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Complete nonorientable minimal surfaces in R3

MARTY RoOSs

Abstract. We consider complete nonorientable minimal immersions x(M) < R3. Assuming the double
cover N of M has finite total curvature, we generalize an argument of Lopez/Ros to give a sufficient
condition for the instability of x(M) in terms of the total curvature of M and the genus y of N. We apply
this condition to prove that if the immersion is regular then x(M) is unstable. We also consider the case
where the immersion is finitely branched, and we classify the possibilities under the assumption that N
is hyperelliptic.

1. Introduction

Let x(M) = R? be a complete minimal immersion. x(M) is stable if the 2nd
variation of area is nonnegative for every compactly supported C' variation of
x(M) ([BC], §1). Fischer-Colbrie/Schoen [FS] and doCarmo/Peng [CP] indepen-
dently proved that if M is orientable and x(Mf) is stable then x(M) is a plane. The
corresponding question for nonorientable M remains open, and it is this question
we investigate here.

One can study the case of nonorientable M by lifting to the double cover N of
M. There is a natural 2: 1 projection # : N - M and an antipodal map I: N - N,
an orientation-reversing involution without fixed points satisfying

AI(p)) =#(p), PpEN. (1)

The immersion can be lifted to x(N), and we are then interested in variations
which are symmetric with respect to I (see Section 2). Restricting to oriented
isothermal coordinates (with respect to the induced metric), N becomes a
Riemann surface. In such coordinates the antipodal map is anticonformal. Also, if
N has finite total Gauss curvature (again in the induced metric) then N = N —
{P1, ..., P} is conformally a finitely-punctured compact Riemann surface ([Os],
§9). This characterization of N continues to hold if x(A) has finitely many branch
points, since the underlying result of Huber still holds ([Os], p. 89). However, if
x(M) is permitted to have infinitely many branch points, then the characterization
can fail ([Os], p. 73). The above result of Fischer-Colbrie/Schoen/DoCarmo/Peng
continues to hold if one allows finite branching ([M]), but the result is false for
nonorientable surfaces. For example, Henneberg’s surface, which possesses two
branch points, is stable ([C]).
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Since N is a Riemann surface, we can write x(/N) using the classical Weierstrass
representation ([Os], §8):

x(p) =Re Jw P, pEN, (2)
where
D = (¢, h2, $3) = (1 — g% i(1 + g3, 2g)a. (3)

Here g : N — C is a meromorphic function and « is a holomorphic differential on N.
Implicit in (2) is the fact that ¢ has no real periods:

Re j ®=0 for every closed curve y < N. (9
7

The branch points of x(XN), if they exist, occur at the zeros of @. Furthermore,
if N has finite total curvature then g and w extend meromorphically to N. g : N»C
is the Gauss map of x(N) in the following sense: if C : N — S? is the (standard)
Gauss map of x(N), and if = : §>— C is stereographic projection then

g=mnoG. (5)

The fact that x(N) is a double cover of a nonorientable immersion is equivalent
(with (4)) to ([O1], §1)

I*¢ =9, (6)
which is in turn equivalent to the two equations

goI=-1/g, (7
I*a = —g?a. (8)

Condition (7) is of particular interest to us. Suppose that N=N — {p,, ..., pi}
has finite total curvature. It is standard that the instability of x(N) can be reduced
to an eigenvalue estimate on N, and thus to the existence of suitable test functions
on N. If we want to consider the instability of the nonorientable immersion x(M),
we have to then search for test functions on N with appropriate anti-symmetry with
respect to I, corresponding to variations of x(N) which don’t separate the sheets —
see Section 2. It turns out that certain functions into S? can be considered as a trio
of such test functions. Composing with stereographic projection, the resulting
functions have exactly the symmetry of the Gauss map given by (7). The idea in this
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context is due to Lopez and Ros [LR]; they use this formulation to prove that the
catenoid and Enneper’s surface are the only complete orientable minimal immer-
sions into R? of index 1. By a simple generalization of their argument we have the
following sufficient condition for instability:

THEOREM 1. Let x(M) < R? be a complete, nonorientable, finitely branched
minimal immersion of finite total curvature with double cover N and Gauss map
g : N> C. Suppose there is a meromorphic function h : N - C with deg h < deg g,

h-I=—1/h, 7’

and such that h is not obtained from g by composition with a Mébius transformation.
Then x(M) is unstable.

