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A split exact séquence of Mackey functors

P. J. Webb

1. The main theorems

We prove a theorem which allows a Mackey functor on a finite group to be

computed in terms of its values on certain subgroups in a qui te explicit way. The

ingrédients which make up the statement are an action of the group on a simplicial
complex, and projectivity of the Mackey functor relative to certain subgroups. The
resuit may be regarded as a refinement of the resuit of Dress [7] which shows that
relative projectivity of a Mackey functor with respect to a set of subgroups implies
computability in terms of those subgroups. Viewed differently, one can also see the

theorem as an extension of work of K. S. Brown [3] which gives the cohomology
of a group in terms of its action on the simplicial complex of p-subgroups.

THEOREM A. Let G be a finite group, M a Mackey functor, % and ty classes

of subgroups of G which are closed under taking subgroups and conjugation, and A a

G-simplicial complex of dimension d. Suppose that

(i) For every simplex a e A the vertices of a lie in distinct G-orbits.

(ii) For every subgroup H e3£ —&lt;&amp;, AH is contractible.

(iii) M is projective relative to SC.

(iv) For every Ye&amp;, M(Y)= 0.

Then there are split exact séquences

0 -? M(G) -* © M(Ga) 0 M(GX) -&gt; &gt; © M{Ga) - 0
&lt;reG\ro(A) xeG\r,(J) aeG\rd{A)

and

0«-*f(&lt;j)4- © M{Ga)&lt; © M(GT)&lt;---&lt;- © M(Ga)&lt;-0
&lt;reG\ro(A) teG\f,(J)

where if a is a face of gx then
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and otherwise &lt;\&gt;xa and y\fax are zéro. Hère (a | gx) is +1 or — 1 according to the

orientation of the embedding of a in gx, and Ft{A) is the set of i-simplices in A.

In this theorem, ail of the mappings are given in the way we hâve indicated
between the 0 and 1 terms. The other mappings were left unlabelled to save on
notation. By a G-simplicial complex we mean a simplicial complex on which G acts

simplicially, that is G permutes the simplices amongst themselves preserving the face

relationships and sending simplices of a given dimension to simplices of the same
dimension. We use the term orientation of the embedding to mean the following. It
is possible to put a G-invariant partial order on the vertices of A in such a fashion
that the vertices of every simplex are totally ordered. If x is an r-simplex of A with
vertices (v0,. vr) taken in order, and if p — (v0,..., Vj_ {, vJ+,,..., vr) is a face

of t of dimension r — 1 then we put (p | t) — l)7. In the statement of the theorem

we are composing maps on the left and this will generally be our convention.
The séquences in the theorem are in fact natural with respect to G and this gives

rise to a stronger but more abstract statement, which we now give. In the notation
of Dress [7], we may regard Mackey functors as being defined on G-sets rather than

on subgroups of G. Thus we may write M(G/H) instead of M(H) to dénote the
value of the Mackey functor M at the subgroup H. If Q is a G-set we let MQ be the

Mackey functor with MQ(W) M(&lt;F x Q).

THEOREM B. In the situation of Theorem A we hâve split exact séquences of
Mackey functors

and

The mappings in this theorem are described as follows. We give the component
maps with respect to the décomposition

r,(A) 0 Gioa
aeG\r,(A)

obtained by choosing représentatives of the orbits of G on A. The component
mapping MGjGa -&gt; MG/Gr is zéro unless a is a face of gx for some g g G, in which
case its évaluation at a G-set Q is

(ex \gx)M*(l x Tig* • cg) : M(Q x G/Ga)-+M(Q x G/Gx)
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in the case of the first séquence, or

(a | gt)M+(l x 7igjT • cg) : M(Q x G/GX)^

in the case of the second séquence, where cg:G/Gx-+G/Ggx is conjugation and

:G/Ggx-+G/Gff is the canonical quotient map. On évaluation at G (or,iaQ
equivalently, at the G-set consisting of a single point) thèse séquences become the

séquences in Theorem A. The séquences in Theorem B are resolutions of M by
induced functors, and they take a particularly nice forai. They invite comparison with
the resolutions by functors MQ constructed by Dress [7]. The séquences hère hâve
the advantage that they are smaller and easier to compute with in spécifie examples.

In Section 2 we describe many situations in which Theorem A can be applied,
to do with Computing the values of spécifie Mackey functors, and also deducing a

structure theorem for the chain complex of K. S. Brown&apos;s simplicial complex of
/?-subgroups of G. I hâve found Theorem A most useful for Computing cohomology
groups, and indeed this was the origin of this paper. Theorem A implies the
conclusion of the Theorem A in [20] which expresses the cohomology as an
alternating sum. I noticed that this alternating sum could be given a more
satisfactory conceptual basis by arranging the terms in an exact séquence. I then
found that the same thing could be done with Mackey functors. More recently
Theorem A has found application in other areas, and we can refer the reader to [19]
for an application in connection with Alperin&apos;s conjecture.

In Section 4 we give the proofs of Theorems A and B, and for this Section 3 on
Mackey functors in a prerequisite. Finally in Section 5 we make déductions about
the chain complex of A, and in particular about Brown&apos;s complex. The main resuit
hère is stated as Theorem 2.7.1, which describes the chain complex of Brown&apos;s

complex. There is also a resuit, stated as 2.6.1, which says that the quotient by G

of Brown&apos;s simplicial complex is mod p acyclic.

2. Applications

2.1. Suitable simplicial complexes

We start by describing some spécifie examples of simplicial complexes which can
be used in Theorems A and B. In our applications A will always be obtained as the

simplicial complex of chains in a partially ordered set. If 0* is a poset the

corresponding simplicial complex A A(0&gt;) has as its w-simplices the set
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The subsimphces of an «-simplex are the shorter subchains If G acts on 9 as a

group of poset automorphisms there îs induced a simphcial action of G on A(P) A
G-simplicial complex constructed in this way will always satisfy condition (1) of the

theorem, provided the poset m finite, because if x, y are two vertices of a simplex
&lt;y then they are comparable as éléments of the poset, and they must therefore lie in
distinct G-orbits

There are three posets which we use ail the time, consisting of /?-subgroups of
G We fix a prime p and put

5£(G) {ail non-identity /?-subgroups of G]

stfp(G) {ail non-identity elementary abehan /?-subgroups of G}

£P{G) {H£G\H OpNG{H\ H*\}
G acts on each of thèse posets by conjugatmg the subgroups It turns out that from
a certain point of view we get effectively the same answer in our applications no
matter which of thèse three posets we use This îs a conséquence of the following
resuit

2 1 1 THEOREM (Quillen [14], Bouc [1], Thevenaz, Webb [18]) The three

simphcial complexes A(£fp(G))9 A{stfp{G)) and A($p(G)) are ail G-homotopy équivalent

For a discussion of what this means see [22] A conséquence îs that if any one
of thèse simphcial complexes satisfies (n) then so do the others The significance of
@P{G) îs that when G îs a finite Chevalley group m defining charactenstic /?,

A(&amp;p(G)) îs the barycentnc subdivision of the building of G In particular A(38p(G))
and the building are G-homotopic

As well as the simphcial complexes associated to the above posets we will be

using posets of the form 9 £%(G) - W9 where &lt;&amp; îs some set of subgroups of G

closed under conjugation and taking subgroups For thèse simphcial complexes the
fixed point condition (n) in the theorem will be venfied using,

2 1 2 LEMMA (î) Let A be the simphcial complex of one of $fp(G\ sfp(G) or
&amp;P(G), and let H be a subgroup ofG which has a non-trivial normalp-subgroup Then
AH is contractible

(u) Let ty be a set of subgroups of G closed under taking subgroups and

conjugation, and let A A(^p(G) — 9) Let H be a subgroup of G which has a

non-trivial normal p-subgroup Hp with Hp e SP(G) - 9 Then AH is contractible
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Proof. Part (i) in the case of A(^p(G)) follows from (ii) by taking 9 to be

empty. Now the resuit for A(^p(G)) and A(âfp(G)) follows in view of 2.1.1.

We prove (ii) by contracting AH onto {Hp}. Now

Take any K e (^P{G) - 9)H. The chain of inequalities K &lt;&gt; K Hp^Hp in
(Sfp(G) - ®)H contracts (S£(G) -®)H onto {Hp}, as in [4, p. 268].

