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Locally toroidal regular polytopes of rank 4

Peter McMullen and Egon Schulte*

Abstract The paper studies vanous relationships between locally toroidal regular 4-polytopes of types
{6, 3yp} and {3, 6, 3} Thèse relationships are based on corresponding relationships between the regular
honeycombs with the same Schlafli-symbol in hyperbohc 3-space Also the paper discusses regular
tessellations (sections of rank 3) which are locally inscribed into regular 4-polytopes In particular, this
leads to local cntena for the finiteness of the polytopes

1. Introduction

The study of regular polytopes has a long history (cf. Coxeter [7]). The classical

regular polytopes make their appearance in many différent branches of mathemat-
ics, ranging from Lie algebras to Tits buildings. Traditionally, a polytope is

topologically a sphère, and also has spherical facets and spherical vertex-figures; in
other words, it is locally and globally of spherical type.

In récent years the classical notion of a regular polytope has been generalized to
abstract regular polytopes. Abstract regular polytopes are combinatorial and geo-
metrical structures which resemble the classical regular polytopes but are not
necessarily of spherical type, neither locally nor globally (Danzer- Schulte [12],
McMullen-Schulte [19-23,26]). For related notions see also McMullen [17],
Grûnbaum [16], Dress [13], Buekenhout [1] and Tits [34, 35].

For a locally toroidal regular polytope 0&gt; of rank 4, the facets and vertex-figures
are spherical or toroidal regular maps (tessellations), but are not ail spherical.
The corresponding Schlâfli-types are {4,4,3}, {4,4,4}, {3,6,3}, {6,3,/?} with
3 &lt;p &lt; 6, and their duals. For the types {4, 4, 3} and {6, 3,p} a complète classification

of the finite universal polytopes 2? was obtained in [23] and [22], respectively.
An almost complète classification is known for the type {4, 4,4} [23]. For the type
{3, 6, 3} only a few classes hâve been settled so far ([22], Weiss [36]).

The situation is particularly satisfactory for the types {6, 3,/?} (and the known
cases of {3, 6, 3}). Hère, the structure of the polytopes 0* is governed by a complex
hermitian form. In particular, the polytope is finite if and only if the corresponding
form is positive definite. This generalizes the well-known classical situation where a

real quadratic form (associated with the underlying Coxeter group) détermines the

structure of the polytope (cf. [7]).

* Partially supported by Northeastern University&apos;s Research and Scholarship Development Fund
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In this paper we discuss various relationships between the locally toroidal
regular 4-polytopes of types {6, 3,/?} and {3, 6, 3}. As a by-product, this also leads

to some new classification results. The relationships between the polytopes are
based on corresponding relationships between the regular honeycombs with the

same Schlâfli-symbol in hyperbolic 3-space H3. Thèse results are described in
Sections 3 and 4; basic définitions are given in Section 2.

In Section 5 we associate with certain polytopes &amp;&gt; a regular tessellation Jf
which in a sensé cuts right through the polytope. In particular, this gives local
criteria for the finiteness of the polytopes. In some cases the geometrical représentation

of [22] for the group of 9 can be used to find the structure of Jf7 explicitly.
Finally, Section 6 deals with flat polytopes. For the discussion of locally and

globally toroidal regular polytopes of higher rank &gt; 5) the reader is referred to
[25].

2. Basic notions

For a detailed introduction the reader is referred to [12, 20-22]. An {abstract)
polytope 0* of rank n, or briefly an n-polytope, is a partially ordered set with a

strictly monotone rank function with range { —1,0,...,«}. The éléments of rank
i are called the i-faces of &amp;9 or vertices or facets of 0* if / 0 or n — 1, respectively.
The flags (maximal totally ordered subsets) of 9 ail contain exactly n + 2 faces,

including the unique (least) — l)-face F_x and the unique (greatest) h-face Fn of ^.
Further defining properties of 0&gt; are the {global and local) flag-connectedness as

well as the homogeneity property that, for any (/ — l)-face F and any (/ + l)-face
G with F&lt; G, there are exactly two /-faces H of 0&gt; such that F&lt;H &lt;G

(/ 0,. « — 1).

For two faces F and G with F &lt; G we call G/F&apos;.= {H\F&lt;H &lt;G} a section of
0*. There is little possibility of confusion if we identify a face F with the section

FjF_x. We call Fn/F the co-face (of Fn) at F, or the vertex-figure at F if F is a

vertex.
An n -polytope 9 is regular if its automorphism group A(0&gt;) is flag-transitive.

The group of a regular polytope 9 is generated by distinguished generators
Po&gt; • • • &gt; Pn-u where pt is the unique automorphism which keeps fixed ail but the
î-face of some base flag &lt;P {F_l9F0,... 9Fn} of 9. If {pl9... ,/?n_i} is the
(Schlàfli-)O&gt;/?e of &amp;9 then thèse generators satisfy the relations

(p&gt;Pj)Pv l (i,y=0,...,n-l) (1)

where pu 1, ptJ =pJt =*pt + x if j i -h 1, and ptJ 2 if \i -j\ &gt; 2. Further, A(0&gt;)
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has the intersection property

&lt;p, 11 e /&gt;n &lt;p, 11 g /&gt; &lt;p, 11 e /n/&gt; for /, J c {0, ...,«- 1}. (2)

By a C-group we mean a group which is generated by involutions such that (1) and

(2) hold. The C-groups are precisely the groups of abstract regular polytopes
[19,28].

Given regular «-polytopes ^, and &amp;2 such that the vertex-figures of SPX are

isomorphic to the facets of ^*2, we dénote by &lt;^\,^2&gt; the class of ail regular
(n + 1)-polytopes 3P with facets isomorphic to 0&gt;x and vertex-figures isomorphic to
^2- Each non-empty class &lt;^\,^2&gt; contains a universal polytope denoted by
{0&gt;u ^2}; ail polytopes in &lt;^i, ^2&gt; are obtained from {#*,, ^2} by identifications
[30].

A regular polytope &amp; of rank 4 is said to be locally of genus (at most) g if its
facets and its vertex-figures are regular maps on orientable surfaces of genus at
most g, and either its facets or its vertex-figures are actually maps of genus g. We
call 9 locally toroidal if it is locally of genus 1. Note that locally toroidal regular
4-polytopes are necessarily of type {3, 4, 4}, {4, 4, 3}, {4, 4, 4}, {3, 6, 3}, {6, 3,/?} or
{p, 3, 6} with p 3, 4, 5 or 6 (provided ail entries in the symbol are at least 3). See

[29, 37] for early examples of such polytopes. For examples of higher genus see also

[27].
Toroidal regular maps are discussed in [9]. However, in this paper we shall

change the notation of [9] and dénote the torus maps {4, 4}sn {3, 6}st and {6, 3}stt

by the slightly more complicated symbols {4,4}(5 0, {3, 6}(5&gt;/) and {6, 3}(5s0, respec-
tively. This change of notation is explained in [25] and is motivated by results on
the classification of the globally toroidal (and locally spherical) regular polytopes of
higher ranks. We shall often use the fact that for the maps {3, 6}(5 0 the extra
relation for the generators pt is

(3)

(cf. [9], p. 108).

Recall that a Pétrie polygon of a regular map M is a zig-zag along the edges
such that each 2, but no 3, consécutive edges lie in a face, that is, 2-face [9]. A
k-chain of M is a path along edges which leaves, at each vertex, k faces to the right
[3]. The lengths of the Pétrie polygons and A:-chains of Ji are the periods of the
éléments p0pip2 and PoP\(P2P\)k~l *n ^(^X respectively.
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In some instances we shall construct polytopes from mixing opérations on

groups W which are generated by involutions a0,. om_x [19]. Then we dérive

new groups A by taking as generators p0,..., pn_x suitably chosen products of
the ot &apos;s, so that A becomes a subgroup of W, We dénote such a mixing opération
by

If W is the group of a regular polytope 0&gt; and A &lt;p0,..., pn_ x
&gt; is a C-group,

then we write 9* for the regular polytope whose group is A.
An example of a mixing opération is the facetting opération

ll=(p2&apos;. (&lt;T0&gt; ^U(T2) h-&gt; ((70, OXG2OUG2) =:(p0, p, p2) (4)

on the group A(0&gt;) — &lt;&lt;r0, al9 o-2&gt; of a regular map ^ of type {/?, #} ([19], Section

4.2). The effect of &lt;p2 is best studied by employing Wythoff&apos;s construction to find
&amp;*2 [7]. If q is odd, then A A(£?) and ^4 is the group of a regular map ^2 of type
{/, q}, with / equal to the length of the 2-chains of 9. If q is even, then in gênerai
A is a proper subgroup of A(0&gt;).

lî 0&gt; {3, 6} then 9** {6, 3} and ^2 takes only f of the vertices of 9\ see

Figure 2 in Section 3. If » {3, 6}(3r&gt;0), then ^2 {6, 3}(/%r) and ^2 takes again
only | of the vertices of ^. For ^ {3,6}(5j0) with 3^ we hâve ^2
{6, 3}(50) ^* (the dual of ^) and ^2 covers the vertices of 0&gt; twice. (Note that
in [19] it was incorrectly remarked that for (s, i) (2, 0) the opération q&gt;2 does not
give a map ^2.) Finally, if » {3, 6}(55), then ^2 {6, 3}im and ^2 takes only
f of the vertices of 0&gt;.

In Section 4 we shall also use the opération

[i : (&lt;r0, o1!, &lt;r2) i-&gt; (cro^i^2^i^o5 ^2» ^i) =!(Po, Pu Pi) (5)

on the group A(0&gt;) &lt;cr0, a,, &lt;t2&gt; of a regular map ^ of type {3, 6}; see Figure 1.

