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On a simplicial complex associated with tilting modules

CHRISTINE RIEDTMANN AND AIDAN SCHOFIELD

Introduction

Let A be a finite-dimensional associative algebra over an algebraically closed
field, and denote by mod A the category of finite-dimensional A-modules. We fix
the number of pairwise non-isomorphic simple A-modules to be n + 1.

Denote by & a set of fixed representatives for the isomorphism classes of
indecomposable A-modules T satisfying the following conditions:

(1) The projective dimension of T is at most 1.

(i) T does not extend itself, i.e. Ext! (T, T) =0.

Following Ringel, we define a simplicial complex 4, on the set & of vertices:
(Tp, ..., T,)is an r-simplex if Ext, (T,® - ®7T,, T,® - -®T,) =0. Ringel told
us that €, is a triangulated ball for certain hereditary algebras. Our goal is to prove
the following resulit:

THEOREM. If & is finite, the geometric realization of €, is an n-dimensional
ball.

We wish to thank C. Ringel for drawing our attention to ¥, and N. A’Campo
for discussing with us the topological aspects of the question.

1. The Bongartz completion

1.1. Recall from [3], [5] that a A-module T is a tilting module if it satisfies:
(1) projdim, T <1,
(i) ExtL\ (T, T) =0,
(111)) There is an exact sequence

0-A->T" ->T">0,
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with modules 77, 7" that belong to the full subcategory add T of mod A whose
objects are direct summands of 7% for some N.

The simplest example of a tilting module is A itself, and for some algebras, e.g.
the selfinjective ones, there are no others (aside from those obtained by changing the
multiplicities of the indecomposable direct summands). Bongartz proved in [2] that
a module 7 satisfying (i) and (i1) is a tilting module if and only if the number of its
pairwise non-isomorphic indecomposable direct summands equals the number n + 1
of isomorphism classes of simple modules. He also showed that any module T
satisfying (1) and (ii) is a direct summand of a tilting module. We recall his
construction: write T= @/_, T? as a direct sum of pairwise non-isomorphic
indecompesables Ty, . . ., T, with multiplicities 4y, . . ., 4,. Choose an exact sequence

r

0A->X->@ 1750

i=0

with the property that, for any £ =0, ..., r, the induced map

HomA (Tks @ Tfll>—)Ethi (Tk’ A)s (*)

i=0

is surjective. Then T'@® X is the desired tilting module.

Of course the condition (*) does not determine X uniquely. But it is easy to see
that possible choices for X only differ by direct summands in add 7, up to
isomorphism. Hence T determines a multiplicity-free tilting module 7= @7_, T,,
which is unique up to isomorphism. We call T, =T,, , @ - @ T, the Bongartz
completion of T.

1.2. Let T,, ..., T, be pairwise non-isomorphic indecomposables, and suppose that
@7.__0 T, is a tilting module.

PROPOSITION. The following statements are equivalent:
(a) @7_, ., T, is the Bongartz completion of @P:_,T.
(b) For j=r+1,...,n, there is no surjection from any module in

add (T()@”'@];—l@]}—FI@".@Tn) to T;.

Proof. Let @7"_, ., T, be the Bongartz completion of @:_, T,, and suppose
there is a’ surjection f: @, ; Ty > T, for some j>r. Consider the following
commutative diagram:
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0—A4 — Tra@Tr— @ T14-0

15 i=0

ol ]

Py
O—»A——»(@ T,Y'> P 1" — X —0.

g i#j i#j

The first row is an exact sequence used to construct the Bongartz completion, and
the existence of g follows from the projectivity of A. The square on the right yields
another exact sequence:

0D T2+ >@DTHeX > @ T -0,
i) i=0 1=0
which must split. But then T is isomorphic to some T; for i #j, and this is
impossible.
As to the converse, we choose an exact sequence

n h n
0->A->@ 1% - @ 14 >0.
i=0 i=0
For any j > r with B, > 0, the composition of /& with the canonical projection from
@r_ Tk to T % must be retraction by (b). So we can choose another such
sequence with f, =0 for j > r. As our sequence then satisfies (*), @7_,,, T, must
be the Bongartz completion of @_, T..

Remark. The same arguments show that T = @r_, T, is a projective tilt-
ing module if and only if there is no surjection from any modules in
add(T,® T, ,®T,,,® - -®T,) to T, for j=0,...,n

1.3. Let T,,...,T,_, be pairwise non-isomorphic indecomposables of projective
dimension 1 at most, and assume that Ext! (7, T) =0 for T = @7-/ T,. Denote
by T, the Bongartz completion of 7.

The following result has been obtained independently by Happel in [4]. In case
A is hereditary, it was proved in [7] and later in [6].

