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Une inégalité du type &quot;Reilly&quot; pour les sous-variétés de
l&apos;espace hyperbolique

A. El Soufi and S. Ilias

Soit (M, g) une variété riemanienne compacte connexe de dimension m ^ 2.

Dans [13], Reilly montre que, pour toute immersion isométrique (j&gt; de (M, g) dans
l&apos;espace euclidien (R&quot;, can) on a:

J
H2((t))dv^-^—^V(M) (1)

m ™

où //(&lt;/&gt;) est la norme de la courbure moyenne de (j&gt;, Xx (M) est la première valeur

propre non nulle du laplacien de (M, g) et où dv et V(M) sont respectivement
l&apos;élément de volume et le volume riemanniens de (M, g). De plus, l&apos;égalité a lieu
dans (1) si et seulement si &lt;/&gt;(M) est contenu dans une sphère de rayon y/m/Àx(M)
et si (p est une immersion isométrique minimale de (M, g) dans cette sphère.

L&apos;extension aux sous-varié tés de la sphère canonique (Sw, can) de l&apos;inégalité de

Reilly se fait de manière immédiate. En effet, pour toute immersion isométrique (/&gt;

de (M, g) dans (SM, can) on a:

f
JM

(2)

(Cette inégalité s&apos;obtient en appliquant (1) à l&apos;immersion i o &lt;j) où i est l&apos;injection

canonique de S&quot; dans IRW+1).

En ce qui concerne les sous-variétés de l&apos;espace hyperbolique (H&quot;, can), le
dernier résultat obtenu dans cette direction est celui de Heintze [8]: pour toute
immersion isométique &lt;f&gt; de (M, g) dans (Hw, can) on a:

m

Dans le présent article, nous obtenons l&apos;inégalité intégrale optimale qui étend celle
de Reilly à ces sous-variétés.
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THEOREME 1. Pour toute variété riemanienne compacte {M, g) de dimension

m ^ 2 et pour toute immersion isométrique &lt;f&gt; de (M, g) dans (Hw, can) on a:

f &amp; (3)

De plus, Végalité a lieu si et seulement si &lt;f&gt;(M) est contenue dans une sphère

géodèsique de rayon Arg sh y/m/Âx(M) et si (f&gt; est une immersion isométrique
minimale de (M, g) dans cette sphère.

En fait, il est facile de voir à partir du théorème de Takahashi (cf [10]) que les

immersions &lt;f&gt; pour lesquelles l&apos;inégalité (3) est une égalité sont exactement les

immersions de la forme &lt;j) —jo&lt;t&gt;&apos; où &lt;/&gt;&apos; est une immersion isométrique de (M, g)
dans une sphère euclidienne dont les composantes canoniques &lt;l&gt;\,..., §&apos;n sont des

premières fonctions propres du laplacien et où j est un plongement totalement

ombilique de cette sphère dans W. De telles immersions existent en particulier
lorsque (M, g) est un espace homogène irréductible (par exemple une sphère, un
projectif réel, complexe, quaternionien ou de Cayley), un tore de Clifford, un tore
équilatéral, etc... (cf [10]).

Dans le §4 de [8] consacré aux problèmes ouverts, Heintze pose le problème de

déterminer la constante Cm(Hn) définie comme le supremum pour toutes les

sous-variétés immergées M de dimension m de H&quot; de la différence Xx (M) —

(m/V(M)) jM H2((l&gt;) dv. La réponse à cette question est contenue dans le Théorème
1 qui donne Cm(Hn) -m.

Notons aussi que les inégalités (1) et (2) restent valables pour les courbes de Un

et Sw. Quant à l&apos;inégalité (3), Heintze fait remarquer dans sont article, en s&apos;ap-

puyant sur un travail de Langer et Singer [9], qu&apos;elle est valable pour les courbes de
H&quot; de longueur inférieure ou égale à 2n mais qu&apos;elle n&apos;est pas valable en général.
C&apos;est pour cela qu&apos;il s&apos;était alors posé la question de savoir sous quelles conditions
de &quot;petitesse&quot; l&apos;inégalité (3) pouvait avoir lieu pour les sous-variétés de HT. Notre
Théorème 1 montre bien que le cas des courbes de Hn est en fait un cas spécial car
l&apos;inégalité (3) est valable pour toutes les sous-variétés de dimension m ^ 2 de Mn