Of course, one may try to apply the theorem with whatever simplicial complex
and Mackey functor one may hâve in mind. Other candidate simplicial complexes
corne from the sporadic geometries which people construct for certain simple

groups [16].

2.2. Overview of the Mackey functors to which the theorem applies

The notion of a Mackey functor will be described in Section 3. We first describe
in gênerai terms a proceedure we can follow which produces a Mackey functor M
and simplicial complex A satisfying the conditions of Theorem A. In order to apply
Theorem A to some candidate Mackey functor M we may hâve in mind, the first
step is to find a set X of subgroups of G with respect to which M is projective, and

preferably a minimal such set. Now choose a simplicial complex A satisfying (i) of
Theorem A, and such that A H is contractible for as many of the subgroups H e X
as possible. To avoid triviality, G should not stabilize any simplex of A. Take 9 to
be a set of subgroups of G closed under conjugation and taking subgroups so that

9 2 {H g X | AH is not contractible}. We define two more Mackey functors

M(H, &amp;)= £ ind? M(Y), M^(H) M(H)/M(H, 9).

One sees that if the original Mackey functor M were to satisfy M(Y) =0 for ail
Y e9, then we would hâve M Mj9

22A. PROPOSITION. Conditions (i)-(iv) of Theorem A are satisfied for the

quadruple M&amp;, X, 9 and A.

This resuit is proved in Section 3.6, where it is also shown that Ml&lt;&amp; is characterised

as the largest quotient Mackey functor of M which vanishes on the subgroups in 9.
We now give a list of examples of how the above construction turns out in
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particular cases. Thèse will be examined in greater détail in the ensuing sections. We

fix a prime p. We use the following symbols to dénote some familiar Mackey
functors.

r(G)—the ring of virtual complex characters

Br(G)—the ring of Brauer characters in characteristic p
a(G)—the Green ring of FG-modules, where F is a field of characteristic p
A(G)—the Green ring Q ®za{G) with rational coefficients

Hn(G, V)—Tate cohomology with coefficient module V
Hn(G, V)p—the /7-torsion subgroup of Tate cohomology
H&amp;(G, V)—cohomology relative to ^

In the case of a(G) we will need to suppose F is a splitting field for G, but not in
the case of A(G).

In the next statement we list SC and %/ so that the reader can see what is going

on, but as far as practical applications are concerned we might as well forget them
because they do not appear in the conclusions of Theorems A or B. For the sake

of generality we hâve put A{^p(G) —&lt;&amp;) ail the time, but the simplest situation is

when ®j consists just of the /?&apos;-subgroups of G, and in this case «^(G) — ty ^(G).
We will use the following terminology:

DEFINITION. Let 2t be a class of groups. We say a group H is X modp if H
has a normal p-subgroup Hp &lt; H with HjHp e X. Recall that a subgroup is said

to be Brauer elementary if it is the direct product of a cyclic group with a ^-group,
for some prime q.

2.2.2. THEOREM. Conditions (i)-(iv) of Theorem A are satisfied with the

following choices of M, 3T, &lt;&amp; and A.

M{G) type of subgroups in dC &lt;&amp; A

ri®{G)
Brf9(G)
a/&lt;v(G)

A/iS,(G)

H\G, V\
?/W(G, V)p
(G, V\,, n ^ 1

Brauer elementary
Brauer elementary

Brauer elementary modp
cyclic modp

psubgroups

psubgroups

psubgroups

^p&apos;subgroups

^p&apos;subgroups

^p&apos;subgroups

^p&apos;subgroups

{1}

- 0}
2 {1}
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The meaning of =2 in the third column is that we may take %/ to be any set of
subgroups closed under taking subgroups and conjugation which contains the named

set of subgroups.

Proof. We deduce this from 2.2.1. We must show that A satisfies (i) and (ii),
which it does from 2.1.2 and the remarks in Section 2.1. Note in this connection
that if a Brauer elementary subgroup is not a /?&apos;-group then it has a non-trivial
normal /?-subgroup, so 2.1.2 may be applied. We must also show that M is

^-projective in the various cases. This is discussed in Section 3.4.

2.2.3. REMARK. It will be apparent from Proposition 3.4.2 that if we start
with an ^-projective Mackey functor N, let 2t be some class of subgroups closed

under taking subgroups and conjugation, and put M(H) N(H, JT) then Mjt&amp; is

also ^-projective. By this means quadruples such as

M(G)
&amp; subgroups &apos;Brauer elementary mod/?\
9 any subconjugacy closed set such that {p &apos;-subgroups} ç &lt;3f c J^
A A(SP(G))

may be included in the list in Theorem 2.2.2. There is also some freedom in the

choice of A in that we may take A A{&amp;) where 9 is any G-invariant poset
satisfying S?P(G) -@ ^0&gt; ^^P(G) (see Lemma 2.1.2(ii)).

2.3. Character rings

In using Theorem A to compute either a character ring or a Green ring in the

manner of Theorem 2.2.2 it is necessary to factor out the span of the projective
modules (or the characters of the projective modules, in the case of a character

ring). To be explicit about this, let i? be a complète discrète valuation ring in

characteristic 0 containing a primitive |G|th root of unity with residue field of
characteristic p. Then

r(G,p &apos;-subgroups) the Z-span of characters of projective RG -modules

Br(G9 p &apos;-subgroups) the Z-span of Brauer characters of projective FG~

modules

a(G,p &apos;-subgroups) the Z-span of projective FG -modules
A (G,p &apos;-subgroups) the Q-span of projective FG-modules.

For Br and a we require F to be a splitting field. Thèse statements follow from [8]
and [5]. In view of this, Bv.8Ubgroupi(G) Z/(G)/C(G)Z/(G) where C(G) is the Cartan
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matrix of G and /(G) is the number of /?-regular conjugacy classes of G, and this is

a finite abelian p-group whose torsion coefficients are the elementary divisors of
C(G). Theorem A now states that this group is computable as the end term in an
exact séquence where ail the remaining information is /7-locally determined.

2.3.1. COROLLARY. With the above notation, there is a short exact séquence

0 - Z/(G)/C(G)Z/(G) -+ ©
/(,)Z/(G-)- 0

aeG\rd{A)

where A is any one of A(6^(G)), A(stfp(G)) or A(&amp;p(G)), and where the maps
correspond to restrictions of Brauer characters, some with minus signs. There is a

similar short exact séquence with maps in the opposite direction corresponding to
induction of characters.

By equating the alternating sum of the terms in either of the above séquences to
zéro one obtains a formula for the number of elementary divisors of C(G) of a

given size as an alternating sum of thèse numbers for the groups Ga. This formula
has been observed by Robinson [15].

In a similar way to the above, r/p.subgroups(G) is the quotient of r(G) by the span
of the columns of the characteristic p décomposition matrix D. Since the rank of D
equals the number of /?-regular conjugacy classes in G, r/p.subgroups(G) has torsion
free rank equal to the number of classes of éléments of order divisible by p. We

obtain a resuit which was first observed in a différent form by Knôrr.

2.3.2. COROLLARY. Let p be a prime and for each finite group G let m(G) be

the number of conjugacy classes of éléments of G of order divisible by p. Then

&lt;reG\A

where A is any one of A(S%(G)), A(0&gt;P(G)) or A(&lt;%p(G)).

2.4. Cohomology

In [20] and [21] I obtained the cohomology Hn(G, V)p additively as an alternating

sum Z&lt;reCxJ( - l)dim°fin(Gc9 V)p valid in #0(Ab, 0), the Grothendieck group of
finite abelïan groups with relations given only by direct sum décompositions. Such

an expression as an alternating sum is evidently a conséquence of the resuit hère,
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but I demonstrated the existence of the alternating sum in [21] under a weaker

hypothesis on A, which in fact is a necessary and sufficient condition for its
existence. The split exact séquence formulation has certain advantages. In [21] I
required the coefficient module V to be finitely generated in order that the

cohomology groups be finite, and hence that the alternating sum would make

sensé. With the exact séquence hère we may perfectly well hâve non-finitely
generated modules. With this séquence it is also possible to détermine the cup
product structure of cohomology. To do this, note that in the start of the

séquence

0 - H*(G, Z),^ 0 Û*(GO9 Z), -&gt; • • •

the first morphism embeds H*(G, Z)p by a sum of restriction maps, and this is a

ring homomorphism. We know the cohomology ring of G once we know the

cohomology rings of the Ga for a e F0(A), and once we hâve computed the kernel

of the map ®aeG\rowH*(Ga, Z)p - 0ffeGxri(J) H*(Ga9 Z)p.

