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Une inégalité du type “Reilly” pour les sous-variétés de
Pespace hyperbolique

A. EL SOUFI AND S. ILIAS

Soit (M, g) une variété riemanienne compacte connexe de dimension m = 2.
Dans [13], Reilly montre que, pour toute immersion isométrique ¢ de (M, g) dans
I’espace euclidien (R”, can) on a:

J ) do 22D o) (1)

ou H(¢) est la norme de la courbure moyenne de ¢, 4,(M) est la premiére valeur
propre non nulle du laplacien de (M, g) et ou dv et V(M) sont respectivement
I’élément de volume et le volume riemanniens de (M, g). De plus, ’égalité a lieu
dans (1) si et seulement si ¢(M) est contenu dans une sphére de rayon ./m/A,(M)
et si ¢ est une immersion isométrique minimale de (M, g) dans cette sphére.

L’extension aux sous-variétés de la sphére canonique (S$”, can) de I'inégalité de
Reilly se fait de maniére immédiate. En effet, pour toute immersion isométrique ¢
de (M, g) dans (S”, can) on a:

f H$) dv 2 (“fff’ - 1)V(M). P

(Cette inégalité s’obtient en appliquant (1) a 'immersion i o ¢ ou i est I'injection
canonique de S” dans R"* 1),

En ce qui concerne les sous-variétés de I’espace hyperbolique (H", can), le
dernier résultat obtenu dans cette direction est celui de Heintze [8]: pour toute
immersion isométique ¢ de (M, g) dans (H", can) on a:

Max H*(¢) 2 + 1.

A (M)
m

Dans le présent article, nous obtenons I'inégalité intégrale optimale qui étend celle
de Reilly a ces sous-variétés.
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THEOREME 1. Pour toute variété riemanienne compacte (M, g) de dimension
m 22 et pour toute immersion isomeétriqgue ¢ de (M, g) dans (H", can) on a:

f HX¢p) dv = (A‘fy) + I)V(M). (3)

De plus, I'égalité a lieu si et seulement si ¢(M) est contenue dans une sphére
géodésique de rayon Argsh./m/[A, (M) et si ¢ est une immersion isométrique
minimale de (M, g) dans cette sphere.

En fait, il est facile de voir a partir du théoréme de Takahashi (cf [10]) que les
immersions ¢ pour lesquelles I'inégalité (3) est une égalité sont exactement les
immersions de la forme ¢ =j o ¢’ ou ¢’ est une immersion isométrique de (M, g)
dans une sphére euclidienne dont les composantes canoniques ¢, . . ., ¢, sont des
premiéres fonctions propres du laplacien et ou j est un plongement totalement
ombilique de cette sphére dans H”. De telles immersions existent en particulier
lorsque (M, g) est un espace homogene irréductible (par exemple une sphére, un
projectif réel, complexe, quaternionien ou de Cayley), un tore de Clifford, un tore
équilatéral, etc. .. (cf [10]).

Dans le §4 de [8] consacré aux problémes ouverts, Heintze pose le probléme de
déterminer la constante C,,(H”) définie comme le supremum pour toutes les
sous-variétés immergées M de dimension m de H” de la difféerence A,(M) —
(m/V(M)) [»y HX($) dv. La réponse 4 cette question est contenue dans le Théoréme
1 qui donne C,,(H") = —m.

Notons aussi que les inégalités (1) et (2) restent valables pour les courbes de R”
et S”. Quant a l'inégalité (3), Heintze fait remarquer dans sont article, en s’ap-
puyant sur un travail de Langer et Singer [9], qu’elle est valable pour les courbes de
H” de longueur inférieure ou égale a 2n mais qu’elle n’est pas valable en général.
C’est pour cela qu’il s’était alors posé la question de savoir sous quelles conditions
de “petitesse” I'inégalité (3) pouvait avoir lieu pour les sous-variétés de H”. Notre
Théoréme 1 montre bien que le cas des courbes de H” est en fait un cas spécial car
I'inégalité (3) est valable pour toutes les sous-variétés de dimension m =2 de H”
sans aucune hypothése supplémentaire.

