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Immersions tendues de surfaces dans E3

FRANCOIS HAAB

1. Introduction

Une immersion lisse f: M - E’ d’une surface compacte M sans bord de
caractéristique d’Euler y(M) dans I’espace euclidien a 3 dimensions E? est tendue
(tight) si la courbure totale absolue (normalisee) de f

r(f)=1/21tf K| dd = 4 — y(M)

atteint I'infimum 4 — y(M) (pris dans I’espace des immersions de M).

Une application continue (en particulier une immersion) d’une surface M dans
E” est tendue si elle satisfait la TPP propriété de Banchoff exigeant que la préimage
f~Y(H) de tout demi-espace H de E” soit connexe.

Nicolaas Kuiper [17, 18] inaugura en 1960 1’étude des immersions tendues dans
E? établissant:

(1) Toutes les surfaces orientables et les surfaces non orientables de caractéris-
tique d’Euler strictement plus petite que-1 possédent des immersions tendues dans
E3.

(2) Le plan projectif P? et la bouteille de Klein K? font exception en ne se
laissant pas immerger différentiablement de fagon tendue dans E>.

Dans ce travail nous résoudrons la conjecture de Kuiper pour I'unique surface
restante, celle de caractéristique-1 obtenue en attachant une anse d’indice 1 a P2

THEOREME A. Le plan projectif avec une anse ne posséde pas d’immersion
tendue dans Iespace a trois dimensions E°.

La courbure totale absolue 7( /') de toute immersion f du plan projectif avec une
anse est donc plus grande que cinqg; I'infimum de t( f), égal a cing, n’est jamais
atteint.

Kuiper a établi [20] qu’il n’existe méme pas d’immersion continue tendue de P?
et K? dans E>.
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La classe des applications localement C*-stables au sens de Thom est un peu
plus grande que celle des immersions. Par exemple une application localement
C=-stable d’une surface dans E* est une immersion excepté en un nombre fini de
parapluies de Whitney. Toutes les surfaces, en particulier les trois exceptions P2, K?
et P2 # K2, possédent [19] des applications tendues C*®-stables dans E°.

Dans cet article nous utiliserons notamment des notions de théorie de Morse, de
singularités d’applications stables dans le plan et de “top-cycles” de Kuiper.

Nous étudierons les profils (contours apparents) des immersions tendues. Nous
chercherons ensuite des obstructions a la factorisation d’applications stables ten-
dues F: M —E? par des immersions tendues f: M —E? suivies de projections
orthogonales pour obtenir le théoréme A.

Je tiens a remercier Nicolaas Kuiper et Paulo Sad de l'intérét manifesté a ce
travail, en particulier de leurs nombreuses suggestions qui ont permis de clarifier la
présentation des résultats. Je remercie également 'IMPA pour son hospitalité
durant I’élaboration de parties substancielles de ce travail.

2. Deéfinitions et résultats connus

La théorie de la courbure totale absolue ([25], p. 98) fournit I'inégalité t( ) =
(1/2m) [ |K| dA 2 4 — y(M) ou K désigne la courbure de Gauss de f. Les immer-
sions pour lesquelles nous avons égalité sont appelées tendues (I'infimum est [24]
égal a t(f) sur n’importe quelle classe d’homotopie réguliére d’immersion
f: M - E?). Cette définition est la premiére d’une série de conditions équivalentes.
Nous rappelons d’abord en (1) et (2) deux autres définitions de t(f). Les
définitions (4) et (5) formulées sans hypothése de différentiabilité sont équivalentes
dans ce contexte. Pour les surfaces immergeées toutes ces définitions sont équivalen-
tes. Le livre [7] est une bonne introduction aux différentes caractérisations des
immersions tendues.

(1) Notons que dans le cadre de la théorie des variétés différentiables sans bord
immergées dans E”, on peut définir 7(f) comme suit pour une immersion
f: M —E’ Le fibré en sphére E(M) des vecteurs unités normaux 4 M (localement
M est identifiée & f(M) car f est une immersion) n’est rien d’autre que le revétement
orientable a deux feuillets de M. Rappelons que [I'application de Gauss
G : E(M) - S? envoie un point ¢ € (T, M)+ pour un certain x € M sur le vecteur
parallele a ¢ passant par lorigine. La courbure totale absolue (de Lipchitz-Killing)
est la moitié de ’aire totale sur la sphére S? couverte par 'image de ’application de
Gauss.

(2) La projection orthogonale z* sur la droite paralléle 4 z € S? induit pour
presque tout z € S? une fonction hauteur A, = z* o f: M — R non dégénérée. Soit
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U, = u(h:) son nombre de points critiques. La courbure totale absolue est la valeur
moyenne (expectation value &) 7( f) =¢,u,.

(3) Une immersion f: M — E? est tendue si, et seulement si, toute fonction
hauteur de Morse (obtenue a partir de 'immersion f par projection) est polaire, i.e
posséde un seul maximum et un seul minimum. Rappelons que presque toute
fonction hauteur est de Morse.

(4) Une application continue f: M —E? est tendue si, et seulement si, la
préimage f~'(H) de tout demi-espace fermé (ou ouvert) H de E® est connexe (TPP
propriété de Banchof).

(5) Une application continue f: M — E? est tendue si, et seulement si, ’homo-
morphisme induit en homologie de Cech Hy(f~'(H), Z,) = H«(M, Z,) est injectif
pour chaque demi-espace H.

Un plan n < E? passant par f(x) est un support (global) de f(M) au point x, si
(M) est entiérement contenue dans un des demi-espaces déterminés par 7. Un plan
n passant par f(x) est un support local de f(M) en x, s’il existe un voisinage U de
x tel que f(U) est contenue dans un des demi-espaces fermés déterminés par 7 et si
f(@U) est a I'intérieur de ce demi-espace.

