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Inégalités isosystoliques conformes

CHRISTOPHE BAVARD

0. Introduction

Soit M”" une variété compacte non simplement connexe de dimension n. On
appelle systole d’'une métrique riemanniene sur M” la longueur minimale d’une
courbe non contractile. Une inégalité isosystolique, relative a un ensemble donné ¢
de métriques sur M”, est une minoration du volume par la systole:

Volume g = Constante - (Systole g)” (0)

valable pour toutes les métriques g de . Dans le présent travail, ’ensemble € sera
une classe conforme, et nous nous intéresserons a des inégalités optimales. Une
métrique de € qui réalise I’égalité dans (0) sera appelée minimale, puisqu’elle
minimise le volume a systole fixée. Le résultat principal de cet article est une
caractérisation des métriques minimales dans une classe conforme donnée.

Mais plagons-nous d’abord dans un cadre plus général. Soit g, une métrique
fixée. La borne supérieure du rapport Systole/(Volume)'/” sur la classe conforme de
go est un invariant conforme, associé a g, et a la famille des courbes non
contractiles. Un invariant analogue peut €tre défini 4 partir d’une classe quelconque
de courbes. Si n =2, il s’agit de la longueur conforme, notion classique dans la
théorie des applications conformes (voir [Je]): étant donné une famille I" de courbes
rectifiables d’une surface riemannienne (X, g,), on pose

Long Conf I = Sup {Long? I'/(Aire g)'?},
g

borne supérieure sur les métriques g conformes 4 g,, ou LongfI =
Inf, . - {Long® y}.

Etablir une inégalité isosystolique dans une classe conforme n’est donc qu’un cas
particulier d’'un probléme plus général: majorer la longueur conforme. Or, la
méthode dite “méthode des longueurs extrémales” fournit justement une telle
estimation. La formulation qu’en donne M. Gromov dans [Gr, 5.5] est le point de
deépart de ce travail; décrivons-la en détail. Soit u une mesure positive de masse finie
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m sur I'. Une fonction numérique continue sur X peut s’intégrer sur chaque courbe
de I' par rapport a la mesure de longueur, et en intégrant le résultat par rapport a
p on définit une mesure *u sur X. Supposons que *u ait une densité f par rapport
a la mesure d’aire dg, de g,; alors

1/2
Long ConfI' Sm_‘<Jf2dg0> :
&

En effet, pour g = ¢%g, (¢ continue >0 sur X) on a

m-LonggFSf

1/2
Longt y du(y) = j frodg < [Aireg sz dgo] -
r P z
Appelons encore minimale toute métrique g, qui vérifie Long Conf I' = Longse I
pour I' donnée. Un examen rapide de la preuve ci-dessus montre que g, est
minimale dés que p satisfait les deux propriétés suivantes:

(1) toute courbe y du support de p est de g,-longueur minimale:
Longéoy = Long® I';
(2) la densité f de *u est constante.

Inversement, il se trouve que I'existence d’une telle mesure est une condition
nécessaire a la minimalité. Dans I’énoncé qui suit, on se donne une variété
riemannienne compacte (M", g,), une famille I de courbes de M" vérifiant des
hypothéses techniques mineures (précisées au § 1), et on note S I’ensemble des
courbes (non paramétrées) de g,-longueur minimale dans I

THEOREME. La métrique g, est minimale dans sa classe conforme si
et seulement si il existe une mesure p sur S telle que *u soit la mesure volume de g,.

En fait, ce critére ne fait intervenir que les structures de longueur et les
propriétés de dg, comme mesure. On aura donc un énoncé général valable pour
les espaces de longueur compacts, avec une notion générale de ‘“‘volume’ (Th.
3.2).

Nous établirons aussi qu’une classe conforme donnée contient au plus une
métrique minimale si n 2 2 (Prop. 1.5). Cette unicité refléte une propriété €élémen-
taire de convexité; elle a cependant des conséquences intéressantes. Par exemple,
on en déduira une preuve simple du théoréme classique de L. Green concernant
les métriques a géodésiques toutes fermées sur le plan projectif (voir [Be] et 4.5).
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Voici le plan de cet article. Les paragraphes 1 et 2 contiennent les préliminaires
techniques (“classe conforme”, “a-volume” ...) nécessaires a I’énoncé du critére
de minimalit¢ pour les espaces de longueur. Celui-ci est démontré au § 3.
Le § 4 décrit des exemples; enfin, on examine au § 5 le cas des graphes.

Je remercie M. Gromov pour ses conseils durant la préparation de ce travail,

effectué en grande partie en 1987.

1. Classes conformes d’espaces de longueur

On considére dans tout ce qui suit un espace métrique X = (X, d), tel que la
distance entre deux points quelconques de X est égale a la borne inférieure des
longueurs des courbes rectifiables joignant ces deux points: X est un espace de
longueur (voir [GLP]). On supposera que X est compact.