Again we can apply Wythoff&apos;s construction to find P*.
In particular, for 0&gt; {3, 6} we find ^ {3, 6}, with A{&amp;*) &lt;p0, PuPi&gt; a

subgroup of index 3 in A(0&gt;); see Figure 4 in Section 3. It follows that
\A{&amp;) : A(0»)\ 1 or 3 for any map 9 of type {3, 6}. If s &gt; 2 and » {3, 6}(w),
then ^ {3,6}(s,0) and ^M takes only f of the vertices of ^. For ^ {3, 6}(U) the

opération (5) gives the map {3,6}(10) which is not an abstract polytope. If
^ {3,6}(3rjO), then 0» {3,6}(rr) and ^ takes again only \ of the vertices of ^.
Finally, if 3\s and 0&gt; {3, 6}(j0), then 9* {3, 6}(Jj0) and 9* is isomorphic to ^.
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Figure 1

Thèse facts follow easily from (3) and

PoPlPl M

and

Hère ~ indicates conjugacy.
We shall also use twisting opérations on groups W — &lt;&lt;j0,..., &lt;xm_i&gt;. If M^

admits involutory group automorphisms t permuting the generators on then we can

augment W by their addition to construct a semi-direct product ^4 of W by the

group generated by the t&apos;s. In suitable cases A will be the group of a regular
polytope. If xu...9Tk are the corresponding group automorphisms, we shall
dénote the twisting opération by

K :

In our applications the groups W will be defined by diagrams 9 and the group
automorphisms t will correspond to symmetries of 2.
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Following [4,5] we dénote by [1 1 ll]m the group abstractly defined by the

diagram

(6)

Hère the mark m inside the triangle indicates that a set of defining relations is

obtained by adding to the standard relations for al9aJ9 ak (given by the underlying
Coxeter diagram) the one extra relation

(&lt;rteJck&lt;TJ)m=l9 (7)

or any of the six équivalent relations obtained by relabelling the nodes.

We shall also consider more gênerai diagrams 2 consisting of a labelled

simplicial 2-complex whose edge graph is a Coxeter diagram and ail of whose

triangles are marked by a number m indicating an extra defining relation of type
(7). The corresponding (abstract) group is denoted by W(3&gt;). Examples of such

groups are the finite unitary reflexion groups [pqrl]m; see [2,4,31,32]. More
generally, if a group £/(say) and its generators satisfy ail defining relations of W(@)
but possibly other independent relations too, then U is said to belong to the diagram

2.

3. Subgroup relations for hyperbolic honeycombs

In Section 4 we shall discuss various relationships between locally toroidal
regular 4-polytopes of types {3, 3, 6}, {4, 3, 6}, {6, 3, 6} and {3, 6, 3}. Thèse are
based on relations between the symmetry groups of the corresponding hyperbolic
honeycombs.

It is well-known that {3, 3, 6}, {4, 3, 6}, {6, 3, 6} and {3, 6, 3} are (the Schlâfli-
symbols of) four of the fifteen regular honeycombs in hyperbolic 3-space H3 (cf.
Coxeter [6, 10]). Thèse four honeycombs hâve ail their vertices at infinity (that is,

on the absolute quadric). The two self-dual honeycombs {6, 3, 6} and {3, 6, 3} also
hâve their facets inscribed in horospheres.
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The symmetry group [p, q, r] of the honeycomb {/?, q, r) is the Coxeter group
with diagram *-

tionships:

¦
r

*. In particular we hâve the following subgroup rela-

(8)

Hère the subgroups are in the second row, with inclusion in the larger group of
the first row as indicated; the extra mark indicates the index of the subgroup.
Note that the diagram in the lower right corner does not belong to a regular
honeycomb.

The subgroup relations in (8) can be obtained by simplex dissection of hyper-
bolic tetrahedra. If the index of the subgroup is k, then its fundamental tetrahe-
dron is dissected into k congruent copies of the fundamental région for the larger

group.
To describe thèse dissections we use (up to relabelling) the diagram notation of

[7], p. 281. The tetrahedra are represented by graphs on 4 nodes. The nodes

represent the 2-faces of the tetrahedron, and a branch marked (by an integer or a

fraction) p indicates the dihedral angle njp between two faces. As usual, an
unmarked branch stands for a branch marked with p 3, and branches with
mark p 2 are omitted. The rule for dissecting a tetrahedron (by dividing the

angle njr into two angles njrx and 7t/r2) is given by

y&apos;

(9)



84

where

PETER MCMULLEN AND EGON SCHULTE

lll il, il,i 1 | 1
— —, — i — 1, -h — 1,

rx r2 r x x y y

n n n n n\I. n
cos - cos - sm cos - sin — / sin -,

ni n n n n\ n
cos - cos - sm cos - sin — / sm -

y \ s rx t r2JI r

(10)

The subgroup relations in (8) are derived from the following applications of
this rule. As above, the dihedral angle n/r which is dissected corresponds to
the (possibly missing) horizontal branch in the diagram. For simplicity we write
• I • for

3/2

(lia)

(llb)

(Ile)
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(îid)

(Ile)

(HO

(llg)

4-
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As an example, to find the index of [6, 3, 6] in [3, 3, 6] use (lld), (llb) and (lia),
in this order.

Using thèse simplex dissections, it is easy to obtain generators for the appropri-
ate subgroups. Let [3, 3, 6] &lt;&lt;t0, &lt;73&gt;- Then we get generators p0,..., p3 for
the subgroups by the following opérations:

a : (&lt;r0,. ff3) |-&gt; fao» *i&gt; ^^^ ^3) =:(Po&gt; • • • &gt; P3)

7 :(&lt;70, ,&lt;X3)h-^(cro,(T2,a1,Cr3(T2(T3(T2(T3)=:(po, • • P3) ^&gt; g •,
1

For example, to prove (12) observe that the fundamental tetrahedron for [3, 6, 3]

can be constructed from the fundamental région for [3, 3, 6] by preserving ail but
the third wall (corresponding to a2) while replacing the reflexion wall of o2 by the

image under a2 of the reflexion wall of &lt;r3. See Figure 3 below.
The group [4, 3, 6] is derived from the group in (14) by the twisting opération

indicated by

0

More exactly, the opération is given by

k : (p0,.. p3; t) i-&gt; (t, pup2, p3) =:(^0, • • •, ^3). (16)

Next we consider the geometrical counterparts of (8), (12) and (13). The
following relationships between the honeycombs can be checked by using Wythoff&apos;s

construction [7].
The facets of {3, 6, 3} are (in one-to-one correspondence with) certain vertex-

figures of {3, 3, 6), while its vertex-figures are tessellations {6, 3} whose vertices and
edges occur among those of the original vertex-figure {3, 6}, as in Figure 2. To
prove this consider the tetrahedral 3-face F3 in the base flag &lt;P {F_u Fo,. F4}
of {3, 3, 6} and the fundamental tetrahedron Tfor [3, 3, 6] defined by #; see Figure
3. For simplicity we dénote the vertices of T by Fo,..., F3. The opération in (12)
is équivalent to a change from T to the (4 times)
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Figure 2

larger fundamental région Tx for [3,6,3] with vertices G0 F0, GX=FU G2 F2

and G3. Our notation is such that Gt corresponds to (the &quot;centre&quot; of) the /-face in
the base flag of {3, 6, 3} belonging to p0,. p3. Now, the vertex G3 of Ta is fixed

by &lt;Po&gt; Pu P2X so that Wythoff&apos;s construction (with initial vertex Go — Fo) shows

that the 3-face G3 of {3, 6, 3} corresponds to the vertex-figure of {3, 3, 6} at its

vertex o2(T\(yo(Fo)( G3). Similarly, the vertex Fo of Ta is fixed by (pu p2, P3X so

that the vertex-figure of {3, 6, 3} at FQ is obtained by clustering triangles in the

vertex-figure of {3, 3, 6} at Fo as indicated in Figure 2. This clustering corresponds
to an application of the facetting opération cp2; see Section 2.

In a similar fashion, we find that for the honeycomb {6, 3, 6} the facets are just
some of the vertex-figures of {3, 6, 3} {3, 3, 6}a, while its vertex-figures are tessel-

lations {3, 6} obtained from vertex-figures {6, 3} of {3, 3, 6}a by the opération
indicated in Figure 4. The latter corresponds to an application of fi of (5) to the

vertex-figures of {3, 3, 6}. In fact, (13) is équivalent to the change from Tto the (6
times larger) fundamental tetrahedron Tp for [6,3,6] with vertices H0 F0,

Hx= Fu H2 and H3 ax cro(Fo) in Figure 3. Now, to find the structure of the facets
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Gz

Fo Go

F1=G1= H

Figure 3

\
Figure 4
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Figure 5

note that &lt;p0, P\,Pi) fixes H3 and that H3( =(t1&lt;to(/7o)) is a vertex of {3, 3, 6}a. For
the vertex-figures, note that &lt;p,, p2, p3&gt; fixes Fo while &lt;p2, P3&gt; fixes F,.

The opération (14) also has a géométrie counterpart; see Figure 5. If Ty dénotes

the tetrahedron with vertices Ko,.. K39 then p0,..., p3 are the generating
reflexions in the walls of T7, with pt the reflexion in the wall opposite to Kt. Now,
since &lt;p0, Pi, p2) &lt;cro5 ^i? 02&gt; is the group of the facet F3 of {3,3,6}, the

transforms of Tl under &lt;po,Pi,P2&gt; fit together to give five tetrahedral facets of
{3, 3, 6}, namely F3 and its four adjacent facets. Thèse five tetrahedra form a cube,
and this clustering of tetrahedra in fives extends to give a honeycomb {4, 3, 6}
inscribed in {3, 3, 6}. Note that in this context the cubical facets really hâve the
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symmetry of tetrahedra. The index of &lt;p0,..., p3&gt; in &lt;(x0,..., &lt;t3&gt; is 5, since Ty

is a fondamental région for &lt;p0,.. p3&gt; and Ty can be decomposed into 5 copies
of T.

