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Doubling measures and quasiconformal maps

SusAN G. STAPLES*

1. Introduction

In this paper we study the relationship between quasiconformal maps and
doubling measures. First recall the definition of a doubling measure. Let D be a
domain in R” and let u be a Borel measure defined on D. Let 2Q denote that cube
concentric with Q and of side length twice that of Q. We say that u is doubling on
D, u € 2(D), if there exists a constant ¢ > 0 such that u(2Q) < cu(Q) for all cubes
Q with 2Q < D.

In particular we examine the following problem. Suppose f:D—+D’ is a
homeomorphism between domains in R”, n > 1. For each y € 2(D’), consider the
induced measure v = u( f( - )) on D. Classify those f for which each such v is also
a doubling measure.

Previous articles ([A], [J], [R], [S], [U]) have studied the analogous question with
respect to the classes of BMO functions, Hardy—Littlewood maximal functions and
A -measures. For the higher dimensional cases, that is n = 2, the desired homeo-
morphisms f which preserve these classes prove to be quasiconformal maps. In the
one dimensional case, Jones has shown that the precise class of homeomorphisms
of the line which preserve BMO are those which satisfy "€ A,. This is not
equivalent to the statement that fis quasisymmetric. Major differences thus exist in
the results for the cases n =1 and n > 2.

In each of the aforementioned articles, the authors needed to impose hypotheses
on the homeomorphism f beyond the preservation of the given class in order to
assure the quasiconformality of f. These extra assumptions have included differen-
tiability assumptions and subdomain conditions in various forms.

Here we present proofs that quasiconformal maps preserve doubling measures
in dimensions n = 1. We also show, using standard additional hypotheses similar to
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Institute. She wishes to thank the Institute for its hospitality. The author was also supported by Grant
# DMS 9004251 from the U.S. National Science Foundation.
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those mentioned above, that maps f which preserve doubling measures must be
quasiconformal for n > 2 and quasisymmetric for n = 1. Note that in contrast to
the situation with BMO functions ([J], [R]), similar theorems hold in both the cases
n =1 and n = 2. However, we will point out other observed differences for doubling
measures dependent on this given dimensional break.

2. Notation and preliminary lemmas

Throughout this paper D and D’ denote domains in R", n = 2, and G and G’
indicate subdomains of D and D’ respectively. We use Q for any closed cube and
by tQ we mean that cube concentric with Q which arises from expanding Q by a
factor of t = 1. If the center of Q is specified to be x, we write Q = Q(x); if, in
addition, the side length of Q is 2r, we write Q = Q(x, r). Lebesgue measure is
denoted by |- |.

We recall the analytic definition of quasiconformality. A function f: D - R" is
said to be absolutely continuous on lines, ACL, if f is continuous and if f is
absolutely continuous on almost all line segments in R parallel to the coordinate
axes. Here R ={x e R"|a; < x; < b,} = D is any closed n-interval in D.

Denote the Jacobian matrix of f at x by F(x) and its determinant by J(x, ). A
homeomorphism f: D — D’ is said to be K-quasiconformal if f € ACL, f'is differen-
tiable a.e. in D with respect to Lebesgue measure and

su |[F(x)h|" < K|J(x, f)] a.e. (2.1
heRn, jhl=1
A homeomorphism f : D — D’ is said to satisfy the condition (N) if |4| = 0 implies
|f4| = 0. It is well known that quasiconformal maps satisfy the condition (N).
The one dimensional analogues of quasiconformal maps are quasisymmetric
maps. An increasing self-homeomorphism f of the real line is called K-quasisym-
metric if

1_[fe+—f®)| _

Ko s —n| - X (2.2)

for all x,ze R, t #0.
We make the following slight extension in the definition of doubling measures.

We say that a Borel measure p defined on D is in 2(D, 1), T > 1, if there exists a
constant ¢ > 0 such that

H2Q) < cu(Q) (2.3)
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for all cubes Q such that 2tQ < D. If we wish to specify that a measure u is
doubling with an associated constant ¢, we write the constant in (2.3) as c,.

Similarly a Borel measure y defined on D is in A (D, 1) [S], if there exist
positive constants « and 6 such that

H(E) I_E_')‘S |E| (@)5
u(Q)Sa<|QI and o1 o)

for all cubes Q with tQ < D and for every measurable set E < Q.

Note that the class A (D, 7) is contained in the class of doubling measures,
2(D, 7). This containment can be shown to be strict, i.e., there are examples of
doubling measures which are not A_ -measures ([FM], [W]). Thus the problem of
examining which homeomorphisms preserve doubling measures is different from the
analogous problem for A -measures.