2.5. Equivariant cohomology

In the situation where G acts on a simplicial complex A there is defined the

equivariant cohomology HG(A, V) and in case A A{Sfp(G)) it is a resuit of Brown
[4, X.7.2] that this has the same /?-torsion subgroup as H&quot;(G, V)p. The restriction

séquences of Theorem A applied to cohomology groups M(G) Hn(G, V\ n e /,
but with the left hand terms M(G) removed, make up the Ex page of the equivariant
cohomology spectral séquence associated to this situation, the restriction maps
giving the differential [4, VII.8.1]. Because of exactness of thèse séquences (except
where M{G) has been removed), the p -torsion part of the homology of the Ex page
consists just of groups H\G, V)p concentrated on the fibre. This is then the E2

page, and its differential is the zéro map. We thus obtain the following resuit.

2.5.1. COROLLARY. Let G be afinite group and A a Gsimplicial complex such

that for every simplex a e A the vertices of a lie in distinct G-orbits. Suppose that

for every non-identity psubgroup H &lt;&gt; G, AH is contractible. Then the equivariant
cohomology spectral séquence

EY © H%Ga, V)p =&gt; HrG+ *(A, V\
&lt;reG\rr(A)

stops at the E2 page, and the only non-zero terms Eris lie on the fibre.
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2.6. Relative cohomology and the groups H&quot;^(G9 V)

Let f be a class of subgroups of G closed under taking subgroups and

conjugation. The cohomology of G relative to ®J is defined as follows. Let

p. &gt;ip2_&gt;/&gt;1_&gt;jp0_»z-&gt;0

be a ^-split ^-projective resolution of Z. This means that the séquence splits on
restriction to every Ye&amp;, and every indécomposable summand of every module
which appears is projective relative to some 7ef. The relative cohomology is
defined as

H%(G, V) Hn(UomZG(P., V)).

Thèse are not the same as the groups H&quot;&amp;(G, V) defined previously as

H%{G9 V)=Hn(G, V)lïYe&amp; cores?//w(r, V). As an example of the différence,
take G A x B where A and B are both cyclic of order 2 and let ®J {A, {1}}. One

readily sees that a minimal ^-split ^-projective resolution of Z is periodic, being
the splice of short exact séquences 0-&gt;Z-&gt;Z|5 -»Z-&gt;0, and hence H%{G, V) is

periodic. On the other hand putting k Z/2Z we hâve dim* Hn(G, k) n -h 1 and

dim^ Hn(A, k) 1 so dim*. H&quot;&amp;(G, k) is unbounded as a function of n. This démon-
strates that H^(G, V) and H%(G, V) behave quite differently. They do, however,
share the important property that they vanish if G e &amp;.

The following is a corollary of Theorem A applied to H^(G9 Z)p. Recall that a

space is said to be modp acyclic if it has the same homology with Z//&gt;Z coefficients

as a point.

2.6.1. COROLLARY. Let W be a set ofpsubgroups of G closed under conjugation

and taking subgroups. If &lt;&amp; does not contain a Sylow p-subgroup of G then

is modp acyclic.

Proof We apply Theorem A with M{G) H%(G,Z)P. In this context the

mapping 4ind&apos; of the Mackey functor is cores, and H%(G, Z) is the quotient of
J/°(G, Z) Z by the sum of the images Im (cores?) \G : Y\Z, Fef. Thus

H%{G, Z)p Z//?aZ where p* is the highest power of p dividing ail \G : Y\, Ye &lt;W.

I claim that p | \Ga : Y\ for every simplex a g A{^p(G) — $0 and every subgroup
Y &lt;.Ga9 Fef. This is équivalent to saying that no Sylow /?-subgroup of Ga is in
(Sf. To see this, suppose that g is the chain PO&lt;PX&lt;&apos; • &lt;Pr where the Pt are ail
/&gt;-subgroups not in &lt;&amp;. Then Po ^ Ga and it follows that no Sylow /?-subgroup of Ga

is in ^, ôtherwise one of them would contain P09 and Po would be in ^, a

contradiction.
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Write A for A(^P(G) - &lt;&amp;). Theorem A now states that the séquence

0-&gt;//?*(G,Z),-&gt; 0 H%(Ga,Z)p-+--^ 0 H%(Ga9Z)p^0
&lt;reG\ro(A) aeGXrjiA)

is split exact. For each orbit of simplices there corresponds in this séquence a

non-trivial cyclic p-group. We now reduce the séquence modulo p (to reduce ail
cyclic groups to Z/pZ). Because of the splitting the séquence remains exact:

0-&gt;Z/pZ-+ 0 Z/pZ-&gt; &gt; 0 Z/pZ-^0.
aeG\ro(A) oeG\rd(A)

The component morphisms are the réductions mod/? of the {a \gx) • cg-\ resg*

which acting on Z are just {a \ gx), so we hâve the augmented cellular cochain

complex of G\A with Z\pZ coefficients. Its dual is the chain complex, and is also

acyclic.

By Theorem 2.1.1, G\A(^P(G)), G\A(dp(G)) and G\A{@p(G)) are homotopy

équivalent, and hence they are ail mod/? acyclic, provided p | \G\. Corollary 2.6.1

thus improves on 8.2(i) in [20] where it was shown that thèse spaces had Euler
characteristic one. It is conceivable that they are always contractible.

2.7. A structure theorem for the chain complex of

^3 ^2 d\
If C. • • C2 —? Cx —? Co is a chain complex of modules over some ring R,

we say C, is acyclic split if it has zéro homology and for every r the séquence
0 -* ker dr -&gt; Cr -* Im dr -? 0 is split. If C. is augmented by an epimorphism Co -&gt; R,

by saying C. is acyclic split augmented we mean the same condition applied to the

augmented complex (i.e. zéro reduced homology, ail the séquences split, and the

augmentation splits). Let Zp be the ring of p-adic integers. The following theorem

applies when A is the simplicial complex of &lt;$£((/), ^/P(G) or $P(G).

2.7.1. THEOREM. Let A be a G-simplicial complex satisfying
(i) For every simplex a e A the vertices of a lie in distinct G-orbits.

(ii) For every non-identity p-subgroup H &lt;&gt; G, AH is contractible.
Let C.(A) be the chain complex of A over Zp9 as a complex of ZpG-modules. Then

C.(A) =D.®P. where D. is an acyclic split augmented subcomplex, and P. is a

subcomplex ofprojective ZpG-modules.

We may immediately deduce that C.(A) and P. hâve the same reduced homology.

Another implication of the theorem is obtained by considering the Lefschetz
module ^=0(-iyCt(A).
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2.7.2. COROLLARY. In the circumstances of the last theorem,

Zp= ÏL (-l)dimaZp%(modprojectives).

This congruence holds in the Green ring ofZpG-lattices.

This was the conclusion of Theorem A in [20] and one implication of the theorem
in [21].

We dérive Theorem 2.7.1 from our split exact séquences of cohomology groups.
The proof is immédiate from the next two results, proved in Section 5.

2.7.3. PROPOSITION. Let M{G) Hn(G, V)pfor some integer n^\ and ZG-
module V. In this situation the séquences in Theorem A are ExtJ G(C(A), V ®z Zp)
and ExlZpG(C.(Â)*9 V ®2 Zp) where * dénotes the contragredient and C.(A) is the

augmented chain complex of A.

2.1A. THEOREM. Let R dénote either Zp or Z/pZ and let C. be a finite
dimensional chain complex of RG-modules which are permutation modules. The

following conditions are équivalent:
(i) For some integer n ^ 1, Ext^G(C, V) is acyclic for ail RG-modules V.

(ii) For some integer n ^ 1, Ext^G(C, V) is acyclic split for ail /?(/-modules V.

(iii) C. has a subcomplex D. which is acyclic split over RG so that the quotient
C./D. is a complex ofprojective modules.

(iv) C. D. ©P. as complexes of RG-modules where D. is acyclic split over RG,
and P. is a complex ofprojective modules.