Notre démonstration du Théoréme 1 s’appuie sur le fait que (H”, can) est
conformément équivalent & un ouvert de (S”, can). En fait, les résultats précédents
peuvent se généraliser a toutes les vari€étés riemanniennes (N, ) de dimension n
(non nécessairement compleétes) telles qu’il existe une immersion conforme de (N, h)
dans la sphére (S”, can) de méme dimension (cette derniére condition est vérifiée en
particulier par (R", can), (S" can), (H" can) ainsi que par toute variété (N, h)
simplement connexe et conformément plate). En effet, les inégalités (1), (2) et (3)
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sont des cas particuliers du résultat plus général suivant:

THEOREME 2. Soit (N, h) une variété riemanienne de dimension n (éventuelle-
ment non compléte) qui admet une immersion conforme dans la sphére (S",can).
Alors, pour toute variété riemannienne compacte (M, g) de dimension m = 2 et pour
toute immersion isométrique ¢ de (M, g) dans (N, h), on a:

[, @+ ron o 2250 v @

ou

RO®) = ———— T Ky(dd(e,), dde,);

m(m — 1) /Z;
Ky étant la courbure sectionnelle de (N, h) et {e;} une base orthonormée de T.M.

De plus, I’égalité a lieu si et seulement si H*(¢) + R(¢) est constant égal a
A(M)/m.

Une mainére eéquivalente d’écrire 'inégalité (4) est:

J [t dv = (m — 1A, (M)V(M) —J Scal,, dv (5)
M M
ou Scal,, est la courbure scalaire de (M, g) et o |[t(@)|* = |o(¢)|> — mH*($); |o(¢)|
étant la norme de la seconde forme fondamentale de ¢.

Dans le cas particulier ou la courbure sectionnelle de (N, 4) est majorée par un
réel ¢, I'inégalité (4) nous donne:

f HY$) db 2 (UEMJ - c)V(M). ©)

Dans le cas des sous-variétés de dimension 2 I'inégalité (4) peut étre améliorée.
En effet, le résultat qu’obtiennent Li et Yau dans [11] pour les surfaces de R"
s’é¢tend aisément aux surfaces de toutes les variétés (N, h) de dimension n qui
admettent des immersions conformes dans la sphére (S”, can):

PROPOSITION 1. Soit (N, h) une variété riemannienne de dimension n
(éventuellement non compléte) qui admet une immersion conforme dans (S", can).
Alors, pour toute immersion isométrique ¢ d’une surface (M, g) dans (N, h), on a:

JM (H?(¢) + R(¢)) dv 2 Sup (V.(M), 4ni(¢))

ou V (M) est le volume conforme de (M, g) et ou i(¢p) = Sup {#¢ ~'(2); z e N}.
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Nous rappellerons a la fin du §2 la définition de V. (M). Notons seulement que
cet invariant qui a été introduit par Li et Yau dans [11], ne dépend que de la classe
conforme de (M, g) et vérifie V. (M) = A, (M)V(M)/2 (cf [11]).

Enfin, dans le §3, nous donnons quelques applications concernant la stabilité des
hypersurfaces minimales et des hypersurfaces a courboure moyenne constante.

1. Equation principale

Dans toute la suite on désignera par M une variété différentiable de dimension
m 22 et par (N, h) une variété riemannienne de dimension n = m. Pour toute
immersion ¢ de M dans N on notera respectivement o(¢) et n(¢) la seconde forme
fondamentale et 1a courbure moyenne de ¢ considérée comme immersion isométrique
de (M, ¢*h) dans (N, h) et on posera pour tous X, Y e TM

(P)X, Y) = 6($)(X, Y) — p*h(X, Y)n(e).

L’immersion ¢ est dite minimale si n(¢) =0, totalement ombilique si 1(¢) =0 et
totalement géodésique si o(¢p) =0 (cette derniére hypothése signifie que les images
par ¢ des géodésiques de (M, ¢*h) sont des géodésiques de (N, h). Elle est
automatiquement vérifiée si M et N ont méme dimension).

Notons que I'invariant 7(¢) ne dépend que de la classe conforme de la métrique
h. En fait, nous aurons besoin de la propriété plus générale suivante:

LEMME 1. Soit IT une immersion conforme totalement géodésique de (N, h) dans
une autre variété riemannienne (N, h). On a

(1 o ¢) = dIl > t(¢).