We prove Theorem 1, along with a generalization, Theorem 1’, in Section 2.

In order to apply this theorem, we need to know of the existence of meromor-
phic functions of relatively low degree satisfying (7)’. In connection with this, we
would like to know something of the possible antipodal maps I : N — N. In general,
both of these questions appear to be difficult, but we do have the following (also
proved in Section 2).

LEMMA 2. Suppose N is a compact Riemann surface of genus y with an
anticonformal involution I : N — N, and suppose there is a meromorphic function g on
N satisfying (7)’. Then there is a meromorphic function h satisfying (7)" with deg h
<y+1

The point for us is that the Gauss map of a regular minimal immersion, as well
as satisfying (7)’, always satisfies deg g =y + 3. (This follows readily from [HM],
but for completeness we sketch a proof in Section 2). Thus, combined with the
above results, we have

THEOREM 3. Suppose that x(M) < R?® is a complete, regular, nonorientable
minimally immersed surface of finite total curvature, Then x(M) is unstable. ]

This theorem leaves open the possibility of the existence of stable finitely-
branched immersions. In Section 3 we assume N is hyperelliptic and classify the
possible antipodal maps on N (Theorem 5). This enables us to prove that except in
two special cases, x(M) must still be unstable (Corollary 6). One of the omitted
cases allows Henneberg’s Surface, which is a stable nonorientable surface with two

branch points ([C]). In Section 4 we construct stable, finitely branched immersions
permitted by the other case.
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The above questions have been investigated by a number of authors. The
stability of Henneberg’s surface, and other nonorientable immersions of projective
planes of total curvature —2n, has been observed, among others, by Choe [C] and
Meeks. The instability of all other projective planes was independently proved by
Choe [C] and Lima/daSilveira [LS]; Choe [C] also proved the instability of
minimally immersed Klein bottles. Lima and daSilveira [LS] proved that if M has
infinite total curvature and is finitely connected then the stability operator has
infinite index.!

2. Instability of regular immersions

As stated in the introduction, the instability of regular nonorientable immer-
sions follows immediately from Theorem 1 and Lemma 2. To prove Theorem 1,
suppose x(M) is a complete, nonorientable finitely-branched minimal immersion
with Gauss curvature K, and let x(N) be the induced immersion of the orientable
double cover. By the 2nd variation formula ([S], [M]) x(M) is stable iff

L VNP +2Kf*20 9

for every compactly supported C' function f: N —» R with the antipodal symmetry

SU(p)) = —f(p), peN. (10)

(f corresponds to a variation of x(M) with initial velocitiy vector field V =fG.
Thus (10) ensures V o I(p) = V(p)). If M, and thus N, has finite total curvature,
then any C' function f: N — R satisfying (10) is a legitimate test function in (9)
[F].

Suppose now that #: N—C is a meromorphic function satisfying (7)’. Let
H=(H,,H,, Hy) =n"'0h where n : S2— C is stereographic projection. Then H
satisfies (10). Applying (9) to each component of H, the argument in [LR] proves
that if x(M) is stable then

osj [V ¥HJ? + 2K = 8n(deg h — deg g). (11)
N

![LS] states only that x(M) is unstable, but the proof appears to establish more.