PROPOSITION. There is at most one indecomposable T, not isomorphic to T,
such that T® T, is a tilting module. If such a T, exists, there is an exact sequence

n—1

0-T,- @ T4+>T,-0.

i=0
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We first have to recall the definitions of a source map and a sink map used in
[7]. Closely related concepts have been introduced in [1]. Let X, ..., X, be pairwise
non-isomorphic indecomposables and let ¥ be a module not having any direct
summands in add X, where X = @/_, X..

Amap f: Y- @_, X} is a source map from Y to add X if

(1) for any X’ in add X, any map from Y to X’ factors through f, and

(i1) fis minimal with respect to property (i); i.e. if « o fstill has property (i) for

an endomorphism o of @/_, X%, then « is an automorphism.

Source maps exist and are unique up to isomorphism. Ifamapg : ¥ » @7_, X«

has property (i), it is isomorphic to l:f] Y > @7_, X ® X’ for any source map

0
f, where X’ lies in add X.
Sink maps from add X to Y are defined by dualizing the definition of source maps.

Proof of the proposition. Let T, be an indecomposable not isomorphic to T,
such that 7@ T, is a tilting module. By the preceding proposition, there is a
surjection from some module in add T to T,. In particular, any sink map

n—1

g: D THoT,

i=0

from add T to T is surjective. Consider the exact sequence

n—1

025 @ 15 1 >0,

i=0
where Z = ker g.

Since g is a sink map, f lies in the radical of mod 4; i.e., its restriction to any
indecomposable direct summand of Z is never a section. Moreover, any map from
Z to T, factors through f, since we have Ext' (T, T;) =0, for j=0,...,n—1.
Therefore Z has no direct summand that belongs to add 7. As g lies in the radical
of mod A, fis a source map from Z to add T.

Obviously the projective dimension of Z is 1 at most, and by construction we
have Ext) (T}, Z) =0, for j=0,...,n — 1. Considering maps from our sequence to
Z and T;, respectively, and using that projdim, 7, <1, we find that
Ext} (Z, Z) =0 and Ext} (T}, Z) =0, for j=0,...,n — 1. As Z does not belong to
add T, T @ Z is a tilting module.

If there were a surjection from some 7’ in add T to Z, it would induce a
surjection from Ext! (T, T") to Ext' (T}, Z), since projdim, T, < 1. But this is
impossible, as the first group is zero and our sequence does not split. By the
preceding proposition, we know that Z is isomorphic to 7% for some A = 1, and we
may suppose Z = T%.
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We now want to show that A =1. Let h: T, - T’ be a source map from T, to
add 7. The map

h. O ., 'A
[0 _h:l.T,,—»T ,

still has the first property of a source map, and it is therefore isomorphic to

n—1
[f]: T:>@® T T,
0 i=0
for some 7" in add T. Comparing cokernels, we find that (coker A)* is isomorphic
to T"® T,, which implies A = 1, by Krull-Schmidt.

Finally, since f: T, » @7-J T/ is a source map, its cokernel 7", is determined
uniquely, up to isomorphism, by T,. Our proposition is proved.

Remark. There exist modules T as in the proposition whose only completion is
the Bongartz completion T,,. Indeed, if @7_, P, is a projective tilting module, at
least one of the modules @, ; P, has this property, since chains of injections in the
radical of mod A between projectives have bounded length.

2. Proof of the theorem

2.1. We associate a quiver K with the complex €, defined in the introduction in the
following way: the vertices of K are the n-simplices of € ,. For each (n — 1)-simplex
(Ty,...,T,_,) which is face of two n-simplices, K contains an arrow
o=(T,y,...,T,)>0"=(Ty,...,T,_,,T,), where T, is the Bongartz completion
of @7-4 T,. For any simplex t of ¥,, we let K, denote the full subquiver of K
whose vertices are then n-simplices of €, containing r.

LEMMA. Let t be a simplex of € ,. If there is a path 6, >6,— - -—>0,in K
with ¢,,0, in K_, then the whole path lies in K,.

Proof. Recall that, for a tilting module 7, the category J(T) of torsion
modules with respect to T is the full subcategory of mod A whose objects are
quotients of T for some N. Set 7(6) =T (P7_, T,) for 6 =(T,, ..., T,).

If K contains an arrow ¢ =(T,,...,T,)—»0c =(T,,...,T,_,, T,), there is an
exact sequence

n—1

0-T,» @ T»—T, -0,
i=0
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by 1.3, and therefore any module in J (¢”) belongs to Z (¢). However by 1.2, T,
does not lie in J (¢”). Moreover, for any path ¢ -6’ —>---—>¢" in K, 7 (¢”) lies in
Z (6') and thus does not contain 7.
The lemma follows by applying these considerations to ¢ =0, >0' =0, , >
+-—=¢" =0, In case g, - - - >0, does not lie in K,, where k is the maximal index
for which o,—---—ga, is in K,. Then t contains T,, by the choice of k, but o,
cannot.