En particulier, si ¢ est totalement ombilique il en est de méme de IT o ¢.
Preuve. Posons h’ = IT*h = e/h. Du fait que IT est totalement gédésique on a,
par un calcul immédiat:

(I » ¢) =dII - 7'(¢$)

ou t(¢) =0'(¢) —n'(dp)p*h’ est I'invariant associé 4 I'immersion ¢ : M — (N, h’).
D’autre part, I’expression de la connexion sous I’effet d’'un changement conforme de
meétrique nous donne (voir par exemple [4]):

o'(¢) = o(¢) — 3¢ *h(grad /)* - §,
n'(y) = e’ *(n(¢) — grad f)* o ¢)
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ou (grad f)* est la partie normale a ¢(M) du gradient de f pour la métrique 4. On
en déduit:

t'(9) = (o).

D’ou le résultat. O

Soit x un point de M et soit {¢;} une base orthonormée de T, M pour la
métrique ¢ *h. Les normes de n(¢), a(¢) et 7(¢) au point x sont données par:

H*(¢) = h(n($), n(e)),

lo(d)* = Z h(a(d)(e:» €,), a(P)(ei €))),

[#(@)F = L hx(@)er ¢)). 7(¢)eir ).

Ces trois ,ijnvariants sont liés par la relation immédiate suivante:

[«($)F = [o(d) [ — mH(¢)-

On pose R(¢) = (1/m(m — 1)) Z, ., K(dd(e;), dp(e;)) ou Ky est la courbure

sectionnelle de (N, h). L’objet de la proposition suivante est de donner ’expression
de H*(¢) + R(¢) sous l'effet d’'un changement conforme de la métrique A.

PROPOSITION 2. Soit II une immersion conforme et totalement géodésique de

(N, h) dans une variété riemannienne (N, ). On note f la fonction telle que IT*h = e’h.
Pour toute immersion ¢ de M dans (N, h) on a:

H@) + R(§) = *HT = ) + RUT - §) + " 27+ ) — L 47 )

ou |[V(f o @)| et A(f o p) sont respectivement la norme du gradient et le Laplacien de
f o @ pour la métrique ¢*h.

Preuve. Du Lemme 1 on déduit
f(ITo $) = e~ #fe()P.
Or, I’équation de Gauss donne:
[« = |o($)|> — mH*($p) = m(m — 1)(H*($) + R($) — R($p*h))
ou R(¢p*h) est égal a 1/m(m — 1) fois la courbure scalaire de (M, ¢*h). D’ou

H(9) + R(¢) — R(¢p*h) = e/**(H(I1 - ¢) + R © ¢) — R(UI - $)*h)).
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Les formules standards de changement conforme donnent (cf. [1]):
” m—2 1
R(IT = §)*) = R@e/*® §*h) = e ~/*H(R($*h) === |V(f = )P +— A(f = §)).

Le résultat en découle immeédiatement. O

Notons que si I’on désigne par e(IT - ¢) la densité d’énergie de IT - ¢ considérée
comme application de (M, ¢*h) dans (N, #), on a alors

e(Il- @) =—nzlef°¢.

Une application directe de la Proposition 2 est la suivante: pour toute variété
riemannienne (N, #) on désigne par I(N, N) I’ensemble de toutes les immersions
conformes totalement géodésiques de (N, h) dans (N, /) et on note I(N) la réunion
des I(N, N) lorsque (¥, #) parcourt I’ensemble de toutes les variétés riemanniennes.
On a alors le

COROLLAIRE 1. On suppose M compacte. Pour toute immersion ¢ de M dans
(N, h) on a:

_f (H(¢) + R(¢)) dv 2 2 sup ” e(IT > $)R(IT < y) dv; I € I(N )}-
M m M

2. Preuves des théorémes

Ces théorémes concernent le cas ou M est compacte et ou I(N, S”) est non vide.
Soit ¢ une immersion de M dans (N, k). Pour tout IT € I(N, S”) on a R(IT - ¢) = 1.
Le Corollaire 1 nous donne donc dans ce cas:

J (H*$) + R($)) dv 2 %SUb H e(IT - ¢) dv; I1 € I(N, S")}- (7

Fixons nous une immersion IT € I(N, S") et considérons I’application IT o ¢. Par
un argument devenu standard (cf. [11]) on sait qu’il existe un difftomorphisme
conforme y de (S”, can) tel que 'application =y o IT o ¢ ait son centre de masse
a Porigine, ie. [y, dv=- =y, dv=0 ou ¥,,...,¥,,, sont les com-
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posantes canoniques de . On pose I’ =1y o IT € I(N, S"). On a alors

il(M) /h(M)

fe(H’o¢)dv=%ZJ Py, dv ZJ U2 do = V(M) (8)

ou l'inégalité provient du principe du minimax.