Reimann [R], has shown that the ‘““pull back” of Lebesgue measure under a
quasiconformal map is an A -measure.

LEMMA 2.4 ([R], Corollary p. 262). Let f:D — D’ be K-quasiconformal.
Then there exists a constant t =t(K, n) such that ne A (D, 1), where W(E)=

|f(E)|.

Thus by our remark above the measure u induced by a quasiconformal map f
satisfies u € 2(D, 7).

We now state three equivalent definitions of doubling measures. At any given
point in the proofs in this paper we use whichever definition proves most convenient
computationally. We say that two closed cubes are neighboring whenever |Q| =S|
and 9nS #J.

LEMMA 2.5. Let u be a Borel measure defined on D. The following are

equivalent:
(2.6) There exist constants ¢ >0 and © 2> 1, such that

1(2Q) < cu(Q)

for all cubes Q such that 2t1Q < D.
(2.7) There exist constants a >0, b >0 and t 2 1 such that

umQ) < am’u(Q)

for all m=1 and all cubes Q such that 2*tQ < D. Here k=
min {z € Z:z 2 log, m}.
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(2.8) There exist constants d >0 and o = 1 such that

u(S) < du(Q)
for all pairs of neighboring cubes S and Q in D such that cQ < D.

The equivalences above can be shown by standard geometric arguments. One
can deduce (2.7) with a = ¢ and b = log, ¢ by repeated applications of (2.6). For the
proof of (2.7) = (2.8), one clearly has u(S) < u(mQ) < am®u(Q) for m =1+ 2ﬁ.
This will hold for all cubes Q satisfying 6Q < D, with ¢ =27, where k=
min{zeZ:z2log, (1+ 2\/r_z)}. Finally, to see (2.8) = (2.6) we can decompose

20 into 2" cubes, each neighboring Q. Thus w(2Q) < 2"du(Q) for all cubes Q such
that 20t < D, with t =o0. O

3. Main results

The theorems for the one dimensional case are a part of the known ““folklore”
for quasisymmetric maps. However, these results do not appear to be in print. Since
they merely depend on the definition of quasisymmetry and a quick application of
Lemma 2.5, we include them here for completeness.

THEOREM 3.1. Let f: R—> R be an increasing homeomorphism of the real line
onto itself. Then the following are equivalent.

(3.2) fis K-quasisymmetric.

(3.3) For every p e 2(R), v=pu(f(-)) belongs to 2(R) with c, = c,(c,, K).

Proof. Consider any two adjacent intervals Q and S with |Q|=|S|=1 and
|0|n|S| = {x}, the common endpoint of Q and S. We write Q" =f(Q) and §'=
1(8).

Assume first that fis K-quasisymmetric and u € 2(R) with associated constant d
from (2.8). By the definition of quasisymmetry in (2.2),

[oX

< K|S’].

We can cover Q' withm = [K] + 1 neighboringintervals ]y, . . ., I,,such that |[,| =
for all j = 1 to m. Next we estimate u( f( - )).

Sl

m

W f(Q) = WQ") < u( U 1,) < 5"; Fu(S") = d'u(f(S))

j=1

where d’ = d’'(d, K).
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From this particular case of adjacent neighboring intervals we can deduce (2.6).

Now assume that condition (3.3) holds. In the one dimensional case the
implication (3.3) = (3.1) is almost trivial, since we need only apply (3.3) to the
measure v(Q) =|Q’| induced by Lebesgue measure. By (2.8) we have w(S) < dv(Q)
as well as v(Q) < dv(S). In other words,

L |fGc 40—
= L <d. D
a0 —fx—n] =@

We now proceed with the higher dimensional case; henceforth we assume n > 2.
Here we state results for mappings between general domains D, D’ < R”.

THEOREM 34. If f:D—- D’ is a K-quasiconformal map, then ¢ : u—v=
u( f( +)) is a monomorphism between 2(D") and 2(D, 1), T = ©(K, n). Moreover, we
can take ¢, = cb, p = B(K, n).

Note that in the case where D = D’ =R", we can take 7 =1, and ¢ gives an
automorphism of 2(R").

The proof depends on Lemma 2.4 along with the following lemma which derives
from Lemma 4 in [G] and Lemma 4 in [R]. (See also [S], Lemmas 2.16 and 2.19.)

LEMMA 3.5. Let f: D —> D’ be a K-quasiconformal map and let ¢ =1 be
given. Then there exists a constant 1 =1(K, n, 06),t = 1, such that for every cube
Q(x) < D satisfying 1Q < D, both of the following conditions are true.

