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Inégalités isosystoliques conformes

Christophe Bavard

0. Introduction

Soit Mn une variété compacte non simplement connexe de dimension n. On

appelle systole d&apos;une métrique riemanniene sur Mn la longueur minimale d&apos;une

courbe non contractile. Une inégalité isosystolique, relative à un ensemble donné &lt;€

de métriques sur M&quot;, est une minoration du volume par la systole:

Volume g &gt; Constante • (Systole g)n (0)

valable pour toutes les métriques g de #. Dans le présent travail, l&apos;ensemble ^ sera

une classe conforme, et nous nous intéresserons à des inégalités optimales. Une
métrique de ^ qui réalise l&apos;égalité dans (0) sera appelée minimale, puisqu&apos;elle

minimise le volume à systole fixée. Le résultat principal de cet article est une
caractérisation des métriques minimales dans une classe conforme donnée.

Mais plaçons-nous d&apos;abord dans un cadre plus général. Soit g0 une métrique
fixée. La borne supérieure du rapport Systole/(Volume)l/n sur la classe conforme de

g0 est un invariant conforme, associé à g0 et à la famille des courbes non
contractiles. Un invariant analogue peut être défini à partir d&apos;une classe quelconque
de courbes. Si n 2, il s&apos;agit de la longueur conforme, notion classique dans la
théorie des applications conformes (voir [Je]): étant donné une famille F de courbes
rectifiables d&apos;une surface riemannienne (Z, g0), on pose

Long Conf T Sup {Long* F/(Aire g)1/2},
g

borne supérieure sur les métriques g conformes à g0, où Long* F
Infyer {Long*y}.

Etablir une inégalité isosystolique dans une classe conforme n&apos;est donc qu&apos;un cas

particulier d&apos;un problème plus général: majorer la longueur conforme. Or, la
méthode dite &quot;méthode des longueurs extrémales&quot; fournit justement une telle
estimation. La formulation qu&apos;en donne M. Gromov dans [Gr, 5.5] est le point de

départ de ce travail; décrivons-la en détail. Soit \i une mesure positive de masse finie
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m sur F. Une fonction numérique continue sur I peut s&apos;intégrer sur chaque courbe
de F par rapport à la mesure de longueur, et en intégrant le résultat par rapport à

II on définit une mesure */i sur I. Supposons que *^ ait une densité/par rapport
à la mesure d&apos;aire dg0 de g0; alors

Long Conf F &lt; m~l( f f2 dgX\

En effet, pour g q&gt;2g0 (q&gt; continue &gt;0 sur I) on a

m Long*T&lt; f Long*yrf/i(y)= | /* &lt;P dgo * [Aires f f2dg01

Appelons encore minimale toute métrique g0 qui vérifie Long Conf F Long*0 T

pour F donnée. Un examen rapide de la preuve ci-dessus montre que g0 est

minimale dès que [i satisfait les deux propriétés suivantes:

(1) toute courbe y du support de fi est de g0-longueur minimale:

Longg0 y Longg0 F;
(2) la densité/de *// est constante.

Inversement, il se trouve que l&apos;existence d&apos;une telle mesure est une condition
nécessaire à la minimalité. Dans l&apos;énoncé qui suit, on se donne une variété
riemannienne compacte (M&quot;, g0), une famille F de courbes de Mn vérifiant des

hypothèses techniques mineures (précisées au § 1), et on note S l&apos;ensemble des

courbes (non paramétrées) de g0-longueur minimale dans F.

THÉORÈME. La métrique g0 est minimale dans sa classe conforme si
et seulement si il existe une mesure \i sur S telle que *fi soit la mesure volume de g0.

En fait, ce critère ne fait intervenir que les structures de longueur et les

propriétés de dg0 comme mesure. On aura donc un énoncé général valable pour
les espaces de longueur compacts, avec une notion générale de &quot;volume&quot; (Th.
3.2).

Nous établirons aussi qu&apos;une classe conforme donnée contient au plus une

métrique minimale si n &gt; 2 (Prop. 1.5). Cette unicité reflète une propriété élémentaire

de convexité; elle a cependant des conséquences intéressantes. Par exemple,

on en déduira une preuve simple du théorème classique de L. Green concernant
les métriques à géodésiques toutes fermées sur le plan projectif (voir [Be] et 4.5).
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Voici le plan de cet article. Les paragraphes 1 et 2 contiennent les préliminaires
techniques (&quot;classe conforme&quot;, &quot;a-volume&quot; nécessaires à l&apos;énoncé du critère
de minimalité pour les espaces de longueur. Celui-ci est démontré au § 3.

Le § 4 décrit des exemples; enfin, on examine au § 5 le cas des graphes.
Je remercie M. Gromov pour ses conseils durant la préparation de ce travail,

effectué en grande partie en 1987.

1. Classes conformes d&apos;espaces de longueur

On considère dans tout ce qui suit un espace métrique X (X9 d), tel que la

distance entre deux points quelconques de X est égale à la borne inférieure des

longueurs des courbes rectifiables joignant ces deux points: X est un espace de

longueur (voir [GLP]). On supposera que X est compact.

