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Locally toroidal regular polytopes of rank 4

PETER MCMULLEN AND EGON SCHULTE*

Abstract. The paper studies various relationships between locally toroidal regular 4-polytopes of types
{6,3,p} and {3, 6, 3}. These relationships are based on corresponding relationships between the regular
honeycombs with the same Schlifli-symbol in hyperbolic 3-space. Also the paper discusses regular
tessellations (sections of rank 3) which are locally inscribed into regular 4-polytopes. In particular, this
leads to local criteria for the finiteness of the polytopes.

1. Introduction

The study of regular polytopes has a long history (cf. Coxeter [7]). The classical
regular polytopes make their appearance in many different branches of mathemat-
ics, ranging from Lie algebras to Tits buildings. Traditionally, a polytope is
topologically a sphere, and also has spherical facets and spherical vertex-figures; in
other words, it is locally and globally of spherical type.

In recent years the classical notion of a regular polytope has been generalized to
abstract regular polytopes. Abstract regular polytopes are combinatorial and geo-
metrical structures which resemble the classical regular polytopes but are not
necessarily of spherical type, neither locally nor globally (Danzer—Schulte [12],
McMullen—Schulte [19-23, 26]). For related notions see also McMullen [17],
Griinbaum [16], Dress [13], Buekenhout [1] and Tits [34, 35].

For a locally toroidal regular polytope £ of rank 4, the facets and vertex-figures
are spherical or toroidal regular maps (tessellations), but are not all spherical.
The corresponding Schlifli-types are {4, 4,3}, {4,4,4}, {3,6,3}, {6,3,p} with
3 <p <6, and their duals. For the types {4, 4, 3} and {6, 3, p} a complete classifica-
tion of the finite universal polytopes £ was obtained in [23] and [22], respectively.
An almost complete classification is known for the type {4, 4, 4} [23]. For the type
{3, 6,3} only a few classes have been settled so far ([22], Weiss [36]).

The situation is particularly satisfactory for the types {6, 3, p} (and the known
cases of {3, 6, 3}). Here, the structure of the polytopes £ is governed by a complex
hermitian form. In particular, the polytope is finite if and only if the corresponding
form is positive definite. This generalizes the well-known classical situation where a
real quadratic form (associated with the underlying Coxeter group) determines the
structure of the polytope (cf. [7]).

* Partially supported by Northeastern University’s Research and Scholarship Development Fund.
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In this paper we discuss various relationships between the locally toroidal
regular 4-polytopes of types {6, 3, p} and {3, 6, 3}. As a by-product, this also leads
to some new classification results. The relationships between the polytopes are
based on corresponding relationships between the regular honeycombs with the
same Schlifli-symbol in hyperbolic 3-space H®. These results are described in
Sections 3 and 4; basic definitions are given in Section 2.

In Section 5 we associate with certain polytopes 2 a regular tessellation #
which in a sense cuts right through the polytope. In particular, this gives local
criteria for the finiteness of the polytopes. In some cases the geometrical representa-
tion of [22] for the group of £ can be used to find the structure of J# explicitly.

Finally, Section 6 deals with flat polytopes. For the discussion of locally and
globally toroidal regular polytopes of higher rank (>5) the reader is referred to
[25].

2. Basic notions

For a detailed introduction the reader is referred to [12, 20-22]. An (abstract)
polytope P of rank n, or briefly an n-polytope, is a partially ordered set with a
strictly monotone rank function with range {—1,0,...,n}. The elements of rank
i are called the i-faces of 2, or vertices or facets of 2 if i =0 or n — 1, respectively.
The flags (maximal totally ordered subsets) of £ all contain exactly n + 2 faces,
including the unique (least) (— 1)-face F_, and the unique (greatest) n-face F, of 2.
Further defining properties of & are the (global and local) flag-connectedness as
well as the homogeneity property that, for any (i — 1)-face F and any (i + 1)-face
G with F <G, there are exactly two i-faces H of # such that F<H <G
(i=0,...,n—1).

For two faces F and G with F <G we call G/F:={H | F < H < G} a section of
2. There is little possibility of confusion if we identify a face F with the section
F|F_,. We call F,|F the co-face (of F,) at F, or the vertex-figure at F if F is a
vertex.

An n-polytope 2 is regular if its automorphism group A(%) is flag-transitive.
The group of a regular polytope 2 is generated by distinguished generators
Pos - - - s Pu_1, Where p; is the unique automorphism which keeps fixed all but the
i-face of some base flag & ={F_,,F,,...,F,} of . If {p,,...,p,_,} is the
(Schldfli-)type of 2, then these generators satisfy the relations

(pipj)l’ij—__—l (iaj=0a~"an_1) (1)

where p; =1, p;; =p;=p;., if j=i+1, and p; =2 if |i —j| > 2. Further, A(2)
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has the intersection property
p;liel>nlp;|iely=Lp;|ielIn]y for [J<={0,...,n—1}. 2

By a C-group we mean a group which is generated by involutions such that (1) and
(2) hold. The C-groups are precisely the groups of abstract regular polytopes
[19, 28].

Given regular n-polytopes 2, and £, such that the vertex-figures of 2, are
isomorphic to the facets of #,, we denote by (2,, #,) the class of all regular
(n + 1)-polytopes £ with facets isomorphic to 2, and vertex-figures isomorphic to
#,. Each non-empty class {#2,,%,) contains a universal polytope denoted by
{#,, P,}; all polytopes in (2, #,) are obtained from {2, #,} by identifications
[30].

A regular polytope £ of rank 4 is said to be locally of genus (at most) g if its
facets and its vertex-figures are regular maps on orientable surfaces of genus at
most g, and either its facets or its vertex-figures are actually maps of genus g. We
call 2 locally toroidal if it is locally of genus 1. Note that locally toroidal regular
4-polytopes are necessarily of type {3, 4, 4}, {4, 4, 3}, {4, 4,4}, {3,6,3}, {6,3,p} or
{p, 3,6} with p =3, 4, 5 or 6 (provided all entries in the symbol are at least 3). See
[29, 37] for early examples of such polytopes. For examples of higher genus see also
[27].

Toroidal regular maps are discussed in [9]. However, in this paper we shall
change the notation of [9] and denote the torus maps {4, 4}, ,, {3, 6},, and {6, 3},,
by the slightly more complicated symbols {4, 4}, ,, {3, 6}, and {6, 3}, respec-
tively. This change of notation is explained in [25] and is motivated by results on
the classification of the globally toroidal (and locally spherical) regular polytopes of
higher ranks. We shall often use the fact that for the maps {3, 6}, the extra
relation for the generators p; is

(Po(p1p))* =1 ifs=t=1;

5 _ (3)
(Pop1p2)= =1 ifs>1,1=0

(cf. [9], p. 108).

Recall that a Petrie polygon of a regular map # is a zig-zag along the edges
such that each 2, but no 3, consecutive edges lie in a face, that is, 2-face [9]. A
k-chain of # is a path along edges which leaves, at each vertex, k faces to the right
[3]. The lengths of the Petrie polygons and k-chains of .# are the periods of the
elements pop, p, and pop,(p,p1)* " in A(2P), respectively.
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In some instances we shall construct polytopes from mixing operations on
groups W which are generated by involutions gy, ..., 6,,_; [19]. Then we derive
new groups A by taking as generators p,, ..., p,_; suitably chosen products of

the o,’s, so that 4 becomes a subgroup of W. We denote such a mixing operation
by

u :(009---’6m—1)H(p03' '~9pn~l)'

If W is the group of a regular polytope £ and 4 = {py, ..., p,_1,) is a C-group,
then we write 2* for the regular polytope whose group is 4.
An example of a mixing operation is the facetting operation

u=eo; (009 gy, 62) — (60’ 016201’ 62) =:(p09 pla p2) (4)

on the group A(#) = {0, 6,, 6, of a regular map 2 of type {p, q} ([19], Section
4.2). The effect of ¢, is best studied by employing Wythoff’s construction to find
#*2[7]. If q is odd, then 4 = A(Z) and A4 is the group of a regular map 22 of type
{l, q}, with / equal to the length of the 2-chains of 2. If q is even, then in general
A is a proper subgroup of A(%).

If #={3,6} then #°2={6,3} and 2 takes only 3 of the vertices of Z; see
Figure 2 in Section 3. If 2 = {3, 6},0,, then 2?2 = {6, 3}, ,, and 2?2 takes again
only 3 of the vertices of #. For 2={3,6},0 with 3Js we have 2=
{6, 3}(s.0) = 2* (the dual of 2) and 22 covers the vertices of 2 twice. (Note that
in [19] it was incorrectly remarked that for (s, £) = (2, 0) the operation ¢, does not
give a map £*2.) Finally, if 2 = {3, 6},,, then 292 = {6, 3}, and 2?2 takes only
2 of the vertices of 2.

In Section 4 we shall also use the operation

U : (0g, 01, 63) (000,020,064, 05, 6,) =:(py, Py, P2) (5)

on the group A(%) = {0y, 0,, 0, of a regular map £ of type {3, 6}; see Figure 1.
Again we can apply Wythoff’s construction to find 2*.