L’inégalité (4) (et donc en particulier I'inégalité (3)) est démontrée.

Cas d’égalité dans le Théoréme 2. Supposons que I’égalité ait lieu dans (4).
L’argument utilis¢ ci-dessus nous dit que, pour tout IT € I(N, S”), il existe un

difftomorphisme conforme y de (S”, can) tel qu’on ait, en posant y = yo IT o ¢:

ix(M)

4
J (@) + R do 2 ) f o222y J v2do =50 yar),

Cette derniére inégalité est donc une égalité et par suite, les fonctions ¥, ... ¥, ,
sont des premicres fonctions propres du Laplacien de (M, g). On en déduit:

e(y) =%Z |V¢ilz=%(§i: Y, Ay, _A<Z‘/’12))= M(M)/2.

L’équation de la Proposition 1 nous donne alors (avec II'=7y Il et ¢/ *¢=
A (M) [m)

ll(M)

H*(¢) + R(¢p) =——— (H*(Y) + ).

En intégrant on voit bien que H(y) est nul et que H*(@) + R(¢) est constant égal
a A/(M)/m.

Cas d’égalité dans le Théoréme 1. Supposons que ¢(M) soit contenue dans une
sphere geodésique S de courbure A,(M)/m et que ¢ : M — S soit minimale. Si I'on
désigne par i I'injection canonique de S dans H”, on a alors H*(¢) = H?(i) (car les
sphéres géodésiques de (H”, can) sont des sous-variétés totalement ombiliques). De
plus, on a par ’équation de Gauss: H?(i) = (4,(M)/m) + 1. L’inégalité (3) est donc
bien une égalité dans ce cas.

Pour montrer la réciproque, nous utilisons pour H” le modéle de la pseudo-
sphére de I'’espace de Minkowski. En effet, soit L,,,=(R"*! q) I'espace de
Minkowski ou ¢ est la forme quadratique g = (dy;)*+ -+ (dy,)> — (dy,+1)>
L’espace hyperbolique est alors défini comme étant la sous-variété
H"={yeR"*'; y,,,>0 et g(y,y) = —1} munie de la métrique riemannienne
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obtenue par restriction de g a son fibré tangent. L’application II définie par

IH(yi, ¥2s oo s Vua 1) =1/ Vui ) Pis Vas - <+ s Yy 1) donne un plongement conforme
de (H", can) dans (S”, can). En fait, on a

IT* cang, = —— cany,.
yn+1

(Autrement dit, ’application IT identifie I’espace hyperbolique a ’hémisphére nord
munie de la métrique (1/y2, ) canga).
La suite de cette preuve est basée sur les deux lemmes suivants:

LEMME 3. Soit y un difféomorphisme conforme de (S", can). Il existe un vecteur
unitaire a € R"* ' et un réel t 2 0 tels qu’on ait pour tout z € S™

y* can|, =({z,a) sht +ch ) ~%can|,,

ou {,) est le produit scalaire euclidien de R"*'.

Preuve. Rappelons que (voir le lemme du §1 de [6]) pour tout difféomorphisme
conforme y de (S", can), il existe un réel ¢ = 0, un vecteur unitaire a € R"*! et une
isométrie r € O(n + 1) tels qu’on ait y = ry¢, ou (y¢), est le flot du champ de vecteurs
A obtenu en projetant le champ constant a sur T'S” (i.e. A(z) =a —<z,a)z). Par
suite, on a y* can = (y¥)* can. Si «a est la fonction telle que y*can =a can on a
alors, pour tout z € S"\{+a}

o(z2) = |dy(A(2) /| A@)|* = |dy ¢ (A) /|4
Or, on a |A(z)[2 =1—{z,a) et ld«y;’(A(z),)|2 == |A(y;‘(z))|2 =1-{yi(2), a)*. D’ou
a(z) = (1 — {y2(2), a)?)/1 — {z, a)>. (9)

D’autre part on a:

d
7 5@, @) =CA0i(@), a) =1~ i), a)’.