1.1. Soit cp une fonction continue de X dans R à valeurs strictement positives.
Si y : / [0, 1] -&gt;Jf est une courbe rectifiable, on note y la courbe obtenue en

reparamétrant y par sa longueur d&apos;arc a, et on pose

Ceci définit une nouvelle structure de longueur sur X, avec sa distance de longueur
d* associée. On vérifie que la longueur est donnée par

Sup Vf! Min cpoyiO&apos;diyiayit^,))] (1)
&lt; &lt;tn=\ | I l J

d&apos;où l&apos;on voit que t* est semi-continue inférieurement (s.c.i.) pour la topologie de

la convergence uniforme de C(/, X); par suite t* est précisément la longueur de
&lt;/* ([GLP], p. 3).

Noter que toutes les distances d* induisent la même topologie sur X.

1.2. La classe conforme de X est par définition l&apos;ensemble # des espaces
métriques Jf* (Jf, d*), X étant égal à I1. Un raisonnement par l&apos;absurde (en
supposant que X n&apos;est pas réduit à un point) montre que si d* d*, alors cp ^.
L&apos;ensemble ^ sera donc muni de la topologie de la convergence uniforme sur les

(p: il s&apos;identifie à un cône ouvert convexe de C(X, U).
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1.3. a -volume

Soit ^ la classe conforme de X et a un réel ^ 1. On appellera a-volume sur # la
donnée d&apos;une famille (v^)^^^ de mesures de Radon positives sur X telles que:

v&lt;p q&gt;«vl et

L&apos;application &quot;volume&quot; X^-^v^X) est alors continue sur c€.

1.4. Dans toute la suite, A désignera une famille de courbes rectifiables de

C(/, X) ou C(S\ X) (S1 est le cercle), possédant les deux propriétés suivantes:

(i) A est invariante par les reparamétrages;

(ii) A est fermée pour la topologie uniforme.

Par définition, la A-systole de X* sera

s{X*) Inf f*(y).
y € A

Cette terminologie est évidemment motivée par l&apos;exemple suivant:

Exemple. A est l&apos;ensemble des courbes fermées non contractiles d&apos;un espace non
simplement connexe et s la systole classique. Afin de satisfaire l&apos;hypothèse (ii), on

suppose de plus que s(X) &gt; 0: cela implique que les classes d&apos;homotopie de courbes
ainsi que A sont fermées.

Revenons au cas général. La fonction s est concave sur l&apos;ouvert # de C(X, IR),

et minorée par 0: elle est donc continue.

Remarque. Le même raisonnement montre que la systole est continue dans
l&apos;espace des métriques riemanniennes d&apos;une variété (compacte ou non), muni de la

topologie C°-forte.

Une courbe y de A est A-systolique pour X* si sa longueur est minimale:
S{Xq&gt;) =f(p(y); l&apos;existence de telles courbes est assurée par le théorème d&apos;Ascoli.

Toute inégalité de la forme

v(X*)l{s(X*)y &gt;C (X^e #) (2)

où v est un a-volume sur la classe ^ et C une constante &gt;0, est dite isosystolique.
Un espace X9 réalisant l&apos;égalité est appelé minimal.
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1.5. Unicité

PROPOSITION 1.5. Si a &gt; 1 et si le support de v1 est X, alors il existe au plus
une métrique minimale dans *$ (à homothétie près).

Preuve. Le volume v est ici strictement convexe, donc admet au plus un
minimum sur le convexe {s ^ 1}.

Remarques

(1) II n&apos;y a pas unicité si a 1: voir 5.

(2) On trouvera dans [Je], p. 15, une démonstration algébrique de l&apos;unicité pour
a =2.

(3) L&apos;argument ne s&apos;applique pas au volume riemannien défini sur l&apos;espace des

métriques riemanniennes d&apos;une variété de dimension n, qui est seulement convexe
dans chaque classe conforme (linéaire si n 2) et globalement concave si n 2.

1.6. Symétries

Considérons la classe conforme ^ de X, et fixons une famille A de courbes

comme en 1.4 ainsi qu&apos;un a-volume (i&gt;*%e«- sur (€. Une isométrie de X* (pour cp

donnée) est par définition un homéomorphisme de X préservant la famille A, la

distance de X* et la mesure de volume v*.
Dans les conditions d&apos;unicité de 1.5, une métrique minimale doit posséder toutes

les symétries de toutes les métriques de sa classe conforme:

PROPOSITION 1.6. Supposons que la classe conforme de X est munie d&apos;un

a -volume de support X avec a &gt; 1. Si X est minimal, alors le groupe d&apos;isométries de

X contient celui de X* pour tout X* de cê.

Preuve. Soit/une isométrie d&apos;un certain X*, que l&apos;on prend comme métrique de

référence dans la classe ^; on note Y Xq&gt;, de sorte que X Y* où \j/ \/&lt;p.