In particular, for 2 = {3, 6} we find 2* = {3, 6}, with A(P*) = {pq, p1, p»> a
subgroup of index 3 in A(%); see Figure 4 in Section 3. It follows that
|A(#) : A(2*)| =1 or 3 for any map 2 of type {3,6}. If s >2 and 2 = {3, 6},
then 2* = {3, 6}, 0) and 2* takes only 3 of the vertices of 2. For 2 = {3, 6}, ,, the
operation (5) gives the map {3, 6}, which is not an abstract polytope. If
P = {3, 6}3,.0), then 2* = {3, 6},,, and #* takes again only } of the vertices of 2.
Finally, if 3fs and 2 = {3, 6},,, then &* = {3, 6},0, and #* is isomorphic to 2.
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02

Figure 1

These facts follow easily from (3) and

PoPy P2 = 04(0) 02)2(0'00'1) = 0'0(0'102)2010'00'1 Op = 000'1(0'20'1)20'00'10'0 ~ (020'1)20'0

and

Po(P1.02)2 =1(0(01)0,0,0,(0¢0,0,)0, = 6,(0¢0,00)0,0,6,(0,0,0,)0, ~ (0"00'10'2)3-

Here ~ indicates conjugacy.

We shall also use twisting operations on groups W =<{04,...,6,_,>. f W
admits involutory group automorphisms t permuting the generators o;, then we can
augment W by their addition to construct a semi-direct product 4 of W by the
group generated by the t’s. In suitable cases 4 will be the group of a regular
polytope. If t,,...,1, are the corresponding group automorphisms, we shall
denote the twisting operation by

K:i(Ogs oo sOm_13TisevesT) (P05 e s Pu1)-

In our applications the groups W will be defined by diagrams 2 and the group
automorphisms 7 will correspond to symmetries of 2.
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Following [4, 5] we denote by [111/]™ the group abstractly defined by the
diagram

l m k. (6)

Here the mark m inside the triangle indicates that a set of defining relations is
obtained by adding to the standard relations for o,, 6;, 0, (given by the underlying
Coxeter diagram) the one extra relation

(aiajakaj)m =1, (7)

or any of the six equivalent relations obtained by relabelling the nodes.

We shall also consider more general diagrams 2 consisting of a labelled
simplicial 2-complex whose edge graph is a Coxeter diagram and all of whose
triangles are marked by a number m indicating an extra defining relation of type
(7). The corresponding (abstract) group is denoted by W(2). Examples of such
groups are the finite unitary reflexion groups [p qr’]™; see [2, 4,31, 32]. More
generally, if a group U (say) and its generators satisfy all defining relations of W(2)
but possibly other independent relations too, then U is said to belong to the diag-
ram 9.

3. Subgroup relations for hyperbolic honeycombs

In Section 4 we shall discuss various relationships between locally toroidal
regular 4-polytopes of types {3, 3, 6}, {4, 3, 6}, {6,3,6} and {3, 6, 3}. These are
based on relations between the symmetry groups of the corresponding hyperbolic
honeycombs.

It is well-known that {3, 3, 6}, {4, 3, 6}, {6, 3, 6} and {3, 6, 3} are (the Schlifli-
symbols of) four of the fifteen regular honeycombs in hyperbolic 3-space H> (cf.
Coxeter [6, 10]). These four honeycombs have all their vertices at infinity (that is,
on the absolute quadric). The two self-dual honeycombs {6, 3, 6} and {3, 6, 3} also
have their facets inscribed in horospheres.
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The symmetry group [p, ¢, ] of the honeycomb {p, g, r} is the Coxeter group
with diagram «——+————. In particular we have the following subgroup rela-
tionships:

(8)

Here the subgroups are in the second row, with inclusion in the larger group of
the first row as indicated; the extra mark indicates the index of the subgroup.
Note that the diagram in the lower right corner does not belong to a regular
honeycomb.

The subgroup relations in (8) can be obtained by simplex dissection of hyper-
bolic tetrahedra. If the index of the subgroup is k, then its fundamental tetrahe-
dron is dissected into k& congruent copies of the fundamental region for the larger
group.

To describe these dissections we use (up to relabelling) the diagram notation of
[7], p. 281. The tetrahedra are represented by graphs on 4 nodes. The nodes
represent the 2-faces of the tetrahedron, and a branch marked (by an integer or a
fraction) p indicates the dihedral angle n/p between two faces. As usual, an
unmarked branch stands for a branch marked with p =3, and branches with
mark p =2 are omitted. The rule for dissecting a tetrahedron (by dividing the
angle n/r into two angles n/r; and =n/r,) is given by
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where
1 1 1 1 1 1 1
—— —=—, ——;+-—-=1, —, -——1,
ry r, r x" x y
n T T
cos—7E (cos—sm—-—cos—sm ) / sm— (10)
X g n 4
n ( T .7 n n)/ _
cos — =| cos — sin — — cos — sin sm—.
y s r, t ry r

The subgroup relations in (8) are derived from the following applications of
this rule. As above, the dihedral angle n/r which is dissected corresponds to
the (possibly missing) horizontal branch in the diagram. For simplicity we write

o—f—o for «—— T

6 6 6
— + (11a)

)

//\
4 // 2 d
(1lc)
= +
- » = . .
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As an example, to find the index of [6, 3, 6] in [3, 3, 6] use (11d), (11b) and (11a),
in this order.

Using these simplex dissections, it is easy to obtain generators for the appropri-
ate subgroups. Let [3, 3, 6] =gy, ..., 05). Then we get generators p,, ..., p; for
the subgroups by the following operations:

0 1 2 3

o : (0, . - ., 03) (09, 01, 020303, 03) =:(po, - . - , P3) s, (12)
o 1 2 3
B : (0o, ...,03) (0, 0,0,050,0,05,0,)=:(pg,...,pP3) “g—%> (13)

0

2 3
Y 1 (o, - . ., 03) > (9, 03, 01, 030,030203) =:(po, . . . , P3) >——6——‘ , (14)

1
For example, to prove (12) observe that the fundamental tetrahedron for [3, 6, 3]
can be constructed from the fundamental region for [3, 3, 6] by preserving all but
the third wall (corresponding to o,) while replacing the reflexion wall of 4, by the
image under o, of the reflexion wall of 5. See Figure 3 below.
The group [4, 3, 6] is derived from the group in (14) by the twisting operation
indicated by

% 2 : 3 s

More exactly, the operation is given by

K :(pOa s 3p3;‘t) H(t’ P1s P2s p3) =:(l/]0’ et ‘//3) (16)

Next we consider the geometrical counterparts of (8), (12) and (13). The
following relationships between the honeycombs can be checked by using Wythoff’s
construction [7].

The facets of {3, 6, 3} are (in one-to-one correspondence with) certain vertex-
figures of {3, 3, 6}, while its vertex-figures are tessellations {6, 3} whose vertices and
edges occur among those of the original vertex-figure {3, 6}, as in Figure 2. To
prove this consider the tetrahedral 3-face F; in the base flag @ = {F_,, Fy, ..., F,}
of {3, 3, 6} and the fundamental tetrahedron T for [3, 3, 6] defined by ®; see Figure
3. For simplicity we denote the vertices of T by F,, ..., F;. The operation in (12)
is equivalent to a change from 7 to the (4 times)
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Figure 2

larger fundamental region 7, for [3, 6, 3] with vertices G, = F,, G, =F,, G,=F,
and G,. Our notation is such that G, corresponds to (the “centre” of) the i-face in
the base flag of {3, 6, 3} belonging to py, . .., p;. Now, the vertex G, of T, is fixed
by <{po, p1, P2, S0 that Wythoff’s construction (with initial vertex G, = F;;) shows
that the 3-face G; of {3, 6,3} corresponds to the vertex-figure of {3, 3, 6} at its
vertex 6,0,60(F,)( =G;). Similarly, the vertex F, of T, is fixed by {p,, p,, p3), so
that the vertex-figure of {3, 6,3} at F, is obtained by clustering triangles in the
vertex-figure of {3, 3, 6} at F; as indicated in Figure 2. This clustering corresponds
to an application of the facetting operation ¢,; see Section 2.

In a similar fashion, we find that for the honeycomb {6, 3, 6} the facets are just
some of the vertex-figures of {3, 6, 3} = {3, 3, 6}° while its vertex-figures are tessel-
lations {3, 6} obtained from vertex-figures {6,3} of {3, 3, 6}* by the operation
indicated in Figure 4. The latter corresponds to an application of u of (5) to the
vertex-figures of {3, 3, 6}. In fact, (13) is equivalent to the change from T to the (6
times larger) fundamental tetrahedron T, for [6, 3,6] with vertices H,=F,
H,=F,, H, and H; = a,0,(F;) in Figure 3. Now, to find the structure of the facets
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Figure 3

Figure 4

oo(Fo)
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Gs

=

0’3(G3) = I\’]
Figure 5

note that {p,, p,, p,) fixes H; and that H;( =0,0,(F,)) is a vertex of {3, 3, 6}* For
the vertex-figures, note that {p,, p,, p;) fixes Fy while {p,, p;) fixes F,.