On en déduit, aprés intégration:
i), a)=(tht +<z,a})/({z,a) tht +1).

On reporte cette derniére expression dans (9) pour obtenir le résultat. ]
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LEMME 5. Soit y un difféomorphisme conforme de (S",can). Pour tout réel
k >0 on pose S, = {y € H" t.q. (y o I1)* cang,|, =k canya.|, }. Alors il existe un réel
ko> 0 tel que: (1) S, soit une hypersphére géodésique pour k €10, ko[, (ii) S, soit
réduit a un point pour k = k,, (iii) S, soit vide pour k > k,.

Preuve. D’aprés le lemme précédent, il existe un vecteur a € S” et un réel t =0
tels qu’on ait pour tout y € H™

(y o IT)* cang,

, =IT*y* cang,|, = (p,41({a, TI(y) ) sh t + ch 1)) =% cany,|, .

Par suite, on a

i 1
Sy =<yeH"tq.sht) ay,+chty,,,=—=—a,, ,sht;.
k {)’ q ; y Yn+1 ﬁ +1 }

On pose

b= sh? (—-a a ﬂ)
\/1+a5+lsh2[ 19 = ¢ nasht-
Le point b ainsi défini appartient a H” (i.e. g(b, b)) = —1) et on a:

S ={y e H"t.q. q(b, y) = C(k)}

ou C(k) =(a,, sht—k~'?)//1+a2, sh’t.

Or, on a ¢q(b, y) < —1 pour tous b et y € H". Par suite, S, est vide dés que I’on
a C(k) > —1, ie. dés que 'on a k >ky=(a,, ;sht+./a2, sh>t+1)"2 Par
contre, si C(k) est inférieur ou égal a —1 (i.e. Kk £k,) on a

S, ={y e H" t.q. d(b, y) = Arg ch (— C(k))}

ou d(b, y) = Arg ch (—q(b, y)) est la distance géodésique de b a y dans (H", can).
D’ou S, = {b} et, pour tout k €]0, ko[, S, est I'hypersphére géodésique de centre
b et de rayon Arg ch (—C(k)). O

Supposons maintenant qu’on ait I’égalit¢é dans (3). Par les mémes arguments
utilisés pour le cas d’égalité du Théoréme 2, on montre I’existence d’un difféomor-
phisme conforme y de (S” can) tel qu'on ait H(y o IT o) =0 et e(y o I o @) =
4,(M)/2. La derniére condition signifie qu’en tout point x de M on a:

A (M)

('}) o H)* Can§nl¢(x) =

¢ (10)

canyn
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On en déduit, par le Lemme 3, que ¢(M) est contenue dans une sphére géodésique
S de (H", can). Posons S’ =7 o II(S). Comme les sphéres geodésiques de H” sont
totalement ombiliques et comme la totale ombilicité est conservée par changement
conforme de la métrique de I’espace ambiant, S’ est donc une sphére géodésique de
(S", can) qui contient y o IT o ¢(M). Or, puisque H(y o II - ¢) =0, cette sous-vari-
été est minimale dans (S”,can) et ne peut donc étre contenue dans aucune
hémisphére. Par suite, S” est nécessairement une grande sphere de courbure 1 (i.e.
un équateur). D’aprés (10), S est donc une sphére géodésique de courbure section-
nelle A,(M)/m (donc de rayon Argsh./m/i,(M)) pour la métrique induite par
cany.