Considérons l&apos;espace Y*af. Comme / est une isométrie métrique de F, on a

clairement, d&apos;après la relation (1):

t*-&apos;{y)=t*{foy) (yeA). (3)

D&apos;où s{Y*of) ^(F^). On a aussi t?(y^o/)b=K^) puisque / conserve la mesure
volume vY de Y. L&apos;unicité de X Y* entraine alors l&apos;égalité \jj ©/= \jj. Par suite/
est une isométrie métrique de X d&apos;après (3), et/conserve la mesure volume de X:
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2. Espaces des A -courbes géométriques

2.1. Soit L &gt; s{X). Dans l&apos;espace AL {y e A; long y &lt; L} muni de la distance
uniforme d, considérons la relation:

y ~ ô si Inf d(y, ô o h) 0
heH

où H désigne l&apos;ensemble des homéomorphismes de S1 ou de /. Une variante consiste

à prendre uniquement des homéomorphismes directs, afin de conserver l&apos;orientation

des courbes. Notons y la classe de y. Le quotient FL ALj~ (muni de sa topologie
quotient) sera appelé espace des A-courbes géométriques de longueur &lt;L. Il est

métrisable par

3(y, S) Inf d(y, ô o h).
heH

On observe ensuite que FL est compact comme image de l&apos;ensemble des courbes

L-lipschitziennes de AL, lui-même compact d&apos;après le théorème d&apos;Ascoli. De plus, si

L &lt; L\ alors FL est un compact de TL.
Il est intéressant de remarquer que l&apos;espace YL est muni d&apos;une longueur s.c.i. induite

parcelle de AL.
Pour L s(X), on notera S FL: c&apos;est l&apos;espace des courbes yl-systoliques de X.

Dans le cas où s est la systole classique, chaque élément de S s&apos;identifie à un
sous-ensemble de Xet la topologie associée à Jcoïncide avec la topologie de Hausdorff
des compacts de X.

2.2 LEMME. Soit cp une fonction continue &gt;0 sur X. Alors l&apos;application

cp : y -&gt; \q&gt; o y(o) do

induit une application s.c.i. sur FL.

En effet les métriques g? et d* sont équivalentes, donc définissent la même topologie sur
les courbes et la même relation ~ : on peut voir FL{X) comme sous-espace de FL\X&lt;P)9

avec L&apos; L • Max^ &lt;p. Pour conclure, noter que y -&gt; cp{y) est la longueur de X* (1.1).

3. Le critère de minimalité

3.1. Soit L ^ s(X) et FL FL(X) l&apos;espace des A -courbes géométriques de X de

longueur &lt;&gt;L (voir 2.1). On commence par décrire un procédé naturel qui à toute
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mesure de Radon fi sur TL associe une mesure *ju sur X. En intégrant une fonction
\f/ 6 C(X9 M) sur les courbes on obtient une fonction ij/ sur TL\

(y e TL).

La donnée d&apos;une mesure fi sur TL définit alors une mesure *fi sur X par:

V o %a) do dp(y) &lt;/*, £&gt; (* e C(X, R)).f

Il convient de noter que \ji est /j-intégrable comme différence de fonctions s.c.i.

bornées (écrire \j/ =f — g9 où /et g sont continues &gt;0, et appliquer le Lemme 2.2).

3.2. On peut maintenant énoncer le critère de minimalité qui caractérise l&apos;égalité

dans (2).

THÉORÈME. Soit X un espace de longueur compact, A une famille de courbes

rectifiables de X {comme en 1.4) et v un a-volume (a réel ^ 1) sur la classe conforme
&lt;€ de X. On pose so s(X)9 v0 vl(X). Alors les propriétés suivantes sont équivalentes:

(i) X est minimal dans &lt;£;

(ii) X est localement minimal dans &lt;€\

(iii) il existe une mesure de probabilité \x sur Vespace S des courbes A-systoliques
de X telle que

* so i

Démonstration.

(iii) =&gt; (i). C&apos;est une application directe de l&apos;inégalité de Hôlder; en effet si fi
existe alors pour tout X9 e c€\

V0 J

d&apos;où »0/jS * v(X*)/s(X*y.
(ii) =&gt; (iii). Tous les ensembles de mesures considérés seront munis de la topolo-

gie vague. Fixons L &gt; s(X) et notons K l&apos;ensemble des mesures de probabilité sur
FL, *K son image par *.
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Affirmation 1. La mesure (so/vo)vl est dans l&apos;adhérence *A^de *K.

Supposons le contraire. On peut alors séparer le convexe compact *K et

(so/vo)vl par une forme linéaire continue, i.e. il existe un fonction if/ continue sur
X et un réel a &gt; 0 tels que:

a H— I \j/ dvl &lt; Inf &lt;(v, \j/y Inf &lt;^*ju, ^X

D&apos;où, pour tout e &gt; 0:

^o r
(1+ e^) A1 + as &lt; s0 + Inf &lt;*ji, e«A&gt; ^ Inf &lt;*//, 1 + si//}. (4)

Aie K ne K

Supposons que 1 -h s\j/, notée &lt;p, soit strictement positive; alors pour tout \x e K:

Mais si e est petit, il existe une courbe y yl-systolique pour X* et appartenant à

FL\ en effet s s(X*) est voisin de 50 par continuité de la A -systole, et la fonction
longueur £ de X est majorée par /&lt;1P + £/||^||, où ||^|| désigne le maximum de ij/

sur X. En prenant pour fi la masse de Dirac en y, on obtient:

Inf &lt;*/i, l+8i/f&gt; s. (5)

D&apos;autre part on a les inégalités

vo J / vQ J

où 6 est indépendant de e. Avec (4) et (5) on en déduit que

(v(X*)lv0) l/&quot;s0 &lt;s+be2-ae&lt;s

pour s assez petit. Ce qui contredit la minimalité locale de X.