Enongons une propriété des immersions tendues équivalente a la définition, ceci
dans le cas d’un plongement.

LEMME 2.1. Si une immersion f : M — E? est tendue, tout plan support local de
f(M) est un support global de f(M).

Soit X = E?, notons #(X) le plus petit fermé convexe qui contient X. Le bord
0 (X) de la fermeture convexe est appelé enveloppe convexe de X. Un “‘top-set” est
la préimage T, de la valeur maximale d’une fonction hauteur 4,: M >R, z € S
L’étude des “top-sets” T,, en particulier ceux dont la fermeture convexe #f(T,) est
un disque fermé 2-dimensionnel, est essentielle pour la compréhension des immer-
sions tendues. Rappelons [17] que si f est tendue et #f(7,) 2-dimensionnelle, alors
0Xf(T,) < f(T,) et frestreint a y = f~ (041 (T,)) est un plongement. De plus si le
disque Jf(T,) n’est pas enti€rement inclu dans f(T,), y ne sépare pas M. Les
courbes y intéressantes sont exactement celles qui ne séparent pas M, comme par
exemple le cercle inférieur on supérieur d’un tore de révolution. La courbe 7 est
appelée un “top-cycle’ lorsqu’elle ne sépare pas M. Un “top-cycle” n’est donc pas
homologue a zéro. En outre son voisinage tubulaire est orientable. Nous pouvons
maintenant énoncer un théoréme de structure dit a Kuiper [17].

LEMME 2.2. Soit f: M — E*® une immersion tendue d’une surface compacte
connexe sans bord M non homéomorphe & S*. M est alors la réunion de deux ouverts
non vides disjoints M+ et M~ et d’un nombre fini de “top-cycles” v,, . . .,y tel que:
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(a) f restreint a M est un plongement sur le complément, dans 0 f (M), d’un
nombre fini de disques plans fermés convexes D,, ..., D, ou

'})i =f_1(aDi)5 i=1,...,k.
(b) La courbure de Gauss K est non négative sur M* et non positive sur M ~.

Deux ‘“‘top-cycles” y; et y, d’'une immersion tendue (différentiable) sont des
courbes disjointes car en un éventuel point commun x € y,ny, 'unique plan
tangent en f(x) devrait coincider avec les plans distincts qui supportent les images
des deux ““top-cycles™, les images de “top-cycles” distincts €tant toujours supportées
par des plans distincts. Kuiper utilise le fait qu’il existerait exactement 1 (resp. 2)
“top-cycle” pour réfuter I’existence d’une immersion tendue du plan projectif (resp.
de la bouteille de Klein) dans E3. Le nombre de “top-cycles” d’une immersion
tendue f: M — E’ satisfait certaines restrictions [6].

THEOREME 2.3. Le nombre o f) de “top-cycles” d’une immersion tendue
f: M —>E? d’une surface connexe sans bord satisfait aux inégalités suivantes:
(a) Si M est orientable de genre g 2 1, alors 2 <o f) <2 — y(M) = 2g. Toutes
ces valeurs de a( ) peuvent étre atteintes.
(b) Si M est non orientable, alors 2 < a( f) <1 — y(M).

COROLLAIRE 2.4. Une immersion tendue du plan projectif avec une anse
possede exactement deux ‘“‘top-cycles” y, et y,.

Cecil et Ryan ont montré en outre qu’une immersion tendue d’une surface de
caractéristique impaire y(M) < —1 posséde 1 — y(M) “top-cycles”, si et seulement
§’il existe une immersion tendue de P? # K? dans E*. Ainsi admettant le théoréme A
nous obtenons:

(bl) Si M est non orientable et y(M) impaire; alors 2 < a(f) < — y(M).

(b2) Si M est non orientable et y(M) paire; alors 2 <o f) <1 — y(M).
Toutes ces valeurs de a( f) peuvent étre atteintes.

3. Le contour apparent des surfaces immergées de facon tendue dans E*

Soit E" = R" ’espace euclidien a n dimensions muni d’un produit scalaire et de
la structure compatible d’espace vectoriel avec une origine O. Notons n, : E* > E, la
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projection orthogonale sur le plan E, orthogonal 4 z € S? et passant par I’origine O,
y*:E"—R la projection orthogonale sur la direction paralléle a y e S"~! et
h, = y* - f 1a fonction hauteur dans la direction de y € 8"~ ' associée a I'immersion
f: M —E" Crit (h,) désignera 'ensemble critique de 4,.

Une application F: M —E? est excellente (2-générique) si tous ses points
critiques sont du type pli ou cusp. L’ensemble critique X(F) = M est alors une
union de cercles plongés. F|z, est une immersion sur 'ensemble Z'°(F) < M des
points de type pli. L’ensemble 2 "'(F) des points cuspidaux est fini et les images par
F des points de cusp sont les points de rebroussement de F(Z(F)).

DEFINITION 3.1. Lorsque F:M —E? est 2-générique, Iimage du pli
X(F) ={C,;};»o sappelle le contour apparent de F. Le contour apparent de F est
monotone $’1l poss€éde une composante F(C,) convexe (par rapport a F(M)) et si les

restrictions F IC; (i > 0) sont des immersions localement concaves (par rapport a
F(M)).

THEOREME 3.2. Soit une application 2-générique F : M —E?, le contour ap-
parent de F est monotone si et seulement si F est tendue, i.e satisfait la TPP propriété.

Preuve. Nécessité: Supposons par 'absurde que F : M — E? n’est pas tendue. 1l
existe un demi plan H = {y € E*|z*(y) > ¢} dont la préimage F~'(H) posséde au
moins deux composantes connexes U, et U,. La fonction hauteur z* o F posséde un
maximum local dans chacun des U,; ils appartiennent a F(X'°(F)). La courbe
F(Z'9(F)) est localement convexe par rapport 4 F(M) au voisinage de la préimage
de la valeur maximale de z* o F IUi (i =1, 2). La composante C, du pli posséde donc
deux maxima locaux de z* o F. Ainsi F(C,) n’est pas convexe. Contradiction.