1.1. Soit ¢ une fonction continue de X dans R a valeurs strictement positives.
Si y:7=[0,1] > X est une courbe rectifiable, on note y la courbe obtenue en
reparamétrant y par sa longueur d’arc g, et on pose

£°(y) = j ¢ ° 7(0) do.

Ceci définit une nouvelle structure de longueur sur X, avec sa distance de longueur
d® associée. On vérifie que la longueur est donnée par

£o0) = <Sl_lp<t=l[ni Min ]tpov(t)'d(y(t,-),v(t,-+1))] (1)

i=0 1€t ti 41

0=

d’ou ’on voit que /% est semi-continue inférieurement (s.c.i.) pour la topologie de
la convergence uniforme de C(Z, X); par suite £ est précisément la longueur de
d? ((GLP], p. 3).

Noter que toutes les distances d? induisent la méme topologie sur X.

1.2. La classe conforme de X est par définition ’ensemble ¥ des espaces
métriques X% = (X, d?), X étant égal & X'. Un raisonnement par Iabsurde (en
supposant que X n’est pas réduit & un point) montre que si d® = d¥, alors ¢ = V.
L’ensemble € sera donc muni de la topologie de la convergence uniforme sur les
@: il s’identifie 2 un cone ouvert convexe de C(X, R).
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1.3. a-volume

Soit € la classe conforme de X et a un réel = 1. On appellera a-volume sur € la
donnée d’une famille (v?), ., de mesures de Radon positives sur X telles que:

v ="' et v°(X)#0.
L’application “volume” X¢ —v“(X) est alors continue sur €.

1.4, Dans toute la suite, A désignera une famille de courbes rectifiables de
C(I, X) ou C(S', X) (S' est le cercle), possédant les deux propriétés suivantes:

(i) A est invariante par les reparamétrages;
(1) A est fermée pour la topologie uniforme.

Par définition, la A-systole de X sera
s(X?) = Inf £°(y).
yeA
Cette terminologie est évidemment motivée par I’exemple suivant:

Exemple. A est 'ensemble des courbes fermées non contractiles d’un espace non
simplement connexe et s la systole classique. Afin de satisfaire ’hypothése (ii), on
suppose de plus que s(X) > 0: cela implique que les classes d’homotopie de courbes
ainsi que A sont fermées.

Revenons au cas général. La fonction s est concave sur 'ouvert € de C(X, R),
et minorée par 0: elle est donc continue.

Remarque. Le méme raisonnement montre que la systole est continue dans
I’'espace des métriques riemanniennes d’une variété (compacte ou non), muni de la
topologie C°-forte.

Une courbe y de A est A-systolique pour X® si sa longueur est minimale:
S(X?) =¢?(y); l'existence de telles courbes est assurée par le théoréme d’Ascoli.
Toute inégalité de la forme

(X9 /{s(X)}*=2C (X°€%) (2)

ou v est un a-volume sur la classe € et C une constante >0, est dite isosystolique.
Un espace X“ réalisant I’égalité est appelé minimal.
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1.5. Unicite

PROPOSITION 1.5. Si a > 1 et si le support de v' est X, alors il existe au plus
une métrique minimale dans € (a homothétie pres).

Preuve. Le volume v est ici strictement convexe, donc admet au plus un
minimum sur le convexe {s > 1}.

Remarques

(1) Il n’y a pas unicité si « = 1: voir 5.

(2) On trouvera dans [Je], p. 15, une démonstration algébrique de "unicité pour
o =2.

(3) L’argument ne s’applique pas au volume riemannien défini sur ’espace des
métriques riemanniennes d’une variété de dimension n, qui est seulement convexe
dans chaque classe conforme (linéaire si » = 2) et globalement concave si n =2.

1.6. Symétries

Considérons la classe conforme € de X, et fixons une famille 4 de courbes
comme en 1.4 ainsi qu'un a-volume (v?), . sur €. Une isométrie de X¢ (pour ¢
donnée) est par définition un homéomorphisme de X préservant la famille 4, la
distance de X? et la mesure de volume v?.

Dans les conditions d’unicité de 1.5, une métrique minimale doit posséder toutes
les symétries de toutes les métriques de sa classe conforme:

PROPOSITION 1.6. Supposons que la classe conforme de X est munie d’un
o-volume de support X avec oo > 1. Si X est minimal, alors le groupe d’isométries de
X contient celui de X? pour tout X% de €.