The operation (14) also has a geometric counterpart; see Figure 5. If T, denotes
the tetrahedron with vertices K, ..., K5, then p,, ..., p; are the generating
reflexions in the walls of T,, with p; the reflexion in the wall opposite to K;. Now,
since {po, Py, P2y =<6y, 61,0, is the group of the facet F; of {3, 3,6}, the
transforms of T, under <{p,, p,, p,) fit together to give five tetrahedral facets of
{3, 3, 6}, namely F; and its four adjacent facets. These five tetrahedra form a cube,
and this clustering of tetrahedra in fives extends to give a honeycomb {4, 3, 6}
inscribed in {3, 3, 6}. Note that in this context the cubical facets really have the
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symmetry of tetrahedra. The index of {py, ..., p3) in {0y, ..., 03) is 5, since T,
is a fundamental region for {p,, ..., p3) and T, can be decomposed into 5 copies

of T.

4. Relationships between locally toroidal polytopes

In this section we discuss relationships between locally toroidal regular 4-poly-
topes of types {3, 3,6}, {4,3,6}, {6,3,6} and {3, 6, 3}. Since their groups are
quotients of the groups of the corresponding hyperbolic honeycombs, we can use
the results of Section 3 to gain more insight into their structure. Note that by (8),
(12) and (13) any quotient of [3, 3, 6] contains as subgroups certain quotients of
[3, 6, 3] and [6, 3, 6] whose indices divide 4 or 6, respectively. A similar remark
applies to the other cases in (8).

First, recall that for any abstract n-polytope 2 (and more generally, any poset)
the order complex A(%P) is the simplicial (n — 1)-complex whose simplices are the
totally ordered subsets of 2 which do not contain the (—1)-face and n-face of 2
[33]. If 2 is a hyperbolic honeycomb {p, ¢, r}, then A(%) is isomorphic to the
barycentric subdivision of 2.

To consider the operations (12), (13) and (14) on abstract polytopes let 2 be a
regular polytope in the class {{3, 3}, {3, 6}, > with group A(2?) =gy, ..., 03).
The facets of # are 3-simplices, so that 2 is a “simplicial poset”. In fact, in
almost all cases £ is actually a simplicial complex in the usual sense. For example,
for 2=2,,={{3,3},{3,6},} this is true unless (s, ?) =(2,0). Now, for a
general 2, subdividing each simplicial facet barycentrically gives (an isomorphic
copy of) the order complex A4(Z); this is always a simplicial complex. The
3-simplex of 4(#) which corresponds to the base flag @ = {F_,, F,, ..., F,} of #
is a fundamental tetrahedron for the action of Z on 4(#) (or on the underlying
topological space |4(2)|). The complex A(#P) (|4(2P)|, respectively) can be ob-
tained from the barycentric subdivision of the hyperbolic honeycomb {3, 3, 6} (H?,
respectively) by identifications corresponding to the extra relations for 4(%); see

(3).

4.1. The types {3, 3, 6} and {3, 6, 3}

We begin with the construction of the polytopes #* of type {3, 6,3} from
those of type {3, 3, 6}, with ’

a:(0g,...,03) (0, 0y, 0,050,,03)=:(pg,...,pPs)
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as in (12). On 2 we impose the (weak) condition that its graph (consisting of all
vertices and edges of #) has no loops; that is, any two vertices of & are joined by
at most one edge of 2. This is satisfied if £ is a simplicial complex. We do not
know of a polytope in ({3, 3}, {3, 6}, > which violates the condition; even 2,
does not.

Now, our above remarks on 4(%) imply that we can construct #* from £ in a
similar fashion as {3, 6,3} from {3, 3,6}. Again Figure 3 illustrates how the
fundamental tetrahedra for 2 and 2* (or for 4(%) and A(£%)) are related; we use
the same notation as in Section 3.

Employing Wythoff’s construction shows that the facets of 2 are certain
vertex-figures {3, 6}, of 2, while its vertex-figures are transforms under the
facetting operation ¢, of the original vertex-figures {3, 6}.,. To check that
A={py,...,ps3y is indeed a C-group with #* as the corresponding polytope, let
¥ €<pg, P15 P2y N <Py, P2, P3 . Then § fixes the vertices F, and G, of 2. Now, since
the graph of 2 has no loops, F, and G, are joined by only one edge, namely the
edge of F; connecting F, and G,. It follows that y € {(p,, p,), as required for the
intersection property to hold.

To find the index of 4 in A(Z) observe that in 4(Z) the simplex T, with vertices
Gy, G, G5, G5 is dissected into four copies of the fundamental region for 4(#) with
vertices F, F,, F,, F;, namely 7T, 0,(T), 6,0,(T) and a,0,0,(7T). If the index is not
4, then T, is not a fundamental region for A4, so that two of these copies must be
equivalent under A4. Since o,, g, € A it follows in this case that ¢, € A and thus
A = A(P). Hence |A(2?) : A| =1 or 4. If A = A(Z), then 0, € A and one is tempted
to conclude o, € {p,, p,, p3) (since o, stabilizes the base vertex G,= F, of %*).
However we cannot be sure that Wythoff’s construction of 2* in A(%) gives a
faithful realization.

Part (a) of the following theorem follows from our remarks in Section 2 on the
facetting operation. The proof of (b) is given later. Note that there are other proofs
of Theorem 1(b) (and Theorem 3(b)) which use coset enumeration.

THEOREM 1. Let 2 be a regular 4-polytope in the class {{3, 3}, {3, 6}(.n >, and
let o be the operation (12). Assume that the graph of P has no loops.
(a) Then 2* is a regular 4-polytope in the class
(1) <{3,6}ar05 {6, 3}y if s =3r =3, 1t =0;
(i) ({3, 6}0 {6, 3}s0)) if 3fs, £ =0;
(lll) <{3’ 6}(5,5)9 {6’ 3}(s,0)> ifs =tx2.
Furthermore, |A(P) : A(?%)| =1 or 4, and A(P*) = A(P) in case (ii).
(b) If 2=2,={{3,3},{3,6}¢}> then for (i), (ii) and (iii) the index is
given by |A(P):A(P)| =4, | and 4, respectively. In particular, P =
{{3, 6}(s.59> {6, 3}s.0 } Jor s = 2.
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It is clear from the construction that if 2 is universal in its class, then 2" is
universal among all polytopes obtained by a from polytopes of the same class as Z.
Theorem 1(b) states that at least for # = 2, ,, the new polytope is indeed universal
in its class.

The finite universal polytopes #, were classified in [22]. The only finite
instances are obtained for (s, ¢) =(2,0), (3,0), (4,0) and (2,2). Also known
is the classification of the universal polytopes {{3,6}3.0), {6,3}¢} and
{{3, 6}(s.59> {6, 3}(s.00 }5 the only finite instances occur for r = 1 and s = 2, respectively
[22]. Below we briefly recall some of the corresponding constructions.

First, 2, was constructed from the abstract group W, =<«a,,...,a,)> with
tetrahedral diagram

4
‘Y‘
3
(17)
1
—
T1 2
by applying the twisting operation

K (0, .., 0 Ty, T, T3) 2 (T3, T2, Ty, @) ==(0y, . - ., 03). (18)

Then we have semi-direct products A(2(,) =<a,...,0)<{T, Ty, T3) =
W, < S,. In particular, 2, , is finite if and only if s =2. If s =2 then W, ~ S5 and
A(ga,z)) = S5 X S4.

Now, the generators p, ..., p; of A = A(P{ ) are given by

(o, - - ., P3) = (09, 0,, 0,030, 03) = (T3, Ty, Ay, %), (19)

so that 4 = W, >< S;. In particular, for the index we have |4(Z,,,) : A|=4.
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Next, recall from [22] that the universal polytope {{3, 6}..0), {6;3}(.n} (With
s =t or s = 3f) was constructed from the abstract group W, =<{f,,..., B,y with
tetrahedral diagram

’ 3 (20)
1
%
2

(with the bottom 2-face marked ¢, the other 2-faces marked s) by means of

K :(Bl"-"ﬂ4;rlar2)"—)(ﬂ4: B3, 12, tl)- (21)

Its group W,p<S; is finite if and only if s=¢t=2. If s=¢=2 the group is
Ss x S;.

To find Z ,, we only have to note that the generators of (19) correspond to
those of (21) in reverse order (with f=s in (20)). It follows that Z{ =
{{3, 6}(s.9p> {6, 3}(s.0)}- This proves part of Theorem 1(b). The only finite instance

18

(3.3}, 3. 6}an ) — {{3. 6} (6. 320 )

with the mark at the arrow indicating the index.

We continue our discussion with case (ii) of Theorem 1(b). The classification
of the universal polytopes {{3, 6}y, {6, 3}0)} is still open. In Weiss [36], it is
proved that for s=2,3 the polytopes are finite. The polytopes £, and
{{3, 6}2.0)» {65 3}2.0,} both have group Ss x C,, so that £, is indeed universal;
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that 1s,

(3,3}, 13, 6}a0} — {3, 6} {6, 3} -

For 2, we are again in case (ii) of Theorem 1, but here {{3, 6} 4y, {6, 3}(a0)} 18
likely to be infinite while £, is finite.

By Theorem 1 we have 2 € {{3, 6}.0)> {6, 3}(s.0p» if 34s. This implies that
the universal polytope {{3, 6}.0), {6, 3}s.0)} exists for all such s, but 2, is finite
if and only if 2, is finite.

THEOREM 2. The universal regular polytope {{3, 6}y, {6, 3}s.0)} exists for all
s with 3}s. For s > 5 (and most likely also for s = 4) it is infinite. For s = 2 it is finite
and its group is S5 x C,.