sans aucune hypothèse supplémentaire.
Notre démonstration du Théorème 1 s&apos;appuie sur le fait que (H&quot;, can) est

conformément équivalent à un ouvert de (§&quot;, can). En fait, les résultats précédents

peuvent se généraliser à toutes les variétés riemanniennes (N, h) de dimension n
(non nécessairement complètes) telles qu&apos;il existe une immersion conforme de (N, h)
dans la sphère (§w, can) de même dimension (cette dernière condition est vérifiée en
particulier par (R&quot;,can), (Sw, can), (Hw, can) ainsi que par toute variété (N, h)
simplement connexe et conformément plate). En effet, les inégalités (1), (2) et (3)
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sont des cas particuliers du résultat plus général suivant:

THEOREME 2. Soit (N, h) une variété riemanienne de dimension n {éventuelle-
ment non complète) qui admet une immersion conforme dans la sphère (Sw, can).
Alors, pour toute variété riemannienne compacte (M, g) de dimension m ^ 2 et pour
toute immersion isométrique 4&gt; de (M, g) dans (N, h), on a:

I (H\&lt;j&gt;) + R(ct&gt;)) dv ^ ^± V(M) (4)
M m

OU

m(m — \)l¥tJ

KN étant la courbure sectionnelle de (N, h) et {et} une base orthonormée de TXM.
De plus, Végalité a lieu si et seulement si H2((j)) -+- R(4&gt;) est constant égal à

Xx{M)jm.

Une mainère équivalente d&apos;écrire l&apos;inégalité (4) est:

(5)|t(0)|2 dv^(m- \)kx(M)V{M) - ScalMdv
JM JM

où ScalM est la courbure scalaire de (M, g) et où |t(&lt;£)|2 |cr($)|2 — mH2((/));
étant la norme de la seconde forme fondamentale de 0.

Dans le cas particulier où la courbure sectionnelle de (N, h) est majorée par un
réel c, l&apos;inégalité (4) nous donne:

f
JM (){) (6)

Dans le cas des sous-variétés de dimension 2 l&apos;inégalité (4) peut être améliorée.
En effet, le résultat qu&apos;obtiennent Li et Yau dans [11] pour les surfaces de IR&quot;

s&apos;étend aisément aux surfaces de toutes les variétés (N, h) de dimension n qui
admettent des immersions conformes dans la sphère (Sw, can):

PROPOSITION 1. Soit (N, h) une variété riemannienne de dimension n
(éventuellement non complète) qui admet une immersion conforme dans (Sn, can).
Alors, pour toute immersion isométrique (j) d&apos;une surface (M, g) dans (N, h), on a:

)m
(H\4&gt;) + R(4&gt;)) dv ^ Sup (VC(M),

où VC(M) est le volume conforme de (M,g) et où i{(j&gt;) Sup {#&lt;f&gt;~l(z);z eN}.
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Nous rappellerons à la fin du §2 la définition de VC(M). Notons seulement que
cet invariant qui a été introduit par Li et Yau dans [11], ne dépend que de la classe

conforme de (M, g) et vérifie VC(M) £ Àx(M)V(M)/2 (cf [11]).
Enfin, dans le §3, nous donnons quelques applications concernant la stabilité des

hypersurfaces minimales et des hypersurfaces à courboure moyenne constante.

1. Equation principale

Dans toute la suite on désignera par M une variété differentiable de dimension
m ^ 2 et par (N, h) une variété riemannienne de dimension n^.m. Pour toute
immersion &lt;f&gt; de M dans N on notera respectivement a{4&gt;) et rj((f&gt;) la seconde forme
fondamentale et la courbure moyenne de $ considérée comme immersion isométrique
de (M, &lt;t&gt;*h) dans (N, h) et on posera pour tous X, Y e TM

t(&lt;t&gt;)(X, Y) (7(40(X, Y) - 0 */*(*, Y)n{(t&gt;).

L&apos;immersion &lt;j) est dite minimale si rç(0) 0» totalement ombilique si t(0) 0 et
totalement géodésique si &lt;r($) 0 (cette dernière hypothèse signifie que les images

par &lt;f&gt; des géodésiques de (M, (t&gt;*h) sont des géodésiques de (N,h). Elle est

automatiquement vérifiée si M et N ont même dimension).
Notons que l&apos;invariant t($) ne dépend que de la classe conforme de la métrique

h. En fait, nous aurons besoin de la propriété plus générale suivante:

LEMME 1. Soit II une immersion conforme totalement géodésique de (N, h) dans

une autre variété riemannienne (N, fi). On a

t(I7 o ((&gt;) dU o T(0).