Preuve. Soit fune isométrie d’un certain X, que 'on prend comme métrique de
référence dans la classe 4; on note ¥ =X, de sorte que X =YV ou ¢y = 1/e.
Considérons Pespace Y¥°/. Comme f est une isométrie métrique de Y, on a
clairement, d’aprés la relation (1):

LI =t fop)  (ed). )

D’ou s(Y¥°/) =s(Y¥). On a aussi o(Y¥°/ )= v(Y¥) puisque f conserve la mesure
volume vy de Y. L’unicité de X = Y¥ entraine alors ’égalité y o f = . Par suite f
est une isométrie métrique de X d’aprés (3), et f conserve la mesure volume de X:

FaWoy) =W o f~) vy =Yy,
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2. Espaces des A -courbes géométriques

2.1. Soit L = s(X). Dans I'espace A" = {y € A;longy < L} muni de la distance
uniforme d, considérons la relation:

Y ~0 si Inf d(y,0 h) =0
he H

ou H désigne ’ensemble des homéomorphismes de S' ou de I. Une variante consiste
a prendre uniquement des homéomorphismes directs, afin de conserver I’orientation
des courbes. Notons 7 la classe de y. Le quotient I'* = A%/~ (muni de sa topologie
quotient) sera appelé espace des A-courbes géométriques de longueur < L. Il est
meétrisable par

d(7, 6) = Inf d(y, 6 - h).
he H

On observe ensuite que I'* est compact comme image de I’ensemble des courbes
L-lipschitziennes de A*, lui-méme compact d’aprés le théoréme d’Ascoli. De plus, si
L < L’, alors I'* est un compact de I'*".

Il est intéressant de remarquer que I’espace I~ est muni d’une longueur s.c.i. induite
par celle de A~

Pour L = s(X), on notera S = I'%: c’est I'espace des courbes A -systoliques de X.
Dans le cas ou s est la systole classique, chaque élément de S s’identifie & un
sous-ensemble de X et la topologie associée a d coincide avec la topologie de Hausdorff
des compacts de X.

2.2 LEMME. Soit ¢ une fonction continue >0 sur X. Alors ’application
¢ SV*JG) ° §(0) do
induit une application s.c.i. sur I'*.
En effet les métriques d et d* sont équivalentes, donc définissent la méme topologie sur

les courbes et la méme relation ~ : on peut voir I' /(X)) comme sous-espace de I'“'(X?),
avec L’ = L - Max, ¢. Pour conclure, noter que y — @(y) est la longueur de X (1.1).

3. Le critére de minimalite

3.1. Soit L 2 s(X) et I'" = I'(X) ’espace des A-courbes géométriques de X de
longueur <L (voir 2.1). On commence par décrire un procédé naturel qui a toute
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mesure de Radon u sur I'“ associe une mesure *u sur X. En intégrant une fonction
¥ € C(X, R) sur les courbes on obtient une fonction ¢ sur I'*:

() =Jl// of(o)ds  (yelI").

La donnée d’'une mesure u sur I'” définit alors une mesure *u sur X par:

Y = LL Jll/ o f(0) do du(y) =<, ¥> (¥ € C(X, R)).

Il convient de noter que ¥ est p-intégrable comme différence de fonctions s.c.i.
bornées (ecrire Y =f — g, ou f et g sont continues >0, et appliquer le Lemme 2.2).

3.2. On peut maintenant énoncer le critére de minimalité qui caractérise 1’égalité
dans (2).

THEOREME. Soit X un espace de longueur compact, A une famille de courbes
rectifiables de X (comme en 1.4) et v un a-volume (o réel =1) sur la classe conforme
€ de X. On pose so=s5(X), vy = v'(X). Alors les propriétés suivantes sont équivalentes:

(1) X est minimal dans €,

(i1) X est localement minimal dans €,

(i) il existe une mesure de probabilité u sur ’espace S des courbes A-systoliques

de X telle que

So
*y =2yl

Vg
Démonstration.

(iii) = (i). C’est une application directe de I'inégalité de Holder; en effet si u
existe alors pour tout X? e ¢:

S(X®) < G, B =2 f 0(0) dv'(x) < 2 (o(X") "0}~ e,
X

o )

d’ou vy /5§ < v(X?)/s(X?)%.
(i) = (iii). Tous les ensembles de mesures considérés seront munis de la topolo-

gie vague. Fixons L > s(X) et notons K I’ensemble des mesures de probabilité sur
I'“, *K son image par *.
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Affirmation 1. La mesure (s,/v,)v! est dans 'adhérence *K de *K.

Supposons le contraire. On peut alors séparer le convexe compact *K et
(So/vo)v! par une forme linéaire continue, i.e. il existe un fonction y continue sur
X et un réel a > 0 tels que:

a+2 ydv' < Inf (v, ¥) = Inf (Y.
Y% ne kK

Vo ve *K

D’ou, pour tout ¢ > 0:

S—OJ‘(I +eY)dv' +ae <sy+ Inf (*u, e > < Inf (Fu, 1+ e )d. (4)
(2 ne K pe K

Supposons que 1 + ey, notée ¢, soit strictement positive; alors pour tout u € K:
i, T+ ey ) 2 s(X°).