Suffisance: Tout “top-set” T, est connexe (car il satisfait (7.10 [7]) la TPP
propriété) et appartient a X '°(F). 1l est donc immergé dans une droite (z*) ~'(¢),
par conséquent plongé sur un ensemble convexe (point ou segment). L’union des
“top-sets”, F~ (8¢ F(M)), est un cercle plongé sur la courbe convexe ¢ F(M).
Ce cercle est une composante, notée C,, du pli de F. Si M # S?, considérons un
point x € Z'%(F)\C, et un voisinage connexe U, de x sur lequel F est équivalent a
la forme canonique (x, y) — (x, y?). Exigeons que X(F) n U, soit connexe. Aucun
segment de droite [y,, y,] < E? avec ses extrémités sur F(Z(F)nU,) ne divise
F(U,), car F satisfait la TPP propriété. L’intersection de [y,, y,] avec F(Z(F)nU,)
se reduit & {y,uy,}. Le contour apparent est donc localement convexe. Il est
concave relativement a lintérieur de F(U,), x € Z"%(F)\C, vu que F est tendue.

O

Presque toute projection orthogonale n, : E*— E, d’une application C*-stable
tendue d’une surface dans E* est 2-générique tendue dans E,. Toute surface M
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posséde ainsi par [19] des applications 2-génériques tendues dans E2. Les figures 1,
3, 4 et S représentent le contour apparent d’applications tendues de surfaces de
caractéristique 1, —1 et —3 dans le plan.

Introduisons quelques notations pour énoncer un résultat de Levine [22] déter-
minant le genre de la surface M a partir de I'image du pli de F.

Soit C une composante connexe de X(F), F 2-générique, g = F |C est une
immersion excepté aux points cuspidaux. La composée de h =g’/|g’|: C\Z"'(F)
—S! et de lapplication de S' dans S' e > ¢%% s’étend différentiablement en une
application k. : C = S' pour chaque composante connexe C de X'(F). Orientons les
courbes C; de Z'(F) de fagon que I'image F(M) de la surface se trouve a gauche de
image de la courbe de pli F(X'(F)) pour définir le degré r(C;) de k.. Notons
k : Z'(F) —>S' l'application égale a k., sur chaque composante C; de Z'(F). Le
degré de k est la somme des degrés des k..

THEOREME 3.3. Soit F: M —E? une application stable (ou simplement 2-
générique) d’une surface compacte sans bord dans le plan, le degré de k égale la
caractéristique d’Euler de M.

COROLLAIRE 3.4. Si M est une surface différente de S?, le contour apparent
d’une application 2-générique tendue F : M — E? posséde de 2 a 3-y(M) composantes
connexes. Le degré r(C;) de k¢, est un entier strictement négatif pour toutes les
composantes C,; du pli Z'(F), exceptée celle dénommée C, dont I'image F(C,)

constitue [I’enveloppe convexe de F(M). Son degrée r(Cy) =2, en outre
T |H(C))| =4 — x(M).

Preuve. Comme le contour apparent de F est monotone et vu le choix de
Porientation des composantes de pli C;, le degré r(C;) est strictement négatif si
i>0. Le degre r(C,) de k., est 2 car F(C,) est convexe (se rappeler que
k=ho (e e*)). Le pli Z(F) posséde donc vu 3.3 au moins 2 et au plus
3 — x(M) composantes connexes. De plus

5 IHC)| =2( y r(ca)—zr(c,-) _ 4 M), -

HC,) >0

Réservons le mot profil pour le contour apparent d’une application 2-générique
F, =m, o f obtenue en composant une immersion f: M —E® et une projection
n, . E*>E,.

Soit f: M — E? une immersion d’une surface compacte connexe M sans bord
dans E*. L’application composée F, = &, o f est 2-générique pour presque toutes les
directions de projections z € S? (Choisir un atlas de M tel que sur toute carte la
restriction de f soit un plongement et appliquer [23]).
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COROLLAIRE 3.5. Si f: M —>E? est une immersion tendue, F,=m,of est
nécessairement tendue. Ainsi, pour presque tous les z € S?, F, est 2-générique tendue.
Dans ce cas son profil F,(X'(F,)) est monotone et satisfait les propriétés de 3.4.

COROLLAIRE 3.6. Soit f: M —>E? une immersion tendue;, y,z €S* des
points pour lesquels F,=mn,of et F,=m,of sont des applications 2-génériques
et x=yAzeS*nE,NE,. L’ensemble Crit (h,)=Z'(F,)nX'(F,) posséde alors
4 — y(M) composantes connexes homéomorphes soit a un point soit a un intervalle
fermé.

Preuve. Par monotonicitt du contour apparent de F, la somme
Ee,c riry [M(CH)|, qui par 3.4 est égale & 4 — y(M), compte le nombre de composan-

tes connexes de I'ensemble critique de A, pour tout x € E,. O

Soit F = F, =m, o f 2-générique, la normale a la surface en f(p) € f(Z"°(F)) et
z € S? déterminent un plan dont lintersection avec la surface immergée f(M) est
une courbe lisse au voisinage de f(p). La courbure de cette courbe en f(p) est la
courbure transverse ky(p). La courbure du profil en F(p) e F(Z"(F)) est la
courbure radial k.(p).

LEMME 3.7 (formule de Koenderink [12]). Dans la situation décrite ci-dessus

K(p) =k.(p)ko(p) et ko(p)#0.

COROLLAIRE 3.8. Soit une immersion f: M —E3, choisissons z € S? tel que
F =F,=m, o f soit 2-générique et y € E,. La fonction h, est de Morse si et seulement
si y* o F|s 1) est de Morse. Elles possédent les mémes points critiques.

