) et (6) établissent

maintenant que /jo(+)[M+] et ^(-f )[M~] 0.

DÉFINITION 5.2. Soit un point q d&apos;une surface compacte M et une immersion

/: M-»E3, désignons par G+(q) une des deux normales à Tf{q)f(M) et par q la

composante connexe de Crit (hG+(q)) qui contient q. Si hG+{q) est minimalement
dégénérée et si q est une &quot;selle&quot; de hG+(q), le type de q est par définition celui du
&quot;point critique&quot; q de la fonction hauteur hG+(q). Si q appartient à une sous-variété
à bord, 2-dimensionnelle, M, de M et si hG+(q) \Mx est une fonction de Morse (ou
minimalement dégénérée) qui satisfait la propriété B au bord, définissons le type de

q relatif à M, considérant q comme point critique de hG +(q) \M{. Le type relatif à M
et celui relatif à M, diffèrent en général. Nous noterons I[M,] (resp. II[AfJ) le type
I (resp. II) relatif à M, dans le cas où il est utile de préciser la surface considérée.

Observons que, lorsque / : M -» E3 est tendue, la notion de type est bien définie

non seulement pour les points hyperboliques mais également pour ceux qui sont
points de pli d&apos;une application 2-générique nz o/.
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Notons IM~(/) l&apos;ouvert des points de M&quot; qui pour un certain z eS2 sont

points de pli de nz o/avec nz °/2-générique. Définissons

MnM-} {pe YaM~(f) \P est m Point de type I [M~]}&gt;

\P est m Point de

LEMME 5.3. Soit M une surface de genre /0, il existe alors pour toute
immersion tendue f \ M-*E3 un point x de S2 avec Fx nx of 2-générique et dont le

pli IX(FX) possède des points de type I et I[M~].

Preuve. Choisissons un &quot;top-set&quot; TZ9 zeS2, contenant un &quot;top-cycle&quot; y.

Comme Tz est connexe (cf [17]), z définit un champ C°° de vecteurs unités normaux
à f{M) sur Tz. L&apos;extension de ce champ de vecteurs à un voisinage W de Tz définit
une orientation sur W. Choisissons x e S2 presque perpendiculaire à z tel que
Fx nx o/soit 2-générique. Il existe par ([7], p. 58) y eS2r\Ex proche de z tel que
hy soit de Morse et r e R tel que

ycz V h;\r, oo) cz V h~l[r, oo) c W.

Le niveau h~l(r) possède une composante connexe dans M+ et une dans M~. La
région VnM&quot; contient par conséquent une selle s7 de type I de hy. Par construction

la selle s1 appartient à Il(Fx). s1 est également de type I relativement à M~ car
(hy \m - ~ l(r, oo) Vn M&quot;&quot; cz W est orientable. D

LEMME 5.4. Soit f: M-»E3 une immersion tendue d&apos;une surface compacte sans

bord etzeS2 tel que Fz nz °/ : M -+EZ soit 2-générique. Le type (relatifà M ouM~)
des points de ZX(FZ) nM~ est constant au voisinage d&apos;une point q lorsque la tangente
au profil FZ(Il (Fz)) en F(q) ne possède pas d&apos;autres points de tangence avec ce profil.

REMARQUE 5.5. Considérons l&apos;immersion tendue/: M-&gt;E3 de la surface M
de caractéristique d&apos;Euler-3 possédant une symétrie d&apos;ordre 3 décrite par Kûhnel et

Pinkall en [16]. Un examen attentif du procédé d&apos;approximation C00 et de la surface

polyédrale tendue (Figure 3-5 [16]), point de départ de la construction de l&apos;immersion

/ : M -* E3 lisse tendue, permet de constater que tout profil de cette surface

immergée présente (Figure 1) trois droites de bitangence provocant un changement
de type. Le type des points d&apos;une composante de pli n&apos;est donc en général pas
constant si #(M) &lt; — 3.

Le profil de cette surface tendue de caractéristique-3 possède trois droites

tangentes au profil en deux points, l&apos;un projection d&apos;un point de type I l&apos;autre de
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Figure 1

type IL Les traits fins continues indiquent les trois droites de bitangence, la courbe

grasse représente la composante du profil projection de la composante de pli
appartenant à M+ et les traits fins pointillés (resp. traitilles) les parties du profil
projection des points de type I (resp. II) du pli.