4. Relationships between locally toroidal polytopes

In this section we discuss relationships between locally toroidal regular 4-poly-
topes of types {3,3,6}, {4,3,6}, {6,3,6} and {3,6,3}. Since their groups are

quotients of the groups of the corresponding hyperbolic honeycombs, we can use

the results of Section 3 to gain more insight into their structure. Note that by (8),
(12) and (13) any quotient of [3, 3, 6] contains as subgroups certain quotients of
[3, 6, 3] and [6, 3, 6] whose indices divide 4 or 6, respectively. A similar remark
applies to the other cases in (8).

First, recall that for any abstract rc-polytope 0 (and more generally, any poset)
the order complex A{9) is the simplicial (n — l)-complex whose simplices are the

totally ordered subsets of 9 which do not contain the — l)-face and «-face of 9
[33]. If 9 is a hyperbolic honeycomb {/?, q, r}, then A(&amp;) is isomorphic to the

barycentric subdivision of 0*.

To consider the opérations (12), (13) and (14) on abstract polytopes let 9 be a

regular polytope in the class &lt;{3, 3}, {3, 6}(iM)&gt; with group A(0&gt;) &lt;&lt;x0,.. &lt;r3&gt;.

The facets of 9 are 3-simplices, so that 9 is a &quot;simplicial poset&quot;. In fact, in
almost ail cases 9 is actually a simplicial complex in the usual sensé. For example,
for ^ ^0:={{3, 3}, {3, 6}(5&gt;r)} this is true unless (M) =(2,0). Now, for a

gênerai ^, subdividing each simplicial facet barycentrically gives (an isomorphic
copy of) the order complex A(0&gt;); this is always a simplicial complex. The

3-simplex of A(0&gt;) which corresponds to the base flag &lt;P {F_UFO,. F4} of 9
is a fundamental tetrahedron for the action of 9 on A(£P) (or on the underlying
topological space |zf(^)|). The complex A{&amp;) (\A(£?)\, respectively) can be ob-
tained from the barycentric subdivision of the hyperbolic honeycomb {3, 3, 6} (H3,
respectively) by identifications corresponding to the extra relations for A{£?)\ see

(3).

4.1. The types {3, 3, 6} and {3, 6, 3}

We begin with the construction of the polytopes 0&gt;* of type {3, 6, 3} from
those of type {3, 3, 6}, with

a : (&lt;r0,..., a3) h* (&lt;r0, au
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as in (12). On &amp; we impose the (weak) condition that its graph (consisting of ail
vertices and edges of 0*) has no loops; that is, any two vertices of 9 are joined by
at most one edge of 9. This is satisfied if 9 is a simplicial complex. We do not
know of a polytope in &lt;{3, 3}, {3, 6}is t)

&gt; which violâtes the condition; even ^(2,o)
does not.

Now, our above remarks on A(éP) imply that we can construct 9* from 9 in a
similar fashion as {3,6, 3} from {3, 3,6}. Again Figure 3 illustrâtes how the
fundamental tetrahedra for 0&gt; and 0&gt;* (or for A(0&gt;) and A{0&gt;a)) are related; we use

the same notation as in Section 3.

Employing Wythoff&apos;s construction shows that the facets of 0&gt;* are certain

vertex-figures {3, 6}{st) of ^, while its vertex-figures are transforms under the

facetting opération q&gt;2 of the original vertex-figures {3,6}(&gt;M). To check that
A :=&lt;po&gt; • • • &gt; P3) is indeed a C-group with ^a as the corresponding polytope, let
\\t g &lt;p0, p,, p2} n &lt;/?!, p2, p3&gt;. Then \j/ fixes the vertices Fo and G3 of 0&gt;. Now, since

the graph of 3P has no loops, Fo and G3 are joined by only one edge, namely the

edge of F3 Connecting Fo and G3. It follows that \j/ e &lt;pl5 p2}, as required for the
intersection property to hold.

To find the index of A in A(0&gt;) observe that in A(&amp;) the simplex Ta with vertices

Go, Gx, G2, G2 is dissected into four copies of the fundamental région for A(0&gt;) with
vertices Fo, Fu F2, F3, namely T, (?2(T), g2gx{T) and d2(T1(T0(r). If the index is not
4, then Ta is not a fundamental région for A, so that two of thèse copies must be

équivalent under A. Since ao,axeA it follows in this case that o2eA and thus
A A(0&gt;). Hence \A(0&gt;) : A \ 1 or 4. If A A(0&gt;), then a2 e A and one is tempted
to conclude a2e &lt;p,, p2, p3&gt; (since o2 stabilizes the base vertex G0 F0 of 0&gt;(£).

However we cannot be sure that Wythoff&apos;s construction of 0&gt;* in A(0&gt;) gives a

faithful realization.
Part (a) of the following theorem follows from our remarks in Section 2 on the

facetting opération. The proof of (b) is given later. Note that there are other proofs
of Theorem l(b) (and Theorem 3(b)) which use coset enumeration.

THEOREM 1. Let0&gt;bea regular 4-polytope in the class &lt;{3, 3}, {3, 6}(iM) &gt;, and
let a be the opération (12). Assume that the graph of 0&gt; has no loops.

(a) Then 0&gt;* is a regular 4-polytope in the class

(i) &lt;{3, 6}(3r,O), {6, 3}(r,r) &gt; if s 3r &gt; 3, t 0;

(ii) &lt;{3,6}(f,o),{6,3}(fiO)&gt;i/3^,/-0;
(iii) &lt;{3,6}M,{6,3}(,,O)&gt;//^ r&gt;2.

Furthermore, \A{0&gt;) : A{0&gt;*)\ 1 or 4, and A(0&gt;«) =A(0&gt;) in case (ii).
(b) // ^ ^»(50:={{3, 3}, {3,6}(JtO}, then for (i), (ii) and (iii) the index is

given by \A{0&gt;) : A(^a)\ =4, 1 and 4, respectively. In particular, &amp;lss)
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It is clear from the construction that if 9 is universal in its class, then 0&gt;* is

universal among ail polytopes obtained by a from polytopes of the same class as 0*.

Theorem l(b) states that at least for 0&gt; — 0*M the new polytope is indeed universal
in its class.

The finite universal polytopes ^(st) were classified in [22]. The only finite
instances are obtained for (M) =(2,0), (3,0), (4,0) and (2,2). Also known
is the classification of the universal polytopes {{3,6}(3rO), {6,3}(rr)} and

{{3, 6}(55), {6, 3)^0)}; the only finite instances occur for r 1 and s — 2, respectively
[22]. Below we briefly recall some of the corresponding constructions.

First, #(JJ) was constructed from the abstract group Wx &lt;al5. a4&gt; with
tetrahedral diagram

4

(17)

by applying the twisting opération

k : (a,,. a4; t15 t2, t3) i-&gt; (t3, t2, t,, ax) := (18)

Then we hâve semi-direct products A(0&gt;(ss)) &lt;a,,. a4&gt; x {tl, t2, t3&gt;

Wx x S4. In particular, 0&gt;(s s) is finite if and only if s 2. If s 2 then Wx ~ S5 and

Now, the generators p0,..., p3 of 4 A(^ss)) are given by

(p0,..., p3) (tr0, ff!, cr2&lt;r3ff2, o-3) (t3, t2, a2, aj, (19)

so that A Wx x S3. In particular, for the index we hâve \A(0&gt;^s)) : ,4| 4.
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Next, recall from [22] that the universal polytope {{3, 6}(v0), {6, 3}(//)} (with
s t or s 3/) was constructed from the abstract group W2 &lt;j8l9. j84&gt; with
tetrahedral diagram

(20)

(with the bottom 2-face marked t, the other 2-faces marked s) by means of

ic :(/?„..., /J4; t,, t2) ^ Off4, /J3, t2, t,). (21)

Its group W2 x ^ is finite if and only \î s t 2. \ï s t =2 the group is

S5 x S3.

To find @\Sj) we only hâve to note that the generators of (19) correspond to
those of (21) in reverse order (with t=s in (20)). It follows that ^\s,s)

{{3, 6}(ss), {6, 3}(j0)}. This proves part of Theorem l(b). The only finite instance
is

{{3, 3}, {3, 6}(2,2)} -1+ {{3, 6}(2,2), {6, 3}(2,O)},

with the mark at the arrow indicating the index.
We continue our discussion with case (ii) of Theorem l(b). The classification

of the universal polytopes {{3, 6}(50), {6, 3}(50)} is still open. In Weiss [36], it is

proved that for s 2,3 the polytopes are finite. The polytopes ^(2,o) and

{{3, 6}(2?0), {6, 3}(2,o)} both hâve group S5 x C2, so that ^2,o) is indeed universal;
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that is,

{{3, 6}(2f0), {6,

For ^(4,0) we are again in case (ii) of Theorem 1, but hère {{3, 6}(40), {6, 3}(4o)} is

likely to be infinité while ^(4,o&gt; is finite.
By Theorem 1 we hâve 0\m e &lt;{3, 6}(Jt0), {6, 3}(5,0) &gt; if 3^5. This implies that

the universal polytope {{3, 6}(j&gt;0), {6, 3}(50)} exists for ail such s, but 0&gt;\sSi) is finite
if and only if ^(5,o) i

THEOREM 2. The universal regular polytope {{3, 6}(5j0), {6, 3}(Jt0)} exists for ail
s with 3Jfs. For s &gt; 5 (and most likely alsofor s 4) it is infinité. For s —lit is finite
and its group is S5 x C2.

We remark that the results of [24] carry over to the situation of Theorem 2.

Note also that Theorem 2 implies that for any s with s # 2*37 the universal

{{3, 6}(j0), {6, 3}(j0)} either does not exist or, if it exists, must be infinité. In fact, if
s î£ 2kV, choose a prime p with p &gt; 5 and p \ s, and apply Theorem 2 with s replaced
by p. Since the group for p is a quotient of the group for s, the above follows.