2.8. An example

We take an uncomplicated example to illustrate the principles involved in the
previous sections, where the statements we make were more fully explained. Let
G GL(3, 2) and let A be the building of G. This is the graph whose vertices are
the subgroups E4, the edges are the subgroups D%, and the two end vertices of an
edge are the two I4 subgroups containing the Z)8. Thèse are the proper parabolic
subgroups of G.

The quotient G\A is the graph
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with représentative stabilizers as shown. We choose the représentative vertices and

edge so that the two vertices are actually the end vertices in A of the edge, and

equivalently so that the particular copies of the subgroups I4 contain the Ds

subgroup. Thèse I4 subgroups are représentatives of the two conjugacy classes in G

of such subgroups. For a Mackey functor M as prescribed in Section 2.2 we obtain
split exact séquences as follows:

H
0 - M(G) ~^-&gt; M{I4) © M{I4) res&apos;res) M(DS) -0

(ind,ind) V U
0 4- M(G) &lt; M{I4) © M(E4)v M(DS) &lt;- 0.

Taking M(G) to be Tate cohomology Ên(G, V)2 and specializing to the case

H-2(G, Z)2 HX(G, Z)2 (G/G&apos;)2 we obtain the séquence

with ± the classical transfer homomorphism as the component morphisms, and
also the séquence

o - (g/g&apos;)2 &lt;- i4\r4 e ijr4 *- djds +- o

with the component homomorphisms given by ± inclusion of subgroups. We

obtain similar séquences with the 2-torsion subgroup of the Schur multiplier
H\G, Z)2 H2(G, Z)2, one of which identifies as

The Mackey functor M(G) Br/p.subgroups(G) takes as its value the abelian group
which is a direct sum of cyclic groups whose orders are the elementary divisors of
the Cartan matrix. For this Mackey functor the first séquence is

The group rjp.SXih&amp;onp%{G) has torsion-free rank the number of conjugacy classes of
éléments in G of order divisible by p. With p 2 the first séquence for this Mackey
functor is

0-Z2-Z3©Z3-Z4-0.
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Turning to the chain complex C.(A) of A over Z2&gt; one knows from the
Solomon-Tits theorem that the reduced homology is zéro except in dimension 2,

where it is the Steinberg module St(G), a projective Z2G-module. In the notation of
Theorem 2.7.1 this is the homology of the subcomplex P. so we hâve an exact

séquence

0 -» St(G) -&gt; P2 -&gt; /&gt;, -&gt; Po -+ 0

and since ail modules are projective, it splits. It follows from 2.7.1 that the

augmented chain complex C.(A) is the direct sum of an acyclic split complex and
the homology group St(G). This splitting has also been observed for Chevalley

groups by Kuhn and Mitchell [11].

3. Mackey functors

3.1. First notions

The notion of a Mackey functor is designed to capture the common features of
such constructions as character rings, cohomology groups, certain ÀT-groups, vari-
ous représentation rings, etc., and in the form in which we will take them they were
first defined by Dress [7]. Dress&apos;s work followed soon after work of Green [9], who
made a similar définition. The Mackey functors hère may be subsumed into Green&apos;s

theory of G-functors by considering them as G-functors with zéro multiplication.
We choose not to do this because Green&apos;s définition of relative projectivity is not
the appropriate one to use hère. In the présent context the définition of relative

projectivity given by Dress is more fundamental and convenient, and it is for this
reason that we follow Dress. Our concepts agrée with those of Yoshida [23, 24] and
Sasaki [17] but we differ in terminology. They use Green&apos;s term &apos;G-functor&apos; to mean
a Mackey functor regarded as a being defined on the subgroups of G, but this
differs from Green&apos;s usage. They reserve the term &apos;Mackey functor&apos; for a Mackey
functor regarded as being defined on G-sets, which is the same as the terminology
of Dress. Hère we prefer to regard thèse two ways of viewing Dress&apos;s Mackey
functors as being little more than a change of notation, and so we will call them
both Mackey functors.

We will summarise the work of Dress [7], often taking a différent point of view.

DEFINITION. A Mackey functor for G over a ring R is a function

M : {subgroups of G} -? i£-mod
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with morphisms

ind£ : M(K) -&gt; M(H)

res% :M(H)-+M(K)

cg:M(H)-+M(gH)

whenever K &lt; H arc subgroups of G and g e G, such that
(0) ind&quot;, res&quot;, ch : M{H) -+M(H) are the identity morphisms for ail subgroups

H and h e H
(1) resy res&quot; res&quot;

/^ - ih - ak • ia/ r f°r a^ subgroups J &lt;&gt; K&lt;&gt;H
(2) md£ indf înd^j
(3) cgch=cgh for aligne G

S Ll for ail subgroups KïH and g eG
(5) ind^ cgind£J
(6) res? indj^ T,xeAH/K ind^c* res^oK for ail subgroups J,K&lt;&gt;H.

The most important of thèse axioms is (6), which is the Mackey décomposition

formula. As is well-known, this définition is équivalent to the définition given by
Dress, except that Dress works with a more gênerai domain of définition. We now
remind the reader of Dress&apos;s version.

Let # and 3 be catégories. A bifunctor M (M*, M*) : # -? 3 is a pair
consisting of a covariant functor M* : # -» 3 and a contravariant functor
M* : V -*9 such that on objects, M+(C) M*(C) for ail C e 0é(&lt;if). We write

Af(C) for the common value of thèse functors.
Let G-set dénote the category of finite left G-sets. The morphisms in

this category are the G-equivariant mappings. A Mackey functor is a bifunctor
M : G-set-*i?-mod such that the following two conditions hold:

(1) for every pullback diagram

in G-set we hâve M*(S)Mm(y) M+(p)M*(&lt;x).

(2) The two mappings Q -» Q u W *- Y into the disjoint union define an isomor-
phism M(Q u s M(Q) © M(¥) via M..
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The purpose of giving thèse définitions is that we will sometimes switch notation
and write either M{H) or M(G/H) for the value of the Mackey functor M, using
either the subgroup H as the argument as in the first définition, or the G-set G/H
as in the second. In technical arguments it is usually easier to work with the second

définition On the other hand it is generally the case that whenever one has a natur-
ally occuring example of a Mackey functor, one most easily recognizes that it is a

Mackey functor by verifying the first définition. Thus both définitions hâve their uses.

3.2. Relative projectivity

For the sake of establishing notation we recall the définition of relative
projectivity from [7]. Using the G-set notation, let S be a fixed G-set and M a

Mackey functor. Then

Ms\ T

MHf) M*(fxids), MSt(f) Mm(fxids)

defines a Mackey functor MS9 as one easily checks. Projection pr : T x S -&gt; T onto
the first coordinate defines a natural transformation of bifunctors

6S:MS-&gt;M, 9S(T)= M*(pr).

DEFINITION. The Mackey functor M is called S-projective if 0S is split-
surjective as a natural transformation of Mackey functors. If X is a set of
subgroups of G we put X \JHeX G/H and say M is X-projective if it is X-projec-
tive.

The most powerful gênerai method we hâve of showing that a particular
Mackey functor M is projective relative to a set of subgroups X dépends on the
theorem of Dress [7], which states that in case M happens to be a Green functor (in
the sensé of Dress) then it is sufficient that

X indg: © M(H)-+M(G)
HeSC HzSC

be surjective. Furthermore, a Green module over a Green functor which is ^-projective

is itself #&quot;-projective. Using this resuit we are able to détermine the relative

projectivity of ail the Mackey functors we consider hère, and we summarize this
information in the following table.
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Mackey functor

r(G)
Br(G)
a(G)
A(G)

i/&quot;(G, V)p

H%,(GyV)p,n&gt;\

projective relative to

Brauer elementary subgroups
Brauer elementary subgroups
subgroups Brauer elementary modp
subgroups cychc mod/?

p-subgroups

p-subgroups

Thèse assertions of relative projectivity follow, respectively, from Brauer&apos;s

induction theorem, Brauer&apos;s induction theorem together with surjectivity of the

décomposition map, Dress&apos;s induction theorem [8], Conlon&apos;s induction theorem [5],
and for the cohomology groups the fact that corestriction from a Sylow/?-subgroup
is surjective on the p -torsion subgroup.

We will combine this with the work of Section 3.4 to deduce the #*-projectivity
of the Mackey functors in the list in Theorem 2.2.2.