We remark that the results of [24] carry over to the situation of Theorem 2.
Note also that Theorem 2 implies that for any s with s #2%3' the universal
{{3, 6} (5.0 {65 3}(s.0) } cither does not exist or, if it exists, must be infinite. In fact, if
s # 2k3, choose a prime p with p > 5 and p | s, and apply Theorem 2 with s replaced
by p. Since the group for p is a quotient of the group for s, the above follows.

We proceed with the discussion of case (i) of Theorem 1. Recall from [22] that
the universal polytope 2, = {{3, 3}, {3, 6}(.0)} Was constructed from the abstract
group W, =[11 23]* with diagram

1 2 T
-— s {——— (22)

and generators «,, ..., a, (say) by means of the twisting operation
K: (al, ey Ogy T) = (al’ %y, X3, T) ==(0’0, LRI 63)' (23)

In particular, A(?q) = W3>< C,. This is a finite group if and only if s <4.
First we complete the proof of Theorem 1(b). For each r the polytope

P ar,0) Projects onto 2; ), since A(2 ) is a quotient of A(P,)). It follows that

Piroy DProjects onto P4, . Hence, to prove A(Pg,.) # A(Pgary) (and thus
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|A(P3,.09) : A(Pis,0))| = 4), it suffices to check this for r = 1. But for r =1 we have

{{3,3}, 3, 6} ) — {3, 6} {6, 3} -

In fact, while A(Pgso)=W;><C, has order 1296, the group of
{{3, 6}.0)> {6, 3}y } is [111]°<S; of order 324 (cf. [22], Section 8). This
completes the proof of Theorem 1(b).

By Theorem 1 we know that 2%, 4, € ({3, 6},.0) {6; 3}(-., >- Now, the universal
{{3, 6}3,.0)> {6, 3}y } is obtained from W,=<{B,,..., B> (with s =3r,t=7) in
(20) by operation (21). It follows that A(2, ) =<po, - - ., pP3) is a quotient of
W,><S;. A more instructive way (independent of Theorem 1) to see this is
obtained as follows.

First, observe that by (12) and (23)

(Pos - - -5 P3) = (g, g, 03703, T).

Then

Ba=0y, By=0,, Bri=a3To3 + By - 03T = 00300400, 04003,

br=an, % Fs BT = (24)
ﬁlzz‘c . ﬁ2 *T = 003050300, WZ:= <ﬂla SR ﬂ4>

Note that Wz is a subgroup of W;. The elements a;7a; and T act on W, as indicated
in the diagram

(25)




96 PETER MCMULLEN AND EGON SCHULTE

Note that products like ﬁz [?3, ﬁ, B} f}; [fz and ﬁz ﬁ; ﬁ; [?3 indeed have the correct order,
namely 3, r and 3r, respectively. Hence §; — ﬁ, (i=1,...,4) defines a homomor-
phism of W, onto W2 This extends in an obvious way to a homomorphism of
W< 83 = W, < {1y, 1,) onto A(Z, ).

We cannot completely rule out here that the factorization

A(Ph,0) = W, (T, 23703

is not a semi-direct product (though this is very unlikely), or equivalently, that
Ot30£4 = 0!31'6!31' € Wz.
We can similarly proceed for 2., with 3J)s. Then P €

({3, 6}(5.0y> {6, 3}(s.0) »- Defining B; and W, as above, we find that (25) has to be
replaced by

(26)

Again this can be verified directly or by wuse of the projection
{{3, 6} 5.0 {6, 3}(s5) } > P 0y, With the first polytope defined by (20) and (21) with
s =t. Now, since {3 6}“0) {6, 3}(.0)» the subgroup {p,, p2, p3» has order 1252,
Ontheotherhand, <B,, ﬁz, ﬁ3) [111) (of order 6s2) and (ﬂl, ﬂz, [32>(r 03 TO ) <
{p1s P2, P3). It follows that aya, = a31057 € W2 Hence A(%,) = W2 {1, 373 )
is not a semi-direct product. However,

AP o) = W< (T = W, < G,
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By Theorem 1 we have A(% ) = A(P ), so that Wz = W;. In particular we
have proved the following interesting fact:

For 3}s the group [112]* of (22) belongs to the diagram (26). (27)

However, in general, additional relations to those of (26) are needed to define W,
(for example for s =4). If s =2 the relations do suffice, defining the group S5 (cf.
[22]).

It is worth remarking that for 34s we can construct from P0 (or P ) a
polytope Z in <{{3, 6}0), {6, 3} > With group A(%) =[112]* < S;. In particu-
lar, A(Z) contains A(Z#,,,) as a subgroup of index 3. In fact, as (26) indicates, the
element o373 acts on Wz in the same way as t, in (20). It follows that we can
adjoin to A(Z ) = A(P{) a suitable involutory element, so that % can be
constructed as in (21). Note for this that the i{lte&seciion property for
A&'@%&O)) =<po,---,p3» 1implies the property <{Bi, B, B3> N<Bs, B, Bad>=
{B>, B3>, and this in turn the intersection property for A4(.%).

If s =2 then &£ = {{3, 6}2.0)> {6, 3}(2.2)} and A(¥) = S5 x S; [22]. For s =4 the
polytope & is finite but {{3, 6}40), {6, 3}44 } is infinite.

4.2. The types {3, 3, 6} and {6, 3, 6}

We next discuss the polytopes 2 of type {6, 3, 6}, where 2 is a polytope in
({3, 3}, {3, 6}, > and B is the operation on A(#) = (g, ..., 063y given by

B : (0o, ...,03)— (0, 0,0,050,0,,03,0,)=:(pg,...,P3),

as in (13). As in Section 4.1, we assume that the graph of 2 has no loops. Again,
we can construct #* from £ as {6, 3, 6} from {3, 3, 6}; see Figure 3.

Applying Wythoff’s construction to the order complex A(<), we find that the
facets of ## are just some of the vertex-figures of 2%, while its vertex-figures are
transforms of the original vertex-figure {3, 6}, under the operation u of (5). To
check that A:=<{p,,...,p;» is indeed a C-group with %* as the corresponding
polytope let Y € {py, p1, p2) " <p1, P2, P3 . Then Y fixes the vertices F,( = H,) and
H, of 2 and thus the unique edge (of F;) connecting F, and H;; here we used our
assumption that the graph of £ has no loops. It follows that Y € {p,, p,), as
required.

Now, to find the index of 4 in A(Z), observe that in A(Z) the simplex T; with
vertices H,, H,, H, and H, is dissected into six copies of the fundamental region T
for A(#) with vertices Fy, ..., F;. These copies are T, o,(T), 6,00(T), 6,0,(T),
6,0,00(T) and (6,0,0,)%(T). We shall see below that in the most interesting case we
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have |4(2) : A| =1 or 6, proving that either T or T} is a fundamental region for 4,
respectively. In particular, if the index is 6, then (0,0,6,)? ¢ 4; note that in Figure
3 the element (6,0,0,)? corresponds to the ‘“half-turn” of F; about the edge
connecting F, and H;, and thus maps T} onto itself.

Note that 4 can only be normal in A(2) if A = A(Z). In fact, if 4 is normal
then 0y0,0,=0,0400,€ 0,40, = A and thus 4 = A(%). It follows that the index
cannot be 2.

Further, note that by our remarks on (5) we have 4 = A(%) if 345 and ¢ =0.
It is likely that this is the only case where 4 = A(#). In fact, if 4 = A(Z?) then
o, € A and we are tempted to conclude that o, € {p,, p,, p3) (since o, stabilizes the
base vertex F, = H, of ). However, as in Section 4.1, we cannot be sure that the
realization of ## on A(2) is faithful. If indeed g, € {p,, p,, p;>, then our remarks
on (5) imply that 3}s and ¢ =0.

Now let 2 =23, 0 = {{3, 3}, {3, 6}3,.0,} With r >1; see (22) and (23). Then
A(Pioy) is a quotient of A(2). Since the index of a subgroup can only get smaller
under a homomorphism, it suffices to prove |[4(#):4|=6 if r=1. Now, if
r =1 then #* € ({6, 3}1.1), {3, 6}1.1)>- The universal {{6, 3}, ,,, {3, 6}..,,} is flat,
and so it is the only member in its class; see Section 6. It follows that

={{6, 3}q.1y> {3, 6}1.1)} and A(PP) = S, 0< A({3, 6},.1)), of order 216 [22]. On
the other hand, A(2) =[112]*<C,, of order 1296. Hence, |4(?) : A| =6, as
required.

If # is a non-universal member of {{3, 3}, {3, 6}, ), Wwe do not know if
A(23)) is always a quotient of 4(Z). Here we cannot completely rule out that the
index is not 6, though this is very likely.