We proceed with the discussion of case (i) of Theorem 1. Recall from [22] that
the universal polytope 0*^,0) ~ {{3, 3}, {3, 6}(j0)} was constructed from the abstract

group W3 [1 1 23]s with diagram

(22)

and generators &lt;xu &lt;x4 (say) by means of the twisting opération

k : (a,,.. a4; t) i-&gt; (a,, a2, a3, t) =:(a0,.. a3). (23)

In particular, A(0&gt;(sO)) W3xC2. This is a finite group if and only if s &lt; 4.

First we complète the proof of Theorem l(b). For each r the polytope
^W,o) projects onto ^(3,0)&gt; since A(0*(3fO)) is a quotient of A(0&gt;(3rO)). It follows that
0&gt;(3r,o) projects onto 9\^y Hence, to prove A(0&gt;\3rm) ¥^A(0&gt;(3rO)) (and thus
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r,o))| 4), it suffices to check this for r 1. But for r 1 we hâve

{{3, 3}, {3, 6}(3,o)} -^&gt; {{3, 6}(3,o), {6, 3}(U)}.
4

In fact, while A(^i30)) W3xC2 has order 1296, the group of
{{3,6}(3fO), {6,3}(U)} is [lll]3x5f3 of order 324 (cf. [22], Section 8). This

complètes the proof of Theorem l(b).
By Theorem 1 we know that ^(3r,0) e &lt;{3, 6}(3r0)9 {6, 3}(rr) &gt;. Now, the universal

{{3, 6}(3rj0), {6, 3}(r&gt;r)} is obtained from W2 (pu p4) (with s 3r, t r) in

(20) by opération (21). It follows that A(0&gt;ï3rO)) &lt;po,. p3&gt; is a quotient of
W2xS3. A more instructive way (independent of Theorem 1) to see this is

obtained as follows.
First, observe that by (12) and (23)

(«i, a2, a3ra3, t).

Then

a3a4a2a4a3,

=a4a3a2a3a4,
(24)

Note that ^2 is a subgroup of PT3. The éléments a3ra3 and t act on W2 as indicated
in the diagram

03
(25)
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Note that products like /?2/i&gt;3, P\$i$ï$2 and P2p3p4p3 indeed hâve the correct order,
namely 3, r and 3r, respectively. Hence &gt;?, i—? yS, (i 1,.. 4) defines a homomor-
phism of W2 onto W2. This extends in an obvious way to a homomorphism of
W2 X S3 W2 X &lt;Tl, T2&gt; OntO ^(^3r,0))-

We cannot completely rule out hère that the factorization

is not a semi-direct product (though this is very unlikely), or equivalently, that
a3a4 a3ta3T e W2.

We can similarly proceed for ^(S,o) with 3^. Then ^ls,o)e
({3,6}{sO), {6, 3}(j0)&gt;. Defining /?, and FF2 as above, we find that (25) has to be

replaced by

Â (26)

Again this can be verified directly or by use of the projection
{{3, 6}(5&gt;0), {6, 3}(5fJ)} h-&gt; ^Jf0), with the first polytope defined by (20) and (21) with
s t. Now, since {3, 6}g0) {6, 3}(50), the subgroup (pu p2, p3&gt; has order 12^2.

Ontheotherhand,&lt;/?i, fi2i/p3}^[\ 1 l]5 (of order 6s2) and&lt;jS,, j32, i?2&gt;&lt;T, a3ta3&gt;&lt;

&lt;Pu P21 P3&gt;- It follows that a3a4 a3ta3T e W2. Hence v4(^0)) W2 • &lt;t, a3ra3&gt;

is not a semi-direct product. However,
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By Theorem 1 we hâve A(0^sO)) =A(^is0)), so that W2 W3. In particular we
hâve proved the following interesting fact:

For ?&gt;\s the group [1 1 2]s of (22) belongs to the diagram (26). (27)

However, in gênerai, additional relations to those of (26) are needed to define W3

(for example for s 4). If s 2 the relations do suffice, defining the group S5 (cf.
[22]).

It is worth remarking that for 3)fs we can construct from ^(5)0) (or ^cm») a

polytope if in &lt;{3, 6}iSjQ)9 {6, 3}(SiS) &gt; with group A(£&gt;) =[1 l 2]s xS3. In particular,

A(J?) contains A(^{s0}) as a subgroup of index 3. In fact, as (26) indicates, the
élément a3ra3 acts on W2 in the same way as t2 in (20). It follows that we can
adjoin to A(^(s0)) A(^ls0)) a suitable involutory élément, so that if can be

constructed as in (21). Note for this that the intersection property for

^(^o)) &lt;A&gt;, • • •, P3 &gt; implies the property &lt;£, f}2, p3 &gt; n &lt;/?2, p3, ^4 &gt;

&lt;/?2&gt; ^3)&apos; and this in turn the intersection property for A(J^).
If s =2 then £&gt; {{3, 6}(2,o), {6, 3}(2,2)} and A( &amp;) S5 x S3 [22]. For s 4 the

polytope if is finite but {{3, 6}(40), {6, 3}(44)} is infinité.

4.2. The types {3, 3, 6} and {6, 3, 6}

We next discuss the polytopes &amp;* of type {6, 3, 6}, where 9 is a polytope in
&lt;{3, 3}, {3, 6}(Jt0 &gt; and /? is the opération on A(0&gt;) &lt;&lt;r0,. a3} given by

jS :((70, ,&lt;73) «-^((To,^ (72(73(72(7! ,^3^2) =:(Po, • • • P3X

as in (13). As in Section 4.1, we assume that the graph of &amp;&gt; has no loops. Again,
we can construct &amp;&gt;p from 3P as {6, 3, 6} from {3, 3, 6}; see Figure 3.

Applying Wythoff&apos;s construction to the order complex A(0*), we find that the
facets of 0&gt;p are just some of the vertex-figures of ^&lt;x, while its vertex-figures are
transforms of the original vertex-figure {3, 6}(5f) under the opération fi of (5). To
check that A :=&lt;p0&gt; • • • &gt;

P3&gt; is indeed a C-group with 3^ as the corresponding
polytope let \j/ e &lt;p0» Pi&gt; Pi) n&lt;Pi» P2» P3&gt;- Then i^ fixes the vertices Fo( =H0) and

H3 of ^ and thus the unique edge (of F3) Connecting Fo and H3; hère we used our
assumption that the graph of 9 has no loops. It follows that \j/ e&lt;p!,p2&gt;&gt; as

required.
Now, to find the index of A in A(0&gt;), observe that in A(0&gt;) the simplex Tp with

vertices H09 Hu H2 and H3 is dissected into six copies of the fundamental région T
for A(&amp;) with vertices FO9...9F3. Thèse copies are T, ax(T)9 (Jxa0{T), (Jxa2{T),
&lt;*\ °&quot;2^o(^) and {p2o\ ao)\T). We shall see below that in the most interesting case we
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have \A{@&gt;) : A | 1 or 6, proving that either T or Tfi is a fundamental région for A,
respectively. In particular, if the index is 6, then (&lt;r2(Txa0)2 ^ A; note that in Figure
3 the élément {o2gxg0)2 corresponds to the &quot;half-turn&quot; of F3 about the edge

Connecting FQ and i/3, and thus maps Tp onto itself.
Note that A can only be normal in A(0&gt;) if A A(0&gt;). In fact, if A is normal

then croo&quot;i&lt;T0 (T1(j0(T1 € oxAox =A and thus A A(0&gt;). It follows that the index
cannot be 2.

Further, note that by our remarks on (5) we have A A(0&gt;) if 3)fs and t 0.

It is likely that this is the only case where A =A{0&gt;). In fact, if A A(0&gt;) then
&lt;x, e A and we are tempted to conclude that ax e &lt;p,, p2, p3} (since gx stabilizes the
base vertex Fo Ho of &amp;$). However, as in Section 4.1, we cannot be sure that the
realization of 0&gt;p on A(0&gt;) is faithful. If indeed ox e (px, p2, p3&gt;, then our remarks

on (5) imply that 3\s and t 0.

Now let &amp; ^(3r,o) {{3, 3}, {3, 6}(3rïO)} with r &gt; 1; see (22) and (23). Then

A(^{30)) is a quotient of A(0&gt;). Since the index of a subgroup can only get smaller
under a homomorphism, it suffices to prove \A(éP):A\ 6 if r \. Now, if
r 1 then 0* e &lt;{6, 3}(1 fI), {3, 6}(U) &gt;. The universal {{6, 3}(U), {3, 6}(1J)} is flat,
and so it is the only member in its class; see Section 6. It follows that

^ {{6,3}(U),{3,6}(U)} and A(P*) S3xA({396}iltly)9 of order 216 [22]. On
the other hand, A(0&gt;) =[11 2]3xC2, of order 1296. Hence, \A(0&gt;) :A\ 69 as

required.
If 9 is a non-universal member of &lt;{3, 3}, {3, 6}(3r0)&gt;, we do not know if

A(^(30)) is always a quotient of A(0&gt;). Hère we cannot completely rule out that the

index is not 6, though this is very likely.
Now let » 0&gt;is,s) {{3, 3}, {3, 6}M} with s &gt; 2; see (17) and (18). Then by

(13) the generators of A are given by

(p0,. p3) (t3, a3, a,, t,). (28)

It follows that A Wxx(tx,t3)=Wxx(C2 x C2). But A(0&gt;) WxS4,so that
\A(0&quot;) : A\ 6, as required. Note further that (28) itself defines a twisting opération
on Wx &lt;aj,..., a4&gt;. This is in fact the same opération which was used in [22] to
construct the universal {{6, 3}(s0), {3, 6}(j0)}; see also (35) and (36) below. Hence,

^ {{6,3}(f,0),{3,6}(5,0)}.
Finally, if 9 is any member of &lt;{3, 3}, {3, 6}(55)&gt;, then A(0&gt;) is the image

of A(0&gt;iss)) WxxS4 under a homomorphism / (say) mapping distinguished
generators to distinguished generators. But then A{£?) =f(Wx) •/(&lt;!,, t2, i3»,
/«t,,t2,t3»-S4, and A(^)=f(Wx)&apos;f((Tl9T3)). If / is such that
f{Wx)nf((xx,x2,x3y) {1}, then the two products are semi-direct products and
the index is 6. However we are not sure if this is always true.
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THEOREM 3. Let 0&gt; be a regular polytope in the class &lt;{3, 3}, {3, 6}(Jt0 &gt;, and
let P be the opération (13). Assume that the graph of 0 has no loops.