Preuve: Rappelons que p est un point critique non dégénéré de /i, (resp. de

y*o F|z14m) si et seulement si K(p) (resp. k.(p)) est non nulle. La formule de
Koenderink permet alors de conclure. O

4. Fonctions de Morse et fonctions minimalement dégénérées sur les surfaces a bords

Une fonction reelle ¢ sur une variété a bord (M, 0M) est une fonction de Morse
possédant la propriété B si:

(1) @|x est de Morse.
(2) @ ne possede pas de points critique sur dM.
(3) ¥ = ¢|su est une fonction de Morse sur oM.
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Un point critique p de y est (+)-critique (resp. (—)-critique) si grad, ¢ entre
dans M (resp. sort de M). Le nombre de Morse augmenté d’indice k, noté i, est la
somme du nombre g, (@) de points critiques d’indice k de ¢ dans M et du nombre
e (+)(@) de points (+)-critiques de y d’indice k.

LEMME 4.1. Les inégalités de Morse restent [5] valables pour les nombres de
Morse augmentés. En particulier

(M) =3 (=D

Soit M une surface compacte connexe et ¢ : M — R une fonction de Morse qui
posséde la propriété B si OM #@. Nous notons M _, , la partie ¢ ~'(—c0, a] et
M, le bord de M _, ,. Observons que M, coincide avec le niveau ¢ ~'(a) lorsque
OM = et que M_, , peut étre une surface a coins si OM #§. Si a est une valeur
réguliére de @, M, est une sous-variété a coins de dimension 1 de M.

Considérons d’abord ¢ avec un point critique (ou ( +)-critique) d’indice 1 dans
M, _ .. Passer un point critique (ou ( +)-critique) d’indice 1 de M, c’est effectuer
[4] une chirurgie d’indice 1 sur M, _,.

Nous distinguons trois cas:

Cas 1-2: Deux composantes connexes de M,_, sont connectées par la

chirurgie:

Cas 2 - 1: Une composante connexe de M, _, est disconnectée par la chirurgie:

@ — Adb

Cas 1-1: Une composante connexe de M, _, est transformée en une com-
posante connexe de M, ,:

O — &

Ce dernier cas ne peut se présenter que si M est non orientable. S’il y a plusieurs
points critiques (ou ( +)-critiques) d’indice 1 dans M, nous les passons successive-
ment afin d’établir la classification ci-dessus.

DEFINITION 4.2. Un point critique (ou ( +)-critique) d’indice 1 d’une fonc-
tion de Morse (satisfaisant la condition B au bord) sur une surface est de type I si
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I’effet de la chirurgie est de modifier le nombre de composantes connexes du bord
(cas 1»2 et 2—1) et de type II sinon (cas 1—-1).

Notons fi} (resp. ji{) le nombre de points de critiques et ( +)-critiques de type
I (resp. II).

PROPOSITION 4.3. Soit une surface connexe compacte non orientable de genre
k percée de n trous (y(M)=2—k —n), et une fonction de Morse ¢ : M -R
(possédant la propriété B). i est congruent a k mod 2.

Preuve. Le nombre de composantes connexes de M, _, et M, , différe de +1
lorsque nous passons un point critique ou ( +)-critique de M, d’indice 0, 2 ou 1 de
type I. Ce nombre ne change pas si le point critique est de type II (et d’indice 1).
Ainsi

fio + [l + fi, = n mod 2 €))
D’autre part par (4.1)

fio — iy + fi; = x(M) (2)
soustrayant (2) de (1)

fiy — it =n — y(M) mod 2

gl =fi,—fit=n—y(M) =k mod 2. O

PROPOSITION 4.4. Une fonction de Morse ¢ : M — R satisfaisant la propriété
B au bord sur une surface compacte connexe non orientable de genre k posséde au plus
k selles et points (+)-critiques de type II.

Preuve. Supposons que tous les points critiques et ( + )-critiques possédent des
valeurs distinctes. L’ensemble M, contient un chemin renversant I’orientation de M
lorsque ¢ est valeur critique d’une selle ou d’un point (+)-critique de type II. Ces
i}’ chemins renversants ’orientation peuvent posséder des parties communes dans
le bord de M si M # . Modifions si nécessaire ces chemins dans un voisinage Col
de OM pour les rendre disjoints. Comme une surface (non orientable) compacte
connexe de genre k posséde [ 14] au plus k chemins disjoints reversants I’orientation,
nous obtenons que i <k. a



Immersions tendues de surfaces dans E°> 191

Pour n’importe quelle fonction de Morse non dégénérée avec des points
critiques 1solés sur une variété compacte, les inégalités de Morse mettent en relation
les nombres de Betti de la variété et les nombres de points critiques de chaque
indice. Bott [3], puis Kirwan [15] ont étendu la théorie de Morse classique a des
classes plus générales de fonctions. Les fonctions non dégénérées au sens de Kirwan
sont dites minimalement dégénérées ([15], p. 121-137).

DEFINITION 4.5. Une fonction 4 : M - R C® sur une variété compacte M est
minimalement degénerée si les conditions suivantes sont satisfaites:

(1) L’ensemble Crit (4) des points critiques de 4 est la réunion C d’une famille
finie d’ensembles fermés disjoints, sur lesquels % est constante. Les éléments C € C
sont appelés “‘sous-ensembles critiques’ de h. Pour des fonctions 4 raisonables C est
I’ensemble des composantes connexes de Crit (h).

(2) Pour tout C € C, il existe une sous-varié¢té localement fermée X contenant
C et dont le fibré normal dans M est orienté. De plus

(a) C est le sous-ensemble de X sur lequel # est minimum.