(3.6) There exists a cube P’'(f(x)) = D’ with f~'(P") = P > Q such that

[P’

<¢lQ), ea=c(K,n), and oP' <D’
(3.7) There exists a cube S’(f(x)) = D’ with f~'(S") =S < Q such that

[0k

Proof of Theorem 3.4. Let t = max (t,,7,) where t, is the constant for z
given by Lemma 2.4 and 71, is similarly that for Lemma 3.5. Consider any
cube Q satisfying 2tQ < D. Apply Lemma 3.5 with 6 =2% k=min{zeZ:
z 2 log, m””ﬁ} to find cubes P’ > (2Q)’ =f(20) and S’ = Q’ = f(Q) such that

< |8

" Cy = Cz(K, n).

P/

< ¢ |(20)] (3.8)

and

10| < oS- (3.9)
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From Lemma 2.4 we also deduce

(20)'| < o5|Q”

, c; = c3(K, n). (3.10)
Combining (3.8), (3.9) and (3.10) yields
|P’| <m|S"|, m = m(K, n). (3.11)
Choose any doubling measure u € 2(D’). We can make use of definition (2.7)

since P’ c m‘/"\/r;S’ and 2¥S"coP’ <= D’. By (2.6) we see that v=pu(f(-))e
2(D, 1), since for the cube Q under consideration

uf(2Q) _ (P’)

< I/n loga ¢y — B _ . . 0
70 S s S om/n) ©)?, B =pK,n)

Note that since the restriction, f |, remains K-quasiconformal for any subdo-
main G of D, we can also state Theorem 3.4 in terms of subdomains G and
G’ = f(G). In Theorem 3.12 we assume such subdomain conditions hold.

We show (Example 3.23) that is does not suffice to deal exclusively with the
doubling measure induced by Lebesgue measure. Instead we construct a specific
doubling measure on D’ to arrive at our result.

THEOREM 3.12. Let f: D — D’ be a homeomorphism which is ACL and
differentiable a.e. and which along with f~! satisfies the condition (N). Suppose there
exists a constant T =1(f) such that the induced mapping ¢ : u—v=pu(f(-)) is a
monomorphism from 2(G’) to 2(G, 1), whenever G is a subdomain of D and
G’ = f(G). Assume, in addition, that c, = c,(c,,[). Then f is a quasiconformal map.

Proof. The condition (N) above guarantees that the set Jy,={xeD:
J(x, f) = 0} has Lebesgue measure zero. Note that this is the only place in the proof
where we need to invoke this condition.

Consider now any point x,e€ D such that f is differentiable at x, and
J(xy,f) #0. The Jacobian matrix F(x,) can be written in the form F(x,) = pAo,
where p, 0 € O(n) and ‘

Ay

A= . , llsizs...sln_



Doubling measures and quasiconformal maps 125
By (2.1) it suffices to show that
A, < aky, (3.13)

where a is a constant independent of x,.

Observe that the rotation maps ¢ ~' and p ~! provide isomorphisms preserving
doubling constants from 2(D, 1) to 2(o¢D, t) and from 2(D’) to Z(p ~'D’) respec-
tively. Thus we can assume without loss of generality that F(x,) is a diagonal
matrix. It is equally apparent we can reduce to the case 4, = 1.

The principal idea in the proof rests on the construction of a specific doubling
measure which will guarantee (3.13). Since all of the estimates in the construction
are translation invariant, we can assume without loss of generality that x,=
S(x0) =0.

Let g denote the linear map g(x) = Ax. Consider the adjacent neighboring
cubes Q,(x,,r)=Q0,(r) and Q,(x_,,r)=Q0,(r) with x,=(0,0,...,r) and
x_,=(0,0,..., —r). Note that x,=01s in @, Q,.

We build a doubling measure u(E) = |i(E)| on the union of the rectangular
boxes R;(r) U R,(r), where R,(r) = g(Q,(r)) and R,(r) = g(Q,(r)), and A is a K,-qua-
siconformal map to be constructed. Here in an effort to make the explanation
clearer and more concise, we give the precise details and computations only for the
case n = 2. However, all of these ideas in the construction can be generalized to
higher dimensions. Note that all of the estimates are scale invariant with respect to
r and if 4, ¢ N our construction provides an upper bound for [4,] which, in turn,
gives (3.13). Thus to ease computations we momentarily assume r =1 and 4, € N.