(a) Then ^ is a regular 4-polytope in the class

(i) &lt;{6, 3}(r,r), {3, 6}(v) &gt; if s 3r &gt; 3, t 0;

(ii) &lt;{6, 3}(5f0), {3, 6}(Jf0) &gt; if 3jfs, t 0;

(iii) &lt;{6, 3}(5ï0), {3, 6}(5ï0)&gt;ifs t&gt;2.

Furthermore, \A(0&gt;) : A{&amp;*)\ 1 in case (ii), and \A(&amp;) : v4(^)| 1,3 or 6 in case

(i) awrf (iii).
(b)lf0&gt; &amp;M {{3,3}, {3, 6}(,f0}, then for (i), (ii) and (iii) the index is given

by \A(&amp;):A(PP)\ 6, 1 and 6, respectively. Also, 9\^ {{6, 3}(5,0), {3, 6}(5,0)}

/or j &gt; 2.

The finite universal regular polytopes {{6, 3}(&lt;?r), {3, 6}ist)} hâve been classified

in [22], Theorem 4. The only finite instances are: {{6, 3}(22), {3, 6}(20)} with group
S5 x S4 x C2; {{6, 3}(^0), {3, 6}(2)0)} for q 2, 3, 4, with group [1 1 2]^ x (C2 x C2)

of order 4 • 5!, 4 • 33 • 4! and 256 • 5!, respectively; and the duals of thèse polytopes.
We briefly discuss the application of Theorem 3 to finite universal polytopes. In

Theorem 3(a)(ii), if s 2 or 4, then A(0&gt;{sSS)) =S5xC2 or [1 1 2]4 x C2, respectively.

Hence ^f5,o&gt; is not universal in its class and A{gP$) has index 2 or oo in the

group of the universal polytope, respectively. In the remaining cases we hâve

{{3, 3}, {3, 6}(2,2)} -L {{6, 3}(2,O), {3, 6}(2,0)},
6

{{3, 3}, {3, 6}(3.o,} -^ {{6, 3}(U1), {3, 6}(M)}.
6

4.3. The types {3, 3, 6} and {4, 3, 6}

In Section 3 the hyperbolic honeycomb {4, 3, 6} was constructed from {3, 3, 6}
by clustering tetrahedra in fives. For the groups this implied an application of the

opération y in (14) followed by a twisting opération k as in (16).
Now, let » be a regular polytope in &lt;{3, 3}, {3, 6}(J&gt;0 &gt; with group A(0&gt;)

&lt;cr0,.. cr3&gt;. We cannot generally expect to obtain a new regular polytope of type
{4, 3, 6} from 9 by applying the corresponding opérations y and k. Clearly y can be

defined as before by

y : (&lt;r0,. cr3) h-» (&lt;r0, a2, ou g3g2(ï3(t2(j3) —(A)» • • • »
Pj)&gt;

but in gênerai the resulting group will not admit a suitable group automorphism t
to allow a twisting opération. Equivalently, in gênerai the clustering of the
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tetrahedral facets of 9&gt; in fives will only give a polytope with cubical facets which
is not regular. The following explains why the construction fails.

First, note that the construction gives new vertex-figures of two kinds: old
vertex-figures {3, 6}(j0, and new vertex-figures obtained from the old vertex-figure
{3, 6}(st) by clustering faces {3} in fours. If 5* is even (and t 0 or t — s), this
latter vertex-figure is of type {3, 6}(5/2&gt;

,/2&gt; » °therwise it is again of type {3, 6}(51)

and takes every face of the old vertex-figure four times (but with rôles switched).
The two kinds of vertex-figures correspond to the subgroups &lt;po&gt;p2&gt;P3)

&lt;73O0, (Ti, &lt;r2&lt;73&lt;72&gt;3 and &lt;p1? p2, p3&gt; of &lt;p0,..., p3&gt;, respectively; see also (12).
Hence, for the construction to give a polytope which is regular, s must be odd.

But then a2e &lt;pl9 p2, p3) and hence &lt;p0,. p3&gt; ^4(^). But now, since a3

maps the facet F3 of 9 to its neighbour, the clustering process covers each facet of
9 five times (but with rôles switched). It follows that each edge of 0* is also a new
edge. However, only in case (s, t)=(l, 1) or (s, t) (3, 0) are the faces {3} of the

(second kind of) new vertex-figures équivalent under the group to the faces {3} of
the old vertex-figures, so only hère can there be a twisting opération. It follows
that the construction gives a regular polytope only if (s,t)=(l,l) or
(5,0 =(3,0).

However, there are other interesting cases where the clustering process gives a

non-regular polytope of type {4, 3, 6}. For example, if 0&gt; {{3, 3}, {3, 6}(40)} and
thus A(!P) [1 1 2]4 tx C2, we obtain a polytope with 80 vertices (at 16 of which
the vertex-figure is {3, 6}(4 0) while at the remaining 64 it is {3, 6}(2 0)), 256 edges,

384 square faces and 128 cubical facets.

5. Local regular tessellations in polytopes

In this section we shall associate with a regular polytope 3P of rank 4 a regular

map Jf 3tf(&amp;) on a surface. In several cases this map is a regular tessellation on
the 2-sphere or in the euclidean or hyperbolic plane. In a sensé which we make

précise below, 3tf cuts right through the polytope. It is remarkable that for many
(but not ail) classes of polytopes the polytope is finite if and only if the map is

finite (or the tessellation spherical, respectively). The exceptional cases indicate
that the tessellations are (in a sensé) only &quot;locally inscribed&quot; into the polytopes.
Therefore the corresponding finiteness criteria (of Theorems 4, 5,6) are only
local criteria. It is worth pointing out that our considérations below will not
imply the existence of the polytopes; in this respect we need to refer to earlier
constructions.

Similar results hâve been studied in [23] for polytopes of type {3,4,4},
{4,4, 3} and {4,4,4}. Hère we discuss the types {3, 3, 6}, {6, 3, 6} and {3, 6, 3}.
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5.1. The types {p9 3, 6}

Let 0* be a regular 4-polytope of type {/?, q, r] with group A(0&gt;) &lt;p0,..., p3&gt;.

Assume that the vertex-figures of 0&gt; hâve 3-chains of lengths /(say). Then the opération

(p0,. p3) •-&gt; (po, Pu P2P3P2P3P2) =: (29)

gives a subgroup &lt;»Ao&gt; *Ai&gt; ^2) of ^(^) which is the group of a regular map
Jf Jf(&amp;) of type {/?, /}. Note for this that ^2 piP2(P3P2)2-

Let Fo,..., F3 be the (proper) faces in the base flag of &amp;. The map 2tf can be

constructed from &amp; by Wythoff&apos;s construction with initial vertex Fo (which is fixed

by \\fx and ^2); see [71- Then {^0,^1,^2} becomes the base flag of Jtf. The

neighbouring vertices of Fo in ^f are

for y 0,...,/-
that is, as we go around Fo in Jf we pick precisely the vertices of a 3-chain of the

vertex-figure of @&gt; at Fo. If we span topological dises into the 2-faces of Jf, we can
think of J&apos;f as a surface which in a sensé cuts right through ^.

If 0* is of type {/?, #, 6}, then p3 commutes with ^0, ^! and i^2&gt; so that ^f is

invariant under p3. Hence, in a sensé we can think of Jif as lying on the reflexion
wall of p3.

Now, let ^:= {{/?, 3}, {3, 6}(5 0} with p &gt;2. We are particularly interested in the

case p 3, 4 or 5. The 3-chains of {3, 6}u t) hâve lengths / s or 3^ if t 0 or s,

respectively. To find ^f we make use of the corresponding constructions of 9. We

begin with the case t 0.

5.2. Polytopes with vertex-figures {3, 6}(s0)

Recall from [22], Sections 4 and 5, that ^ {{p, 3}, {3, 6}(Jï0)} can be
constructed from the abstract group W &lt;al9..., a4&gt; with diagram

(30)
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by the twisting opération

(a1?... a4; t) h* (a,, &lt;x2, a3, t) =:(p0, • • P3).

In particular, ^(^) ^xC2. See (22) and (23) for the case p 3.

But now

O^o, ^i, ^2) (ai&gt; a2&gt; a3a4a3), (31)

so that the second entry in the type {/?, s} of Jf corresponds to the extra defining
relation (7) of W. Equivalently, the period s of

^1^2 PlPliPlPl)2 Pl(Plp2p3)2P2 ~ (PIP2P3)2

genuinely does specify the original polytope. We proceed with the following lemma
which is of interest in its own right.

LEMMA 1. Let p,s&gt;2 and W &lt;a,,. a4&gt; be the abstract group with

diagram (30). Then the subgroup &lt;al9 a2, a3a4a3&gt; of W is isomorphic to the Coxeter

group with diagram • •—j-+.

Proof. The proof uses the géométrie représentation for JFdescribed in [22]; see

also [4]. In [22] the représentation was only considered for p &lt; 5 but the methods
extend generally.