Mais si ¢ est petit, il existe une courbe y A-systolique pour X et appartenant a
I'“; en effet s = s(X®) est voisin de s, par continuité de la A-systole, et la fonction
longueur ¢ de X est majorée par £?+ ¢/ ||y, ou ||y| désigne le maximum de ¢
sur X. En prenant pour pu la masse de Dirac en y, on obtient:

In£ Gu, 1+ ey ) =s. (5

D’autre part on a les inégalités

1 « 1) So 1 2
0<s, o Q*dv o odv < be
0 0

ou b est indépendant de &. Avec (4) et (5) on en déduit que
O(X®)[ve) %59 <5 + be* —ae <s

pour ¢ assez petit. Ce qui contredit la minimalité locale de X.

Affirmation 2. 11 existe p € K telle que *u = (so/vo)v".
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Nous savons déja qu’il existe une suite (u,) d’éléments de K, que l'on peut
supposer convergente vers une certaine mesure u de K (compacité), telle que:

. 5
Lim <*un,¢>=f<v‘,w> (Yo € C(X, R)).
0

n-— oo
Soit ¢ > 0; comme @ est semi-continue inférieurement sur I'“ (Lemme 2.2), on a

{lns @) = Sup {{u,, g); g continue, g < ¢}

(idem pour u), d’ou il résulte que
9 <260, 9. (6)
En fait (6) est une égalité pour 0 < ¢ <1 car
So < (' 1 = @) + Pty 1= 90 < 5.
On en déduit finalement que (6) est une égalité pour toute fonction ¢.
Affirmation 3. Le support de u est inclus dans S.
Soit £ : I'* >R la longueur; noter que

py € —50) =y 1) — 50 =0.

Considérons maintenant une fonction continue ¥ a support F inclus dans I'* — S,
et notons m le minimum sur F de la fonction s.c.i. £ —s,. La majoration évidente

4] < - (€ —s50) Max [y

montre que {y, Y ) =0. D’ou I'Affirmation 3.
On vérifie ensuite que la mesure de I'“ — S est nulle, puis que pour toute
fonction u-intégrable f

<)u9f> = <u[s’ﬁs >’

ou | est la restriction. Par conséquent la mesure w, sur S, désormais notée p, répond
a la question.
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3.3 Remarque. La condition suffisante (iii) = (i) est aussi valable si I’on rem-
place les courbes par des objets ““de dimension supérieure a 17, i.e. qui portent un
p-volume pour 1 <f <a (c’est encore I'inégalité de Holder). Par exemple, en
considérant des sous-variétés dans une classe d’homotopie fixée, on peut obtenir
comme en 4.1 des inégalités “isosystoliques” conformes pour les tores.

4. Exemples

Les exemples ci-dessous (a I’exception de 4.5) concernent le probléme isosys-
tolique classique pour les variétés riemanniennes non simplement connexes.

4.1. L’inégalité de Loewner

Considérons le tore plat, noté T, quotient de R? par Z@ Z4, ou A appartient a
'ensemble {(a, b)) e R 0 <a <1/2,a*+ b* 2 1}. Soit y, la droite horizontale d’or-
donnée y; la mesure u=dy sur la famille {y, }o.,<, satisfait clairement la
condition (iii) du théoréme (a une constante pres). Ainsi 7, est minimal dans sa
classe d’équivalence conforme: c’est I'inégalité de Loewner.

4.2. Des métriques minimales a courbure 1 sur la bouteille de Klein (voir [Ba],)

Soit K la bouteille de Klein plate définie comme quotient du rectangle euclidien
{(x,y) e R% |x| < /2, |y| < B}, ou I'on identifie les cOtés horizontaux (resp. verti-
caux) par translation (resp. symétrie-translation).

Pour les petites valeurs de B (0 <p <=/2), on voit que K; est minimale en
prenant les courbes verticales («, ) < /> €t 1a mesure u = dx. Mais quand § > n/2,
I'inégalité obtenue par cette méthode n’est plus optimale car les a, ne sont plus
systoliques.

Voici des exemples de métriques minimales (singuliéres) a courbure 1 sur la
bouteille de Klein. Notons S? la sphére unité de 1’espace Euclidien R*; pour b réel
compris entre n/4 et n/3, U® désignera I’ensemble des points de S? dont la distance
(sur S?) a I’équateur est inférieure ou égale a b. Le quotient de U” par I’antipodie
est un ruban de Mobius M%. Nour allons établir que son double K® est minimal.
Notons y° ’équateur de S? paramétré par un réel 8 dans [0, 2x], et considérons les
courbes systoliques (i.e. de longueur n) de K? ‘définies comme suit. Soit y§ 'image
dans M?® du grand cercle passant par y°(0) et faisant en ce point un angle a avec y°
(0 <a < b, voir Figure 1). L’ensemble des courbes y§, pour 8 € R2nZ et 0 < a < b,
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ya ﬁ
/ a 0 Ub

v9(6) v /

Figure 1

s’identifie (vu sur S?) a la boule de S? de rayon b et centrée au pdle nord. Posons
alors

u= S“;j“ (sin? b — sin? @)~ da db,

mesure sur les y4 dont on vérifie que *u est la mesure d’aire de M®. Il en résulte que
K? est minimale. Le paramétre B, qui repére la classe d’équivalence conforme de K?,
varie de 8, =2log (1 +ﬁ) ap,=2log (2+\/§) quand b varie de n/4 a n/3.