LEMME 5.6. Soit f : M —&gt; E3 une immersion tendue du plan projectif avec une

anse, une seule composante connexe K de l&apos;ensemble critique d&apos;une fonction hauteur

hy9 y € S2 intersecte MU{M-V

Preuve. Procédons par l&apos;absurde et choisissons deux composantes connexes Kx,
K2 de Crit^) telles que ^,nM//[M1/(i (i l,2). Kx et K2 appartiennent au
même niveau h~l(c) car sinon un niveau séparant Kx et K2 diviserait M~ en deux

parties non orientables Mx et M2; mais ceci est impossible car le plan projectif percé
de deux trous M~ Mx uM2 contiendrait alors deux chemins distincts renversants
l&apos;orientation (l&apos;un dans M,, l&apos;autre dans M2).

Considérons deux voisinages Vx, V2 de Kx et K2 tels que VxnV2 0 obtenus par
exemple comme préimage par Igrad/^U d&apos;un petit voisinage de OgR+. Choisissons,

comme dans la figure 2, une selle s&quot;x de hyi de type II[M~] dans F, telle que
les sphères à droite de s&quot;t appartiennent à Vxvh~l[c, oo) et r, eR une valeur
régulière de hyx telle que hy(h~^(rx)) &gt; c. De même choisissons une selle s&quot; de type
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disques à droite de s^&apos;

M2

disques a gauche de s1^

Figure 2

ll[M~] dans V2 telle que les sphères à gauche de s!y2 appartiennent à V2 u h ~ l( — oo, c]

et r2 g R une valeur régulière de hyi telle que hy(h~2l(r2)) &lt; c. La surface Mta M~
(/ 1,2) obtenue en attachant une anse d&apos;indice 1 à (hyi\M-)~l[ru oo) (resp.

{hyi\M-)~x{ — oo, r2]) en passant la selle s&quot; est non orientable. Comme Mx et

M2 peuvent être choisies disjointes, nous obtenons la même contradiction que
précédemment.

COROLLAIRE 5.7. Soitf: M-+E3 une immersion tendue du plan projectif avec

une anse et z g S2 tel que Fz nz °/: M —? £z soit 2-génèrique. Le type relatif à M~
est constant sur chaque composante connexe du profil Fz(Zl(Fz)) inclue dans M~. (Le
profil FZ(I1(FZ)) ne possède pas de bitangence provocant un changement de type

relatif à M~ sur Il(Fz)nM-).
Preuve. Supposons par l&apos;absurde qu&apos;au voisinage d&apos;un point tx du pli Zl(Fz) le

type n&apos;est pas constant sur le pli. Choisissons un vecteur unitaire y e Ez normal au
plan tangent à f(M) çnf(tx). La fonction hauteur hy (de Morse ou minimalement
dégénérée) possède par 5.4 sur le niveau du &quot;point critique&quot; tx un autre &quot;point

critique&quot; t2 au voisinage duquel le type n&apos;est pas constant sur le pli T1(FZ) vu 4.3.

Contradiction avec 5.6.

COROLLAIRE 5.8. Soitf: M-&gt;E3 une immersion tendue du plan projectif avec

une anse et z g S2 tel que Fz nz °f : M -* Ez soit 2-générique. Le pli E l(Fz) possède

une composante connexe de type I[M~].

6. Le plan projectif avec une anse M ne possède pas d&apos;immersion tendue dans E3

Pour établir le théorème A, procédons par l&apos;absurde et supposons l&apos;existence

d&apos;une immersion tendue / : M -? E3 du plan projectif avec une anse. La &quot;tension&quot;
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étant une propriété projective, supposons les plans contenants les deux &quot;top-cycles&quot;

parallèles. Choisissons z e S2 tel que F Fz nz °/ : M -? Ez soit 2-générique et de

sorte que la composante Cocz M+ de son pli sépare M+ en deux parties, chacune
d&apos;elles contenant un &quot;top-cycle&quot; de/. Le noyau de nz détermine la verticale de E3.

PROPOSITION 6.1. Le pli I1 (F) possède 3 composantes connexes.