Let K, > 1 and define the K;-quasiconformal map 4 on R,(1) UR,(1) =R, UR,
as follows. First, let 4 be the identity on R,. Divide R, into A, adjacent neighboring
cubes S, ..., S;, of side length 2 with centers y; = (0, 2i — 1), i =1 to 4,. Further
decompose each cube S, into four regions T;,, T,,, T;; and T;,, where T;, is the
closed triangle with vertices {y;, v; =(—1, 2i —2), u; = (1, 2i — 2)}, T}, is the closed
triangle with vertices {y;, v, w;=(—1,2i — 1)}, T;; is the closed triangle with
vertices {y;, u;, 2z, =(1,2i — 1)} and T,4={x =(x;, %) : |x;| < 1,2i — 1 < x, < 2i}
is the top half of S,.

Define 4 in a piecewise manner on each cube S; as a radial stretching map with
respect to y; followed by a suitable translation. On S|, let A(y,) = y,, and let the
radial stretching factor be 1 in T,, (i.e., A(x) =x in T,,), and let the radial
stretching factor be K, in T, 4. As the rays sweep from y,v, to y,w, and from y,u,
to y,z,, let the radial stretching factor increase continuously from 1 to K. In
particular, if we denote the angle between a ray y,x in T;, and y,v, (or similarly
the angle between a ray in T ; and y,u,) as 6, then we denote the radial stretching
factor on that ray by H(), 1 < H(f) < K,.
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We continue to define 4 inductively. Assume that A has been defined on
Sis...,8;_. We define h on S; as follows. On T;, let h be that radial stretching
map with constant stretching factor K~ ! followed by a suitable translation such
that h(0T,,) = h(0T _ ) 4)- In other words we glue together consecutive maps on
cubes {S;} in such a way that the stretching factors agree on 0S;n4S;_ . Note that
this uniquely determines A(y;). Now in T, we let the radial stretching factor be Kj
and in T;, and T;; we let the stretching factor be Kj~'H(), where 6 is defined
in a way analogous to that above. This completes the construction of the desired
map h.

Let 7 be the constant given in the hypothesis and let ¢ = o(t) be the constant for
which (2.8) is satisfied. Now since f'is differentiable at x, =0 in D, given any ¢ > 0,
there exists an r > 0 such that all of the following are satisfied:

60Q,(r) voQ,(r) = D, (3.14)

f(6Q,(r) veQ,(r)) < R,(or + er) UR,(or + er) = D’, (3.15)

Py(r, —&) = f(Q,(r), (3.16)
and

F(Q2(r) < Py(r, +e). (3.17)

Here by P,(r, —¢) (similarly P,(r, +¢)), we mean that rectangle concentric with
R,(r) having edge lengths (2 — 2¢)r and (24, — 2¢)r.

Consider now the Kj-quasiconformal map & defined on R,(or +er)u
R,(or +¢r) = E’ and the doubling measure p( ) = |h( )| in Q(E’) it induces. We
take our subdomains G and G’ to be ¢Q,(r)uaQ,(r) and f(cQ,(r) UaQ,(r))
respectively. Note that u|s gives a doubling measure on G’ which we also denote
by u, with ¢, = ¢,(K,, n).

Applying our hypothesis along with (2.8) we have

u(f(Qi(n) < au(f(Q:(r)),  d=d(Ky,f). (3.13)

Now assume 4, = 2 and ¢ < 1/2 and estimate both sides of (3.18). Condition (3.17)
yields

p(f(Q2(n)) < u(Py(r, +2)) < 2(r + &)°KG + r’(1 +€)(24, +¢)), (3.19)

while (3.16) gives

H(S(Qi(r)) 2 w(P\(r, —&)) 2 2(1 — &)’Kg%~Dr?, (3.20)
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In (3.20) the quantity on the far right arises from that part of the tail end cube of
R,(r +¢) which is in P,(r, —¢).
Combining these with (3.18) and letting ¢ -0 we have

Ki* =Y < d(K3 + 24,), d=d(K,,f). (3.21)
Finally, since K, > 1, we conclude from (3.21) that A, is bounded, namely

A, < a = a(Ky,f). (3.22)
This completes the proof. |

Note that a more general case of Theorem 3.1 can be proven with only minor
modifications in the original argument. The theorem cannot be stated analogously
to Theorem 3.12 in terms of intervals 7 and I’ of R and 2(I’) and 2(I, t) though,
since we lack the theorems of Gehring [G] and Reimann [R] in the one dimensional
case.

As we mentioned earlier the proof of the higher dimensional case involves more
than examining the doubling measure induced by Lebesgue measure in D’. It is
necessary to consider some non-trivial doubling measure on D’ as the following
example shows.

EXAMPLE 3.23. Let f: R"—> R” be of the form

f(xls X2y e v xn) = (fl (xl)afZ(x2)’ cee 9f;1(xn))a
where each f; is K;-quasisymmetric. Then the induced measure u(E) = |f(E)| is a
doubling measure, whereas f need not be quasiconformal.
Acknowledgement
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