Reste 2 montrer que ¢(M) est minimale dans S. En effet, si 'on note H(¢) la
norme de la courbure moyenne de ¢(M) dans S et i I'injection canonique (totale-
ment ombilique) de S dans H” on aura

HY§) = @) + HYQ) = (@) + 147100,

Or, on a (cas d’égalité du Théoréme 2): H*(¢) = 1 + (A,(M)/m). D’ou H(¢) =0, ce
qui achéve la démonstration. O

Cas des sous-variétés de dimension 2. Dans [11], Li et Yau définissent le volume
conforme, noté¢ V,.(y), d’'une immersion { : M —(S”, can) par:

V() =Sup {Vol (y - ¥); y € G()}

ou Vol (y o y) désigne le volume riemannien de M pour la métrique (y o ¥)*can et
ou G(n) est le groupe des difféomorphismes conformes de (S”, can). Si [g] est une
classe conforme de métriques sur M, ils appellent volume conforme de M pour cette
classe conforme la quantité:

V(M) = Inf Inf {V.(§); ¥ € €M, S")}

ou ¥(M,S") est 'ensemble de toutes les immersions conformes de (M, g) dans
(S", can). De plus, ils montrent que pour toute immersion  : M - S” on a:

Vo) 2 4ni(y)

ou i(Y) =Sup {#y ~!(2);z € $"}.
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Maintenant, dans le cas ou M est de dimension 2, on a, pour toute immersion
¢:M—(N,h) et tout IT € I(N, S"):

J e(Il - ¢)dv = Vol (Il - ¢).

L’inégalité¢ (7) devient donc dans ce cas:

f (H(¢) + R(¢)) do 2 Sup {Vol (T = ¢); IT € I(N, S"))
> Sup {V.(IT  $); IT € I(N, S")}.

Ceci démontre la Proposition 1 car, pour tout IT € I(N,S") on a V. (Il o ¢) =
Sup {4ni(¢); V.(M)}.

Remarque. Pour illustrer la Proposition 1 prenons le cas ou M est le plan
projectif réel RP2. Dans ce cas, on sait qu’il existe une unique classe conforme de
métriques et que I'on a V_.(RP?) = 6n (cf [11]). D’ou, pour toute immersion ¢ de
RP? dans (N, h) on a:

J (H*(¢) + R(¢)) dv = Sup (6m, 4ni(¢)).

(Rappelons que si N est de dimension 3, alors i(¢) est au moins égal a 2 et donc
le second membre de I'inégalité ci-dessus est supérieur ou égal a 8x). Les calculs
concernant les volumes conformes des différentes classes conformes du tore 772
fournissent d’autres exemples permettant d’expliciter la Proposition 1 (cf [11] et

[12])

COROLLAIRE 2. Soit M une surface compacte orientable de genre B et soit
(N, h) une variété riemannienne de dimension n vérifiant I(N, S") # ¢. Alors, pour
toute immersion ¢ de M dans (N, h) on a:

L [($)[? dv 2 8n(B + i(¢) — 1).

Preuve. Ce résultat est une conséquence directe du Théoréme 2, de I’équation de
Gauss [t(¢)|* = 2(H*(¢) + R(¢)) — Scal,, et de I'équation de Gauss—Bonnet

J Scal,, dv = 8n(1 — B). O
M
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3. Applications

Nous commengons par montrer que la majoration de la premi€re valeur propre
non nulle 4,(M) du Laplacien 4 d’une sous-variété M par des invariants extrinsé-
ques donnée dans le Théoréme 2 peut €tre généralisée a des opérateurs du type
4 + W ou W est une fonction différentiable quelconque sur M. En effet, on a le:

THEOREME 3. Soit (M, g) une variété riemannienne compacte de dimension
m =2 et soit (N, h) une variété riemannienne de dimension n telle que I(N, S™) soit
non vide. Alors pour toute fonction différentiable W sur M et toute immersion
isométrique ¢ de (M, g) dans (N, h) on a:

m 5 _ -
AI(A + W) gm JM (HY(¢) + R(¢)dv+ W

ou A (4 + W) est la seconde valeur propre de Iopérateur A+ W et ou W =
(1/V(M)) {4 W dv est la valeur moyenne de W sur (M, g).

De plus, lorsque m est supérieur ou égal a 3, I’égalité a lieu si et seulement si W
est constante et si H*(¢) + R(¢p) est constant égal a A, (M)/m.

Preuve. 11 suffit de remarquer (cf. [7], Lemme 1) que pour tout IT € I(N, S"), il
existe un dificomorphisme conforme y de (S”, can) tel que les composantes cano-
niques de Y =7 o IT o ¢ soient orthogonales (au sens L?) au premier espace propre
de 4 + W (rappelons que cet espace est de dimension 1 et qu’il est engendré par une
fonction strictement positive). Le reste de la preuve se fait par des arguments
semblables a ceux utilisés dans la preuve du Théoréme 2. O

Dans toute la suite, la variété M sera supposée compacte orientable de dimen-
sion m =n — 1.