(b) En tout point x € C, I'espace tangent 7,.X. est maximal parmi tous les

sous-espaces de 7, M sur lesquels le hessien H, (k) est non défini négatif.

Une sous-variété satisfaisant ces propriétés est appelée variété minimisante pour
h le long de C.

Toutes les définitions et les résultats précédents s’étendent sans modifications
aux fonctions minimalement dégénérées. De plus

LEMME 4.6. Soit f: M — E3? une immersion tendue d’une surface M et z € S* tel
que T, o f: M — E, soit 2-générique. La fonction hauteur h, est minimalement dé-
générée pour tout x € E, NS>

L’ensemble critique d’une telle fonction hauteur 4, y € E, est constitué d’inter-
valles fermés et de points isolés. Dorénavant appelons également “points critique”
(resp. “selles”) les composantes critiques (resp. composantes critique d’indice 1) de
h,,yekE,.

S. Compléments sur les projections des immersions tendues et le type de leurs
points de pli

LEMME 5.1. Soit f : M —E’ une immersion tendue d’une surface de genre >0 et
x € S? tel que la fonction hauteur h, soit de Morse. h,|,, - satisfait la condition B au
bord et ne posséde pas de points (+)-critiques d’indice 1.
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Preuve. Soit a( f) le nombre de “top-cycles” de f: M — E? et p,(+)[M *] (resp.
:(+)[M 1) le nombre de points (+)-critiques d’indice i de h, |, + (resp. A, |y -).
Comme f est tendue, h, posséde deux extrema dans M* et 2—y(M) selles dans
M. Appliquons 4.1 & h, |+ et A, |5 _:

XM t) =24 po(H)IM*] — p (+)IM ], (1)
XM 7)) = (M) —2) + puo( +)IM 7] =, (+)[IM ] (2)

M ™ est une sphére percée de a( f) trous, ainsi

AM™T) =2—a(f), (3
M) = (M) —x(M™) =a( f) +(X(M) - 2). (4)

h. s+ (resp. A, |y -) posséde au moins a( f) points (+)-critiques car

(M) —p(HM ] =a(f) 22, vu (1) et (3), ()
po( M 7] = (HIM "] =a(f) 22, vu(2) et (4). (6)

D’autre part la restriction de la fonction hauteur A, aux o f) “top-cycles”, qui
constituent M+ = M —, posséde exactement 2a( f) points critiques car 'immer-
sion f plonge chaque “top-cycle” sur une courbe convexe. La somme des nombres
de points (+)-critiques de h, |, . et h, |, - est donc égale a 2a( f). Ainsi h, |, + et
h, |y - possédent exactement aff) points (+)-critiques. (5) et (6) établissent
maintenant que po( +)[M*let u,(+)M]1=0. O

DEFINITION 5.2. Soit un point g d’une surface compacte M et une immersion
f: M —E? désignons par G*(g) une des deux normales & T, f(M) et par § la
composante connexe de Crit (hg+(,)) qui contient g. Si hg ., est minimalement
degénérée et si § est une “selle” de hg+(,), le type de q est par définition celui du
“point critique” ¢ de la fonction hauteur A +,. Si ¢ appartient a une sous-variété
a bord, 2-dimensionnelle, M, de M et si hg ., |a, est une fonction de Morse (ou
minimalement dégénérée) qui satisfait la propriété B au bord, définissons le type de
q relatif @ M, considérant § comme point critique de Ag +, |4, . Le type relatif a M
et celui relatif a M, différent en général. Nous noterons I[M,] (resp. II[M,]) le type
I (resp. II) relatif a M, dans le cas ou il est utile de préciser la surface considérée.

Observons que, lorsque f: M — E? est tendue, la notion de type est bien définie
non seulement pour les points hyperboliques mais également pour ceux qui sont
points de pli d’'une application 2-générique =, o f.
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Notons M ~( f) l'ouvert des points de M~ qui pour un certain z € S? sont
points de pli de n, o f avec =, o f 2-générique. Définissons

My ={pedXM~(f)|P est un point de type I [M "1},
Mupi—1={p XM (f)|P est un point de type II[M~1}.

LEMME 5.3. Soit M une surface de genre #0, il existe alors pour toute
immersion tendue f: M —E? un point x de S* avec F, = n, o f 2-générique et dont le
pli X' (F,) posséde des points de type I et I[M ).

Preuve. Choisissons un “top-set” T,, z €S? contenant un “top-cycle” y.
Comme T, est connexe (cf [17]), z définit un champ C* de vecteurs unités normaux
a f(M) sur T,. L’extension de ce champ de vecteurs a un voisinage W de T, définit
une orientation sur W. Choisissons x € S* presque perpendiculaire 4 z tel que
F, ==, o f soit 2-générique. Il existe par ([7], p. 58) y € S* N E, proche de z tel que
h, soit de Morse et r € R tel que

yeV=h(r,0)cV=h,"[r,0)cW.

Le niveau 4, '(r) posséde une composante connexe dans M * et une dans M ~. La
région V' N M~ contient par conséquent une selle s’ de type I de h,. Par construc-
tion la selle s’ appartient a X'(F,). s est également de type I relativement a M ~ car
(hy|pr-) " '(r, 0) = VA M~ < W est orientable. O

LEMME 5.4. Soit f: M — E? une immersion tendue d’une surface compacte sans
bordetz € S* tel que F, = m, o f : M — E, soit 2-générique. Le type (relatif ¢ M ou M ™)
des points de £'(F,) " M ~ est constant au voisinage d’une point q lorsque la tangente
au profil F,(X'(F,)) en F(q) ne posséde pas d’autres points de tangence avec ce profil.