Les valeurs de f appartenant a ]rn/2, ,[U]B,, o[ échappent a la description
ci-dessus. En fait, la classe conforme de chaque Kj; correspondant admet une
métrique minimale, dont la géométrie, en partie plate et en partie sphérique, est un
mélange des deux exemples précédents (voir [Ba],).

4.3. On trouvera dans [Ba], la description compléte des inégalités isosystoliques
conformes pour 15 des 17 groupes crystallographiques du plan.

4.4. Des métriques minimales sur les surfaces

Dans [Gr] 5.6.B’, M. Gromov construit des surfaces isosystoliques comme suit.
On se donne un graphe métrique compact G. A chaque aréte a de G est associé le
cylindre plat C, = R/Z x a; en chaque sommet de G on numérote arbitrairement les
arétes a,, ..., a; (k =23) qui le contiennent, et on associe a ce choix un graphe
formé de deux sommets joints par k arétes «,, ..., o, de longueur 1/2. Puis on
recolle les cylindres C, en identifiant isométriquement, pour chaque sommet p de a,
le bord R/Z x {p} avec o, U, ., ol i est le numéro (modulo k) de l'aréte a en p
(voir Figure 2). Le résultat est une surface plate singuliére X;, ayant deux
singularités d’angle kn pour chaque sommet de G de valence k. Le genre de X est
égal au nombre de cycles indépendants de G.

Si la systole de G est supérieure ou égale a 1, la surface X est minimale. En effet,
les sections des cylindres C, sont systoliques, paramétrées par G, et le critére de
minimalité est vérifié pour la mesure de longueur de G.
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e

Figure 2

4.5. Les variétés a géodésiques fermées simples

Considérons une variété riemannienne M (de classe C*) dont toutes les
géodésiques sont fermées, simples, et de méme longueur. Alors I’espace de ces
géodésiques porte une mesure u telle que *u soit la mesure de volume (a une
constante prés). En effet, la mesure de Liouville sur le fibré unitaire tangent
p:T'M — M est invariante par le flot géodésique (théoréme de Liouville); elle
induit donc une mesure u sur ’espace des géodésiques. Cette mesure convient car
'intégrale d’une fonction continue ¢ sur M est égale, 2 une constante prés, a
I'intégrale de ¢ o p pour la mesure de Liouville. L’existence de u et la Proposition
d’unicité 1.5 impliquent le résultat suivant:

PROPOSITION 4.5. Soit V" une variété différentiable compacte non simplement
connexe. Alors chaque classe d’équivalence conforme de métriqgues C* sur V" admet
(a isométrie et homothétie pres) au plus une métrique dont toutes les géodésiques
sont fermeées, simples, et de méme longueur.

Quand V2 est le plan projectif réel, on retrouve le théoréme classique de L.
Green concernant la conjecture de Blaschke en dimension 2 (voir [Bes]).

Preuve de la proposition. Soit M une variété riemannienne comme plus
haut, c’est-a-dire telle que les orbites de son flot géodésique sur T'M soient
toutes fermées de méme période. Il est clair que les projections sur M de ces
orbites sont toutes librement homotopes (et par hypothése simples fermées); st M
n’est pas simplement connexe, 'une de ces courbes doit étre systolique: elles le
sont donc toutes. L’existence de u (voir ci-dessus) montre alors que M est
minimale pour volume/(systole)”. On conclut la preuve en appliquant la Proposi-
tion d’unicité 1.5.
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4.6. L’aire des sphéres métriques

Etant donné une variété riemannienne compacte M” dont le rayon d’injectivité
est supérieur ou égal a n, on note S,(n/2) la sphere de rayon ©/2 centrée en x point
de M", et Aire S.(n/2) son volume (n — 1)-dimensionnel. Dans [Ber];, M. Berger
démontre que la moyenne de Aire S,(n/2) est minimale pour la sphére S” a courbure
1, et demande si I'inégalité

Aire S,(n/2) = vol (S" 1)

a lieu en tout point x de M” (comme c’est le cas en dimension 2: [Ber], ). Pour n = 3,
C. Croke donne une réponse affirmative partielle a cette question dans le cas particulier
ou la métrique de la boule B, (n/2) s’écrit dr? + h*(r, 6) da? en coordonnées polaires
(r, 0) €0, n/2] x S"~ ! (voir[Cr],). En fait, C. Croke établit une minoration analogue
pour les boules métriques, et le résultat sur les sphéres s’en déduit par une inégalité
isopérimétrique ([Cr],). On propose ici de retrouver directement cette estimation de
Aire S, (n/2), a partir d’'une hypothése un peu plus faible.