Preuve. Le pli El(F) possède par (3.5) 2, 3 ou 4 composantes connexes.
Cas I: Supposons que El(F) possède 4 composantes connexes. Il(F) est

constitué de 3 chemins Cu C2, C3 &lt;= M~ dont le &quot;nombre d&apos;enroulement&quot; r(Ct) est

— 1 et du chemin CoczM+. Les chemins Ct (i l,2, 3) possèdent un nombre

impair de points cuspidaux car leur &quot;nombre d&apos;enroulement&quot; est impair. Ils
renversent donc l&apos;orientation de M par [13]. M~ qui est homéomorphe au plan
projectif percé de deux trous ne peut contenir 3 chemins disjoints renversants
l&apos;orientation. Contradiction.

Cas II(Il(F) possède deux composantes connexes): Choisissons xe^nS2 tel

que hx soit de Morse. hx\M- satisfait la condition B au bord et possède une selle de

type II relatif à M~ par 4.3. Toutes les selles de hx appartiennent à l&apos;unique

composante Cx du pli de F contenu dans M~. Cx est constitué uniquement de

points du type II relatif à M~ par 5.6. hx\M- possède donc trois selles de type IL
Ceci contredit 4.4.

II existe des immersions/: M-&gt;E3 (évidemment non tendues) du plan projectif
avec une anse qui factorisent des applications 2-génériques tendues F : M -» E2 dont
le contour apparent possède 2, 3 ou 4 composantes connexes.

Exemple 1 (Zl(F) possède deux composantes connexes). Pour construire
l&apos;immersion /: M -? E3 voulue, commençons par nous donner une courbe ^ de M et
une application diflférentiable p : ^ -&gt; E2 telles que p(^) présente un nombre fini de

points de rebroussement. Nous choisissons p(^) pour que p se prolonge suivant une
application différentiable F : M -&gt;E2 dont # est le pli. Il suffit (cf 3.2) pour que F
soit tendue que le contour apparent F(I(F)) p(^) donné initialement soit
monotone. Le problème d&apos;étendre p en F 2-générique se ramène [11] essentiellement
au problème suivant: donner des conditions nécessaires pour qu&apos;une immersion p0
dans le plan du bord #0 d&apos;une surface compacte orientée Mo puisse se prolonger
suivant une immersion de Mo. Un algorithme simple [8] détermine le nombre
d&apos;extensions différentes.

Nous décrivons dans la Figure 3 l&apos;image d&apos;un voisinage tubulaire canonique de
&lt;€. 1.&amp; courbe grasse représente p(^), le trait fin l&apos;image po(#o) du bord du voisinage
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Figure 3

tubulaire canonique de (€. Le &quot;mot de Blank&quot; associé au &quot;système de rayons&quot;

donné est œ{p) {i~lhdc~labghiab, abcdefghi, abcdeghi). p0 s&apos;étend (Th. 1 [8]) en

une immersion Fo du disque percé de deux trous (de caractéristique-1) dans le plan.
Fo détermine [11] une application 2-générique tendue F.M-+E2. Elle peut être

obtenue (Th. 1 [13]) en considérant d&apos;abord le plan projectif avec une anse immergé
dans E3 et en le projetant ensuite orthogonalement sur E2.

Exemple 2 (El(F) possède trois composantes connexes). Il suffit d&apos;ajouter une

anse de courbure négative à la surface de Boy plate (Figure 4, [10] p. 90)

paramétrisée par Apery [1] pour obtenir une telle immersion. D&apos;autres immersions

ayants un profil tendu peuvent être construites en ajoutant une anse aux &quot;cendriers

à tabac&quot; (Figure 5, [10] p. 115). La surface de Boy plate de la Figure 4 est obtenue

en ajoutant trois disques plongés s&apos;intersectant en un point triple.

Figure 4 Figure 5
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Exemple 3 (Il(F) possède quatre composantes connexes) Nous construisons à

partir de trois exemplaires disjoints de la surface de Boy plate une immersion de

M P2 # P2 # P2 possédant le profil suivant

Figure 6

Nous déformons cette immersion au voisinage de Co pour rendre /(Co)
convexe afin que sa composition avec une projection soit 2-génenque tendue

Afin d&apos;établir qu&apos;une immersion/ M-&gt;E3,%{M) — 1, dont le profil possède
3 composantes connexes n&apos;est pas tendue, nous allons découper M le long des

lignes de pli pour étudier l&apos;application de Gauss G sur des parties orientables
Nous exhiberons un point z eS2 dont la préimage G~ï(z) limite un compact K
(^G~l(z)) de M~ d&apos;intérieur non vide II en résultera une contradiction à

l&apos;hypothèse absurde que / est tendue

Notons G+ Vapplication de Gauss restreinte à une partie orientée de M, e£ et

ej~ les hémisphères nord et sud de S2 Appelons Co (resp Cr et Cn) la composante
du pli de F de nombre d&apos;enroulement 2 (resp — 2 et— 1) et y + (resp y~) le