Now let 2 =2, = {{3, 3}, {3, 6}, } With s >2; see (17) and (18). Then by
(13) the generators of A are given by

(pO, sty p3) = (TSs A3, Ky, 1"])' (28)

It follows that A = W, o<1, 13) = W, o< (C, x G,). But A(#) = W < §,, so that

|A(2) : A| = 6, as required. Note further that (28) itself defines a twisting operation

on W, ={(a,,...,0a,. This is in fact the same operation which was used in [22] to

construct the umversal {{6, 3}(s.095 {3 6}.0) }; see also (35) and (36) below. Hence,
{{6 3}(s0)’ {3 6}(s0)}

Fmally, if # is any member of ({3, 3}, {3, 6}, ), then A(Z) is the image
of A(P5) = W,><S, under a homomorphism f (say) mapping distinguished
generators to distinguished generators. But then A(2) =f(W)) - f({1y, T2, T3)),
(1,12, 13)) = 8,, and  A(PP) =f(W)) - f({11,15)). If f is such that
SW) nf({1y, 13, T3)) = {1}, then the two products are semi-direct products and
the index is 6. However we are not sure if this is always true.
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THEOREM 3. Let 2 be a regular polytope in the class {{3, 3}, {3, 6}, >, and
let B be the operation (13). Assume that the graph of & has no loops.
(a) Then 2* is a regular 4-polytope in the class
(1) {6, 3} {3, 6oy > if s =3r 23, t =0;
(i) {6, 3}0)> {3, 6}y i 345, £ =0;
(iil) <{6,3}(0)> {3, 6}0y> f s =122
Furthermore, |A(P) : A(P")| =1 in case (ii), and |A(P) : A(P*)| =1, 3 or 6 in case
(1) and (ii1).
(b) If =P, ={{3,3}, {3, 6}s.0) }» then for (i), (ii) and (iii) the index is given
by |A(P): A(P*)|=6, 1 and 6, respectively. Also, P, ={{6,3}s0 {35 6}0)}
for s > 2.

The finite universal regular polytopes {{6, 3}, {3, 6}., } have been classified
in [22], Theorem 4. The only finite instances are: {{6, 3}, {3, 6}2.0)} With group
S5 % S84 x Cy; {{6, 3} 405 {3, 6} 20y} for ¢ =2, 3,4, with group [112]?<(C, x C,)
of order 4 - 5!, 4 - 3° - 4] and 256 - 5!, respectively; and the duals of these polytopes.

We briefly discuss the application of Theorem 3 to finite universal polytopes. In
Theorem 3(a)(ii), if s =2 or 4, then A(%%,) =Ss x C, or [112]*>< C,, respec-
tively. Hence 2%, ,, is not universal in its class and 4(#*) has index 2 or oo in the
group of the universal polytope, respectively. In the remaining cases we have

{331, 83, 6lan} — 16, 30 3. 6o

{331, 3, 600} — {6, 3hwns (3. 6l

4.3. The types {3, 3, 6} and {4, 3, 6}

In Section 3 the hyperbolic honeycomb {4, 3, 6} was constructed from {3, 3, 6}
by clustering tetrahedra in fives. For the groups this implied an application of the
operation y in (14) followed by a twisting operation k as in (16).

Now, let 2 be a regular polytope in ({3, 3}, {3, 6}, > with group A(#)=
{0y, ..., 03). We cannot generally expect to obtain a new regular polytope of type
{4, 3, 6} from 2 by applying the corresponding operations y and k. Clearly y can be
defined as before by

s (O-O’ ) 0-3) — (00, 0,,0, 6302036203) ==(p0’ ves s p3)’

but in general the resulting group will not admit a suitable group automorphism z
to allow a twisting operation. Equivalently, in general the clustering of the
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tetrahedral facets of 2 in fives will only give a polytope with cubical facets which
is not regular. The following explains why the construction fails.

First, note that the construction gives new vertex-figures of two kinds: old
vertex-figures {3, 6},,, and new vertex-figures obtained from the old vertex-figure
{3, 6}(s.n by clustering faces {3} in fours. If s is even (and =0 or t =5), this
latter vertex-figure is of type {3, 6}, ,2); otherwise it is again of type {3, 6},
and takes every face of the old vertex-figure four times (but with roles switched).
The two kinds of vertex-figures correspond to the subgroups {pg, p», p3)>=
65{0y, 0y, 0,650, 05 and {p,, p,, p3» of {py, ..., p3), respectively; see also (12).

Hence, for the construction to give a polytope which is regular, s must be odd.
But then a,€ {p;, p,, p3> and hence {p,,..., p3;> = A(#). But now, since a,
maps the facet F; of £ to its neighbour, the clustering process covers each facet of
2 five times (but with roles switched). It follows that each edge of 2 is also a new
edge. However, only in case (s, #) = (1, 1) or (s, ) = (3, 0) are the faces {3} of the
(second kind of) new vertex-figures equivalent under the group to the faces {3} of
the old vertex-figures, so only here can there be a twisting operation. It follows
that the construction gives a regular polytope only if (s,7)=(1,1) or
(s, ) =(3,0).

However, there are other interesting cases where the clustering process gives a
non-regular polytope of type {4, 3, 6}. For example, if 2 = {{3, 3}, {3, 6} } and
thus A(2) =[11 2]* < C,, we obtain a polytope with 80 vertices (at 16 of which
the vertex-figure is {3, 6}, while at the remaining 64 it is {3, 6},,,), 256 edges,
384 square faces and 128 cubical facets.

5. Local regular tessellations in polytopes

In this section we shall associate with a regular polytope # of rank 4 a regular
map # = H#(Z) on a surface. In several cases this map is a regular tessellation on
the 2-sphere or in the euclidean or hyperbolic plane. In a sense which we make
precise below, 5 cuts right through the polytope. It is remarkable that for many
(but not all) classes of polytopes the polytope is finite if and only if the map is
finite (or the tessellation spherical, respectively). The exceptional cases indicate
that the tessellations are (in a sense) only “locally inscribed” into the polytopes.
Therefore the corresponding finiteness criteria (of Theorems 4, 5, 6) are only
local criteria. It is worth pointing out that our considerations below will not
imply the existence of the polytopes; in this respect we need to refer to earlier
constructions.

Similar results have been studied in [23] for polytopes of type {3, 4,4},
{4, 4,3} and {4, 4, 4}. Here we discuss the types {3, 3, 6}, {6, 3, 6} and {3, 6, 3}.
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5.1. The types {p, 3, 6}

Let 2 be a regular 4-polytope of type {p, g, r} with group A(?) = {pg, - - -, P3)-
Assume that the vertex-figures of 2 have 3-chains of lengths /(say). Then the operation

(Pos - - - » P3) > (Pos P15 P2P3P2P3P2) = (Yo, Y1, ¥2) (29)

gives a subgroup (¥, ¥, ¥,y of A(%) which is the group of a regular map
H = H(P) of type {p,[}. Note for this that Yy, = p, p.(p3p0,)>

Let F,, ..., F; be the (proper) faces in the base flag of . The map 5# can be
constructed from £ by Wythoff’s construction with initial vertex F (which is fixed
by ¥, and y,); see [7]. Then {F,, F,, F,} becomes the base flag of #. The
neighbouring vertices of F;, in 5 are

W Y(Yo(Fp)) = (Plpz(P3pz)2)j(Po(Fo)) forj=0,...,1-1;

that is, as we go around F; in # we pick precisely the vertices of a 3-chain of the
vertex-figure of 2 at F,. If we span topological discs into the 2-faces of J#, we can
think of s as a surface which in a sense cuts right through 2.

If 2 is of type {p, q, 6}, then p, commutes with ,, ¥, and ,, so that # is
invariant under p;. Hence, in a sense we can think of J# as lying on the reflexion
wall of p;.

Now, let Z:={{p, 3}, {3, 6}, } With p > 2. We are particularly interested in the
case p =3, 4 or 5. The 3-chains of {3, 6}, have lengths / =5 or 3s if =0 or s,
respectively. To find s# we make use of the corresponding constructions of 2. We
begin with the case ¢ = 0.

5.2. Polytopes with vertex-figures {3, 6} 0

Recall from [22], Sections 4 and 5, that 2 = {{p, 3}, {3, 6}(.0)} can be con-
structed from the abstract group W = {a,, ..., o, ) with diagram

3

2 T
- —I—— (30)

’H
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by the twisting operation

(ab ceey O T) = (al’ oy, %3, T) =:(p0s e p3)

In particular, A(%?) = W< C,. See (22) and (23) for the case p = 3.
But now

Wos Y1, ¥2) = (ay, 0, A300403), (31)

so that the second entry in the type {p, s} of # corresponds to the extra defining
relation (7) of W. Equivalently, the period s of

281728 = P1P2(P3pz)2 = Pz(Plpzp3)2P2 ~ (p1p2p3)2

genuinely does specify the original polytope. We proceed with the following lemma
which is of interest in its own right.

LEMMA 1. Let p,s >2 and W =<{a,,...,u,) be the abstract group with
diagram (30). Then the subgroup {a,, a,, 0z0,05 » of W is isomorphic to the Coxeter
group with diagram

s

Proof. The proof uses the geometric representation for W described in [22]; see
also [4]. In [22] the representation was only considered for p <5 but the methods
extend generally.

Consider the sesquilinear form 4 on complex 4-space C*,

4 1 )
h(x,y) = Z Xy — ) Z CiiXiVjs (32)
i=1 i#j
with
[ .
Cl3=cl4=0, Cr3 = Cyy = 1, C12=2COS;, C34=82m/s=:cs. (33)

(Note that the diagrams in [22] are mirror images of our diagram (30).) Let

a,...,a, be the canonical basis of C*. For k =1,...,4 define the linear map
R, : C*— C* by

R, (x) = x —2h(x, a)a,. (34)
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Then R,, ..., R, are hyperplane reflexions which preserve A, and the map a,+— R,
(i=0,...,3) defines a homomorphism f: Wi U:=(R,, ..., R;). In particular,
W is finite if and only if the corresponding hermitian form A(x) := h(x, x) is positive
definite. In this case (but probably also in other cases) the representation of W is
faithful.