3.3. Induction and restriction of Mackey functors

It will be important for us later on to interpret the notion of relative projectivity
in terms of induction and restriction of Mackey functors. Thèse are introduced in
[17], where they are attributed to Yoshida. We présent them in a différent way using
G-set notation. First we go back to G-sets, where we hâve a notion of induction
and restriction

î% :#-set-&gt; G-set

and

1% :G-set-&gt;//-set

whenever H is a subgroup of G. Induction is defined by the formula

Q]GH G xHQ

which, by définition, is the set of équivalence classes of G x Q under the équivalence

relation (gh, œ) ~ (g, hœ)&gt; g e G, h s H, œ e Q. It has the property that

(H/K)Î% G/K. The restriction Ql% is defined simply to be Q regarded as an
H-set by restriction of the action.
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We define induction and restriction of Mackey functors. We dénote the category
of Mackey functors on G by Mack (G). Now induction and restriction are functors

î£:Mack(//)-&gt;Mack(G)

and

|%:Mack(G)-*Mack(i/).

They are defîned in a formai fashion by

To make the connection with the notion of relative projectivity we will need the

following lemma.

3.3.1. LEMMA. (i) Ojgîg^G x G/H
(ii) MGlH

Proof. (i) The isomorphism is given by

G xHQ-+Q xG/H
(g9 œ) i-&gt; (œ, gH).

(ii) Evaluating at a G-set Q we hâve

MG/H(Q) M(Q x G/H)

Because the isomorphism in part (i) is natural with respect to Q we deduce that we
hâve a natural isomorphism between MG/H and MJ^Î//-

It is because of the identification of MGjH just given that we refer to the

séquences in Theorem B as resolutions of M by induced functors. We point out a
further property of induction and restriction, but we will not use it in this paper. It
turns out triât î% is both the left and the right adjoint of 1%. With the identification
°f MG/H just given the natural transformation 0GjH : MG/H -&gt; M, which arises in the
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définition of projectivity relative to G /H, corresponds to the counit M1%^% -+ M of
one of thèse adjunctions.

In Section 4.2 we will need to know the following resuit, which has an easy
direct proof.

3.3.2. LEMMA. Induction of Mackey junetors is exact.

Proof. Given an exact séquence of Mackey functors for H

the induced séquence

is exact if and only if it is exact on évaluation at each G-set Q. But this is

0 -&gt; L(QGH) -&gt; M(QGH) -&gt; N(Q%) -&gt;0

which is exact because it is an évaluation of the original séquence.

3.4. The construction of M,* and the proof of 2.2.1

In Section 2.2, starting with a Mackey functor M and a set ®f of subgroups of
G closed under taking subgroups and conjugation, we defined Mackey functors

M(H, &lt;8f)= I ind? M(Y), MI9(H) M(H)/M(H, 9).

We should observe first that thèse are Mackey functors, and for this it suffices to
note that M(H, ®f) is stable under ind and res and cg. This is straightforward from
the axioms. We now prove 2.2.1. Conditions (i) and (ii) of Theorem A hold
immediately by construction. It remains to verify conditions (iii) and (iv). Thèse

will follow from 3.4.1 and 3.4.3.

3.4.1. PROPOSITION. M/9 is the largest quotient of M which vanishes on the

subgroups in 9.

Proof First, M/9 vanishes on ®f because if H € 9 then M(H, &lt;&amp;) contains

M(H) ind£M(//) so MI9(H) M(H)/M(H) 0. To say it is the largest means
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that whenever we hâve an epimorphism of Mackey functors v :M-+N (i.e. a

natural transformation) and N(Y) — 0 for ail 7ef then there is a factorisation

M A N

\ /
Consider the short exact séquence of Mackey functors

Now for any Fef, v(ind£ (M(Y))) ind£ v(M(Y)) 0 since v is a natural
transformation, and vM(Y) ^N(Y) 0. Thus v vanishes on M( 9) and hence v

lifts to a mapping M^ -&gt; JV are required. D

3.4.2. PROPOSITION. Suppose M is %-projective. Then M( 9) and Ml&lt;9 are
2C-projective.

We first need to prove:

3.4.3. LEMMA. Let T=[jre^ G/Y. Then M( &lt;Sf) is the image of the natural
transformation 6T : MT -&gt; M.

Proof Recall from 3.2 that MT(Q) M(Q x T) for any G-set Q, and
eT M+(pr) : M(O x T) -&gt;M(O). To say that M( ^) is the image of 0T means
that M(Q, 9) is the image of 8T for every G-set Q. Using a mix of subgroup and
G-set notation,

0TMT(H) 6TM((G/H) x T)

and this is M(H, 9) since ail terms in the above sum are contained in M(H, 9); and

conversely taking the terms with x 1 we obtain ind#n Y (M(Hn Y)) for ail Y € 9
in the above sum, and this includes every term ind£ M(Y) with Y 6 &lt;&amp;, Y ^ H.U2

Proof of 3.4.2. Let S [jXe3r G/X and T (Jre^ G/ Y. Consider the diagram

0 —&gt; M(,&amp;)s &gt; Ms &gt; MfvS &gt; 0

!•- !•-

0 —&gt; M( ^) M
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The bottom row is exact, by définition of Mt&lt;&amp;. The top row is obtained by
evaluating the bottom on Q x S, and it follows that the top row is exact, because

the bottom row is exact on every évaluation. The diagram commutes, because the

horizontal arrows are natural transformations and the vertical arrows are obtained
from évaluation on Q x S -*Q. We are given that M is ^-projective, so there is a

natural transformation a : M -&gt;MS which splits 05, i.e. 8sol \m.Wq show that a

sends M( $0 to M{ ®j)s. This is because for any G-set Q,

ol(M(Q, $/)) a Im (M(Q xT)-+ M(Q)) by 3.4.3

s Im (MS(Q x T) -+MS(Q)) from the diagram below

Im (M(Q xTx S)-&gt;M(Q x S))

Im (M(Q x S x 7) -? M(&amp; x S)) by swapping S and T

The containment above follows by considering the commutative diagram

Ms(QxT) &gt; MS(Q)

T aO x T T «O

It follows that a restricts to a splitting of 0S on M( $0s and induces a splitting
of 0S on Mjt&amp;s. Thus M( $0 and A//&lt;y are both ^&quot;-projective. D

4. Proof of the main theorems

4.1. Semisimplicial constructions

Throughout the constructions we consider we will be working with a G-

simplicial complex A which satisfies

(*) for every simplex a e A, the vertices of a lie in distinct G-orbits.

If A does not hâve this property then its barycentric subdivision does.

We will be interested in two conséquences of (*), the first of which is the fact
that in the présence of (*) every fixed point set AH is also a simplicial complex. The

other conséquence is the following lemma.
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4.1.1. LEMMA. Leî A be a Gsimplicial complex satisfying (*). Then we may
put a G-invariant partial order on the vertices of A in such a way that in every simplex
the vertices are totally ordered.

Proof. Totally order the set of orbits of vertices. The partial order we require
has x &lt; y if and only if the orbit of x is less than the orbit of y.

A G-simplicial complex satisfying the conclusion of this lemma is sometimes
called an ordered G-simplicial complex, and we might as well be working in the

category of ordered G-simplicial complexes.
We will need to use the language of semisimplicial objects, and for this we refer

the reader to [13]. Starting with an ordered G-simplicial complex A we may form
the associated simplicial set

s(A) • • r2(A) % rx(A) B ro(A)

where the face maps 37 : Fn(A) -+Fn_ X(A) are

dj(v0, ...,vn) (v0,..., Vj__ vJ +,,..., vH)

and the degeneracy maps are

Sj(v09. ,vn) =(v09.. ,vJ9vJ9. ,vn).

It is immédiate from the fact that G préserves the order of vertices in every simplex
that ail the d3 and s} are G-equivariant mappings. We thus see that in fact S(A) is

a simplicial G-set. We really wish to consider the augmented simplicial object
associated to A, which is

--r2(A) § rx{A) % ro(A)^r_l(A)

where F_X(A) is a single point, and this is also a simplicial G-set.
We now perforai some further opérations. Thèse rely on the observation that

whenever we are given a functor 0 : G-set -+# where # is some category then the

diagram GS(A) is a simplicial object in (€. Suppose we are given a Mackey functor
M for G (over a commutative ring R). Let Mack(G) dénote the category of Mackey
functors for G over the ring R. We define two functors SM, 0M : G-set -? Mack(G)
in the following fashion, such that 0M is covariant and GM is contravariant. For
a G-set Q we put 0M(Q) 0M(Q) MQ. Given a morphism a : Q -» V of G-sets

we define 0m{ol) :Mq^M^ and 0» : Mv -+MQ as follows. The effect of &lt;9M(a)
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on the Mackey functor MQ evaluated at a G-set X is M+(\ x a) : M(X x Q) -?