REMARQUE 5.5. Considérons 'immersion tendue f: M — E® de la surface M
de caractéristique d’Euler-3 possédant une symétrie d’ordre 3 décrite par Kiihnel et
Pinkall en [16]. Un examen attentif du procédé d’approximation C* et de la surface
polyédrale tendue (Figure 3-5 [16]), point de départ de la construction de I'immer-
sion f: M - E? lisse tendue, permet de constater que tout profil de cette surface
immergée présente (Figure 1) trois droites de bitangence provocant un changement
de type. Le type des points d’une composante de pli n’est donc en général pas
constant si y(M) < —3.

Le profil de cette surface tendue de caractéristique-3 posséde trois droites
tangentes au profil en deux points, I'un projection d’un point de type I I’autre de
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Figure 1

type II. Les traits fins continues indiquent les trois droites de bitangence, la courbe
grasse représente la composante du profil projection de la composante de pli
appartenant a M ™ et les traits fins pointillés (resp. traitillés) les parties du profil
projection des points de type I (resp. 1I) du pli.

LEMME 5.6. Soit f: M — E? une immersion tendue du plan projectif avec une
anse, une seule composante connexe K de I’ensemble critique d’une fonction hauteur
h,, y € S? intersecte M ;5 ;.

Preuve. Procédons par I’absurde et choisissons deux composantes connexes K|,
K, de Crit (h,) telles que K;n M- #0 (i=1,2). K; et K, appartiennent au
méme niveau h; '(c) car sinon un niveau séparant K, et K, diviserait M~ en deux
parties non orientables M, et M,; mais ceci est impossible car le plan projectif percé
de deux trous M~ = M, U M, contiendrait alors deux chemins distincts renversants
I'orientation (I'un dans M,, 'autre dans M,).

Considérons deux voisinages V', V, de K, et K, tels que V,n ¥, = §) obtenus par
exemple comme préimage par |grad A, | d’un petit voisinage de 0 € R*. Choisis-
sons, comme dans la figure 2, une selle 57/ de 4, de type II[M ~] dans V, telle que
les sphéres & droite de s}’ appartiennent & V,Uh; '[c, ) et r, € R une valeur

réguliére de A, telle que A, (A, :1('1 )) > c¢. De méme choisissons une selle sJ’,’2 de type
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disques & droite de s!/ " hor)
— \\ a hy'(c+e)
=¥ G it
e
M, _/ &h;:(rz)

disques a gauche de s;{

Figure 2

II[M ~] dans V, telle que les sphéres a gauche de s} appartiennenta ¥, Uk '( — o0, (]
et r, € R une valeur réguliére de 4, telle que (k' (r,)) <c. La surface M; c M~
(i=1,2) obtenue en attachant une anse d’indice 1 a (h,, | rm—) " [ri, 0) (resp.
(h,,|p-) "'(—o0,r,]) en passant la selle s]' est non orientable. Comme M, et
M, peuvent étre choisies disjointes, nous obtenons la méme contradiction que
précédemment. O

COROLLAIRE 5.7. Soit f: M — E? une immersion tendue du plan projectif avec
une anse et z € S? tel que F, =, o f: M — E, soit 2-générique. Le type relatif ¢ M~
est constant sur chaque composante connexe du profil F,(X'(F,)) inclue dans M ~. (Le

profil F,(X'(F,)) ne posséde pas de bitangence provocant un changement de type
relatif a M~ sur ZY(F.)nM ™).

Preuve. Supposons par 'absurde qu’au voisinage d’un point ¢, du pli Z'(F)) le
type n’est pas constant sur le pli. Choisissons un vecteur unitaire y € E, normal au
plan tangent 4 f(M) en f(¢,). La fonction hauteur s, (de Morse ou minimalement
dégénérée) posséde par 5.4 sur le niveau du “point critique” ¢, un autre “point
critique” ¢, au voisinage duquel le type n’est pas constant sur le pli Z'(F,) vu 4.3.
Contradiction avec 5.6. O

COROLLAIRE 5.8. Soit f: M — E3 une immersion tendue du plan projectif avec
une anse et z € S* tel que F, =, o f : M — E, soit 2-générique. Le pli Z'(F,) posséde
une composante connexe de type I[M ~].

6. Le plan projectif avec une anse M ne posséde pas d’immersion tendue dans E*

Pour établir le théoréme A, procédons par I’absurde et supposons I’existence
d’une immersion tendue f: M —E* du plan projectif avec une anse. La “tension”
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étant une propriété projective, supposons les plans contenants les deux ““top-cycles”
paralléles. Choisissons z € S? tel que F = F, =, o f : M — E, soit 2-générique et de
sorte que la composante C, = M * de son pli sépare M+ en deux parties, chacune
d’elles contenant un “top-cycle” de f. Le noyau de =, détermine la verticale de E>.

PROPOSITION 6.1. Le pli X(F) posséde 3 composantes connexes.

Preuve. Le pli X'(F) posséde par (3.5) 2, 3 ou 4 composantes connexes.

Cas I: Supposons que X'(F) posséde 4 composantes connexes. X '(F) est
constitué de 3 chemins C,;, C,, C; = M~ dont le “nombre d’enroulement” r(C;) est
—1 et du chemin Coc M*. Les chemins C; (i =1, 2, 3) possédent un nombre
impair de points cuspidaux car leur ‘“nombre d’enroulement” est impair. Ils
renversent donc l'orientation de M par [13]. M~ qui est homéomorphe au plan
projectif percé de deux trous ne peut contenir 3 chemins disjoints renversants
Porientation. Contradiction.

Cas II (Z'(F) posséde deux composantes connexes): Choisissons x € E, N S? tel
que 4, soit de Morse. A, |,, - satisfait la condition B au bord et posséde une selle de
type II relatif & M~ par 4.3. Toutes les selles de h, appartiennent a 1’unique
composante C, du pli de F contenu dans M ~. C, est constitué uniquement de
points du type II relatif & M~ par 5.6. h, |,,— posséde donc trois selles de type IL.
Ceci contredit 4.4. O

Il existe des immersions f: M — E? (évidemment non tendues) du plan projectif
avec une anse qui factorisent des applications 2-génériques tendues F : M — E? dont
le contour apparent posséde 2, 3 ou 4 composantes connexes.