2.2. Applying the lemma to an n-simplex we find:
PROPOSITION. K does not contain oriented cycles.

This allows us to define an order relation for the n-simplices of €, :0 < o’ if
there is an oriented path ¢ =0, 20,—> - -—>0,=0"1n K

Remarks. (a) The Hasse diagram of this order relation is the quiver whose
vertices are the n-simplices of ¥, and which contains an arrow ¢ —»¢’ if ¢ < g/,
o #0  and ¢ < ¢” < ¢’ implies either ¢” = ¢ or ¢” = ¢’. Applying the lemma to an
(n — 1)-simplex which is face of two n-simplices, it is easy to see that the Hasse
diagram coincides with K.

(b) Our order relation is in general distinct from the one defined by: ¢ < ¢’ if
I (6) 2 7 (6¢’). The projective and the injective tilting module of a hereditary
algebra of infinite representation type furnish an example. We don’t know, how-
ever, whether the Hasse diagrams coincide.

2.3. Suppose now that & is finite. Number the n-simplices a,, 6,, ..., 0, of €, in
such a way that ¢, <g; implies i <j. For N <M, let #, be the union of
01,05,...,0n.

The following proposition implies our theorem.

PROPOSITION. The geometric realization of #y is an n-ball, for all N.

Proof. The result is true for n =0, as a local algebra admits no modules of
projective dimension 1.

For n >0, we proceed by induction on N, the case N =1 being obvious.
Suppose that the geometric realization of #, _, is an n-ball for some N 2 2. Our
goal is to show that the intersection oy N%, _,, which lies in the boundary of
#xy_,, is a union of (n — 1)-faces of a,. Then the geometric realization of %) is
either an n-sphere or an n-ball, according as oy "%, _, is the whole boundary of
oy or not. The case of a sphere can be ruled out, as we know that #, has a
non-empty boundary by the remark in 1.3.
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The intersection o, N 4%, _, contains at least one (n — 1)-face of ¢,, and hence
4y 1s connected. Indeed, oy is distinct from the unique minimal n-simplex of € ,,
whose vertices are the indecomposable projectives (remark 1.2). Any predecessor of
o, in K, and in particular the tail of any arrow in K whose head in o,, belongs to

QN —1-

Now let T =(T,, ..., T,) be a simplex in 6, "#, _,, and let @7_, ., T, be the
Bongartz completion of @’_,7,. By proposition 1.2, the n-simplex
o =(T,, ..., T,)is the unique minimal vertex of K,. Note that g, is a vertex of K.

As any path in K from ¢ to g, lies in K, by lemma 2.1, and since any predecessor
of g, belongs to 4, _,, there is an (n — 1)-simplex in 6y "%, _, containing t.

Remark. If €, is infinite, the same argument shows that the geometric realiza-
tion of a union o,U- - U0, is an n-ball, provided that the full subquiver of K
whose vertices are a,, ..., d,, 1s closed under predecessors in K.

3. Examples

3.1. Let Q be the quiver - 3 - and A its quiver algebra. Denote by P,, and /,, the
preprojective and preinjective indecomposables, respectively, given by

1 0
1 0 0
0 1 :
0 0 01 0
szkm——_—’km+l Imzkm+l_—_*km
_— _—
0 O 0 1 0
I T
0 0 1

for m = 0. These are the only indecomposables that do not extend themselves. As
& is infinite, our theorem does not apply. In fact, the complex ¢, has two
connected components:

Po“‘P]_Pz"'"'

'..IZ_Il—IO‘
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The arrows of K are:

(Pm’Pm+1)_’(Pm+lst+2)

and

(Im+2’1m+l) —’(Im+lslm)’

for m = 0. They all correspond to almost split sequences.

3.2. Let A be the quiver algebra of Q =1 -2 -3« 4, and denote by ij a represen-
tative of the indecomposable whose support are the vertices i,i+1,...,/, for
1 <i<j<4 We only draw K as it contains all information necessary to build € ,.

3.3. Consider the quiver Q = - 5 - B, let I be the two-sided ideal in the quiver-
algebra kQ generated by B2, and set A = kQ/I. Then C, is an interval:

To picture representations, we represent each basis vector by a dot. The linear map
V(y) : V(i) - V() corresponding to an arrow y : i —j sends a dot in V(i) to the sum
of the heads of all arrows of type 7y starting at the dot, and to zero if there is no
such arrow.
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3.4. Finally, we give an example of an algebra A of infinite representation type and
for which the complex %, is finite. Let Q be the quiver

o Y
v v
B 5

and I the two-sided ideal in kQ generated by af and y6. The complex €, for the
algebra A = kQ/I is the following:

= 0 0

q.\. .

4 -
NP

0 0

.
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