Affirmation 2. Il existe jâ g K telle que */* (so/vo)vl.
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Nous savons déjà qu&apos;il existe une suite (fin) d&apos;éléments de K, que l&apos;on peut

supposer convergente vers une certaine mesure n de K (compacité), telle que:

Lim &lt;*/*„, q&gt;y=^&lt;vl, ç&gt;&gt; (V&lt;p g C{X, R)).
n-&gt; oo Vq

Soit q&gt; &gt;0; comme &lt;p est semi-continue inférieurement sur TL (Lemme 2.2), on a

&lt;/in, &lt;p&gt; Sup {&lt;/!„, g&gt;; g continue, g &lt; &lt;p}

(idem pour /*), d&apos;où il résulte que

&lt;*ti9q&gt;&gt;*-&lt;vl,çy. (6)

En fait (6) est une égalité pour 0 &lt; cp &lt; 1 car

s0 &lt; &lt;*/i, 1&gt; &lt;*/*, q&gt;) + &lt;*/i, 1 ~ 9&gt; ^ V
On en déduit finalement que (6) est une égalité pour toute fonction cp.

Affirmation 3. Le support de \i est inclus dans S.

Soit t : rL-&gt;M+ la longueur; noter que

&lt;/i, / - 50&gt; &lt;*m, 0 - Jo 0.

Considérons maintenant une fonction continue \jj à support F inclus dans FL — S,

et notons m le minimum sur F de la fonction s.c.i. £ — s0. La majoration évidente

M £!(•-.%) Max M

montre que O, ^&gt; 0. D&apos;où l&apos;Affirmation 3.

On vérifie ensuite que la mesure de TL — S est nulle, puis que pour toute
fonction /i-intégrable /

où | est la restriction. Par conséquent la mesure n\s sur S, désormais notée p, répond
à la question.
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3.3 Remarque. La condition suffisante (iii) =&gt; (i) est aussi valable si l&apos;on

remplace les courbes par des objets &quot;de dimension supérieure à 1&quot;, i.e. qui portent un
/f-volume pour 1 &lt; /? &lt; a (c&apos;est encore l&apos;inégalité de Hôlder). Par exemple, en
considérant des sous-variétés dans une classe d&apos;homotopie fixée, on peut obtenir
comme en 4.1 des inégalités &quot;isosystoliques&quot; conformes pour les tores.

4. Exemples

Les exemples ci-dessous (à l&apos;exception de 4.5) concernent le problème isosys-

tolique classique pour les variétés riemanniennes non simplement connexes.

4.1. L&apos;inégalité de Loewner

Considérons le tore plat, noté TÀ, quotient de M2 par Z® ZA, où k appartient à

l&apos;ensemble {(a, b) e U2; 0 &lt; a &lt; 1/2, a2 + b2 ^ 1}. Soit yy la droite horizontale
d&apos;ordonnée y; la mesure fi=dy sur la famille {yy}o^y^b satisfait clairement la

condition (iii) du théorème (à une constante près). Ainsi Tx est minimal dans sa

classe d&apos;équivalence conforme: c&apos;est l&apos;inégalité de Loewner.

4.2. Des métriques minimales à courbure 1 sur la bouteille de Klein (voir [Ba],)

Soit Kp la bouteille de Klein plate définie comme quotient du rectangle euclidien

{(x, y) e IR2; |jc| ^ n/2, \y\ &lt; /?}, où l&apos;on identifie les côtés horizontaux (resp.
verticaux) par translation (resp. symétrie-translation).

Pour les petites valeurs de /? (0 &lt; /? &lt; n/2), on voit que Kp est minimale en

prenant les courbes verticales (a*)^ ^ n/2 et la mesure \i dx. Mais quand /? &gt; tu/2,
l&apos;inégalité obtenue par cette méthode n&apos;est plus optimale car les olx ne sont plus
systoliques.

Voici des exemples de métriques minimales (singulières) à courbure 1 sur la

bouteille de Klein. Notons S2 la sphère unité de l&apos;espace Euclidien IR3; pour b réel

compris entre tt/4 et tu/3, Ub désignera l&apos;ensemble des points de S2 dont la distance

(sur S2) à l&apos;équateur est inférieure ou égale à b. Le quotient de Ub par l&apos;antipodie

est un ruban de Môbius Mb. Nour allons établir que son double Kb est minimal.
Notons y0 l&apos;équateur de S2 paramétré par un réel 6 dans [0, 2n], et considérons les

courbes systoliques (i.e. de longueur n) de Kb ^définies comme suit. Soit y% l&apos;image

dans Mb du grand cercle passant par y°(8) et faisant en ce point un angle a avec y0