Consider the sesquilinear form h on complex 4-space C4,

4 1

Kx, y) Z xi^ ~ ô £ cijX,yj9 (32)
1=1

with

^13 ^14 0, c23 c24=l, c12 2cos-, c34 e2nl/s=&apos;-cs. (33)
P

(Note that the diagrams in [22] are mirror images of our diagram (30).) Let
au a4 be the canonical basis of C4. For k 1,..., 4 define the linear map
Rk : C4 h* C4 by

(34)
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Then Rl9..., R4 are hyperplane reflexions which préserve h, and the map at

(i 0,. 3) defines a homomorphism /: Wv-+ U-= (Rx,.. R4}. In particular,
W is finite if and only if the corresponding hermitian form h(x) -&gt;= h(x, x) is positive
definite. In this case (but probably also in other cases) the représentation of W is

faithful.
Define Sx*=Rl9 S2-=R2 and S3-=R3R4R3, so that &lt;5,,S2,S3} corresponds

to &lt;al9 a2, a3a4a3&gt; under/. Then Sl9 S2 and S3 are the reflexions orthogonal
to bx-=ax, b2:= a2 and b3-= R3(a4) a4 + csa3, respectively. In particular,
Sk(x) x - 2h(x, bk)bk for ail k. It follows that &lt;5l5 S2, S3) leaves invariant the

subspace (bub2,b3} whose orthogonal complément &lt;,bl9b29b3yx is the intersection

of the reflexion hyperplanes of SX9 S2 and S3. Since &lt;5I, S29 S3} acts trivially
on &lt;61? bl9 b3yL, it suffices to study its action on (bX9 b2, b3}.

Now, the Gram matrix of bub2,b3 is given by

7T

— cos-

n
—cos-

p

1

But 1 + cs)( 1 + cs) 4 cos2 (7c/j), so that /l «= 2( 1 cos has unit
modulus. It follows that the Gram matrix for the new basis bub2,Xb3 has the
form

n
—cos-

p

0

—cos-

n
-cos-

s

n
—cos-

s

But this is the familiar matrix for the Coxeter group [/?, s], Hence both &lt;Sl9 5*2,

and &lt;al9 a2, a3a4a3&gt; are isomporphic to this group.

THEOREM 4. Lé?/ p,s&gt;2 and 0&gt; {{/?, 3}, {3, 6}(,i0)}.
and thus is finite if and only if \/p + l/s &gt; 1/2.

{p, s}9

Theorem 4 follows immediately from the above lemma and our previous
remarks on Jf(^). It is interesting to note hère that a polytope 9 can be in-
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finite even though its tessellation 3tf{gP) is finite. In Theorem 4, if p &gt; 3, this

occurs precisely for the polytopes {{3,3}, {3,6}(5f0)}, {{4, 3}, {3, 6}(3jO)} and

{{5, 3}, {3, 6}(30)} which hâve (locally) &quot;inscribed&quot; finite tessellations {3, 5}, (4, 3}
and {5, 3}, respectively. The proof of Lemma 1 explains why this happens. In fact,
in the géométrie représentation of the corresponding group W, the subgroup which
defines Jf(£P) is a finite unitary (indeed even euclidean) reflexion group, while W
itself is not a finite unitary group. In other words, the hermitian form restricts to a

positive definite form on the corresponding 3-space but is not positive definite on
the whole space.

We continue our discussion with the polytopes 9 {{6, 3}((?r), {3, 6}^0)}. Hère

3^{^) is of type {6, s). First we consider the case r 0. Recall from [22], Section

5.3, that ^ {{6, 3}(^0), {3, 6}(j0)} can be constructed from the abstract group
W &lt;al9. a4&gt; with diagram

(35)

by the twisting opération

k :(«,,. ,a4;T,,T2) h-&gt;(t,, a2, a3, t2) =:(p0,. p3). (36)

Then A(0&gt;) Wx(C2x C2). For the generators of this implies

(^1, a2, a3a4a3). (37)
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Hence, A(Jf(0&gt;)) Z x C2 with Z »=&lt;«,, a2, a3a4a3&gt; and C2 &lt;t,&gt;. Note that
the subgroup Z of ^(Jf(^)) can be associated with the diagram

(38)

The map itself is constructed from Z by the twisting opération

k : (39)

As in Lemma 1, to obtain more information on Jf(^) we consider the

géométrie représentation/: W\-&gt; U (Rl9. R4} given by a sesquilinear form h

as in (32), but now with coefficients

cl2 c\3 — C\A — C23 — C24 — U -e2m/s (40)

([22], Section 5.3). This représentation is known to be faithful if Wis finite, that is,

if h is positive definite. We conjecture that this is true for ail q and s.

As in the proof of Lemma 1, Si-=Ri, *S2-.= i?!2 and S3-=R3R4R3 are the

reflexions orthogonal to bx&apos;-=au b2&apos;=a2 and b3 a4 + csa3, respectively. Now the

Gram matrix of bi9b2, b3 is given by

1

i 7i
2 2Cs 2 2Cs

2 2Cs

2 2Cs

1

(41)

This time we cannot simply rescale the base vectors to transform the matrix into a

real matrix. In fact, the déterminant A of the Gram matrix is given by

6 - 81 1+ 2 cos2 - cos2 -q) s
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so it genuinely dépends on both s and q. It follows that

A &gt; 0 if s 2 (and q arbitrary); s 3 and q &lt; oo; or, (5, g) (4, 2)

or (5, 2);
A=0 if(s,q)=(3, 00), (4, 3) or (6, 2);
zl &lt; 0 otherwise.

Accordingly, the restriction /*! (say) of h to the subspace (bub2,b3} is positive
definite, positive semi-definite, or indefinite, respectively.

If A &gt; 0 then hx defines a unitary metric and &lt;5&apos;1, S2, S3} becomes a unitary
reflexion group. If s 2 then it is clear that Z ~ S3 x C2, the Coxeter group with
diagram (38). This remains true for (Su S2, ^3) =/(Z)-

Let 5 3. By Computing the eigenvalues of SlS2S3S2 we find that SiS2S3S2
has order g; for similar computations see [22], équation (12). It follows that
&lt;£,, 52, *S3&gt; ^ [1 1 lp, or order 6q2. Note that /?! is positive semi-definite if q 00,
in agreement with the fact that the unmarked triangle is the diagram of a euclidean
Coxeter group; hère, the Gram matrix can be made real. We do not know if indeed

Z ~ &lt;S,, S2,S3&gt;.

Let # 2 (and 5 be arbitrary). Then in Z we hâve

so that

(a2a1a2a3a4a3)2= 1.

It follows that Z can be associated with the diagram

(42)

(43)

(Hère the parenthèses around the mark 2 indicate that the corresponding relation
is not necessarily équivalent to any of the five other relations obtained by permuting
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the generators.) Now, choosing the new generators /?0:=a3a4a3, j8, := aj and

j52:=a1a2a1 for Z, and using (42), shows that Z is a quotient of the group with
diagram *

s
• •. We shall prove that Z [s, 3].

First, note that Tot=f(Jlo) R3R4R3, Tx:=/(j?i) Rx and T2:=f(p2) RXR2RX

generate (Sl9S29S3y. They are the reflexions orthogonal to dx-.=a4 + csa3 b3,
d2&apos;•= ax bx and d3•= a2 + cqax —a2 — ax, respectively. The Gram matrix of dud2, d3

is given by

1

-*(M
0

-Cs)
-i(l+^)

1

0

~2
1

As in the proof of Lemma 1 we can change the basis dx,d2, d3 to obtain the Gram
matrix for [s, 3]. Hence [s, 3] &lt;£,, S^, S3&gt; Z.

Interesting spécial cases arise for (s, q) =(3,2), (4,2), (5,2) and (6,2). Then

Z [3, 3], [4, 3], [5, 3] or [6, 3], respectively. Note that only in the first two cases

the form h itself is positive definite. For (s, q) (3, 2) we hâve [3, 3] S4 [1 1 l]2,
in agreement with our above results.

Another way to find the structure of Jf(^) for q — 2 is obtained as follows.
Recall from [22], Lemma 1, that ^ {{6, 3}(20), {3, 6}(50)} is related to ^(Jt0)

{{3, 3}, {3, 6}(,t0)} by A{0&gt;) A(0&gt;isfi)) x C2;
&apos;

if A(^0)) &lt;jc0, *3&gt; and

Q &lt;a) (say)&gt; then

(p0, p3) (*&lt;&gt;&lt;*&gt; K\ &gt;
K2&gt; Ki)

are the generators for A(0&gt;) and a =(popiy. It follows that ^f(^) and J^(^iSj0))
are similarly related. But then Theorem 4 implies A{J^{0&quot;)) ^(^f(^(5O))) x C2

[3, ^] x C2. Note that the semi-direct product Z xC2 becomes direct; in fact, the

automorphism t, in (38) can be realized by conjugation with a^aj =/?2.
In the remaining cases for (s, q) the group &lt;S1? S2, 53&gt; becomes infinité, since /^

is positive semi-definite or indefinite. For (s, q) (4, 3) the form hx is positive
semi-definite and &lt;51? 52, 53&gt; acts as a (possibly non-discrete) unitary reflexion

group in a unitary plane. In the other cases the non-finiteness follows from the

irreducibility of (Sl9 S2, S3} ([22], Lemma 3). Now we can prove the following
resuit. See [3] for the notation in part (a).

THEOREM 5. Let q,s&gt;2 and ^={{6, 3}(Çt0), {3, 6}(,t0)}. Then 3tf{0&gt;) is of
type {6, s).

(a) If q 2 then Jf(^) {5, 6|, 2}*, the dual of {s, 6|, 2}. Also

[s, 3] x C2, a«rf /Aw^ J^(^) isfinite if and only if s &lt; 5.
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(b) If s 2 then Jf(^) {6, 2}. Ifs 3 and q &lt; oo, then Jf(^) has a projection
onto {6, 3}(g0). {Most likely, œ{0&gt;) {6, 3}(g0).) If s =3 and q oo,

{6,3}.
(c) /« a// other cases Jf(^) w infinité.

Proof Recall that Jf(^) is constructed from Z by (39). For (a) we can use (42)
to obtain

^î OAo&apos;Ai)2 a3a4a3a2a1a2 - a1a2(a3a4a3)a2

and thus (^2^iOAo^i)2)2 1- Since Z [5, 3], this is the only extra relation used to
define Jf(^). This proves (a). The remaining parts follow immediately from what
was said above.