&quot;top-cycle&quot; appartenant à la préimage de e^(resp e^) par G+ M~I~-&gt;S2

Etudions les positions relatives de Co, Ch Cn et des deux &quot;top-cycles&quot; y + et y~

LEMME 6 2 Soit zeS2 tel que Fz=nzof soit 2-génénque Le pli I\FZ)
possède par 6 1 deux composantes connexes Cf et Czn dans la partie M~ de

courbure négative ou nulle de nombre d&apos;enroulement —2 et —1 respectivement Les
&quot;points&quot; de Cj sont de type I[M~], ceux de CZH de type H[M~]

Preuve Soit x e S2nEz tel que hx soit de Morse La fonction hx\M~ possède

un point cntique ou H-)-critique de type II relatif à M ~ par 4 3 et 4 4 Ce point
est une selle de hx car hx\M- ne possède pas par 5 1 de points (+)-cntiques
d&apos;indice 1 II appartient à Czn car sinon tous les points de C) seraient de type
U[M~] et hx\M- posséderait par conséquent deux selles de type II[M~] vu que
r{Czj) — 2, contradiction hx\M__ possède donc deux selles de type I[M~] sur Cf
et une de type II[M~] sur Czn Le lemme résulte maintenant de 5 7 D
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PROPOSITION 6.3. Cfvy+ ou Ctvy- bordent (dans M) un anneau.

Preuve. Par définition M~/y + est obtenu identifiant y + à un point. P

(M~/y+)/y~ est homéomorphe au plan projectif (et M à P # tore P # anse

P # M+). Comme le voisinage de la ligne de pli Cue M~ est un ruban de Moebius
(i.e C77 est un RP1 c RP2 P), P\C/7 est un disque. Il contient les points y+/y + et
y&quot; ly~ appelés y + et y ~. La ligne de pli Q g M ~, plongée dans P, ne rencontre pas
C/7, droite de P. Les positions relatives de Ch y+ et y&quot; sont les suivantes:

(i) (2) (3) (4)

Constatons afin de conclure que les cas (3) et (4) ne se présentent pas:
Cas (3) (C, borde un disque D): Choisissons xeS2 presque parallèle aux deux

plans parallèles contenants les &quot;top-cycles&quot; tel que Fx nx &lt;&gt;/ soit 2-générique. Il
existe par 5.3 y e ExnS2 tel que hy possède une selle de type I[M~~] dans un petit
voisinage de chacun des deux &quot;top-sets&quot; qui contiennent un &quot;top-cycle&quot;. hy possède

une selle dans l&apos;intérieur de D car l&apos;application de Gauss (D, 3D) -?(S2, S1)

recouvre un hémisphère. Cette selle est de type II[M ~] et appartient à la

composante C/7 de Zl(Fx) qui renverse l&apos;orientation. Ce chemin Cxu ne sort pas du
disque D car il ne peut pas couper le bord ôDczZl(F) constitué uniquement de

points de type I[M~]. Contradiction.
Cas (4) (Cj borde un ruban de Moebius R): Rappelons que Co, C7, Cn sont les

lignes de pli du composé F Fe3 de l&apos;immersion / et de la projection sur le plan
horizontal. Choisissons Fx\ M-*EX et hy : M-»R comme dans le cas (3). Les deux
&quot;selles&quot; de type I[M~] de hv\M-, v =x a e39 appartiennent à C/ cl1^) et à

Cj a El(F) par 3.6 et 6.2; et constituent l&apos;intersection C7 nC7 car toute composante
connexe de C7 nC7 est une selle de type l[M~] de hv\M-. L&apos;application normale de

Gauss G + : C7 -&gt;S2n Ex » S1 envoie l&apos;intersection C7 nCj sur deux points antipo-
daux. Ainsi la partie de C7 contenue dans le disque D P\R de bord C7 est envoyé
monotonement sur la moitié du grand cercle S2*^!^. Les deux &quot;selles&quot; de type
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I[M~], arbitrairement proches par construction des &quot;top-cycles&quot; y + et y~, appartiennent

à C/ n D et sont envoyées par G + sur des points antipodaux. Contradiction.