(0 ^ a ^ b, voir Figure 1). L&apos;ensemble des courbes yg, pour 6 e M/2nZ et 0 ^ a £ b,
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Figure 1

s&apos;identifie (vu sur S2) à la boule de S2 de rayon b et centrée au pôle nord. Posons

alors

5^ 2 a) &apos;

2n
(sin2 b - sin2 a) &apos; ^ da d0,

mesure sur les ya9 dont on vérifie que *n est la mesure d&apos;aire de Mb. Il en résulte que
Kb est minimale. Le paramètre j8, qui repère la classe d&apos;équivalence conforme de Kb,

varie de px 2 log 1 + y/l) à jS2 2 log (2 + ^3) quand b varie de n/4 à n/3.
Les valeurs de p appartenant à ]n/2, px[u]p2, oo[ échappent à la description

ci-dessus. En fait, la classe conforme de chaque Kp correspondant admet une

métrique minimale, dont la géométrie, en partie plate et en partie sphérique, est un
mélange des deux exemples précédents (voir [Ba]t).

4.3. On trouvera dans [Ba]2 la description complète des inégalités isosystoliques
conformes pour 15 des 17 groupes crystallographiques du plan.

4.4. Des métriques minimales sur les surfaces

Dans [Gr] 5.6.B&apos;, M. Gromov construit des surfaces isosystoliques comme suit.
On se donne un graphe métrique compact G. A chaque arête a de G est associé le

cylindre plat Ca R/Z x a; en chaque sommet de G on numérote arbitrairement les

arêtes a,,..., ak (k &gt; 3) qui le contiennent, et on associe à ce choix un graphe
formé de deux sommets joints par k arêtes a,,..., &lt;xk de longueur 1/2. Puis on
recolle les cylindres Ca en identifiant isométriquement, pour chaque sommet p de a,
le bord R/Z x {p} avec a,ua1 + b où i est le numéro (modulo k) de l&apos;arête a en p
(voir Figure 2). Le résultat est une surface plate singulière TG, ayant deux

singularités d&apos;angle kn pour chaque sommet de G de valence k. Le genre de IG est

égal au nombre de cycles indépendants de G.

Si la systole de G est supérieure ou égale à 1, la surface IG est minimale. En effet,
les sections des cylindres Ca sont systoliques, paramétrées par G, et le critère de

minimalité est vérifié pour la mesure de longueur de G.
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Figure 2

4.5. Les variétés à géodésiques fermées simples

Considérons une variété riemannienne M (de classe C°°) dont toutes les

géodésiques sont fermées, simples, et de même longueur. Alors l&apos;espace de ces

géodésiques porte une mesure \i telle que */x soit la mesure de volume (à une

constante près). En effet, la mesure de Liouville sur le fibre unitaire tangent

p : TlM^M est invariante par le flot géodésique (théorème de Liouville); elle

induit donc une mesure \l sur l&apos;espace des géodésiques. Cette mesure convient car
l&apos;intégrale d&apos;une fonction continue q&gt; sur M est égale, à une constante près, à

l&apos;intégrale de q&gt; o p pour la mesure de Liouville. L&apos;existence de /* et la Proposition
d&apos;unicité 1.5 impliquent le résultat suivant:

PROPOSITION 4.5. Soit Vn une variété diffèrentiable compacte non simplement

connexe. Alors chaque classe d&apos;équivalence conforme de métriques C°° sur Vn admet

(à isomètrie et homothétie près) au plus une métrique dont toutes les géodésiques

sont fermées, simples, et de même longueur.

Quand V2 est le plan projectif réel, on retrouve le théorème classique de L.
Green concernant la conjecture de Blaschke en dimension 2 (voir [Bes]).

Preuve de la proposition. Soit M une variété riemannienne comme plus
haut, c&apos;est-à-dire telle que les orbites de son flot géodésique sur TlM soient

toutes fermées de même période. Il est clair que les projections sur M de ces

orbites sont toutes librement homotopes (et par hypothèse simples fermées); si M
n&apos;est pas simplement connexe, l&apos;une de ces courbes doit être systolique: elles le

sont donc toutes. L&apos;existence de pi (voir ci-dessus) montre alors que M est

minimale pour volume/(systole)&quot;. On conclut la preuve en appliquant la Proposition

d&apos;unicité 1.5.
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4.6. Vaire des sphères métriques

Etant donné une variété riemannienne compacte Mn dont le rayon d&apos;injectivité

est supérieur ou égal à tt, on note Sx(n/2) la sphère de rayon tc/2 centrée en x point
de Mn, et Aire Sx(n/2) son volume (n — l)-dimensionnel. Dans [Ber]3, M. Berger
démontre que la moyenne de Aire Sx(n/2) est minimale pour la sphère S&quot; à courbure
1, et demande si l&apos;inégalité

Aire 5,(^/2)^01 (S&quot;&quot;1)

a lieu en tout point jc de Mn (comme c&apos;est le cas en dimension 2: [Ber]j). Pour n &gt; 3,