Exemple 1 (X'(F) posséde deux composantes connexes). Pour construire I'im-
mersion f: M — E* voulue, commengons par nous donner une courbe ¥ de M et
une application différentiable p : ¥ — E? telles que p(€) présente un nombre fini de
points de rebroussement. Nous choisissons p(€) pour que p se prolonge suivant une
application différentiable F : M — E? dont € est le pli. 1l suffit (cf 3.2) pour que F
soit tendue que le contour apparent F(X(F)) = p(¥) donné initialement soit
monotone. Le probléme d’étendre p en F 2-générique se raméne [11] essentiellement
au probléme suivant: donner des conditions nécessaires pour qu’une immersion p,
dans le plan du bord %, d’une surface compacte orientée M, puisse se prolonger
suivant une immersion de M,. Un algorithme simple [8] détermine le nombre
d’extensions différentes.

Nous décrivons dans la Figure 3 I'image d’un voisinage tubulaire canonique de
€. La courbe grasse représente p(%), le trait fin 'image p,(%,) du bord du voisinage
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L)

Figure 3

tubulaire canonique de %. Le “mot de Blank™ associé au ‘“systéme de rayons”
donné est w(p) = {i ~'hdc ~'abghiab, abcdefghi, abcdeghi}. p, s’étend (Th. 1 [8]) en
une immersion F, du disque percé de deux trous (de caractéristique-1) dans le plan.
F, détermine [11] une application 2-générique tendue F: M —E?. Elle peut étre
obtenue (Th. 1 [13]) en considérant d’abord le plan projectif avec une anse immergé
dans E? et en le projetant ensuite orthogonalement sur E2.

Exemple 2 (X'(F) posséde trois composantes connexes). Il suffit d’ajouter une
anse de courbure négative a la surface de Boy plate (Figure 4, [10] p. 90)
paramétrisée par Apery [1] pour obtenir une telle immersion. D’autres immersions
ayants un profil tendu peuvent étre construites en ajoutant une anse aux ‘‘cendriers
a tabac” (Figure 5, [10] p. 115). La surface de Boy plate de la Figure 4 est obtenue
en ajoutant trois disques plongés s’intersectant en un point triple.

Figure 4 Figure 5
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Exemple 3 (2'(F) posséde quatre composantes connexes). Nous construisons a

partir de trois exemplaires disjoints de la surface de Boy plate une immersion de
M = P? # P? # P? possédant le profil suivant:

AN

Figure 6

Nous déformons cette immersion au voisinage de C, pour rendre f(C,) con-
vexe afin que sa composition avec une projection soit 2-générique tendue.

Afin @’établir qu’une immersion f: M - E’, y(M) = — 1, dont le profil posséde
3 composantes connexes n’est pas tendue, nous allons découper M le long des
lignes de pli pour étudier 'application de Gauss G sur des parties orientables.
Nous exhiberons un point z € S dont la préimage G ~'(z) limite un compact K
(#G~'(2)) de M~ d’intérieur non vide. Il en résultera une contradiction a
I’hypothése absurde que f est tendue.

Notons G* Papplication de Gauss restreinte a une partie orientée de M, e; et
e; les hémisphéres nord et sud de S*. Appelons C, (resp. C, et C;)) la composante
du pli de F de nombre d’enroulement 2 (resp. —2 et —1) et y* (resp. y7) le
“top-cycle” appartenant a la préimage de e (resp. e; ) par G+ : M+ - S FEtu-
dions les positions relatives de Cy, C;, C; et des deux “top-cycles” y* et y .

LEMME 6.2. Soit z€S? tel que F,=mn,of soit 2-générique. Le pli X\(F,)
posséde par 6.1 deux composantes connexes C; et C3, dans la partie M~ de
courbure négative ou nulle de nombre d’enroulement —2 et —1 respectivement. Les
“points” de C7% sont de type I{M 1, ceux de C3; de type II|M ).

Preuve. Soit x € S’NE, tel que h, soit de Morse. La fonction A, |, - posséde
un point critique ou (+)-critique de type II relatif a M~ par 4.3 et 4.4. Ce point
est une selle de h, car A, |, - ne posséde pas par 5.1 de points (+)-critiques
d’indice 1. Il appartient a Cj; car sinon tous les points de CZ seraient de type
II[M ~] et h,|» - posséderait par conséquent deux selles de type II[M ~] vu que
r(C3) = —2; contradiction. h,|,_ posséde donc deux selles de type I[M ~] sur C3
et une de type II[M ] sur CZ. Le lemme résulte maintenant de 5.7. O
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PROPOSITION 6.3. C,uy™* ou C,uy~ bordent (dans M) un anneau.

__Preuve. Par définition M~—/y* est obtenu identifiant y* @ un point. P =
(M ~/y™*)/y~ est homéomorphe au plan projectif (et M a P # tore = P # anse =
P # M™). Comme le voisinage de la ligne de pli C,; € M~ est un ruban de Moebius
(i.e C; est un RP! = RP? = P), P\C,, est un disque. Il contient les points y*/y * et
vy~ [y~ appelés y* et y ~. La ligne de pli C;, € M —, plongée dans P, ne rencontre pas
C,,, droite de P. Les positions relatives de C,, y* et y~ sont les suivantes:

2C 2C

(1) (2) (3) (4)

Constatons afin de conclure que les cas (3) et (4) ne se présentent pas:

Cas (3) (C, borde un disque D): Choisissons x € S? presque paralléle aux deux
plans paralléles contenants les “top-cycles” tel que F, = m, o f soit 2-générique. Il
existe par 5.3 y € E, nS? tel que A, posseéde une selle de type I[M ~] dans un petit
voisinage de chacun des deux “top-sets” qui contiennent un “top-cycle”. h, possede
une selle dans lintérieur de D car P'application de Gauss (D, D) — (S, S')
recouvre un hémisphére. Cette selle est de type II[M ~] et appartient 4 la com-
posante Cj, de X'(F,) qui renverse I'orientation. Ce chemin C% ne sort pas du
disque D car il ne peut pas couper le bord dD = X'(F) constitué uniquement de
points de type I[M ~]. Contradiction.