Supposons dorénavant que Cf et le &quot;top-cycle&quot; y + bordent un anneau qui
s&apos;appellera B.

LEMME 6.4. Af/[Af-} et M1IW~^ sont connexes par arcs.

Preuve. Soit pup2e MI[M -} (resp. MII[M -j). Choisissons z, e S2 (i 1, 2) tel que

pt appartienne au pli de Fv FZi nZi o/est 2-générique (î 1, 2) par définition. La
composante de i^F^) contenant px intersecte par 3.6 celle de Zl(FZ2) contenant

/?2, car chaque pli possède par 6.2 une unique composante de chaque type. Ainsi
(Z1(FZl)uZ&apos;1(Fr2))nAf/IA#-] (resp. nM//[w1) contient un arc reliant/?! et/?2.

COROLLAIRE 6.5. Aucun point de l&apos;intérieur de B n&apos;est de type II[M~].

La surface (abstraite) A M \B\CIf est une sphère avec trois trous. Son bord
est constitué de Cfiy~ et 2C/7 (C/7 parcouru deux fois). L&apos;application de Gauss

G+ : A -+e2 envoie monotonement Cl et 2CH sur l&apos;équateur de2 et le &quot;top-cycle&quot;

y ~ sur un point. Soit le sous-ensemble

J^f {p e A\2Cn\pnMII[M

de A et

Mu {p s M |pnMiI[M-i ï 0}.

Rappelons un théorème de Vietoris-Begle [2]:

THÉORÈME 6.6. Si f est une application continue surjective d&apos;un espace compact

de Hausdorff X dans Y telle que Vhomologie de Cech de la préimage f~l(y) de

tout point y de Y soit trivial, Vhomomorphisme induit par f de H(X9 2£2) dans

H(Y, 2£2) est un isomorphisme.

PROPOSITION 6.7. A contient un compact KczMn qui sépare A en deux

parties et dont l&apos;image G+(K) est un point.

Preuve. Notons Gfi &apos;- An-&gt;e2~ la restriction de G+ : A -^e2
(1) G/} est surjective:
Soit Gpr:M-+V2 l&apos;application de Gauss des directions induite par

G : E(M) -»S2. Comme toute fonction hauteur de Morse sur M~ possède une selle
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de type //[Af &quot;], nous avons que Gpr{Mn) Gpr{MH) Gpr(MH) P2. GTi est sur-

jective car Gpr(Mn) Gpr(An) vu que tous les points de type H[M~] sont dans A.

(2) II existe un compact K de Mn ne possédant pas Phomologie de Cech d&apos;un

point tel que G+(K) est un point:
Supposons par l&apos;absurde que Phomologie de Cech à coefficients £?2 de la

préimage (Gj})~l(y) de tout point de y ee^ soit celle d&apos;un point. Gj} induit par

6.6 un isomorphisme de Hx(An) sur H^e^) 0. Le cycle [2Cn] e HX{A^ est donc

nul. L&apos;inclusion i : AH c+ A envoie 2C7/ sur un bord de la sphère avec trois trous Â9

il représente donc un cycle non trivial. Contradiction.
(3) K est connexe par 5.6.

(4) K sépare A en deux parties:
L&apos;affirmation résulte des faits suivants [9, 21]:

- Dans les variétés de dimension ^ 2 un compact est cellulaire si et seulement
s&apos;il possède l&apos;homologie (de Cech à coefficient Jf2) d&apos;un point.

- Les compacts cellulaires du plan se reconnaissent grâce à la propriété que K
est cellulaire si et seulement si K et N\K sont connexes non vides.

Fin de la démonstration du théorème A:
Comme MI[M^ est connexe par 6.4, comme C,cM/[A/-] et comme tout

voisinage du &quot;top-cycle&quot; y~ contient des points de type I[M~] K ne peut pas

séparer (dans A) y ~ de CI car K n MI[M _j 0 vu que K n&apos;est pas contractile. K est

donc la frontière d&apos;une région compacte R de M~ qui ne contient pas y~ (en fait

R M7/). Soit z e S2 normal à Tf{K)f{M). La fonction hauteur hz est constante sur
K dRst possède un extremum local x0 e R\K c M~ car G+ n&apos;est pas constante

sur R. Le plan tangent au point x0 de M~ est un support local mais non global de

/(M). Ceci contredit par 2.1 l&apos;hypothèse que/: M-&gt;E3 est tendu.
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