M(X x W). The effect of 0m(ol) is similarly M*(l x a) : M(X x «F) -? M(,r x O). In
Mack(G) we may now form the chain complexes of Mackey functors associated to
0MS(A). Thèse will be denoted CC(0MS(A)) and CC(0MS(A)). Explicitly, we

mean the objects in the first chain complex to be the 0M(Fr(A)) with differential

SJ=0 — \)J0M(ôj), and similarly for the second one. We summarise the opérations
we hâve just performed, writing 0 instead of 0M or 0M:

G-simplicial complex &gt; simplicial G-set
0

simplicial Mackey functor

chain complex of Mackey functors.

We will show that the chain complexes we finish with are the ones specified in
Theorem B.

The chain complexes in Theorem A are the évaluations at the trivial G-set (or,
equivalently, at G) of the chain complexes in Theorem B. We can therefore

construct them by repeating what we hâve just done, and evaluating always at the

trivial G-set. A more direct proceedure is indicated by the following scheme:

G-simplicial complex simplicial G-set

simplicial R -module
ce

chain complex of R -modules.

Hère M dénotes either M+ or M*. We apply M+ and M* to ail the mappings and

objects which make up §(A). We thus obtain two simplicial R -modules denoted

M+S(A) and M*S(A). In the category of R -modules, we may now form the chain

complexes of jR-modules associated to M+§(A) and M*S(A) and thèse are denoted

S(A)) and CC(M*S(A)).

4.1.2. LEMMA. The séquences in Theorem A are CC(M*8(A)) and

iA)). The séquences in Theorem B are CC(0MS(A)) and CC(0M8(A)).

Proof. We give the proof for the séquences in Theorem B and then indicate the

modifications we must make for the séquences in Theorem A.
We work first with CC(0M8(A)). The typical Mackey functor in CC(0MS(A))

is 0M(rr(A)) MFr(A) and since

r,(A) s
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broken up according to the given set of représentatives a for the O-orbits on Fr(A),
we hâve

Mrr{à) s 0 MGa.
&lt;reG\rr(A)

The differentials in the chain complexes are ZJ=0 — l)J0M(dj). If x (v0 vr)
is an r-simplex with the vertices taken in order then &lt;37(t) (v0 Vj_ l5 vJ + x vr).
Putting ëj(x) p, say, we use the notation (p \ x) -1)7, and this is what we mean
by the &apos;orientation of the embedding of p in t&apos;. Thus the component of the
differential between the orbit containing t in Fr(A) and the orbit containing p in
Fr_ X(A) is {p | x)0M(ôj) where on the orbit containing t, d} is the map

Suppose that in fact p was not one of our originally chosen orbit représentatives,
but a was, and that g gp for some g e G. Then a is a face of gx. Identifying the
orbit containing p and a with G\Ga we now write 3y as

This factorizes as

G/GT -^ G/*GX G/GgT -^ G/Ga,

where cg is the map xGx »-? xg~XgGx and rcg^ is xGgx h* xGa. Applying &lt;9M to this
we conclude that the component morphism MGg -+ MGx is

(a | gx)0M(n^cg) (a \ gx)M*{\ x zcg^ • c,) : M(? x G/Ga)^M(l x G/GT).

The proof for the second chain complex CC(GMS(A is similar to this, but we

apply SM instead of GM. Thus the component morphism MG%-+MGa is

^in^c,) (a | gx)M*(l x Trg^ • cg) : M(? x G/GT) -+M(1 x

Thèse are the mappings described in Theorem B.
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For the séquence in Theorem A we proceed in the same way but we only hâve
to apply the functors M* and M+. Thus the component morphisms are

nfrgxcg) =(&lt;r\gr)-cg-i&apos; res%T

and

tor (* | gT)M^nGG&lt;^cg) (a | gx) • indg^ • cg. D

Remark. It is clear from the above discussion that the séquences in Theorem A
are obtained by evaluating the séquences in Theorem B at the trivial G-set. Because

of this, Theorem A is a conséquence of Theorem B, since a séquence of Mackey
functors which is exact and split must be exact and split on each évaluation. In view
of this we will only prove Theorem B in the next sections. A direct proof of
Theorem A may be obtained by following the arguments we give and replacing 0M
and M* and 0M with M*.

4.2. The réduction step

We suppose we are given a G-simplicial complex A, a Mackey functor M and
sets of subgroups S and &lt;&amp; satisfying the conditions of Theorem A. We will show

4.2.1. PROPOSITION. To prove Theorems A and B it suffices to assume the

structure of G is such that Gel
The proof of this is obtained by combining the next two results. If H is a

subgroup of G we let M\% dénote M with the domain of définition restricted to the

subgroups of H. Similarly A1% dénotes A regarded as an /f-simplicial complex by
restriction of the action. We put

XH {Ke£\K^H} and &lt;&amp;H {Ke® \ K &lt;&gt; H).

It is an elementary observation that the hypothèses of Theorem A are inherited by
the quadruple Mj#, Al%, 9£H and (&amp;H. The immédiate implication of the next
results is that it suffices to show that CC(0Mi%S(A i£))î£ and CC(OMi%S(A ig))î%
are split acyclic for ail H e 9£. Since induction is exact (and hence préserves direct
sums), it suffices to show that CC(0MigS(Al%)) and CC(0Mi%S(Al%)) are split
acyclic for ail H € X, and in view of the observation made just previously this is the

same as assuming that Gel
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4.2.2 LEMMA. CC(0MS(A)) is a direct summand of

Similarly CC(0MS(A)) is a direct summand of

0
HeSC

423, LEMMA. A direct sum ofchain complexes is split acyclic ifandonly ifits
summands are split acyclic.

Proof of 4.2.2. This is an exercise in using the relative projectivity of M. We
work first in an abstract setting where we hâve a functor 0 : G-set-&gt;# for some
abelian category #, thus obtaining a simplicial object 0(§(A)) in c€. In our
application we will take 0 0M or 0M. Suppose we hâve another functor
S : G-set-?# and natural transformations &lt;x : S -+09 fi : 0 -+S such that a/? 1.

Then a, /? give rise to simplicial maps

0(§(A)) -?-+ S(S(A)) -^ 0(S(A))

and hence to maps of chain complexes

CC(0(S(A))) -^ CC(S(S(A))) -?-&gt; CC(0(8(A)))

such that the composite of the two maps is the identity. By this means we deduce
that CC(0(S(A))) is a direct summand of CC(3(S(A))) as chain complexes.

In our situation we put X \JHe3E-G/H, and take 0 0M and S 0Mx- The

projectivity of M relative to &amp; means that the natural transformation 0X : Mx -&gt; M
is a split epimorphism. We will show that 9X gives rise to a natural transformation
a : 0Mx^&gt;0M. At a (7-set Q we define the effect of a to be another natural
transformation olq : 0Mx(&amp;) (Mx)q -&gt;Mq 0M(Q), whose effect at a G-set *F is

(Mx)Qm MX(H* xQ)-^U M(V x Q) Jlfo(*F).

It is apparent that a is natural with respect to Q because when we expand the G-sets
as direct products the G-set morphisms which take place in the Q factor commute
with morphisms which take place in the other factors. In a similar fashion the
natural transformation M -&gt; Mx which splits 9X gives rise to a natural transformation

j8 : 0M-+0M and we hâve aj8 1. We hâve now shown that the abstract
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situation just described in the previous paragraph is in force hère, and we deduce
that CC(0MS(A)) is a direct summand of CC(0MxS(A)).

Evidently CC(0Mx§(A)) S ®H^CC(0Mc/H§(A)) and it remains to show that
0MciHS(A) s (&amp;Ml%S(A |w))î«- This is immédiate from the fact that ®Mgih factor-
izes as a composite

G-set -^-» //-set -^L Mack(H) -^-» Mack(G).