68 MARTY ROSS

This immediately gives a special case of Theorem 1: if deg h < deg g then x(M) is
unstable. To obtain the theorem in full generality, we consider the case of equality
in (11). It is shown in [LR] that equality in (11) implies

V7H|=|V 7G| (12)

pointwise. To complete the proof of Theorem 1, we show that (12) implies G and
H are related by an isometry of S%. Let U = N be any open set small enough so that
G:U-V, and H: U -V, are diffeomorphisms. Since G and H are conformal,
HoG™':V,-V,is a conformal diffecomorphism. By (12), H o G ~! =T must in
fact be an isometry of S?, and thus a rigid motion of S?. By connectedness,
H=T-G on all of N. O

It is possible to obtain a slightly more general version of Theorem 1. (11) is a
comparison of the energies of H and G, using the fact that

f 2K = —[ |V FG|> = —8n deg G. (13)
N N

If we consider H : N — S? satisfying (10) but not necessarily conformal then the
components of H are still legitimate test functions for (9), and we obtain

THEOREM 1’. Let x(M) < R? be a complete, nonorientable, finitely-branched
minimal immersion of finite total curvature with double cover N and Gauss map
G : N - 82 Suppose there is a C' function H : N - S? satisfying (10) with less
energy than G. Then x(M) is unstable. O

Next, to prove Lemma 2, we may as well assume deg g > y+1. Then, by (7)’,
we can write the divisor of g as

_ P...P,,
© =1y 1P,
Now consider the divisor
___Pm+l"'Py+n _
U=1p) xpy ™M=k

Since deg# =y +n —2m =y, the Riemann-Roch theorem ([FK, §3.4]) implies
there is a meromorphic function f with (f) = 1/%. Relabelling the P; if necessary,
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we can write

I(P)...I(P,)Q,...0

. s=r—2m.
P,.,...P s=rmam

(f) =

Now define

h=g],{1.

One easily checks that 4 satisfies (7)” and that degh <s+(y+n—r)<y+1. O

The final ingredient in the proof of theorem 3 is the claim that deg g =y + 3 for
the Gauss map of a regular nonorientable immersion. This comes from the Gauss-
Bonnet formula for a complete minimal immersion in R* ([JM, Th 4]):

fK = 2n(X(M) — n(M)),

where n(M) is the total number of ends of M at oo, counting multiplicity. Now, if
M is nonorientable with double cover N of genus y, then since M has at least one
puncture, X(M) < —y. As well, n(M) = 3 ((HM, Th 6], [K, Cor 1]). Together with
(13), this gives

—2ndegg <2n(—7y —3)
=degg >y +3,
as desired. O

3. Antipodal maps on hyperelliptic surfaces

A compact Riemann surface N is said to be hyperelliptic if there is a degree 2
meromorphic function z : N - C. Our intention is to classify the possible antipodal
maps on N (Theorem 5), which together with Theorem 1 will give instability results
for hyperelliptic minimal immersions (Corollary 6).

To begin, we recall some elementary properties of hyperelliptic Riemann sur-
faces ([FK], III-7). If N is a hyperelliptic surface of genus y, and if a degree 2
function z : N —» C is chosen to not have branch points at its poles, then N can be
represented by the polynomial

W2=(Z“P1)(Z —D>) "'(Z”P2y+2)- (14)
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Here w : N - C is a meromorphic function on N of degree 2y + 2, and every point
P € N is determined uniquely by z(P) and w(P). In particular, the (distinct) points
Pis-- -5 D242 can be identified with points on N, the branch points of z. Any
meromorphic function f: N - C can be written as a rational function of z and w,
and if deg f <y then f can be written as a rational function of z alone.

Any compact Riemann surface of genus y < 2 is hyperelliptic (of course if y =0
then N ~ C and N admits degree 1 functions). If y > 2 then any degree 2 function
z, : N - C can be written as z, = T o z where T is a Mobius transformation. There
is then a meromorphic function w, and a polynomial Q such that w? = Q(z,). Q is
of degree 2y + 2 unless T sends some p, to oo, in which case Q is of degree 2y + 1.