C. Croke donne une réponse affirmative partielle à cette question dans le cas particulier
où la métrique de la boule Bx(n/2) s&apos;écrit dr2 -f h2(r, o) do2 en coordonnées polaires
(r, g) g [0, n/2] x Sn ~] (voir [Cr]2). En fait, C. Croke établit une minoration analogue

pour les boules métriques, et le résultat sur les sphères s&apos;en déduit par une inégalité
isopérimétrique ([Cr]!). On propose ici de retrouver directement cette estimation de

Aire Sx(n/2), à partir d&apos;une hypothèse un peu plus faible.
Soit B une boule riemannienne dont la métrique est donnée en coordonnées

polaires par

On suppose seulement que la métrique g gnll induite sur le bord S de B est conforme
à la métrique usuelle do2 de la sphère unité S&quot;~

x de IRW. Naturellement, on fait aussi

l&apos;hypothèse que la plus petite distance sur S entre deux points diamétralement opposés
est supérieure ou égale à n; on notey&apos;(g) cette plus petite distance (voir [Ber]2). Il
reste à établir l&apos;inégalité

vol (g)lj*-\g) ^ vol (S&quot;- &gt;)/*&quot;-
&apos;

(7)

sachant que g est conforme à d&lt;r2. Pour cela on utilise le critère de minimalité. Les

courbes de longueur minimale pour do2 entre les couples de points antipodaux sont
les demi-grands cercles orientés de Sw~ \ dont l&apos;ensemble s&apos;identifie au fibre unitaire
tangent de §M~ *. La mesure de Liouville m définit alors une mesure *m sur Sw~]

qui est proportionnelle au volume de S&quot;&quot;1 (voir 4.5). D&apos;où l&apos;inégalité (7).

4.7. Produit avec un facteur minimal

PROPOSITION 4.7. Un produit riemannien M x N est minimal dès que M est

minimale et Systole (M) ^ Systole (N).
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Ceci s&apos;applique par exemple quand M est un cercle et N simplement connexe
(Systole (N) oo).

Preuve. L&apos;ensemble SM des courbes systoliques de M porte une mesure \xM qui
satisfait la condition (iii) du Théorème 3.2. Si vN désigne la mesure volume de N, on

pose

Cette mesure sur SM x N vérifie clairement (iii).

Remarque. Le résultat d&apos;unicité 1.5 montre que, sous les hypothèses de la

proposition, deux produits M x N et M x N&apos; sont conformément équivalents
seulement s&apos;ils sont isométriques.

5. Inégalités isosystoliques pour les graphes

5.1. Le cas des graphes est particulièrement agréable, car deux graphes

métriques (compacts) homéomorphes sont conformes à une isométrie près; la
minimalité dans une classe conforme équivaut donc à la minimalité topologique: on
dira simplement minimal.

Tous les graphes considérés ici seront compacts et connexes. Leurs sommets
seront de valence supérieure ou égale à 3, sauf dans le cas du cercle. Le type
d&apos;homotopie d&apos;un graphe donné G est caractérisé par le nombre b(G) de cycles

indépendants, ou premier nombre de Betti de G. Soit a(G) (resp. t(G)) le nombre
d&apos;arêtes (resp. de sommets) de G. L&apos;entier b(G) est donné par:

6(G)=a(G)-T(G) + l.

Noter aussi les inégalités

3t(G) &lt;: 2a(G), a(G) ^ 3(6(G) - 1) et t(G) &lt;; 2{b(G) - 1)

si G n&apos;est pas le cercle.

La lettre X désignera toujours un graphe métrique compact. Le &quot;volume&quot; d&apos;un

tel graphe, noté Long X, est la somme des longueurs des arêtes. Etant donné un
graphe topologique G, on pose

C(G) Inf {Long Z/Syst X; X homéomorphe à G}.
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On s&apos;intéressera aussi à la borne inférieure Cb de ces constantes à type d&apos;homotopie

fixé:

Cb Inf {C(G); b{G) =b) (b e N*).

Voici quelques propriétés générales.

PROPOSITION 5.1

(1) Pour tout graphe topologique G, il existe un graphe métrique X tel que

Long Z/Syst X C(G) et b{X) b(G).

De plus X est minimal.

(2) Pour tout entier naturel b ^ 1, il existe un graphe b-minimal (Long/

(3) Les constantes isosystoliques C(G) sont rationnelles; en particulier Cb est

rationnel (6^1).
Preuve. (1) On cherche à minimiser la longueur d&apos;un graphe F homéomorphe à

G vérifiant Syst 7^1. Cette dernière condition concerne uniquement les cycles

simples de G qui sont en nombre fini. Notons (/,)*= î, ,« G ^a les longueurs des

arêtes de Y que l&apos;on peut supposer bornées; elles satisfont des relations du type

(n -\— * + tlk ^ 1. U s&apos;agit donc de minimiser tx + • • • + /a sur un convexe compact
de Ra: la solution est un ensemble convexe compact non vide M de longueurs qui
réalisent le minimum. Evidemment, certaines de ces longueurs peuvent être nulles,
de sorte que les graphes X obtenus ont seulement le même type d&apos;homotopie que G.

Considérons maintenant un graphe G-minimal X non homéomorphe à G. Par

adjonction d&apos;arêtes arbitrairement petites, on transforme tout graphe homéomorphe
à I en un graphe voisin homéomorphe à G. Cela prouve la minimalité de X.