En particulier, si 0 est totalement ombilique il en est de même de 77 o &lt;£.

Preuve. Posons h&quot; n*fï efh. Du fait que 77 est totalement gédésique on a,

par un calcul immédiat:

T(J7 o $) dïl o t&apos;(4&gt;)

où t&apos;($) g&apos;{4&gt;) — rç&apos;(0)$*A&apos; est l&apos;invariant associé à l&apos;immersion &lt;f&gt; : M -+ (N, h&apos;).

D&apos;autre part, l&apos;expression de la connexion sous l&apos;effet d&apos;un changement conforme de

métrique nous donne (voir par exemple [4]):
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où (grad/)-1- est la partie normale à &lt;p(M) du gradient de/pour la métrique h. On
en déduit:

D&apos;où le résultat.

Soit x un point de M et soit {et} une base orthonormée de TXM pour la
métrique (f)*h. Les normes de rj((f)), g(4&gt;) et t(&lt;/&gt;) au point x sont données par:

H&lt;t&gt;)\2 Z Ko(&lt;t&gt;)(e,, ej), a(4&gt;)(et, e,)),

Ces trois invariants sont liés par la relation immédiate suivante:

On pose R{(j)) =(\/m(m — 1)) L^^/S^rf^,), d&lt;t&gt;(ej)) où AT^ est la courbure
sectionnelle de (N, h). L&apos;objet de la proposition suivante est de donner l&apos;expression

de H2{(j)) + R((f)) sous l&apos;effet d&apos;un changement conforme de la métrique h.

PROPOSITION 2. Soit 77 une immersion conforme et totalement géodésique de

(N9 h) dans une variété riemannienne (N, R). On notef la fonction telle que Tl*K efh.

Pour toute immersion &lt;f&gt; de M dans (N, h) on a:

H\4&gt;) + R(&lt;t&gt;) &lt;S° +(H\n o d&gt;) + £(77 o &lt;/&gt;)) + &quot;Hifl |F(/o 4&gt;)f~- A(fo 0)
4m m

où \V(fo (j))\ et A(fo (p) sont respectivement la norme du gradient et le Laplacien de

f°(f&gt; pour la métrique (j)*h.

Preuve. Du Lemme 1 on déduit

Or, l&apos;équation de Gauss donne:

|t(4&gt;)|2 \a{&lt;t&gt;)\2 - mH\4&gt;) m(m - \){H2{&lt;f&gt;)

où R(&lt;f&gt;*h) est égal à l/m(m — 1) fois la courbure scalaire de (M, &lt;f&gt;*h). D&apos;où

H2((f&gt;) -h R((/)) - R{&lt;})*h) efa *(H\n o &lt;j&gt;) 4- R
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Les formules standards de changement conforme donnent (cf. [1]):

R((FI o &lt;}&gt;)*h) R(ef°*(t)*h) =e-&apos;°+(R{4&gt;*h) -&quot;^ \V{f° (f&gt;)\2 + - A(f
4m m

Le résultat en découle immédiatement.

Notons que si l&apos;on désigne par e(U o $) la densité d&apos;énergie de 77 o &lt;\&gt; considérée

comme application de (M, (j&gt;*h) dans (fit, /T), on a alors

Une application directe de la Proposition 2 est la suivante: pour toute variété
riemannienne (fit, fi) on désigne par I(N, fit) Vensemble de toutes les immersions
conformes totalement gèodèsiques de (N, h) dans (fi, fi) et on note I(N) la réunion
des I(N, fit) lorsque (fit, K) parcourt l&apos;ensemble de toutes les variétés riemanniennes.
On a alors le

COROLLAIRE 1. On suppose M compacte. Pour toute immersion &lt;j&gt; de M dans

(N, h) on a:

I (H2((t&gt;) 4- R((j))) dv ^ - sup | e(J7 o 0)£(J7 o y) dv\ 77 e I(N)

2. Preuves des théorèmes

Ces théorèmes concernent le cas où M est compacte et où I(N, S&quot;) est non vide.
Soit &lt;j) une immersion de M dans (N, h). Pour tout 17 e I(N, Sn) on a R(TI o 0) l.
Le Corollaire 1 nous donne donc dans ce cas:

F
(H2(&lt;t&gt;) -h R(&lt;f&gt;)) dv ^ - Sup { I e(/7 o (/,) dv; 77 6 /(AT, (7)

Fixons nous une immersion 77 g I(N, S&quot;) et considérons l&apos;application 77 o &lt;£. Par
un argument devenu standard (cf. [11]) on sait qu&apos;il existe un difféomorphisme
conforme y de (SM, can) tel que l&apos;application i// y o [J o 0 ait son centre de masse
à l&apos;origine, i.e. \M ij/l dv • • \M \j/n+, dv 0 où ^,,..., ij/n+, sont les corn-
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posantes canoniques de ij/. On pose W y o n g I(N, S&quot;). On a alors

(8)

où l&apos;inégalité provient du principe du minimax.
L&apos;inégalité (4) (et donc en particulier l&apos;inégalité (3)) est démontrée.

Cas d&apos;égalité dans le Théorème 2. Supposons que l&apos;égalité ait lieu dans (4).
L&apos;argument utilisé ci-dessus nous dit que, pour tout FI g I(N, S&quot;), il existe un
difféomorphisme conforme y de (Sw, can) tel qu&apos;on ait, en posant ij/ =yo n ° (j&gt;:

Jm ™ i jm m i jm

Cette dernière inégalité est donc une égalité et par suite, les fonctions \jjl,.. jj/n+ x

sont des premières fonctions propres du Laplacien de (M, g). On en déduit:

&lt;#) \Z |F*.|2 ^fe «A, ^, -
L&apos;équation de la Proposition 1 nous donne alors (avec /7&apos; y°J7 et er°&lt;t&gt;

A, (M)/m)

1).
m

En intégrant on voit bien que Hty) est nul et que H2^) + £(&lt;£) est constant égal
à lx(M)\m.

Cas d&apos;égalité dans le Théorème 1. Supposons que &lt;j)(M) soit contenue dans une
sphère géodésique S de courbure kx(M)lm et que &lt;/&gt; : M-*S soit minimale. Si l&apos;on

désigne par i l&apos;injection canonique de S dans H&quot;, on a alors #2(&lt;/&gt;) //2(i) (car les

sphères géodésiques de (Hw, can) sont des sous-variétés totalement ombiliques). De
plus, on a par l&apos;équation de Gauss: H2(ï) {Xx{M)lm) + 1. L&apos;inégalité (3) est donc
bien une égalité dans ce cas.

Pour montrer la réciproque, nous utilisons pour W le modèle de la pseudosphère

de l&apos;espace de Minkowski. En effet, soit Lw + 1 =(RW+1, q) l&apos;espace de

Minkowski où q est la forme quadratique q {dyx)2 + • • • + (dyn)2 — (dyn + l)2.
L&apos;espace hyperbolique est alors défini comme étant la sous-variété
Hn [y g IRn +1; yn+ x

&gt; 0 et q(y, y) — 1} munie de la métrique riemannienne
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obtenue par restriction de q à son fibre tangent. L&apos;application 77 définie par
n(yx, y2,. • •, yn +1 Vyn +1 )(j&gt;i

&gt; .F2&gt; • • •, Jn, 1) donne un plongement conforme
de (Hw, can) dans (S&quot;, can). En fait, on a

77 * cans« -5— canH«.

(Autrement dit, l&apos;application 77 identifie l&apos;espace hyperbolique à l&apos;hémisphère nord
munie de la métrique (1/&gt;&gt;2+i) can§M).

La suite de cette preuve est basée sur les deux lemmes suivants:

LEMME 3. Soit y un difféomorphisme conforme de (Sw, can). // existe un vecteur
unitaire a e Un+ l et un réel t ^ 0 tels qu&apos;on ait pour tout z g Sw:

y* can|2 ((z, a) sh t + ch /) ~2 can|z,

où &lt; &gt; est le produit scalaire euclidien de Un+X.