Note that in Theorem 5(b) the faithfulness of the représentation of W
would imply Jf(^) ={6, 3}(^0). (In fact, for this it suffices to generalize (42) to
(a2a1a2a3a4a3)&lt;?= 1.) Note further that there are again instances where Jf(^) is

finite but 9 is infinité. An interesting example arises for (s, q) (5, 2).
We shall not proceed to discuss the case ^ {{6, 3}(^}, {3, 6}(^0)} in full

generality. Limited information is available from the fact that the homomorphism
A({6, 3}{qq)) \~* A({6, 3}(^0)) induces a homomorphism between the groups of the

corresponding maps. In particular it follows that parts (b) and (c) of Theorem 5

carry over (but Jf (&amp;) might possibly be {6, 3}{qq)).

5.3. Polytopes with vertex-figures {3, 6}(55)

We continue our discussion with the polytopes 0&gt; — {{/?, 3}, {3, 6}(ss)}, but
restrict ourselves mainly to the case p 3. Now Jf(^) is of type {/?, 3s}. Hère the

length 3s of the 3-chains does not détermine the vertex-figure (among maps of type
{3, 6}), so that it is not obvious what the structure of Jf {&amp;) is.

Now let p 3. Recall that » 9&gt;u^ {{3, 3}, {3, 6}iss)} was constructed from
the group W= &lt;a,,..., a4&gt; with diagram (17) by the twisting opération (18).
Rename the generators a09..., a3 of (18) by p0,..., p3, so that
&lt;p0,..., p3&gt;, as above. Then

so that the generators of A( Jf(0*)) are given by
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As we remarked above, p3 ocx commutes with i//09 \j/\ and \j/2 and thus with each

élément of Z^A{J^{^)) n W.

To obtain more information on ^f(^) we use the géométrie représentation for
W described in [22], Section 4.2. Again we consider a hermitian form h as in (32),
but now with coefficients

C\2 &lt;?34 &lt;?3i e2mls =: cs, c23 c24 c4X cs. (44)

Then h is positive definite, positive semi-definite or indefinite if s 2, s 3 or s &gt; 4,

respectively. As in the proof of Lemma 1 we hâve a homomorphism

/: W^U&apos;-=&lt;RU ,i?4&gt;, with Rk as in (34).
But now Rx =f(pL\) commutes with each élément of/(Z), so that/(Z) stabilises

the reflexion hyperplane of Rx, that is, the orthogonal complément af of ax. It
follows that/(Z) acts (probably faithfully) on ax as a group Ux (say) of isometries
with respect to the hermitian form hx (say) which is the restriction of h to a\. But
the geometry on a\ is completely determined by A; that is, hx is positive definite,
positive semi-definite or indefinite if s 2, s 3 or s &gt; 4, respectively.

If 5 2, then W S5 and ,4(^) S5 x 54, with a, (/ 5) for i 1,.. 4,

t, (1 2)(6 7), t2 (2 3)(7 8) and t3 (3 4)(8 9). Hère it is easy to check directly
that JHT(^) {3, 6}a2). In this case Z &lt;(1 5)(2 3), (1 5)(3 4)&gt; - ^3.

If .y&gt;4 then [/, acts irreducibly on a\. Note for this that éléments like
(R3RxR2)2=Mil/xil/2)3) or (R4RxR3)2=f((il/0^^2^i)3) belong to/(Z) and hâve

order s. But an irreducible isometry group for a non-degenerate indefinite hermitian
form must necessarily be infinité; see Lemma 3 of [22]. It follows that Ux, Z and

A(Jf {&amp;)) are infinité groups. In particular, Jf(^) is an infinité map.
In case s 3 we hâve a positive semi-definite form h. Hère W has an infinité

discrète unitary représentation g (say) on C3. The same kind of arguments as for/
show that g(Z) acts on the reflexion plane of g(ocx) as a 2-dimensional discrète

unitary group. Since no point is invariant under g(Z), we must hâve an infinité
group. It follows again that &lt;#?(£?) is infinité. We summarize our results in the

following theorem.

THEOREM 6. For the polytopes 0&gt;M {{3, 3}, {3, 6}(5fS)} the map 3f(0&gt;{s^) is

of type {3, 3s}. In particular, Jtf(&amp;a,2)) {3&gt; 6}(2,2&gt; and Jf(&amp;(s,s)) is infinité ifs &gt; 3.

Note that in Theorem 6 the polytope ^(5vS) is finite if and only if J&quot;f(^(S,S)) is

finite. For s &gt; 6 another proof of the non-finiteness of d^{^{ss)) can be obtained as

follows. First observe that for s&gt;2 the polytope ^(50):={{3, 3}, {3, 6}(^0)} is a

quotient of ^(5jJ). The corresponding homomorphism A{0&gt;{ss)) v-^ A{^{s0)) induces

a homomorphism A(3V(PM))^&gt;A(tf(&amp;M))). Hence, Jf(^iStS)) (of type {3, 3s})
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projects onto Jf(^0)) {3, s}. Note that similarly J^(^^s)) is derived from
,0))== {3,3s} by identifications induced by a homomorphism

It is likely that Theorem 6 and its proof carry over to the polytopes
&amp;&gt; {{p9 3}5 {35 6}(JvS)} with arbitrary p. For /? &gt; 4 and s &gt; 2 thèse polytopes are
infinité. For the corresponding géométrie représentation see [22], Section 5.2. Note
that by Theorem 4 the map Jtf(0&gt;) (of type {/?, 3s}) has a projection onto {/?, s}.

A similar remark applies to the (infinité) polytopes {{6, 3}(&lt;?r), {3, 6}(5vS)}. Hère

3^(8?) is of type {6, 3s} and is likely to be infinité except for (q, r, s) (2, 0, 2). For
the représentation see [22], Section 5. Hère projections are obtained from Theorems
5 and 6.

5.4. Other tessellations for polytopes of types {3, 3, 6} and {3, 6, 3}

There are other ways of associating a regular map with a regular polytope &amp; in
&lt;{3, 3}, {3,6}(5ff)&gt;. Consider the opération

(po&gt; • • •, p3) *-&gt;(P(» P1P2P3P2PUP3P2P3P2P3) =:Oo, *i&gt; *2) (45)

Then

Ko^i ~ P1P0P1 &apos; P2P3P2 P0P1P0P2P3P2 Po • P1P2P3P2 &apos;

Po

^ PiP2P3P2 ^ P2P1P2P3 Pi P2P1P3 PiP2P3P1 ~ P2P3

and

KXK2 pXp2p3p2P\ &apos; P3P2P3P2P3

It follows that ^4 := &lt;?c0, ^, *c2&gt; is the group of a regular map «^(^) of type {6, s).
Note that the period of k1k2 is s in both cases / 0 and s t; see (3).

An application of Wythoff&apos;s construction with initial vertex the base vertex Fo

of 9 shows that J({0P) is a map with vertices and edges among those of @&gt;. Note
that p2 commutes with k0, kx and k29 so that in a sensé Ji{^) lies on the reflexion
wall of p2.

Let 0&gt; 0&gt;(ss) {{3, 3}, {3, 6}(v)}. Then by (3) the condition OqK^)^ 1

spécifies the group of the original polytope. Using the construction of &amp;M in (17) and
(18) wefind that

(Ko, K\, k2) (t3, a3, a,a2a,),
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so that A &lt;a,a2a1? a3, a4&gt; x &lt;t3&gt;. This situation is analogous to that of (35) and

(37) with q =s. In particular,

•*(^W ^({{6, 3}(J,o), {3, 6}(5t0)}),

so that Theorem 5 applies.
For &amp; {{3, 3}, {3, 6}(J&gt;0)} the condition (k1k2)s 1 does not specify the group

of the original polytope, so that the structure of JÏ{gP) is less obvious.

Concluding, let us remark on polytopes &amp; of type {3, 6, 3}. Hère the &quot;sections&quot;

of &amp; by its &quot;reflexion walls&quot; do not appear to yield useful information. However,
in certain cases, limited information is available by other means.

Consider the opération

(p0,. p3) »-&gt; (Po, (PiPi)\ P3) =:(Xo, XuXi) (46)

on A(&lt;P) &lt;p0,. p3&gt;. This gives the group of a regular map JSf(^). Note that

if(^*) JSf(^)*. If the facets of ^ are of type {3, 6}(^r), then the period of
is

if
if
if
if

f 0,

r=0,
Y — $

Y — $

q even;

?odd;
q even;
a odd.6&lt;?,

Moreover, if q is odd, then p2 e &lt;#0, Xi &gt;• AH this is most easily seen geometrically.
A similar remark applies to the vertex-figures {6, 3}(5&gt;r). In particular, if q and 5 are

odd, then A(^(^)) ^(^). It is thus only in the case 9 {{3, 6}(2m0)&gt; {6, 3}(2n,O)}

that the periods of XoX\ and X\X2 specify the type of the polytope; then 5£(£P) is

of type {2m, 2n}. However, no explicit construction of {{3, 6}i2m,o)&gt; {6, 3}(2wO)} is

known yet, so that we do not know the structure of the map. (It seems that
Theorem 1 does not really help hère.)