Soit B une boule riemannienne dont la métrique est donnée en coordonnées
polaires par

dr* + g,(0) (r,0) €[0, n/2] x S"— 1,

On suppose seulement que la métrique g = g, induite sur le bord S de B est conforme
a la métrique usuelle do? de la sphére unité S” ~! de R”. Naturellement, on fait aussi
I’hypothése que la plus petite distance sur S entre deux points diamétralement opposés
est supérieure ou égale a m; on note j(g) cette plus petite distance (voir [Ber],). Il
reste a établir I'inégalité

vol (g)/j"~'(g) 2 vol (§"~ 1) /n"~! (7

sachant que g est conforme a do?. Pour cela on utilise le critére de minimalité. Les
courbes de longueur minimale pour do? entre les couples de points antipodaux sont
les demi-grands cercles orientés de S” !, dont ’ensemble s’identifie au fibré unitaire
tangent de S"~'. La mesure de Liouville m définit alors une mesure *m sur S" !
qui est proportionnelle au volume de S"~! (voir 4.5). D’ou I'inégalité (7).

4.7. Produit avec un facteur minimal

PROPOSITION 4.7. Un produit riemannien M x N est minimal dés que M est
minimale et Systole (M) < Systole (N).
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Ceci s’applique par exemple quand M est un cercle et N simplement connexe
(Systole (N) = o0).

Preuve. L’ensemble S,, des courbes systoliques de M porte une mesure u,, qui
satisfait la condition (iii) du Théoréme 3.2. Si v, désigne la mesure volume de N, on
pose

B = pp ® vy [vol (N).
Cette mesure sur S,, x N vérifie clairement (iii).

Remarque. Le résultat d’unicité 1.5 montre que, sous les hypothéses de la
proposition, deux produits M x N et M x N’ sont conformément équivalents
seulement s’ils sont isométriques.

5. Inégalités isosystoliques pour les graphes

5.1. Le cas des graphes est particulirement agréable, car deux graphes
meétriques (compacts) homéomorphes sont conformes a une isométrie pres; la
minimalité dans une classe conforme équivaut donc a la minimalité topologique: on
dira simplement minimal.

Tous les graphes considérés ici seront compacts et connexes. Leurs sommets
seront de valence supérieure ou égale a 3, sauf dans le cas du cercle. Le type
d’homotopie d’un graphe donné G est caractérisé par le nombre b(G) de cycles
indépendants, ou premier nombre de Betti de G. Soit a(G) (resp. 7(G)) le nombre
d’arétes (resp. de sommets) de G. L’entier b(G) est donné par:

b(G) = (G) — 1(G) + 1.
Noter aussi les inégalités

31(G) < 2a(G), a(G) <3(b(G) —1) et 1(G) <2(b(G) —1)
si G n’est pas le cercle.

La lettre X désignera toujours un graphe métrique compact. Le “volume” d’un
tel graphe, noté Long X, est la somme des longueurs des arétes. Etant donné un

graphe topologique G, on pose

C(G) =Inf {Long X/Syst X; X homéomorphe a G}.
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On s’intéressera aussi a la borne inférieure C, de ces constantes a type d’homotopie
fixe:

C, =Inf {C(G); b(G) =b} (b e N*).

Voici quelques propriétés générales.

PROPOSITION 5.1
(1) Pour tout graphe topologique G, il existe un graphe métrique X tel que

Long X/Syst X = C(G) et b(X) = b(G).

De plus X est minimal.

(2) Pour tout entier naturel b =1, il existe un graphe b-minimal (Long/
Syst = C,).

(3) Les constantes isosystoliques C(G) sont rationnelles; en particulier C, est
rationnel (b = 1).

Preuve. (1) On cherche a minimiser la longueur d’un graphe Y homéomorphe a
G vérifiant Syst Y = 1. Cette derniére condition concerne uniquement les cycles
simples de G qui sont en nombre fini. Notons (£;);-; . € R* les longueurs des
arétes de Y que I’'on peut supposer bornées; elles satisfont des relations du type
£;, + - +£, 2 1. 1l sagit donc de minimiser £, + - - - + £, sur un convexe compact
de R* la solution est un ensemble convexe compact non vide .# de longueurs qui
réalisent le minimum. Evidemment, certaines de ces longueurs peuvent €tre nulles,
de sorte que les graphes X obtenus ont seulement le méme type d’homotopie que G.

Considérons maintenant un graphe G-minimal X non homéomorphe a G. Par
adjonction d’arétes arbitrairement petites, on transforme tout graphe homéomorphe
a X en un graphe voisin homéomorphe a G. Cela prouve la minimalité de X.

(2) Cette assertion résulte de (1) et du fait que les graphes G avec b(G) = b sont
en nombre fini & homéomorphisme prés.