Preuve. Rappelons que (voir le lemme du §1 de [6]) pour tout difféomorphisme
conforme y de (Sw, can), il existe un réel t ^ 0, un vecteur unitaire a e Un+ l et une
isométrie r e 0(n + 1) tels qu&apos;on ait y ryat, où (yat)t est le flot du champ de vecteurs
A obtenu en projetant le champ constant a sur TSn (i.e. A(z) a — &lt;z, a}z). Par
suite, on a 7* can (y?)* can. Si a est la fonction telle que y*can acan on a

alors, pour tout z e S&quot;\{±a}

Or, on a |^(z)|2 1 - &lt;z, a&gt;2 et \dyat{A{z))\2 |^(y?(z))|2 1 -&lt;y?(z), a}2. D&apos;où

a(z) (1 - &lt;y?(z), a&gt;2)/l - &lt;z, a&gt;2. (9)

D&apos;autre part on a:

&lt;;() &gt;

On en déduit, après intégration:

&lt;yf (2), a&gt; (th / + &lt;2, a»/«2, a&gt; th / + 1).

On reporte cette dernière expression dans (9) pour obtenir le résultat.
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LEMME 5. Soit y un difféomorphisme conforme de (Sn, can). Pour tout réel
k &gt; 0 on pose Sk {y e Hn t.q. (y o 77)* cang,,^ k canHn\y }. Alors il existe un réel
ko&gt;0 tel que: (i) Sk soit une hypersphère géodésique pour k e]0, kQ[, (ii) Sk soit
réduit à un point pour k =k0, (iii) Sk soit vide pour k &gt;k0.

Preuve. D&apos;après le lemme précédent, il existe un vecteur a e Sn et un réel / ^ 0

tels qu&apos;on ait pour tout y e H&quot;:

(y o 77)* can§4 77*y* can^ (yn+ x((a, TI(y)) sh / + ch 0)

Par suite, on a

Sk \ y e H&quot; t.q. sh / Ç atyt + ch tyn + x -j= - an + x sh 11.

On pose

sh t ch
b

Le point b ainsi défini appartient à H&quot; (i.e. q(b, b) — 1) et on a:

où C(k) =(an+lsht-k-
Or, on a q(b, y) ^ -1 pour tous b et y g Hn. Par suite, Sk est vide dès que l&apos;on

a C(k)&gt;—\, i.e. dès que l&apos;on a k &gt; k0 (an +, sh t + «Ja\ + x
sh2 t + 1) &quot;2. Par

contre, si C(fc) est inférieur ou égal à — 1 (i.e. A: g k0) on a

5,={jg H&quot; t.q. d(b, y) Arg ch - C(k))}

où d(b, y) Arg ch —q(b, y)) est la distance géodésique de b à y dans (Hw, can).
D&apos;où Sko {b} et, pour tout k e ]0, A:o[, «S* est l&apos;hypersphère géodésique de centre
b et de rayon Arg ch -C(k)).

Supposons maintenant qu&apos;on ait l&apos;égalité dans (3). Par les mêmes arguments
utilisés pour le cas d&apos;égalité du Théorème 2, on montre l&apos;existence d&apos;un difféomorphisme

conforme y de (§&quot;, can) tel qu&apos;on ait H(y o 77 o ^) 0 et e(y o JJ o 0)
X\(M)I2. La dernière condition signifie qu&apos;en tout point x de M on a:

(y o 77)* cans«|0W -L^— canH«|0W. (10)
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On en déduit, par le Lemme 3, que (j)(M) est contenue dans une sphère géodésique
S de (Hn, can). Posons S&apos; y° n(S). Comme les sphères géodésiques de Hw sont
totalement ombiliques et comme la totale ombilicité est conservée par changement
conforme de la métrique de l&apos;espace ambiant, *S&quot; est donc une sphère géodésique de

(§&quot;, can) qui contient y o U o $(M). Or, puisque H(y ° 77 o 0) 0, cette sous-variété

est minimale dans (Sw, can) et ne peut donc être contenue dans aucune

hémisphère. Par suite, S&quot; est nécessairement une grande sphère de courbure 1 (i.e.

un équateur). D&apos;après (10), S est donc une sphère géodésique de courbure section-

nelle kx(M)jm (donc de rayon Arg sh ^/ra/A^M)) pour la métrique induite par
canH«.

Reste à montrer que &lt;j)(M) est minimale dans S. En effet, si l&apos;on note //($) la

norme de la courbure moyenne de 4&gt;{M) dans S et i l&apos;injection canonique (totalement

ombilique) de S dans W on aura

H2(4&gt;) H \4&gt;) + H2(i) H2{&lt;t&gt;) + 1 +
Ai (M)

m

Or, on a (cas d&apos;égalité du Théorème 2): H\&lt;j)) 1 -h (/^(AO/m). D&apos;où H{&lt;j&gt;) 0, ce

qui achève la démonstration.