(2) Cette assertion résulte de 1) et du fait que les graphes G avec b(G) b sont
en nombre fini à homéomorphisme près.

(3) Reprenons la preuve de (1). Le minimum de £x + • • • -h *fa est atteint en au
moins un point extrémal de M, qui est rationnel comme unique solution d&apos;un

système linéaire à coefficients entiers.

Remarque. Le groupe d&apos;homéomorphismes dei&gt;G agit sur M par permutation
des arêtes, et le quotient est l&apos;espace des graphes G-minimaux modulo isométrie et
homothétie. En général, il n&apos;y a pas unicité d&apos;un graphe G-minimal. Par exemple soit
G le graphe complet à 4 sommets. On vérifie que les arêtes &quot;opposées&quot; d&apos;un graphe
G-minimal ont la même longueur (voir Figure 4); le convexe M est le 2-simplexe de
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et (8)
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décrit par les relations

x+y+z l, x&gt;0, y&gt;0, z&gt;0

x+y&gt;\/2, y+z&gt;\/2 z+x^l/2.

5.2. Le critère de minimalité pour les graphes

Le Théorème général 3.2 a une traduction très simple pour un graphe X. Soit A
l&apos;ensemble des arêtes de X et S l&apos;ensemble fini des cycles systoliques de X; pour y
élément de S, on note sy la masse de Dirac en y. L&apos;existence d&apos;une probabilité
fi Zy e s Xyey sur S telle que

6 C(X, R))

équivaut à celle de réels positifs ou nuls (Ay)yeS vérifiant les égalités

l et
y e 5&quot;

Exemples. Voici trois exemples de graphes minimaux (Figure 3).

(a) Le graphe D (Figure 3-a) est le graphe biparti complet (K33) avec toutes les

arêtes de longueur 1. On dénombre 9 cycles minimaux de longueur 4 et on pose
Xy 1/9 pour chacun d&apos;eux. Noter que C(K33) 9/4.

(b) Soit le graphe E de la Figure 3. L&apos;ensemble des cycles minimaux comprend
4 cycles de 4 arêtes et 8 cycles de 5 arêtes. On prend \i I Xyey où Ày 1/8 (resp.
1/16) si y a 4 (resp. 5) arêtes; ce qui donne C 8/3.

3-a 3-b l

(E) C 8/3

Figure 3

C 10/3
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(c) Dans le graphe F (Figure 3-c) on distingue 3 types d&apos;arêtes, notés NN, BB,
NB, définis par la couleur des sommets (N noir, B blanc). Les 2 arêtes NN sont
de longueur 2 et toutes les autres de longueur 1. Les 20 cycles minimaux de F se

répartissent en 3 classes «S,, S2 et S3, dont les éléments sont respectivement de la
forme:

yx (NN, NB, BB, BB, BN) card Sx 8,

y2 (BN, NB, BB, BN, NB, BB) card S2 4,

y3 (NB, BB, BB, BB, BB, BN) card 53 8.

On pose alors Ày 3/40 (resp. 1/20, 1/40) si y e S, (resp. 52, S3). D&apos;où C 10/3.

5.3. Détermination des constantes Cb pour b ^6 et b 8

Remarquons d&apos;abord que les constantes Cb satisfont une propriété de sous-addi-
tivité:

Cb + »_x&lt;Cb + Cb,-\ (6,6&apos;eN*).

Ceci se voit en recollant un graphe b -minimal avec un graphe b &apos;-minimal le long
d&apos;un cycle minimal. Comme C2 3/2 (voir ci-dessous), on a en particulier

Cb+l£Cb +1/2. (9)

Considérons maintenant un graphe (b + 1)-minimal X (b &gt; 1) et notons T
l&apos;ensemble de ses sommets. Quitte à ajouter des arêtes de longueur arbitrairement
petite, on peut supposer que le cardinal de T est égal à 2b. Pour chaque sommet s
de X soit ts le &quot;tripode&quot; formé par les 3 arêtes issues de s; ces arêtes sont distinctes
2 à 2 car, d&apos;après (9), X n&apos;a pas de boucle. On a donc

2 Long X £ Long ts ^ 2b Max (Long ts).
seT s*T

En ôtant à X un tripode de plus grande longueur, on obtient l&apos;inégalité

C^C (è^2)
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4-a XX 4-b

C 3/2

Figure 4

Cette estimation simple va permettre de déterminer Cb pour les petites valeurs de

b. On commence par observer que C, 1 et C2 3/2 avec un unique graphe
2-minimal (Figure 4-a). Admettons pour l&apos;instant que C6 3. On trouve alors
successivement C3 2, C4 9/4, C5 8/3 et C8 7/2 en appliquant l&apos;inégalité (10)
et en considérant les graphes des Figures 4-b, 3-a, 3-b et 6-a. Pour b 7, on a

seulement un encadrement: 16/5 &lt; C7 &lt; 10/3 (voir Figure 3-c).