(3) Reprenons la preuve de (1). Le minimum de £, + - - - 4+ £, est atteint en au
moins un point extrémal de .#, qui est rationnel comme unique solution d’un
systéme linéaire a coefficients entiers.

Remarque. Le groupe d’homéomorphismes de.G agit sur .# par permutation
des arétes, et le quotient est I’espace des graphes G-minimaux modulo isométrie et
homothétie. En général, il n’y a pas unicité d’un graphe G-minimal. Par exemple soit
G le graphe complet a 4 sommets. On vérifie que les arétes “opposées”” d’un graphe
G-minimal ont la méme longueur (voir Figure 4); le convexe .# est le 2-simplexe de
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R> décrit par les relations

x+y+z=1 x=20, y=20, z=0
et (8)
x+y=1/2, y+z=21/2 z4+x 21/2.

5.2. Le critére de minimalité pour les graphes

Le Théoréme général 3.2 a une traduction trés simple pour un graphe X. Soit 4
I’ensemble des arétes de X et S I’ensemble fini des cycles systoliques de X; pour y
¢lement de S, on note ¢, la masse de Dirac en y. L’existence d’une probabilité
pu=2X,  s4ie, sur S telle que

]
<*u,¢>=5f ¢ (Yo e CX,R))

equivaut a celle de réels positifs ou nuls (4,), . s vérifiant les égalités

Y A,=1 et Y A, =1/C (VaeA).

yeS acy

Exemples. Voici trois exemples de graphes minimaux (Figure 3).

(a) Le graphe D (Figure 3-a) est le graphe biparti complet (Kj; ;) avec toutes les
arétes de longueur 1. On dénombre 9 cycles minimaux de longueur 4 et on pose
4, = 1/9 pour chacun d’eux. Noter que C(Kj;;) = 9/4.

(b) Soit le graphe E de la Figure 3. L’ensemble des cycles minimaux comprend
4 cycles de 4 arétes et 8 cycles de 5 arétes. On prend pu =X A&, ou 4, = 1/8 (resp.
1/16) si y a 4 (resp. 5) arétes; ce qui donne C = 8/3.

D) C=9/4 E) C=8/3

Figure 3
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(c¢) Dans le graphe F (Figure 3-c) on distingue 3 types d’arétes, notés NN, BB,
NB, définis par la couleur des sommets (N = noir, B = blanc). Les 2 arétes NN sont
de longueur 2 et toutes les autres de longueur 1. Les 20 cycles minimaux de F se
répartissent en 3 classes S, S, et S5, dont les ¢léments sont respectivement de la
forme:

71 = (NN, NB, BB, BB, BN) card S, =8,
y,= (BN, NB, BB, BN, NB, BB)  card S, = 4,
y; = (NB, BB, BB, BB, BB, BN)  card S, = 8.

On pose alors A, = 3/40 (resp. 1/20, 1/40) si y € S, (resp. S,, S3). D’ou C = 10/3.

5.3. Détermination des constantes C, pour b <6 et b =8

Remarquons d’abord que les constantes C, satisfont une propriété de sous-addi-
tivite:

Corp 1<Co+Cy—1 (b, b eN¥).

Ceci se voit en recollant un graphe b-minimal avec un graphe b’-minimal le long
d’un cycle minimal. Comme C, = 3/2 (voir ci-dessous), on a en particulier

Cor1 =Gyt 1)2 9

Considérons maintenant un graphe (b + 1)-minimal X (b = 1) et notons T
I’ensemble de ses sommets. Quitte & ajouter des arétes de longueur arbitrairement
petite, on peut supposer que le cardinal de T est égal a 2b. Pour chaque sommet s
de X soit ¢, le “tripode” formé par les 3 arétes issues de s; ces arétes sont distinctes
2 & 2 car, d’apres (9), X n’a pas de boucle. On a donc

2Long X = Y Long #, < 2b Max (Long t,).

seT seT
En dtant 4 X un tripode de plus grande longueur, on obtient I'inégalité

b
Cb+12‘b“_‘__lcb-1 (b 22). (10)
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Figure 4

Cette estimation simple va permettre de déterminer C, pour les petites valeurs de
b. On commence par observer que C,=1 et C,=3/2 avec un unique graphe
2-minimal (Figure 4-a). Admettons pour l'instant que Cg=3. On trouve alors
successivement C; =2, C, =9/4, Cs;=8/3 et C3 =7/2 en appliquant I'inégalité (10)
et en considérant les graphes des Figures 4-b, 3-a, 3-b et 6-a. Pour =7, on a
seulement un encadrement: 16/5 < C; < 10/3 (voir Figure 3-c).

Il existe une infinité de graphes 3-minimaux (Figure 4-b, ou (x, y, z) vérifie les
relations (8) de 5.1). D’autre part, on peut vérifier que le graphe D (Figure 3-a) est
I'unique graphe 4-minimal.