Cas des sous-variétés de dimension 2. Dans [11], Li et Yau définissent le volume
conforme, noté Vc(\j/), d&apos;une immersion \j/ : M-&gt;(§&quot;, can) par:

Vc&amp;) =Sup {Vol (y o &lt;/,); y eG(n)}

où Vol (y o \j/) désigne le volume riemannien de M pour la métrique (y o \j/) *can et
où G(ri) est le groupe des difféomorphismes conformes de (Sw, can). Si [g] est une
classe conforme de métriques sur M, ils appellent volume conforme de M pour cette
classe conforme la quantité:

VC(M) Inf Inf {Fc0/0; ^ e«(M, S&quot;)}

^2

où ^(M, Sw) est l&apos;ensemble de toutes les immersions conformes de (M, g) dans
(Sw, can). De plus, ils montrent que pour toute immersion i// : M-+§n on a:

où i(tfr) Sup {#\j/ ~ l(z); z g §&quot;}.
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Maintenant, dans le cas où M est de dimension 2, on a, pour toute immersion
M-&gt;(N, h) et tout 77 g I(N, S&quot;)

JM
e(n °4&gt;)dv= Vol (77 » &lt;/,)

L&apos;inégalité (7) devient donc dans ce cas

(H2(&lt;f&gt;) + R(4&gt;)) dv ^ Sup {Vol (77 ° &lt;j&gt;), 77 e I(N, S&quot;)}

^Sup {^(77 0 0), 77 e/(^, S&quot;)}

l
Ceci démontre la Proposition 1 car, pour tout 77 e I(N, Sn) on a VC(I1 ° (j&gt;)^

Sup {4tci(0), Fc(M)}

Remarque Pour illustrer la Proposition 1 prenons le cas où M est le plan
projectif réel IRP2 Dans ce cas, on sait qu&apos;il existe une unique classe conforme de

métriques et que Ton a VC(UP2) 6tt (cf [11]) D&apos;où, pour toute immersion § de

UP2 dans (N, h) on a

1 dv ^ Sup (6tt,
M

(Rappelons que si N est de dimension 3, alors *(&lt;/&gt;) est au moins égal à 2 et donc
le second membre de l&apos;inégalité ci-dessus est supérieur ou égal à 871) Les calculs

concernant les volumes conformes des différentes classes conformes du tore T2

fournissent d&apos;autres exemples permettant d&apos;expliciter la Proposition 1 (cf [11] et

[12])

COROLLAIRE 2 Soit M une surface compacte orientable de genre (f et soit
(N, h) une variété nemannienne de dimension n vérifiant I(N, Sn) # (j) Alors, pour
toute immersion (j) de M dans (N, h) on a

l
Preuve Ce résultat est une conséquence directe du Théorème 2, de l&apos;équation de

Gauss |t(0)|2 2(H2{4&gt;) + R{&lt;f))) - Scal^ et de l&apos;équation de Gauss-Bonnet
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3. Applications

Nous commençons par montrer que la majoration de la première valeur propre
non nulle kx(M) du Laplacien A d&apos;une sous-variété M par des invariants extrinsèques

donnée dans le Théorème 2 peut être généralisée à des opérateurs du type
A 4- W où W est une fonction différentiable quelconque sur M. En effet, on a le:

THEOREME 3. Soit (M, g) une variété riemannienne compacte de dimension

m ^ 2 et soit (N, h) une variété riemannienne de dimension n telle que I(N, Sn) soit
non vide. Alors pour toute fonction différentiable W sur M et toute immersion

isométrique &lt;j) de (M, g) dans (N, h) on a:

V(M) l
où XX{A H- W) est la seconde valeur propre de l&apos;opérateur A + W et où W

(l/V(M)) jM Wdv est la valeur moyenne de W sur (M, g).
De plus, lorsque m est supérieur ou égal à 3, Végalité a lieu si et seulement si W

est constante et si H\&lt;$) -f- R(&lt;t&gt;) est constant égal à Xx{M)lm.

Preuve. Il suffit de remarquer (cf. [7], Lemme 1) que pour tout II e I(N, S&quot;), il
existe un difiéomorphisme conforme y de (Sw, can) tel que les composantes
canoniques de^=y°jjo&lt;£ soient orthogonales (au sens L2) au premier espace propre
de A + W (rappelons que cet espace est de dimension 1 et qu&apos;il est engendré par une
fonction strictement positive). Le reste de la preuve se fait par des arguments
semblables à ceux utilisés dans la preuve du Théorème 2.