We see this by considering the chain of isomorphisms

xQx G/H)

The argument which shows that CC(0MS(A)) is a direct summand of

is similar. D

Proof of 4.2.3. Suppose C, © C2 is a direct sum of chain complexes. Then

H+{CY ©C2) s H+{CX) ®H+(C2) so if Q © C2 is acyclic, so are its summands.
As for the splitting, we recall from [22, 7.1] (and it is easy to prove) that a chain

complex with differential d is split if and only if there is a chain map a of degree +1
with doid d. The differential on C, © C2 is d (dud2), where dx and &lt;/2 are the

differentials on Cx and C2. Suppose that Q © C2 is split by a map a of degree -h 1

with d(xd &lt;/. Then nx &lt;x.ix splits Q, where

xxx2 and w1:,2i
are inclusion and projection, since dxnxcnixdx nxdaidix tc,dix =dx. D
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4.3. The direct argument with subgroups in 9C

Our argument uses notions from topology, and in particular the notion
of G-homotopy. Given topological spaces X and Y on which G acts as a group
of homeomorphisms, we say that G-equivariant maps/, g : X-+ Y are G-homotopic
if they are homotopic by a homotopy H : X x I -+ F which is itself a G-equivariant
map, where the unit interval / has the trivial G-action. The spaces X and Y
are G-homotopy équivalent if there are G-equivariant maps between them in
each direction so that the composites in both directions are G-homotopic to the

identity.
The final lines in our argument will rely on the foliowing observation.

4.3.1. LEMMA. Let Ax and A2 be G-simplicial complexes satisfying (*)
which are G-homotopy équivalent; and let 0 dénote one of the functors 0M, 0M, M+
or M* as in Section 4.1. Then CC(0S(Ax)) and CC(0S(A2)) are chain homotopy
équivalent.

Proof For each G-simplicial complex A we will need to consider the simplicial
G-set of singular simplices of \A\, which we will dénote Z(A)9 and also the

corresponding augmented simplicial G-set S(A). We will show two things, firstly that
Ax ^GA2 implies CC(0I(Ax)) c* CC(0Ï(A2)); and secondly that CC(0§(A)) ^
CC(0I(A)) for any G-simplicial complex A. Putting thèse pièces together we obtain
the conclusion of Lemma 4.3.1, since CC(0S(Ax ~ CC(0Ï(Ax)) en CC(0Ï(A2)) a
CC(0S(A2)).

To start, it is immédiate that Ax ^GA2 implies S(AX) ~ %{AX) as in [25, p. 12],

and since ail mappings are G-equivariant we hâve a homotopy équivalence
of simplicial G-sets. We now wish to apply the functor 0 to both sides. It is

first necessary to say what this would mean, since 0 has so far only been de-

fined on fini te G-sets and we need to extend the domain of définition to infinité
ones. We define 0 on an infinité G-set Q by first expressing it as a union of
its orbits Q [jQ, and then putting 0{Q) ®0{Qt). On morphisms we define

0 in terms of its components with respect to this direct sum décomposition,
each component being the effect of 0 on the restriction of the morphism to the

corresponding orbit. Now to show that CC(0Ï(Ax)) ^ CC(0Ï(A2)) we proceed as

in [25, p. 100]. The essential matter is to show that if we hâve two semisimplicial
mappings

which are homotopic by a homotopy H then the chain mappings CC(0(fo)) and
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CC(6&gt;(/i)) are chain homotopic. Using notation borrowed from [25], each of the
mappings

0...Ôl... 1))

is G-equivariant, so we may form €&gt;{Kt). Now we put

and calculate in the usual way that dk + kd CC(&lt;9(/i)) - CC(0(/o)). This is the

same as the usual calculation except that ail the ternis hâve &lt;9 applied to them. To
be explicit about this, we hâve to show that

We rely on the identities

which immediately show that terms cancel in pairs except for two of them, and
hence the above équation holds. Now the desired assertion about chain homotopy
équivalence of the complexes follows in the usual way from what we hâve just
shown about mappings.

Finally we need to show that CC(0§(A)) ~ CC(@S(A)) for any G-simplicial
complex A. To do this we follow a standard treatment which shows that the singular
and simplicial chain complexes of A are chain homotopy équivalent, such as [26].
One has the natural inclusion CC(S(A)) c» CC(Ï(A)) and in [26, p. 115] there is
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constructed a map in the reverse direction which is a homotopy inverse to the
inclusion. We hâve to observe that in this construction the homotopy inverse may
be obtained on each orbit of simplices as an integer linear combination of
G-équivalent maps. This is because the constructions at every stage are natural, and

we may always proceed by making a définition on one élément in an orbit and
extending to the rest of the orbit so as to be equivariant for the action of G. We

may now take instead the same linear combinations of thèse mappings but with 0
applied to them. The resuit is a chain map CC(0Ï(A)) -&gt; CC(0§(A)), and it is a

homotopy inverse to the canonical map CC(0§(A)) -&gt; CC(@2(A)). One shows
thèse facts by exactly the same arguments as in [26] except that &amp; is applied to ail
the terms in the équations. For the validity of thèse équations after 0 has been

applied one relies on the fact that in every case the équations simplify because terms
cancel in pairs. Thus it makes no différence if we apply 0 everywhere. We omit
the précise technicalities of this argument because they are complicated, and
well-known

We now give the proof of Theorem B. By virtue of 4.2.1 we may assume that
G g #*, and so we are reduced to proving the following spécial case.

4.3.2. THEOREM. Let G be a finite group, M a Mackey functor for G, &lt;&amp; a

set of subgroups of G closed under taking subgroups and conjugation, and A a

G-simplicial complex of dimension d. Suppose that

(i) For every simplex a e A the vertices of a lie in distinct G-orbits.

(ii) For every subgroup H $%/, AH is contractible.

(iv) For every YeW, M(Y) 0.

Then the complexes of Mackey functors

and

0 ?- M &lt;- MrQ{A) &lt;- Mrl(J) *- • • • 4- Mrd{A) «- 0

are split acyclic.

The assumptions of this theorem will now remain in force throughout this
section. The key to the proof of the theorem is the following resuit.

4.3.3. LEMMA Suppose G $ c&amp;. Then A has a G-subcomplex E which is G-con-
tractible and such that every simplex a not in E has its stabilizer Ga in &lt;&amp;.
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Proof. We define E \JH^GH4c3,AH. This is a subcomplex, since if a is fixed

by H then so is every face of &lt;r; and it is preserved under the action of G. Evidently
ail simplices outside E hâve their stabilizers in ®/. We show that E is (7-contractible.

Because A G is contractible it is non-empty, so E is non-empty. Choose a vertex

x g AG and consider the inclusion mapping / : {x} -+E. We will show that this is a
(?-homotopy équivalence. For each subgroup H ^ G there is a mapping of fixed
points iH :{x}-+EH. By a theorem of Bredon ([12, Section II] see also [22]) it
suffices to show that each map iH is a homotopy équivalence. For this we only need

show that EH is contractable for ail subgroups H &lt;&gt;G. There are two cases. When
H i ®f we hâve EH AH, and this is contractible by hypothesis. When H g ®f we
hâve EH \Jh^k,k$^^k since the right hand side is clearly contained in the left,
and if a g EH then H ^Gaic&amp; by construction of E, so a e A Ga which is in the

right hand side. Thus EH is a union of contractible spaces, every non-empty
intersection of which is also contractible since AKnAJ= A^&quot;0. Hence EH is

homotopic to the nerve of the covering [3, p. 50]. Since the intersection of ail the
sets in the covering is non-empty, the nerve consists of a single simplex, which is

contractible.

4.3.4. LEMMA. Suppose G $%/. The complexes ofMackey factors obtainedfront
A and E are the same.

Proof In the complex

the typical term has the form

E then Ga e ®J and hence MGjGg M[%a ]%a 0 since M is zéro on subgroups
of Ga. Thus MriiA) Mpi{E). Furthermore the restriction to Mri{E) of the differential
coming from A is the same as the differential coming from E, so the two complexes
are the same.