Le cas b = 6. D’aprés la Figure 5, on a déja C¢ < 3. Comme Cs = 8/3, un graphe
6-minimal ne contient pas de cycle a 2 arétes. Par une preuve analogue a celle de
Iinégalité (10), en remplagant les tripodes par des configurations a 5 arétes ()—),
on montre que Cq = (15/10)C, = 3. On conclut finalement que C¢, = 3. Le graphe P,
de la figure 5-b permet de construire une infinité de graphes 6-minimaux: il suffit
d’assigner aux arétes, a, f et g la longueur ¢ € [0, 2].

La relation (10) montre déja que la suite C, tend vers l'infini, puisqu’elle
implique C,, ; = (3b/2) 2. Signalons pour terminer un résultat plus précis, di a N.
Alon [Al]:

b
€ > Jllog, (26) (D

ou [ ] est la partie entiére et log, le logarithme de base 2. En fait, N. Alon établit
que tout graphe G admet au moins b/2[log, (2b(G))]cycles sans aréte commune. De
plus 'ordre de grandeur dans (11) est optimal (voir [Al]).

5.4. Graphes sur une surface

Considérons d’une part une surface topologique 2 connexe fermée, et d’autre
part un graphe métrique X. La donnée d’un plongement topologique de X dans Z
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permet de minorer Long X/Syst X au moyen de b(X) et de x(2), la caractéristique
d’Euler-Poincaré de X~. On appelle faces (d’'un plongement de X dans 2X) les
composantes connexes de X — X compléteées par leurs bords dans X.

PROPOSITION 5.4.1. Si X se plonge topologiquement dans X on a !’inégalité
1
Long X/Syst X > 7 B(X) + x(2) = 1). (%)

De plus I’égalité est réalisée si et seulement si les faces sont des disques dont le bord
est systolique comme cycle de X; dans ce cas X est minimal.

Preuve. Soit # I’ensemble des faces et f le cardinal de #. Alors

Y ") Longa=2LongX

Fe# acdF

car chaque aréte est comptée 2 fois dans la somme. D’ou I'inégalité
Long X/Syst X = f/2.
Par ailleurs y(X) peut étre évaluée comme suit:

(&)=Y (F)+a— 3 k,—1)

Fe % seT

ou T est I'ensemble des sommets de X, k, la valence de s et a le nombre d’arétes de
X. On trouve finalement

W) +b—1= 3 xF)<f.

Fe#

Enfin, la minimalité de X en cas d’égalité est donnée par la relation (*).

COROLLAIRE. Si G est un graphe tracé sur X, alors
1
C(@G) 2 3 B(G) + x(2) —1).

Remarque. Cette relation peut s’utiliser pour majorer y(X). On voit par exemple
que les graphes D et E (Figure 3-a,b) ne sont pas planaires (ce qui est bien connu!).
Quant au graphe F (Figure 3-c), il n’est pas projectif.
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L’étude de I’égalité dans (x) est intéressante. Pour une surface donnée, si
I’égalité a lieu pour une certaine valeur de b, elle a lieu pour b + 1: il suffit d’insérer
une aréte de longueur Syst/2 dans une face. Il existe pour tout b € N* un graphe
planaire (formé avec 2 sommets et b + 1 arétes de longueur 1) qui réalise I’égalité
dans (*). Par contre, ceci n’est plus vrai pour les autres surfaces.

PROPOSITION 5.4.2
(1) Sur le plan projectif P Iégalité (*) est optimale pour b = 6 et stricte avant.
(2) Sur le tore T I’égalité (*) est optimale pour b = 8 et stricte avant.

Preuve. (1) Comme y =1, I’égalité implique C, < b/2, donc b = 6 (voir 5.3).
Voici deux graphes réalisant 1’égalité pour b = 6 (Figure 5).

(2) Cette fois on a C, < (b — 1)/2 en cas d’égalité, donc b > 8 d’apres 5.3. Mais
I’égalité a effectivement lieu pour b =8 (Figure 6-a).

N.B. Toutes les arétes de P, et de P, sont de longueur 1, et de méme pour les
graphes G et H ci-dessous.

®)

Figure 5

6-b

(H)

Figure 6
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Pour la bouteille de Klein K, ’égalité n’est possible que si b > 8 et a lieu a partir
de b =9 (Figure 6-b). En faisant des sommes connexes on voit que (*) est optimale
pour b = b, avec

bo=1+7m sur T#*™ (m =2 0),
bo=6+Tm sur P*Cm+ Dy T#mup (m = 0),
bo=2+Tm sur P*m"x T#*m-DyxgK (m=1).

Il est bien naturel de se demander quelle est la meilleure valeur de b, pour ces
surfaces:

Probléeme. Déterminer pour K et pour d’autres surfaces la plus petite valeur de
I’entier b pour laquelle I'inégalité (*) est optimale.
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