Il existe une infinité de graphes 3-minimaux (Figure 4-b, où (x9y,z) vérifie les

relations (8) de 5.1). D&apos;autre part, on peut vérifier que le graphe D (Figure 3-a) est

l&apos;unique graphe 4-minimal.

Le cas b =6. D&apos;après la Figure 5, on a déjà C6 &lt; 3. Comme C5 8/3, un graphe
6-minimal ne contient pas de cycle à 2 arêtes. Par une preuve analogue à celle de

l&apos;inégalité (10), en remplaçant les tripodes par des configurations à 5 arêtes (&gt;—&lt;),

on montre que C6 &gt; (15/10)C2 3. On conclut finalement que C6 3. Le graphe Pj
de la figure 5-b permet de construire une infinité de graphes 6-minimaux: il suffit
d&apos;assigner aux arêtes, a,/et g la longueur e e [0, 2].

La relation (10) montre déjà que la suite Cb tend vers l&apos;infini, puisqu&apos;elle

implique Cb+l&gt; (3b/2)l/2. Signalons pour terminer un résultat plus précis, dû à N.
Alon [Al]:

où [ ] est la partie entière et log2 le logarithme de base 2. En fait, N. Alon établit

que tout graphe G admet au moins è/2[log2 (2b(G))]cycles sans arête commune. De

plus l&apos;ordre de grandeur dans (11) est optimal (voir [Al]).

5.4. Graphes sur une surface

Considérons d&apos;une part une surface topologique I connexe fermée, et d&apos;autre

part un graphe métrique X. La donnée d&apos;un plongement topologique de X dans I
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permet de minorer Long Jf/Syst X au moyen de b(X) et de x(Z&apos;), la caractéristique
d&apos;Euler-Poincaré de E. On appelle faces (d&apos;un plongement de X dans I) les

composantes connexes de I — X complétées par leurs bords dans I.

PROPOSITION 5.4.1. Si X se plonge topologiquement dans I on a Vinégalité

Long JT/Syst X &gt;
l- (b(X) + Z(Z) - 1). (*)

De plus Végalité est réalisée si et seulement si les faces sont des disques dont le bord
est systolique comme cycle de X; dans ce cas X est minimal.

Preuve. Soit !F l&apos;ensemble des faces et / le cardinal de 3F. Alors

£ £ Long a 2 Long X
Fe&amp; acdF

car chaque arête est comptée 2 fois dans la somme. D&apos;où l&apos;inégalité

Par ailleurs x(Z) peut être évaluée comme suit:

où T est l&apos;ensemble des sommets de X, ks la valence de s et a le nombre d&apos;arêtes de

X. On trouve finalement

Enfin, la minimalité de X en cas d&apos;égalité est donnée par la relation (*).

COROLLAIRE. Si G est un graphe tracé sur I, alors

Remarque. Cette relation peut s&apos;utiliser pour majorer x(Z). On voit par exemple
que les graphes D et E (Figure 3-a,b) ne sont pas planaires (ce qui est bien connu!).
Quant au graphe F (Figure 3-c), il n&apos;est pas projectif.
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L&apos;étude de l&apos;égalité dans (*) est intéressante. Pour une surface donnée, si

l&apos;égalité a lieu pour une certaine valeur de Z&gt;, elle a lieu pour b + 1 : il suffit d&apos;insérer

une arête de longueur Syst/2 dans une face. Il existe pour tout b eN* un graphe

planaire (formé avec 2 sommets et b + 1 arêtes de longueur 1) qui réalise l&apos;égalité

dans (*). Par contre, ceci n&apos;est plus vrai pour les autres surfaces.

PROPOSITION 5.4.2

(1) Sur le plan projectif P Fégalité (*) est optimale pour b ^ 6 et stricte avant.

(2) Sur le tore T l&apos;égalité (*) est optimale pour b ^8 et stricte avant.

Preuve. (1) Comme % 1, l&apos;égalité implique Cb ^ 6/2, donc b ^ 6 (voir 5.3).

Voici deux graphes réalisant l&apos;égalité pour b 6 (Figure 5).

(2) Cette fois on a Cb ^ (b — l)/2 en cas d&apos;égalité, donc 6^8 d&apos;après 5.3. Mais
l&apos;égalité a effectivement lieu pour b 8 (Figure 6-a).

N.B. Toutes les arêtes de Po et de P, sont de longueur 1, et de même pour les

graphes G et H ci-dessous.

5-b e

—1r T

i ¦&amp;

Figure 5

6-a 6-b

(H)

Figure 6
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Pour la bouteille de Klein K, l&apos;égalité n&apos;est possible que si b &gt; 8 et a lieu à partir
de b 9 (Figure 6-b). En faisant des sommes connexes on voit que (*) est optimale

pour b ^ bQ avec

b0 1 + 1m

bo 6 + lm

b =2 + 7m

sur

sur

sur

T

p#(2m+ 1) ^
p#2m ^ J#0

T#m#P

(m

(m

(m ^1).

Il est bien naturel de se demander quelle est la meilleure valeur de b0 pour ces

surfaces:

Problème. Déterminer pour K et pour d&apos;autres surfaces la plus petite valeur de
l&apos;entier b pour laquelle l&apos;inégalité (*) est optimale.
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