Proofof Theorem 4.3.2. If G g &lt;&amp; then M is the zéro Mackey functor, so we may
assume G $ ty. We work with 0M the argument for SM being similar. Let E be the

subcomplex of A in Lemma 4.3.3. We hâve that CC(9MS(A)) CC(0M8(E)). But
£is G-contractible, so by 4.3.1 CC(0M§(E)) is chain homotopic to the zéro complex.
Therefore it has zéro homology, and is split since splitting is preserved under chain

homotopy équivalence [22, 7.2].
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5. Proof of theorems on the chain complex of A

5.1. Proof of Proposition 2.1.3

Let Zp dénote the p-adic integers. For any TG-module V we will write
Vp V ®z Zp. The statement we are due to prove is:

2.7.3. PROPOSITION. Take M(G) Hn(G, V)p for sortie integer n&gt;\ and
ZG-module V. The séquences in Theorem A are ExtJ G (C(A), Vp) and

Ext5 G(€.(A)*9 Vp) where * dénotes the contragréaient and C(A) is the augmented
chain complex of A.

Proof. We verify first that the groups in the complexes are what they should be,
then that the maps are correct. A typical chain group Cr(A) can be written
®aeG\rr(à) ^Îg^ because it is the free Zp-module on the simplices in dimension r
and thèse divide up into orbits, each giving a submodule Zp\%a. Applying Ext we
obtain

Ext»ZG(Cr(A), Vp) s © ExtJ^ (Zpîg,, Vp)
&lt;reG\rr(à)

s © ExtrZG9(zp9vp)
&lt;T€G\rr(à)

S © Ext»ZGff(Z,V)p
&lt;xeG\rr(d)

© H%Ga, V)p9
aeG\rr(A)

by means of standard isomorphisms. The fact that we can take completion at p
outside the Ext term follows from [10, p. 233]. There is a similar chain of
isomorphisms for the contragredient représentations Cr(A)*, since they are-permutation

modules and Cr(A)* s Cr(A).
We hâve to show that &lt;f&gt;xa and \jfax are the maps induced on the Ext groups by

the homomorphism Zp\%x -^Zp\%a and its dual. We suppose hère that a is a face of
gt. Evidently the maps hâve the right sign from the définition of the boundary
operator. Regarding the modules now as free Zp -modules on the simplices, the map
is hgx -+ha, h € G, and its dual is hâ -&gt; hzgx, where z is the sum of a set of
représentatives for the cosets of Ggx in G. A hat indicates the élément of the dual
basis corresponding to the bare-headed symbol. Because thèse maps take place in
the first Ext variable and this commutes with what happens in the second variable,
they give natural transformations of the cohomological functors Hn(Gff, Vp) and
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H&quot;(Gt, Vp), so it suffices to check that they coincide with the original définitions of
&lt;j)xa and \jjax on fixed points (see [10]). On fixed points the maps are

pG(Zpî%x, Vp)

(G h-&gt; V) H-&gt; (t h-* g ~ 1V)

and

HomZpG(ZpîgT, K,)-Homz,c(Z,îS., Vp)

(t H t)) H ((J H ZgV).

Thèse are respectively cg _ i • resg^ and indg^ • cg. D

5.2. Proof of Theorem 2.7.4

We first need a technical lemma. We work with modules over a finite dimen-
sional algebra A, and if A and B are A -modules we use the notation Hom^ (A, B)
for the group of homomorphisms from A to B modulo those homomorphisms
which factor through a projective module.

5.2.1. LEMMA. Let Abe a self-injective algebra finite dimensional over afield k,
and let \i \ A-*B be a monomorphism between finite dimensional A-modules. If the

induced map Hom^ {B, V) -» Hom^ {A, V) is surjective for ail A-modules V then \i is

split.

With full homomorphism groups this resuit is immédiate, and the point is that
it works with homomorphisms modulo projectives.

Proof Taking V A, there exists (f&gt; :B^A whose image in HomA(A, V) is

the same as that of 1^, i.e. (j)fi 1 (mod projective homomorphisms). For some n,
(&lt;t&gt;n)n has the same image as (&lt;/&gt;/*)&quot;+ \ so A AQ®AX where (&lt;/&gt;/*)w is an automor-
phism on Ao and is zéro on Au and again ($/*)&quot;= 1 (mod projective homomorphisms).

When we restrict the domain of \x to Ao the monomorphism fi : Ao-&gt;B is

split by [(^)w]~1(^M)n~10, where [(&lt;t&gt;fi)n]~l dénotes the inverse of (&lt;f&gt;fi)n on Ao.
Because (&lt;t&gt;fi)n is zero on Au lAl factors through an injective projective)
module, and so Ax is injective and \x\Ax-+B is split. Hence fi is split as a

morphism A -&gt; B.
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We now prove Theorem 2 7 4 The implications (îv) =&gt; (m) =&gt; (n) =&gt; (1) are
clear We first prove (1) =&gt; (m) Because tnvial source modules and ail morphisms
between them are hftable from ZIpT to 1p [12, II, 12 4], ît suffices to prove the

décomposition of C in (in) when R Z//?Z k, say
We proceed by induction on the dimension d of the complex

When d 0 then ExtJJG (Co, F) 0 for ail F, so Co is projective Now suppose
d &gt; 0 and the requit is true for smaller dimensions There is an isomorphism

(A B) ^ ExtiG (A,Q~lB) and we apply the condition m (î) to thèse groups
Let Hd be the top homology of C, so

Q-+Hd-+Cd-&gt;Cd_x

is exact Then the composite

HomfeG (C,_ „ F) - Hom,G (Q, V) - Hom,G (//„ F)

is zéro and the left hand map is epi by the hypothesis (î), so the nght hand map is

zéro and the image of \Cd in Hom^Cfl^, Cd) (îe the inclusion map Hd-+Cd)
factors through an injective module Hence there is a factonsation Hd-&gt;I-&gt;Cd

where / is the injective hull of Hd, and / -&gt; Cd is injective since / and Hd hâve the

same socle and this embeds in Cd This means that Cd £ / © Y for some submodule
Y of Cd, and Hd^I Also y embeds in Crf&quot;

&apos;

by restriction of the map Cd -&gt; Crf_ x

and we hâve a commutative diagram

(Cd_,, F) -Hom^ (C,, F)

F)

since the summand / contnbutes zéro to the homomorphisms modulo injectives
Hence the monomorphism Y-+Cd_\ sphts by Lemma 5 2 1 and Cd_, s F 0 W for
some submodule W Now

F, F)

is exact, and so

(Cd_ 2, F) -&gt; Hom,G (^, F)
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is epi. Thus W -+Cd_2^&gt;&apos; &apos; *~&quot;*Q îs a complex of dimension d—\ satisfying
the induction hypothesis, so there exists an acyclic split subcomplex
X-+Dd_2-+ &gt;D0 with Cl=Dl®Pl for i^d-2, W X®Pd_x. Put

Dd_ j X® Y, Dd= Y. Then Dd^&gt;-^&gt;D0 is our acyclic split complex D. and
Cd Y® /, Cj_ F© JF Dd_ x ®Pd-1 as required. This complètes the proof
of the implication (i) =&gt; (iii).

We now prove (iii) =&gt; (iv), showing by induction on n that for ail r with
0 ^ r ^ n we may choose a projective submodule Pr so that Cr Dr® Pr and such

that the differential dr sends Dr into Z&gt;r _ and Pr into Pr _ x. The induction starts at
n 0. Hère we only need the additive décomposition Co D0®C0/D0 which results
from the fact that Co/Do is projective. Suppose now that n &gt; 0 and the results holds
for smaller values. Because Cn \Dn is projective we may write Cn Dn © gw for
some projeective module gw and represent dn\Qn in component form (j?w,an)

corresponding to the décomposition Cn_x Dn_x®Pn_x. The picture of C is

n *n
&gt; p

where for 0 ^ r ^ n, âfr yr © ar with ^1^ yr. For any élément jc s Qn9

dn-1 dn{x) (yn_ j3rtW, art_,an(x)) 0, from which we see that yn_lpn=O
and Im^w eker yrt_j =Im7n. Hence by projectivity of Qn there exists a

map &lt;£„ : gn -+Dn so that j?n yn(f&gt;n. Define Prt {( -&lt;pn(x), x) \ x e Qn}. This is an

isomorphic image of gn under the map x i-+ -&lt;f&gt;n(x), x) so Pn ^ Qn is a projective
submodule, and plainly Cn — Pn®Dn. Furthermore for y — &lt;t&gt;n(x),x) e Pn,

(0,an(jc))GPrt_,

thus completing the induction step.
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