Define S,:=R,, S,:=R, and S;:=R;R,R;, so that {§,,S,, S;) corresponds
to <{a;,a,, azasa,) under f. Then S,, S, and §; are the reflexions orthogonal
to b,:=a,, by,=a, and b;:=R;(a,) =a,+ ¢,a;, respectively. In particular,
Se(x) = x — 2h(x, b, )b, for all k. It follows that {S,, S,, S;) leaves invariant the
subspace {(b,, b,, b;) whose orthogonal complement {b,, b,, b;>* is the intersec-
tion of the reflexion hyperplanes of S,, S, and S;. Since {S,, S,, S;) acts trivially
on {b,, b,, b;>*, it suffices to study its action on <{b,, b,, b;).

Now, the Gram matrix of b,, b,, b, is given by

- 3\
1 —Cos I 0
4
n 11
(h(b;, b;));; = | —cos ; 1 —32 7 2Cs
| 0 —3—18, 1

But (1+c¢)(1+¢,) =4cos?(n/s), so that A:=2(1+¢,) 'cos(n/s) has unit
modulus. It follows that the Gram matrix for the new basis b,, b,, Ab; has the
form

( )
1 —COS r 0
p
T
—COS — 1 —CoS —
p s
0 —COoS — 1
L & J

But this is the familiar matrix for the Coxeter group [p, s]. Hence both <S,, S,, S;)
and <a,, a,, a;0,05 ) are isomporphic to this group.

THEOREM 4. Let p,s =22 and 2:={{p, 3}, {3,6}0 ). Then #(P) = {p, s},
and thus is finite if and only if 1/p + 1/s > 1/2.

Theorem 4 follows immediately from the above lemma and our previous
remarks on J#(#). It is interesting to note here that a polytope 2 can be in-
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finite even though its tessellation (<) is finite. In Theorem 4, if p >3, this
occurs precisely for the polytopes {{3,3}, {3,6}s0 ). {{4. 3},{3,6}c0 ) and
{{5, 3}, {3, 6}3.0,} Which have (locally) “inscribed” finite tessellations {3, 5}, {4, 3}
and {5, 3}, respectively. The proof of Lemma 1 explains why this happens. In fact,
in the geometric representation of the corresponding group W, the subgroup which
defines #(Z) is a finite unitary (indeed even euclidean) reflexion group, while W
itself is not a finite unitary group. In other words, the hermitian form restricts to a
positive definite form on the corresponding 3-space but is not positive definite on
the whole space.

We continue our discussion with the polytopes 2 = {{6, 3},,), {3, 6} (0, }. Here
H(2P) is of type {6, s}. First we consider the case r = 0. Recall from [22], Section
5.3, that 2 = {{6, 3}(,0), {3, 6}-0)} can be constructed from the abstract group
W=<(a,...,oa,» with diagram

4
X
3
(35)
1
T
T 2
by the twisting operation

K: (ala vy 04y Ty, ‘52) = (Tls 0y, X3, TZ) =:(p0’ L p3) (36)

Then A(2) = W < (C, x C,). For the generators of A(#(2)) this implies

Wo, V1, ¥2) = (1, 0y, 030403). (37)
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Hence, A(H#(P)) = Z < C, with Z:={a,, a,, t;0403> and C, = {1;). Note that
the subgroup Z of A(H#(£)) can be associated with the diagram

aq

T1
Q303 (38)

(2]

The map #(Z) itself is constructed from Z by the twisting operation

K (o, o, 03040055 Ty) > (Yo, Yy, ¥a). (39)

As in Lemma 1, to obtain more information on #(#) we consider the
geometric representation f: W U =<R,, ..., R,) given by a sesquilinear form A
as in (32), but now with coefficients

— p2nilq _, — — — — — p2muils __,
Cip=¢€ m/q—'cq, C13=C14 =Cp3 =Cy =1, Ciq =" =¢, (40)

([22], Section 5.3). This representation is known to be faithful if W is finite, that is,
if 4 is positive definite. We conjecture that this is true for all g and s.

As in the proof of Lemma 1, S,:=R,, S,:=R, and S;:==R;R,R; are the
reflexions orthogonal to b,:=a,, b,=a, and b; = a, + C,a,, respectively. Now the
Gram matrix of by, b,, by is given by

1
(h(bi’ bj))i,j = "% 2 ¢, . (41)

This time we cannot simply rescale the base vectors to transform the matrix into a
real matrix. In fact, the determinant A4 of the Gram matrix is given by

84 =6—-8(1+20052—ﬂ—:)cos2§,
q s
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so it genuinely depends on both s and ¢q. It follows that

4>0 if s =2 (and g arbitrary); s =3 and g < o0; or, (s, q) =(4, 2)
or (5, 2);

4=0 if (s, g) = (3, ), (4, 3) or (6, 2);

4<0 otherwise.

Accordingly, the restriction A, (say) of A to the subspace <{b,, b,, b;) is positive
definite, positive semi-definite, or indefinite, respectively.

If 4 >0 then h, defines a unitary metric and <S,, S,, S;) becomes a unitary
reflexion group. If s =2 then it is clear that Z ~ S5 x C,, the Coxeter group with
diagram (38). This remains true for {S,, S,, S;)> = f(Z).

Let s = 3. By computing the eigenvalues of S,S5,5,;S, we find that S,S,S;S,
has order g; for similar computations see [22], equation (12). It follows that
(8, 8,, 83> ~[111]% or order 6¢°. Note that A, is positive semi-definite if g = oo,
in agreement with the fact that the unmarked triangle is the diagram of a euclidean
Coxeter group; here, the Gram matrix can be made real. We do not know if indeed
Z ~<{8§,,8,,S;).

Let g =2 (and s be arbitrary). Then in Z we have

(0rp 01y 0t 03 )04 O3 = O30 0Ly Oy Olg Oz ~ Op 0Ly Oy Oty
so that
(20, 0y * 0306403) = 1. (42)

It follows that Z can be associated with the diagram

!
____% (2) azagas (43)

[
)

(Here the parentheses around the mark 2 indicate that the corresponding relation
is not necessarily equivalent to any of the five other relations obtained by permuting
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the generators.) Now, choosing the new generators f,=a30,0;, fB,:=a, and
f.:=a 0,0, for Z, and using (42), shows that Z is a quotient of the group with
diagram 2 . ‘3 We shall prove that Z =[s, 3].

First, note that T,:=f(8,) = RyR4R;, T,=f(B,) = R, and T,:=f(B,) = R, R, R,
generate <S,, S,,S;)>. They are the reflexions orthogonal to d,:=a, + ¢,a; = bs,
dy:=a, = b, and d;:=a, + ¢,a, = a, — a, respectively. The Gram matrix of d,, d,, d,
is given by

1 _l(1+&) 0
—_%(1 +cs) 1 -
0 — 1

N
Nj—

As in the proof of Lemma 1 we can change the basis d,, d,, d; to obtain the Gram
matrix for [s, 3]. Hence [s, 3] = {S,, 5,, S3) =Z.

Interesting special cases arise for (s, q) =(3, 2), (4, 2), (5, 2) and (6, 2). Then
Z =3, 3], [4, 3], [5, 3] or [6, 3], respectively. Note that only in the first two cases
the form A itself is positive definite. For (s, ¢) = (3,2) we have [3,3] =S,=[111]?
in agreement with our above results.

Another way to find the structure of # () for ¢ =2 is obtained as follows.
Recall from [22], Lemma 1, that 2 = {{6, 3}), {3, 6}(0) } is related to 24 =
{{3,3},{3,6}s0} by A(P)=A(Pg) x Co; If A(Pe) ={K,...,Ksy and
C, = (a) (say), then

(pOa L} p3) = (Koaa Ky, Kzs K3)

are the generators for A(2) and a = (pyp,)>. It follows that #(2) and #(2 )
are similarly related. But then Theorem 4 implies A(H(P)) = A(H(P ) X Co=
[3, 5] x C,. Note that the semi-direct product Z o< C, becomes direct; in fact, the
automorphism 7, in (38) can be realized by conjugation with o, o0, = f,.

In the remaining cases for (s, g) the group (S, S,, S;) becomes infinite, since A,
is positive semi-definite or indefinite. For (s, ¢) = (4, 3) the form A, is positive
semi-definite and (S, S,, S;) acts as a (possibly non-discrete) unitary reflexion
group in a unitary plane. In the other cases the non-finiteness follows from the
irreducibility of {S,, S,, S;)> ([22], Lemma 3). Now we can prove the following
result. See [3] for the notation in part (a).

THEOREM 5. Let q,5s 22 and P:={{6,3},0), {3, 6}s0)}. Then H#(P) is of
type {6, s}.

(a) If ¢ =2 then H(P) ={s,6|,2}*, the dual of {s,6|,2}. Also A(KH(P))=
[s, 3] x C,, and thus H#(P) is finite if and only if s < 5.



108 PETER MCMULLEN AND EGON SCHULTE

(b) If s =2 then #(P) ={6,2}. If s =3 and q < 0, then #(P) has a projection
onto {6, 3},0). (Most likely, #(P) = {6,3},0-) If s =3 and q = o0, then #(P) =
{6, 3}.

(¢) In all other cases #(P) is infinite.