Cas (4) (C, borde un ruban de Moebius R): Rappelons que C,, C,, C,, sont les
lignes de pli du composé¢ F = F,, de 'immersion f et de la projection sur le plan
horizontal. Choisissons F,: M - E, et h, : M - R comme dans le cas (3). Les deux
“selles” de type I[M~] de h,|p,-, v =X A e;, appartiennent & C; = Z'(F,) et &
C, = Z'(F) par 3.6 et 6.2; et constituent I'intersection C N C, car toute composante
connexe de C; N C, est une selle de type I[M ~] de A, |,,-. L’application normale de
Gauss G*: C7 »S’nE, ~S! envoie l'intersection C5 N C, sur deux points antipo-
daux. Ainsi la partie de C7 contenue dans le disque D = P\R de bord C, est envoyé
monotonement sur la moitié du grand cercle S°’nE,. Les deux “selles” de type
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I[M ~], arbitrairement proches par construction des “top-cycles” y * et y ~, apparti-
ennent a C7 N D et sont envoyées par G * sur des points antipodaux. Contradiction.
a

Supposons dorénavant que C, et le “top-cycle” y* bordent un anneau qui
s’appellera B.

LEMME 6.4. M, et My, -, sont connexes par arcs.

Preuve. Soit p,, p, € My, (resp. My, ). Choisissons z; € S* (i = 1, 2) tel que
p; appartienne au pli de F,. F, ==, o f est 2-générique (i = 1, 2) par définition. La
composante de Z'(F, ) contenant p, intersecte par 3.6 celle de Z'(F,,) contenant
P>, car chaque pli posséde par 6.2 une unique composante de chaque type. Ainsi
(Z“(le) uE’(FZZ)) N M pr -y (resp. N My, ;) contient un arc reliant p; et p,. U

COROLLAIRE 6.5. Aucun point de ’intérieur de B n’est de type II[M ~].

La surface (abstraite) 4 = M ~\B\C,, est une sphére avec trois trous. Son bord
est constitué¢ de C,,y ~ et 2C,, (C,, parcouru deux fois). L’application de Gauss
G ™ : A — e; envoie monotonement C, et 2C,, sur I’équateur de; et le “top-cycle”
v~ sur un point. Soit le sous-ensemble

Ay ={p e A\2C,| O My, -, # 0} U2C,
de A4 et
E= {P eM ’ﬁmﬂuw-] ?éq)}

Rappelons un théoréme de Vietoris-Begle [2]:

THEOREME 6.6. Si f est une application continue surjective d’un espace com-
pact de Hausdorff X dans Y telle que I’homologie de Cech de la préimage f~'(y) de
tout point y de Y soit trivial, I’homomorphisme induit par f de H(X, %,) dans
H(Y, &,) est un isomorphisme.

PROPOSITION 6.7. A contient un compact K c:_AZ[_:, qui sépare A en deux
parties et dont I’image G *(K) est un point.

Preuve. Notons G ; :;1_,—, — e, la restriction de G* : 4 —e; .

(1) G}, est surjective:

Soit GP: M —»P? Tlapplication de Gauss des directions induite par
G : E(M) - S? Comme toute fonction hauteur de Morse sur M ~ posséde une selle
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de type II[M "], nous avons que G”(M) = G”(M,) = G”(M,) =P2. G} est sur-
jective car G?'(M,)) = G”’(Z,-,) vu que tous les points de type II[M ~] sont dans 4.

(2) 11 existe un compact K de E ne possédant pas I’homologie de Cech d’un
point tel que G *(K) est un point:

Supposons par I'absurde que I'homologie de Cech a coefficients %, de la
préimage (G;;) ~'(y) de touE_Eoint de y € e; soit celle d’un point. G 2_}__ induit par
6.6 un isomorphisme de H,(4,,) sur H,(e;) = 0. Le cycle [2C,] € H,(4},) est donc

nul. L’inclusion i : 4;, ¢ A4 envoie 2C,; sur un bord de la sphére avec trois trous A4,
il représente donc un cycle non trivial. Contradiction.

(3) K est connexe par 5.6.

(4) K sépare A en deux parties:

L’affirmation résulte des faits suivants [9, 21]:

— Dans les variétés de dimension <2 un compact est cellulaire si et seulement
s’il posséde I’homologie (de Cech a coefficient 2,) d’un point.

— Les compacts cellulaires du plan se reconnaissent grace a la propriété que K
est cellulaire si et seulement si K et N\K sont connexes non vides. O

Fin de la démonstration du théoréme A:

Comme M, est connexe par 6.4, comme C, < M;,, -, et comme tout
voisinage du “top-cycle” y~ contient des points de type I[M ~] K ne peut pas
séparer (dans A) y~ de C, car K n M, -; =0 vu que K n’est pas contractile. K est
donc la fronti€re d’une région compacte R de M~ qui ne contient pas y ~ (en fait

R = —JI{—,,). Soit z € S* normal & T, f(M). La fonction hauteur 4, est constante sur
K = 0R et posséde un extremum local x, € R\K <« M~ car G* n’est pas constante
sur R. Le plan tangent au point x, de M ~ est un support local mais non global de
f(M). Ceci contredit par 2.1 'hypothése que f: M — E3? est tendu.
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