Soit ¢ une immersion minimale de M dans une variété (N, h) orientable. Une
telle immersion est en fait un point critique de la fonctionnelle volume. Comme,
dans ce cas, le fibré normal de ¢ est trivial, la variation seconde de cette
fonctionnelle s’exprime a l'aide de la forme quadratique associée a Iopérateur
suivant, dit opérateur de Jacobi, (cf. [10]):

Ly =4 - p(¢) — |o(¢)

ou p(¢) =ricy (v, v) est la courbure de ricci de (N, h) dans la direction du champ
normal unitaire v. On appelle alors indice de ¢ le nombre de valeurs propres
strictement négatives de L, . Une immersion d’indice zéro est dite stable.
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On note Z, =ricy — (Scaly /n)h le tenseur d’Einstein de (N, &) ou Scal,, est la
courbure scalaire de (N, #). On a alors:

THEOREME 4. Soit (M, g) une variété riemannienne compacte orientable de
dimension m = 2 et soit (N, h) une variété riemannienne de dimension m + 1 telle que
I(N, S™*") soit non vide. Si ¢ : (M, g)—(N,h) est une immersion isométrique
minimale d’indice inférieur ou égal a 1 alors on a:

f lo(¢)|2dv§—2—fi f Zy(v,v) db.

En particulier, si (N, h) est de courbure sectionnelle constante, alors toute immersion
isométrique minimale d’indice <1 de (M, g) dans (N, h) est totalement géodésique.

Preuve. Notons tout d’abord que N est nécessairement orientable car
I(N,S™*") # ¢. L’hypothése sur l'indice de ¢ entraine que la seconde valeur
propre 4,(L,) de L, est positive ou nulle. On a donc, d’aprés le Théoréme 3:

0<4(L,) < V—(iu—) [m L (HA($) + R($)) do — L (@) + o &P dv].

Comme H(¢) est nul, ceci donne:

JM o)’ = JM (mR(¢) — p()) dv.

Or on a:
_ _ _ m+1
mR(@) = p($) = o (Sealy = (m + DFY) = == Zu (V)
D’ou le résultat. ]

Soit maintenant une immersion ¢ de M dans (N, h) a courbure moyenne
constante (i.e. H(¢) =cte). Une telle immersion est en fait un extréma li¢ de la
fonctionnelle volume. D’aprés Barbosa et do Carmo (cf. [2] et [3]), on dira que
Pimmersion ¢ est stable si on a [, uL,(u) dv =0 pour toute fonction u telle que
fprudv=0.

THEOREME 5. Soit (M, g) une variété riemannienne compacte orientable de
dimension m 2 2 et soit (N, h) une variété riemannienne de dimension m + 1 telle que
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I(N, S™* ") soit non vide. Si ¢ est une immersion isométrique a courbure moyenne
constante stable de (M, g) dans (N, h) alors on a:

1
@) do < ~ 2| Zyw, v do.
M m—1 Jy

En particulier, si (N, h) est de courbure sectionnelle constante, alors toute immersion
isométrique a courbure moyenne constante stable de (M, g) dans (N, h) est totalement
ombilique.

Preuve. 11 est clair, d’aprés la caractérisation variationnelle des valeurs propres,
que la stabilté de ¢ entraine la positivite¢ de 4,(L,). Le reste de la preuve est
identique a celle de Théoréme 4. O

Remarque. Une conséquence du Théoréme 5 est que, dans le cas ou (N, h) est
isométrique a (S™*!, can), (R™*!, can) ou (H™*! can), les hypersphéres géodé-
siques sont en fait les seules hypersurfaces compactes orientables a courbure
moyenne constante stables de (N, h). Ce résultat avait été obtenu par Barbosa et do
Carmo [2] dans le cas (N, h) = (R™*!, can) et par Barbosa, do Carmo et Eschen-
burg [3] dans les cas (N, h) =(S™*!,can) et (N, k) =(H™"*' can). Dans un
précédent article [S], nous avions obtenu de maniére indépendante ce résultat dans
les cas (N, h) = (S™* !, can) et (N, h) = (H?, can).
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