Proof. Recall that #(2) is constructed from Z by (39). For (a) we can use (42)
to obtain

‘/’2‘/’1(‘/’0‘/’1)2 = 0300 O3 0y Oy 0Ly ~ 0 Oty (003064 O3 )0ty

and thus (Y,¥; (Yo¥,)?)? = 1. Since Z = [s, 3], this is the only extra relation used to
define #(#). This proves (a). The remaining parts follow immediately from what
was said above.

Note that in Theorem 5(b) the faithfulness of the representation of W
would imply #(2) = {6, 3}, (In fact, for this it suffices to generalize (42) to
(o0 05030403)? = 1.) Note further that there are again instances where #(%) is
finite but £ is infinite. An interesting example arises for (s, g) = (5, 2).

We shall not proceed to discuss the case 2 = {{6, 3}, {3,6}u0} in full
generality. Limited information is available from the fact that the homomorphism
A({6, 3},.5) — A({6, 3}(,0)) induces a homomorphism between the groups of the
corresponding maps. In particular it follows that parts (b) and (c¢) of Theorem 5
carry over (but (%) might possibly be {6, 3}, )

5.3. Polytopes with vertex-figures {3, 6}

We continue our discussion with the polytopes 2 = {{p, 3}, {3, 6} }, but
restrict ourselves mainly to the case p = 3. Now #(2) is of type {p, 3s}. Here the
length 3s of the 3-chains does not determine the vertex-figure (among maps of type
{3, 6}), so that it is not obvious what the structure of H#(Z%) is.

Now let p = 3. Recall that Z =2, , = {{3, 3}, {3, 6}, } Was constructed from
the group W =<a,,...,a,) with diagram (17) by the twisting operation (18).
Rename the generators o,,...,0; of (18) by p,, ..., p;, so that A(P)=
{pgs - - -»P3y, as above. Then

(Pos - - -5 P3) = (13, T2, Ty, 4y),
so that the generators of A(J#(Z)) are given by

Wos Y15 ¥2) = (13, T2, Ty ).
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As we remarked above, p; = o, commutes with ¥, ¥, and ¥, and thus with each
element of Z:=A(H(P)) " W.

To obtain more information on #(%) we use the geometric representation for
W described in [22], Section 4.2. Again we consider a hermitian form 4 as in (32),
but now with coefficients

2mils __. _ _ =
i =:iCs, Cr3 = Cpq = C41 = Cs. (44)

Cl2 =034 =C3 =¢€
Then 4 is positive definite, positive semi-definite or indefinite if s =2, s =3 or s > 4,
respectively. As in the proof of Lemma 1 we have a homomorphism
f:WeU:=(R,,..., Ry, with R, as in (34).

But now R, = f(«;) commutes with each element of f(Z), so that f(Z) stabilizes
the reflexion hyperplane of R, that is, the orthogonal complement ai of q,. It
follows that f(Z) acts (probably faithfully) on ai as a group U, (say) of isometries
with respect to the hermitian form 4, (say) which is the restriction of 4 to ai. But
the geometry on ai is completely determined by 4; that is, 4, is positive definite,
positive semi-definite or indefinite if s =2, s =3 or s >4, respectively.

If s=2, then W =S5 and A(#) =Ssx S,, with a,=({5) for i=1,...,4,
T, =(12)(67), t1,=(23)(78) and 73 =(34)(89). Here it is easy to check directly
that #(2) = {3, 6}(,. In this case Z = {(15)(23),(15)(34)) ~S;.

If s >4 then U, acts irreducibly on ai. Note for this that elements like
(R3 R, Ry)? = f(¥1¥2)?) or (RyR, R3)> = f((Yo¥1¥2¥,)°) belong to f(Z) and have
order s. But an irreducible isometry group for a non-degenerate indefinite hermitian
form must necessarily be infinite; see Lemma 3 of [22]. It follows that U,, Z and
A(H(2)) are infinite groups. In particular, #(#) is an infinite map.

In case s =3 we have a positive semi-definite form 4. Here W has an infinite
discrete unitary representation g (say) on C>. The same kind of arguments as for f
show that g(Z) acts on the reflexion plane of g(«,) as a 2-dimensional discrete
unitary group. Since no point is invariant under g(Z), we must have an infinite
group. It follows again that #(Z) is infinite. We summarize our results in the
following theorem.

THEOREM 6. For the polytopes P, = {{3, 3}, {3, 6}(ss) } the map H(ZP) is
of type {3, 3s}. In particular, #(P2) = {3, 6} and H(P) is infinite if s > 3.

Note that in Theorem 6 the polytope Z,,, is finite if and only if #(Z) is
finite. For s > 6 another proof of the non-finiteness of #(%,,,,) can be obtained as
follows. First observe that for s >2 the polytope 20, :={{3,3}, {3, 6}0} is a
quotient of 2, ,,. The corresponding homomorphism A(Z2, ) — A(2,,,) induces
a homomorphism A(H#(2,)) — A(H (2P ). Hence, #(2,,) (of type {3, 3s})
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projects onto H#(P) = {3,s}. Note that similarly H# (%) is derived from
H(Pas0) ={3,3s} by identifications induced by a homomorphism
A(P 350) PA(P5))-

It is likely that Theorem 6 and its proof carry over to the polytopes
2 = {{p, 3}, {3, 6}, } With arbitrary p. For p >4 and s >2 these polytopes are
infinite. For the corresponding geometric representation see [22], Section 5.2. Note
that by Theorem 4 the map #(%) (of type {p, 3s}) has a projection onto {p, s}.

A similar remark applies to the (infinite) polytopes {{6, 3}, {3, 6} }. Here
H(P) is of type {6, 3s} and is likely to be infinite except for (g, r, s) = (2, 0, 2). For
the representation see [22], Section 5. Here projections are obtained from Theorems
5 and 6.

5.4. Other tessellations for polytopes of types {3, 3, 6} and {3, 6, 3}

There are other ways of associating a regular map with a regular polytope £ in
{{3, 3}, {3, 6}, >- Consider the operation

(Pos - - -5 P3) 2> (Pos P1P2P3P2P1s P3P2P3P2P3) = (Ko, Ky, K2) (45)

on A(?) =<{py,...,p3y. Then

KoK1 ~ P1PoP1 " P2P3P2= PoP1PoP2P3P2= Po - P1P2P3P2 " Po
~ P1P2P3P2~ P2P1P2P3 = P1P2P1P3 = P1P2P3P1 ™~ P2P3

and

KiKy = P1P2P3P02P1 " P3P2P3P2P3 = (Pl(P2P3)2)2-

It follows that 4 = (i, k,, k, ) is the group of a regular map .#(2) of type {6, s}.
Note that the period of k,k, is s in both cases t =0 and s = t; see (3).

An application of Wythoff’s construction with initial vertex the base vertex F,
of 2 shows that .#(Z) is a map with vertices and edges among those of 2. Note
that p, commutes with «,, x, and k,, so that in a sense .# (%) lies on the reflexion
wall of p,.

Let 2 =2, ={{3, 3}, {3, 6} }. Then by (3) the condition (x,x,)°=1 spe-
cifies the group of the original polytope. Using the construction of 2, in (17) and
(18) we find that

(KO’ Kls K2) = (1'.39 a3, alaZal)’
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so that 4 = <a, a0, a3, oy » >< {15 ). This situation is analogous to that of (35) and
(37) with g =s. In particular,

ﬂ(‘@(s,s)) = %({{6, 3}(.9,0)’ {3’ 6}(5,0) })’

so that Theorem 5 applies.

For 2 = {{3, 3}, {3, 6}, } the condition (x,x,)* =1 does not specify the group
of the original polytope, so that the structure of .#(Z) is less obvious.

Concluding, let us remark on polytopes 2 of type {3, 6, 3}. Here the “sections”
of # by its “reflexion walls”’ do not appear to yield useful information. However,
in certain cases, limited information is available by other means.

Consider the operation

(Pos - - -5 P3) > (P, (P1P2)>, P3) = (o> X15 X2) (46)

on A(2) =<py, ..., p;y. This gives the group of a regular map £(Z). Note that
L(P*) = L(P)*. If the facets of 2 are of type {3, 6},,), then the period of yx,
1s

q, if r=0, g¢q even;
2q, if r =0, ¢q odd;
3q, if r=s, g even,
64, if r=s, ¢q odd.

Moreover, if ¢ is odd, then p, € {(xo, x; >- All this is most easily seen geometrically.
A similar remark applies to the vertex-figures {6, 3}, ,. In particular, if g and s are
odd, then A(Z(2)) = A(%). It is thus only in the case 2 = {{3, 6} 2m0)> {6> 3} 2n0) }
that the periods of x,x, and x,x, specify the type of the polytope; then ¥ (Z2) is
of type {2m, 2n}. However, no explicit construction of {{3, 6}m0)> {6, 3}2n0) } 1S
known yet, so that we do not know the structure of the map. (It seems that
Theorem 1 does not really help here.)
It is worth mentioning that the analogous operation

(Pos « - - » P3) > (po, (p1p2)% P3)

applied to a polytope of type {{4, 4}2m0)> {4, 4}2n0) } indicates that it is finite if and
only if 1/m + 1/n > 1; we know this to be true [23]. Applied to {{3, 4}, {4, 4}2n0) }
it similarly yields the known criterion n < 1 for finiteness; here p,(p, p,)> has period
4 [23].
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6. Flat polytopes

Recall that a regular n-polytope £ is called (combinatorially) flat if each of its
vertices is a vertex of each of its facets. Note that the dual of a flat polytope is also
flat. Flat regular polytopes have been constructed in [30] using the so-called
degenerate amalgamation property, or briefly, the DAP.