Dans toute la suite, la variété M sera supposée compacte orientable de dimension

m n — 1.

Soit &lt;p une immersion minimale de M dans une variété (N, h) orientable. Une
telle immersion est en fait un point critique de la fonctionnelle volume. Comme,
dans ce cas, le fibre normal de 0 est trivial, la variation seconde de cette
fonctionnelle s&apos;exprime à l&apos;aide de la forme quadratique associée à l&apos;opérateur

suivant, dit opérateur de Jacobi, (cf. [10]):

où p($) ric^v (v, v) est la courbure de ricci de (N, h) dans la direction du champ
normal unitaire v. On appelle alors indice de (j&gt; le nombre de valeurs propres
strictement négatives de L0. Une immersion d&apos;indice zéro est dite stable.
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On note ZN ric^ — (Sc?ANlri)h le tenseur d&apos;Einstein de (N, h) où Scal^ est la

courbure scalaire de (TV, h). On a alors:

THEOREME 4. Soit (M, g) une variété riemannienne compacte orientable de

dimension m ^ 2 et soit (TV, h) une variété riemannienne de dimension m + 1 telle que
/(TV, Sm+1) soit non vide. Si (j&gt; : (M, g) -&gt;(TV, h) est une immersion isométrique
minimale d&apos;indice inférieur ou égal à 1 alors on a:

f
JM

\v((t&gt;)\2 dv S - m ~~
ZN(y,v)do.

En particulier, si (N, h) est de courbure sectionnelle constante, alors toute immersion

isométrique minimale d&apos;indice g 1 de (M, g) dans (N9 h) est totalement géodésique.

Preuve. Notons tout d&apos;abord que iV est nécessairement orientable car
I(N, §m + 1) ^ (f&gt;. L&apos;hypothèse sur l&apos;indice de &lt;f) entraîne que la seconde valeur

propre ^(Z^) de L^ est positive ou nulle. On a donc, d&apos;après le Théorème 3:

Comme

—\-\m \
V\M) |_ JM

est nul, ceci donne:

f
JMJM

Or on a:

mR(&lt;f&gt;) -
D&apos;où le résultat.

(m — i) ^ - (m
m —

w(v, v)

Soit maintenant une immersion (f&gt; de M dans (TV, A) à courbure moyenne
constante (i.e. H{(j)) cte). Une telle immersion est en fait un extrêma lié de la
fonctionnelle volume. D&apos;après Barbosa et do Carmo (cf. [2] et [3]), on dira que
l&apos;immersion &lt;/&gt; est stable si on a \MuL^,(u)dv ^0 pour toute fonction u telle que
\Mudv= 0.

THEOREME 5. Soit (M, g) une variété riemannienne compacte orientable de

dimension m ^ 2 et soit (N, h) une variété riemannienne de dimension m -f 1 telle que
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I(N, Sm+l) soit non vide. Si &lt;f) est une immersion isométrique à courbure moyenne
constante stable de (M, g) dans (N, h) alors on a:

f ZN(y,v)A&gt;.
M &apos;&quot; ~ A JM

En particulier, si (N, h) est de courbure sectionnelle constante, alors toute immersion

isométrique à courbure moyenne constante stable de {M, g) dans (N, h) est totalement

ombilique.

Preuve. Il est clair, d&apos;après la caractérisation variationnelle des valeurs propres,
que la stabilté de (j&gt; entraîne la positivité de /^(Z^). Le reste de la preuve est

identique à celle de Théorème 4.

Remarque. Une conséquence du Théorème 5 est que, dans le cas où (N, h) est

isométrique à (Sm + 1,can), (Rm+1,can) ou (Hm + l, can), les hypersphères géodé-

siques sont en fait les seules hypersurfaces compactes orientables à courbure

moyenne constante stables de (N, h). Ce résultat avait été obtenu par Barbosa et do
Carmo [2] dans le cas (N, h) (Um + \ can) et par Barbosa, do Carmo et Eschen-

burg [3] dans les cas (N, h) (Sm+1,can) et (N, h) (Hm+1, can). Dans un
précédent article [5], nous avions obtenu de manière indépendante ce résultat dans
les cas (N, h) (Sm+l, can) et (N, h) (H3, can).
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