It is worth mentioning that the analogous opération

(p0, ...,p3)i-&gt;(p0,(p1p2)2,p3)

applied to a polytope of type {{4,4}(2w0), {4,4}(2w0)} indicates that it is finite if and

only if 1/m + \jn &gt; 1; we know this to be true [23]. Applied to {{3, 4}, {4,4}(2w0)}
it similarly yields the known criterion n &lt; 1 for finiteness; hère po(pip2)2 has period
4 [23].
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6. Fiat polytopes

Recall that a regular «-polytope 9 is called (combinatorially) fiât if each of its
vertices is a vertex of each of its facets. Note that the dual of a flat polytope is also

flat. Flat regular polytopes hâve been constructed in [30] using the so-called

degenerate amalgamation property, or briefly, the DAP.
Recall that a polytope 0&gt; with group A(0&gt;) &lt;p0,..., pn_ {&gt; is said to hâve the

DAP with respect to its vertex-figure 0&gt;2 (say) if and only if A(0&gt;) is a semi-direct

product of the normal closure N(p0) of p0 in A(0&gt;) by the vertex stabilizer
&lt;/&gt;,,..., pn _

&gt; (with &lt;Pi,.. pn -1 &gt; acting on N(p0) in the obvious way) ; that is,

if and only if A(0&gt;) N(p0) x A(0&gt;2). Similarly, 0 has the DAP with respect to its

facet 0&gt;x (say) if and only if A(&amp;) N(pn_x) txA(0&gt;x), with N{pn_x) the normal
closure of pn_x in A(0&gt;). Clearly, &amp;&gt; has the DAP with respect to its facets if and

only if ^* has the DAP with respect to its vertex-figures.
Note that the DAP can also be defined in terms of collapses. For example, &amp;

has the DAP with respect to its facet &amp;x if and only if the mapping pn_ x \~+ 1 (and

pt h-&gt; pt for i &lt; n — 2) induces a &quot;collapse&quot; of 0* onto 3PX.

The following are examples of regular maps which hâve the DAP with respect
to their vertex-figures: {4, 3}, {6, 3}(5fj) with s &gt; 1, and {6, 3}(3rO) with r &gt; 1. No
other spherical or toroidal maps (excluding {2,/?}) hâve the DAP with respect to
their vertex-figures.

Below we make use of the following resuit ([30], Theorem 2). Let &lt;£ and M be

two regular (n — 1)-polytopes such that the vertex-figures of if are isomorphic to
the facets of 0t. Assume that $£ has the DAP with respect to its vertex-figures, and
0t has the DAP with respect to its facets. Then (J^7, ^&gt; contains a flat regular
n -polytope 9 which has the DAP with respect to both the facets and the

vertex-figures. For an example see the end of this section.

In this section we mainly discuss locally toroidal 4-polytopes 9 with flat facets

and vertex-figures. We begin with the following simple observation.

PROPOSITION 1. Let Se be a fiât facet of a regular n-polytope 0&gt;.

(a) Then 0* is also flat. (Infact, 0&gt; is flat in the stronger sensé that each vertex

of &amp; is a vertex of each (n —2)-face of @&gt;.)

(b) If 0&gt; has vertex-figures M, then 0&gt; {if, M) and 0&gt; is the only polytope in

Proof The proof of (a) is obvious, because 9 is connected and any two
adjacent facets of 9 meet in an (n — 2)-face which contains ail the vertices of each
facet. For (b) we know by part (a) that {if, $} is flat. But any identifications in a
flat universal polytope must lead to a collapse of the facets or vertex-figures. This

proves (b).
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THEOREM 7 Let 5£ and 0t be regular (n - 1)-polytopes such thaï the vertex-
figures of ££ are isomorphic to the facets of 0t Assume that S£ is flat and A(J£) acts

faithfully on the vertices of $£

(a) Then &lt;JS?, 0t) # 0 if and only if 01 has the DAP with respect to Us facets
(b) If &lt;if, 0t) # 0, then {if, 01} has the DAP with respect to Us facets

Proof Let 0&gt; e &lt;if, ^&gt; By Proposition 1 each vertex of 0&gt; is a vertex of the base

(n — 2)-face Fn_2 of 0&gt; But the generator pn_, acts tnvially on Fw 2/^-i and thus
fixes each vertex of 9 It follows that each élément of N(pn _ fixes each vertex of
0&gt; (or equivalently, each vertex of the base facet Fn x of ^) Hence, by our
assumptions on &lt;£ we must hâve N{pn _ x n &lt;p0, pn _ 2

&gt; {1} But by définition
of iV(pw we hâve A{0&gt;) =N(pn_x) &lt;p0, ,pw-2&gt;? so that this product is

semi-direct Therefore 9 must hâve the DAP with respect to îts facets But the DAP
is hereditary, that is, each co-face of 9 must also hâve the DAP with respect to îts
facets In particular this is true for the vertex-figures 0t of &amp;

Now to prove (b) and one direction of (a) apply thèse considérations with
0* {if, 0t\ The other direction of (a) follows from [30] This complètes the proof

The foliowing resuit was already proved in [22] by other means

COROLLARY The unwersal {{6, 3}(11}, 01}

(a) exists for 0t {3, 4}, {3, 6}(ss) with s&gt;l, and {3, 6}(3r0) with r &gt; 1,

(b) does not exist for M {3, 3}, {3, 5}, and {3, 6}U0) with 3)fs

Of the flat torus maps, ^£ {4,4}(20) and {3, 6}(11} do not satisfy the condition
of Theorem 7 but 5£ {6, 3}(11} does See [23] for the discussion of the case

{4,4}(20)
As an example we îllustrate the case 01 {3, 6}is t) geometncally However, rather

than taking {6, 3}(11} as a facet we shall find it more convement to take îts dual

{3, 6}(1,) as a potential vertex-figure
First, consider the universal ^ {{6, 3},{3, 6}(11)} (which exists by Theorem 7)

We know that 9 is flat and thus has only 6 facets Each edge belongs to each of the
6 facets But the facets 1, ,6 (say) cycle around the edges in three différent orders,

namely

A 123456
B 16 3 2 5 4 (47)
C 143652

(Note that thèse are the three différent ways of înterleavmg 13 5 and 2 4 6) Figure
6 shows facet 1 which meets only facets 2,4, 6, in the fashion of the figure, the edges
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Figure 6

C a

are labelled according to (47). Figure 7 shows the vertex-figure corresponding to the
circled vertex in Figure 6.

Now, the identification {6, 3} h-&gt; {6, 3}(s t) is only compatible with this labelling
in the cases s t &gt; 1, and t 0, s 3r &gt; 3. Thèse are precisely the cases where

{6, 3}{s t) has the DAP with respect to its vertex-figures. If t 0 and 3)fs, the facets

2,4,6 (and 1,3,5) are forced to coincide, and the polytope collapses to
{{6, 3}(iM), {3,2}}. Otherwise the 6 copies of {6, 3}(5&gt;0 can be glued together according

to the appropriate incidences (corresponding vertices of the copies coincide, as
do their edges).

We continue our discussion with polytopes 0* of type {3, 6, 3} which hâve

vertex-figures {6, 3}(11). Since the vertex-figures are flat, 9 can only hâve 3 facets.
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Figure 8

On a given facet 1, the incidence pattern with the two other facets 2, 3 has to be as

indicated in Figure 8. Now, while facets 1, 2, 3 must hâve the same vertices, the
reflexion p3 in the group A(0&gt;) &lt;p0,..., p3&gt; does not fix ail thèse vertices. In
fact, while fixing the given (circled) vertex and also the emphasized edge, it changes

edges joining &quot;adjacent&quot; vertices of the vertex-figure to edges joining &quot;opposite&quot;

vertices. Thus, in the adjacent facets 2 and 3, vertices two steps away along a
&quot;straight&quot; path are joined, which forces the facet to be a collapse of {3, 6}(3 0). It
is easily verified, on the other hand, that {{3, 6}(3O), {6, 3}(11)} and

{{3, 6}(U), {6, 3}(11)} exist as polytopes. For the former polytope see also our
Theorem 1, or [22].

More generally, let ^ be a regular 4-polytope of type {/?, 6, 3} whose vertex-
figure is {6, 3}(M). By (3) we hâve ((pip2)2p3)2 1, or equivalently, (PiP2)2P3

PsiPiPi)2- Now, conjugation of p0 and px by p2p3p2 P3P2.P3 gives

P3P2P3 &apos;

PO&apos;P3P2P3 PO,

P3P2P3 &apos; Pi • P3P2P3 P3P2P1P2P3 P3(P2P\)2P\P3 (P\P2)2P3P\P3

P\P2P\P2P\-

It foliows that p0pi(p2pi)2 is conjugate to popu and thus has order/?. Hence the
facets of 9 hâve 3-chains of length/?; see Section 2. In other words, the facets can
be obtained from the map {/?, 6|,/?} by identifications (preserving the length of the

3-chains); see [3] for notation. Note that this map is {3, 6}(30) if/? 3. It would be

interesting to know if indeed each map oÇ type {/?, 6} with 3-chains of length p
occurs as the facet of a (necessarily flat) regular 4-polytope with vertex-figures
{6,3}(M).

Concluding this section we describe a construction of flat regular 4-polytopes 9
in &lt;{6, 3}Uj), {3,6}(/&gt;0&gt; with s, t &gt; 1. Take the unitary groups [1 1 l]s
&lt;&lt;71? a2, ^3) and [1 1 \y &lt;&lt;r4, &lt;t5, a6&gt;, and consider their direct product
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with diagram

(48)

Hère the mark s refers to the triangle 123, the mark t to the triangle 456. Consider
the twisting opération

l,T0, T1,(T2)=:(/90, • • • (49)

This gives us the group of a regular 4-polytope &amp; in &lt;{6, 3}(ss)9 {3, 6}(M)&gt;. More
precisely, A(0&gt;) ([1 1 l]s x [1 1 1]&apos;) x53, of order 2\6s2t2. The polytope » has
652 vertices and 6/2 facets, and so must be flat.

Note that the construction generalizes to flat polytopes &amp; in &lt;if, ^?&gt;, where
&lt;£ has the DAP with respect to îts vertex-figure JT (say), and 01 has the DAP
with respect to its facet jf. In fact, if A(&amp;) &lt;a0,..., an_2&gt; and

&lt;j50,..., j?w-2X then we hâve A{£e) AT(a0) ix A{X) and

N(pn-2) xA(Jf), so that we can choose the group (^(oo) x N(pn_2)) xA(Jf) to
construct 0*. Note that this construction is équivalent to that of [30].
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