Recall that a polytope 2 with group A(2) = {pg, . - -, Pn_1 is said to have the
DAP with respect to its vertex-figure 2, (say) if and only if A(Z) is a semi-direct
product of the normal closure N(p,) of p, in A(#) by the vertex stabilizer
{Pry.vs Py (with {py, ..., p,_1> acting on N(p,) in the obvious way); that is,
if and only if A(2) = N(p,) < A(Z,). Similarly, 2 has the DAP with respect to its
facet P, (say) if and only if A(2) = N(p,_,) b< A(#,), with N(p,_,) the normal
closure of p,_; in A(#). Clearly, 2 has the DAP with respect to its facets if and
only if #* has the DAP with respect to its vertex-figures.

Note that the DAP can also be defined in terms of collapses. For example, 2
has the DAP with respect to its facet 2, if and only if the mapping p,_, — 1 (and
p; — p; for i <n —2) induces a “collapse” of £ onto Z2,.

The following are examples of regular maps which have the DAP with respect
to their vertex-figures: {4, 3}, {6, 3}, With s >1, and {6, 3}, with r > 1. No
other spherical or toroidal maps (excluding {2, p}) have the DAP with respect to
their vertex-figures.

Below we make use of the following result ([30], Theorem 2). Let ¥ and # be
two regular (n — 1)-polytopes such that the vertex-figures of ¥ are isomorphic to
the facets of #. Assume that % has the DAP with respect to its vertex-figures, and
A has the DAP with respect to its facets. Then (&, #) contains a flat regular
n-polytope 2 which has the DAP with respect to both the facets and the
vertex-figures. For an example see the end of this section.

In this section we mainly discuss locally toroidal 4-polytopes 2 with flat facets
and vertex-figures. We begin with the following simple observation.

PROPOSITION 1. Let & be a flat facet of a regular n-polytope 2.

(a) Then 2 is also flat. (In fact, 2 is flat in the stronger sense that each vertex
of P is a vertex of each (n — 2)-face of #.)

(b) If 2 has vertex-figures R, then P ={F, R} and P is the only polytope in
(L, R).

Proof. The proof of (a) is obvious, because # is connected and any two
adjacent facets of 2 meet in an (n — 2)-face which contains all the vertices of each
facet. For (b) we know by part (a) that { &, #} is flat. But any identifications in a
flat universal polytope must lead to a collapse of the facets or vertex-figures. This
proves (b).



Locally toroidal regular polytopes of rank 4 113

THEOREM 7. Let & and R be regular (n — 1)-polytopes such that the vertex-
figures of L are isomorphic to the facets of #. Assume that £ is flat and A( L) acts
faithfully on the vertices of ¥£.

(a) Then {¥, R> # & if and only if R has the DAP with respect to its facets.

(b) If (&L, R # &, then { &L, R} has the DAP with respect to its facets.

Proof. Let Z € (&, #). By Proposition 1 each vertex of 2 is a vertex of the base
(n — 2)-face F,_, of 2. But the generator p, _, acts trivially on F,_,/F_, and thus
fixes each vertex of 2. It follows that each element of N(p, _,) fixes each vertex of
2 (or equivalently, each vertex of the base facet F,_, of #). Hence, by our
assumptions on ¥ we must have N(p,,_,) n<py, . - . , Pn_2» = {1}. But by definition
of N(p,_,) we have A(?) =N(p,_1) {pPo--.,Pn_2r, SO that this product is
semi-direct. Therefore 2 must have the DAP with respect to its facets. But the DAP
is hereditary; that is, each co-face of Z must also have the DAP with respect to its
facets. In particular this is true for the vertex-figures £ of 2.

Now to prove (b) and one direction of (a) apply these considerations with
P ={¥, R}. The other direction of (a) follows from [30]. This completes the proof.

The following result was already proved in [22] by other means.

COROLLARY. The universal {{6, 3}..1), #}
(a) exists for A = {3, 4}, {3, 6} with s > 1, and {3, 6} 3,0, with r > 1;
(b) does not exist for # = {3, 3}, {3, 5}, and {3, 6}, with 3Js.

Of the flat torus maps, £ = {4, 4}, and {3, 6}, ;, do not satisfy the condition
of Theorem 7 but & = {6, 3}.,, does. See [23] for the discussion of the case
{4.4}c0-

As an example we illustrate the case # = {3, 6}, ,, geometrically. However, rather
than taking {6, 3}, ;, as a facet we shall find it more convenient to take its dual
{3, 6}.1) as a potential vertex-figure.

First, consider the universal Z = {{6, 3}, {3, 6},.;, } (which exists by Theorem 7).
We know that 2 is flat and thus has only 6 facets. Each edge belongs to each of the

6 facets. But the facets 1, . . . , 6 (say) cycle around the edges in three different orders,
namely
A: 123456
B: 163254 (47)
C: 143652

(Note that these are the three different ways of interleaving 1 3 5 and 2 4 6.) Figure
6 shows facet 1 which meets only facets 2, 4, 6, in the fashion of the figure; the edges
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Figure 6

Figure 7

are labelled according to (47). Figure 7 shows the vertex-figure corresponding to the
circled vertex in Figure 6.

Now, the identification {6, 3} — {6, 3}, is only compatible with this labelling
in the cases s=¢>1, and ¢t =0,5 =3r > 3. These are precisely the cases where
{6, 3} ..y has the DAP with respect to its vertex-figures. If t =0 and 3/}s, the facets
2,4,6 (and 1,3,5) are forced to coincide, and the polytope collapses to
{{6, 3}s.n» {3, 2}}. Otherwise the 6 copies of {6, 3}, can be glued together accord-
ing to the appropriate incidences (corresponding vertices of the copies coincide, as
do their edges).

We continue our discussion with polytopes # of type {3, 6,3} which have
vertex-figures {6, 3}, ,,. Since the vertex-figures are flat, # can only have 3 facets.
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Figure §

On a given facet 1, the incidence pattern with the two other facets 2, 3 has to be as
indicated in Figure 8. Now, while facets 1, 2, 3 must have the same vertices, the
reflexion p, in the group A(2) =<{py, ..., p3» does not fix all these vertices. In
fact, while fixing the given (circled) vertex and also the emphasized edge, it changes
edges joining “adjacent” vertices of the vertex-figure to edges joining “opposite”
vertices. Thus, in the adjacent facets 2 and 3, vertices two steps away along a
“straight” path are joined, which forces the facet to be a collapse of {3, 6} ¢). It
is easily verified, on the other hand, that {{3,6}a,,{6,3}q.,} and
{{3, 6} 1.1y {6, 3}1.1)} exist as polytopes. For the former polytope see also our
Theorem 1, or [22].

More generally, let 2 be a regular 4-polytope of type {p, 6, 3} whose vertex-
figure is {6, 3},.1y. By (3) we have ((p,p,)?p:)*> =1, or equivalently, (p,p,)*p;=
p3(p2p;)°. Now, conjugation of p, and p; by p,p3p> = p3p2p; gives

P3P2P3 " Po P3P2P3 = Pos
P3P2P3 " P1° P3P2P3 = P3P2P1P2P3 = P3(P201)%P1P3 = (P192)%P3P1 P3
= P1P2P1P2P1-

It follows that pyp,(p,p;)? is conjugate to pyp;, and thus has order p. Hence the
facets of 2 have 3-chains of length p; see Section 2. In other words, the facets can
be obtained from the map {p, 6|, p} by identifications (preserving the length of the
3-chains); see [3] for notation. Note that this map is {3, 6}, if p = 3. It would be
interesting to know if indeed each map of type {p, 6} with 3-chains of length p
occurs as the facet of a (necessarily flat) regular 4-polytope with vertex-figures
{6’ 3 }(1,1)‘

Concluding this section we describe a construction of flat regular 4-polytopes 2
in ({6, 3}, {36}y With s,#>1. Take the unitary groups [111]*=
{6,,0,,05y and [111]'=<{0,, 05,0, and consider their direct product
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v

W = (a,,..., 6sy with diagram

(48)

To
5 s, t 2

/

Here the mark s refers to the triangle 123, the mark ¢ to the triangle 456. Consider
the twisting operation

(01,...,06 71, T2) (04, T, Ty, 02) =:(Pos - - -5 P3)- (49)

This gives us the group of a regular 4-polytope 2 in ({6, 3}, {3, 6}, >. More
precisely, A(2) =([111]° x[111]%) o< S;, of order 216s%>. The polytope # has
6s2 vertices and 6¢2 facets, and so must be flat.

Note that the construction generalizes to flat polytopes 2 in (¥, #), where
% has the DAP with respect to its vertex-figure 4 (say), and # has the DAP
with respect to its facet . In fact, if A(¥)={ay,...,%,_,y and A(A)=
{Bos---sPn_2>, then we have A(ZL)=N(x) X A(KX) and A(A)=
N(B,_,) 0< A(X"), so that we can choose the group (N(ap) X N(B,,_,)) < A(HK") to
construct 2. Note that this construction is equivalent to that of [30].
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