The key to classifying the antipodal maps on N is the following:

LEMMA 4. Suppose T : C— C is a Mobius transformation satisfying

T(T(2)) = z. (15)

Then there is a Mobius transformation S such that either

SoToS (z)=12 (16)
or

SeToS ') =—1/z (17)

Proof. ([AG]), 1:9-4). O

THEOREM 5. Suppose N is a hyperelliptic Riemann surface of genus y = 2, and
suppose I : N — N is an antipodal map. Then N and I can be written either in the form

W2=(Z—p1)(2 —pl) (Z —py+1)(z_p_v+l)’ Imp_]'_'éo’ (18)
zol =2, 19
{W°I= —Ww, (19)

or
wl=(z—p)z+1/p) -z —pyr 1)z +1py11), (20)
oI =—1/z, .
wol=—w/z?+1, (21)

If y is even then the 2nd case does not occur.
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REMARK. This result also holds for y =0 and 1, but has less meaning in these
cases. (As well, the proof given below does not apply in these cases.) If y =0 then
it follows from Lemma 4 that N admits a degree 1 function z satisfying (7)". If y = 1
then the easiest way to obtain a suitable classification is to identify N ~ C/L where
L is a lattice in the plane. The existence of the antipodal map 7 means that we can
assume L = (2, 2¢i) is rectangular and I is given by

I2) =z + 1. (22)

([AG]), Th. 1-9-8). Notice that the case where L is rhomboidal is ruled out by the
condition that 7 have no fixed points). Now let

1
F(2) =7 (P(z —cif2) — &), (23)

where 2 is the Weierstrass Z-function, e,, e,, e; are the values of £ at the zeros of
2’, and

b=./(e; —es)(e; —e,) R, (24)

([Al, pp. 277-279). A calculation shows that deg & =2 and ¥ satisfies (7).
Furthermore, by the functional equation for £,

(F'(2)? = 4bF (2)(F () — k) (3’7(2) + %) (25)
k= [A"S R+, (26)
€3 — €

Proof of Theorem 5. Let z, be a degree 2 function on N. Then —z,_oI is also
of degree 2 and so, because y =2, there is a Mobius transformation such that
z,oI =T oz,. Since I is an involution, T satisfies (15). Let z = S o z, where S is the
Mobius transformation given by Lemma 2. According to whether (16) or (17) is
satisfied, we have either zoI=Zor zo I = —1/Z.

If z oI =7Z then the branch points of z come in conjugate pairs and we can
find w such that (18) is satisfied. (The branch points of z cannot occur on the
extended real axis, since these would then be fixed points of 1) (18) then implies
(w o I)?=w?, and thus w o I = +w. The plus sign cannot occur, since then I/ would
fix the real z axis.
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Now suppose z o I = —1/z. Replacing z by (z + e®)/(z — %) if necessary, we
can assume z does not have a branch point at co. Pairing the branch points of z as
above, we can find w such that (20) is satisfied. (20) then gives

D2m(—1y+1 T2 27
o= (=17 T 2 s, @

j=1Fj

Replacing z by a suitable ez, we obtain (21).

It remains to show that if y is even then (21) is in fact inconsistent. Since 7 is
supposed to be an involution, we have

w=Wol)ol=—(=2)""'wol=(=1)""w=—w,
giving the desired contradiction. O

COROLLARY 6. Suppose x(M) = R? is a complete, finitely branched, non-
orientable minimal immersion of finite total curvature, and suppose that the double
cover N of M is hyperelliptic of genus y. Then x(M) is unstable in the following cases:

(1) if y =0 and the total curvature of M is less than —2m;

(i) ify =1

(iii) if y =2 and y is even;

(iv) if y = 3, y is odd, and the total curvature of M is less than —4n.

Proof of Corollary 6. Cases (i) and (ii) follow from Theorem 1, (13), and the
remark following the statement of Theorem 3: for case (ii) we define

o) =—YFD
2/b(F(z) — k)

(28)

and prove that deg 4 = 2, ¥ satisfies (7)’, and ¥ is not related to # by a Mobius
transformation.
To prove case (iii), let

w
T SO
f w

-G —p) D)
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It is easy to show deg f, =deg f, =7y + 1, f, and f, satisfy (7)’, and that f, and f,
are not related by a Mobius transformation. The proof of (iii) will now follow if we
can show N does not admit functions of degree < y satisfying (7)’. Supposing f is
such a function, we know f = R(z) is a rational function of z. If z(p) =0 then by

(19),
f(p) - FU(p)) = R(0) - R(0) e R,

contradicting (7)’.

Finally, the proof of case (iv) divides into two subcases. The 1st subcase, when
(18) and (19) apply, is identical to case (iii). For the 2nd subcase, z itself satisfies
(7)’, and the result follows from Theorem 1 and (13). O

4. Stable branched immersions

Let N be the compact Riemann surface given by

w?=(z*+p)* + 1p)2* — q1i)z® — i/q}) - - - (2% — qai)z* — i[q}), (29)
where n 20, p, q,,...,¢9, €R, and

l<p<g <---<gq,. (30)

N is a hyperelliptic surface of genus y = 3 + 2n, and we can define an antipodal map
I:N - N by (21).

We shall construct complete finitely-branched nonorientable immersions
x(M) = R*® with double cover x(N), antipodal map I, and Gauss map

gesg, (31

(Note (7) is automatically satisfied.) If g, is close enough to p then any such
immersion will be stable, the proof of which we now sketch: for more details, see
[R].

By [F], the stability of x(M) is equivalent to the nonnegativity of certain
eigenvalues of A+2 on the branched cover of S? obtained by the map
n~'oz: N -S2 To be more precise, we initially assume n = 0 (in which case N is
the underlying Riemann surface of the Schwarz surfaces considered in [R]). Let g,
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g1, &, g5 be the following automorphisms of N:

fg()(za W) = (29 "‘W)
81(z, w) = (iz, w)

_ (32)
g2(za W) = ( —'iZ, w)
\g3(z9 W) = (1/23 W/Z4)
Notice that
I=gy081°8°8;. (33)

These automorphisms are commuting isometries on the branched cover of S2. Thus,
when considering Rayleigh quotients to estimate eigenvalues of A + 2, it is enough
to consider test functions f which are odd or even with respect to g,, g, £, &3-
Further, by (10) and (33), we can assume f is odd with respect to g, and even with
respect to g5: if not then the other symmetries ensure that the zero set of f includes
a great circle, making the eigenvalue estimate straight-forward.

We have thus reduced the case n = 0 to considering functions f which are odd
with respect to g, (say) and g,, and even with respect to g, and g;. In [R] we show
that the lowest eigenfunction f of A + 2 with these symmetries has (strictly) positive
eigenvalue (the key to the proof is that the zero set of f intersects every circle of
latitude in diametrically opposite points). This completes the proof of stability for
n=0.

If n >0 then we assume g, is close to p. All the branch points of z are then
contained in the lift of eight small disks on S2. Removing these disks gives us a
Riemann surface independent of n > 0. Then, by the n =0 case, the lowest
symmetric eigenvalue of A + 2 on this surface is positive and bounded away from
zero, independent of the size of the disks. By a standard logarithm cut-off argument
[F], removing the disks can only raise the eigenvalue slightly. Thus the original
eigenvalue must also have been positive, and we have stability of x(M) for all .

It remains to show there is a symmetric immersion of N with Gauss map g = z.
For any integer k = 0 let

'w* dz
o m W (34)
Z
where
k(y + 1
1=24 KD (35)

2
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Then

(—)(—2)WH(=1/z)dz _

* —
I*o;, = RO D g70%.

Thus «, satisfies (8) and if

I

K
a=Y Aoy, A, €eR, (36)
k=0

then o also satisfies (8). Thus we just have to show that (4) can be satisfied by
suitable choice of the constants 4,. By making K huge, this is in fact very easy. The
immersion x(N) with Weierstrass g and o will have 2y + 4 poles, and we must
ensure that @ has no real periods if we wind around one of these poles. As well, the
homology group of N has a basis of 2y elements we need to consider. Since there
are three differentials to integrate, this gives a total of 12y + 12 period conditions to
be satisfied. These conditions are linear in the A4,, so K =12y + 13 is large enough
for the A4, to be selected.
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