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A split exact sequence of Mackey functors

P. J. WEBB

1. The main theorems

We prove a theorem which allows a Mackey functor on a finite group to be
computed in terms of its values on certain subgroups in a quite explicit way. The
ingredients which make up the statement are an action of the group on a simplicial
complex, and projectivity of the Mackey functor relative to certain subgroups. The
result may be regarded as a refinement of the result of Dress [7] which shows that
relative projectivity of a Mackey functor with respect to a set of subgroups implies
computability in terms of those subgroups. Viewed differently, one can also see the
theorem as an extension of work of K. S. Brown [3] which gives the cohomology
of a group in terms of its action on the simplicial complex of p-subgroups.

THEOREM A. Let G be a finite group, M a Mackey functor, ¥ and % classes

of subgroups of G which are closed under taking subgroups and conjugation, and A a
G-simplicial complex of dimension d. Suppose that

(1) For every simplex o € A the vertices of a lie in distinct G-orbits.

(ii) For every subgroup He & — %, A" is contractible.

(111) M is projective relative to Z.

(iv) For every Ye %, M(Y) = 0.
Then there are split exact sequences

(@0

0-MG)-» @ MG)—— @ MG)-» - @ MG,)-0
aeG\Fo(A) 1eG\I' I(A) oeG\Fd(A)
and
(Wyr)
0-MG)« @ MG, —— @ MG)« -« @ MG,<0
oeG\Fo(A) teG\I‘,(A) aeG\Fd(A)

where if o is a face of gt then

¢ = (0| 87)  Cp-1 - TESE?,

Voe = (0 | g7) * ind%, - c,
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and otherwise ¢., and Y, are zero. Here (0| gt) is +1 or —1 according to the
orientation of the embedding of o in gt, and I';(4) is the set of i-simplices in A.

In this theorem, all of the mappings are given in the way we have indicated
between the 0 and 1 terms. The other mappings were left unlabelled to save on
notation. By a G-simplicial complex we mean a simplicial complex on which G acts
simplicially, that is G permutes the simplices amongst themselves preserving the face
relationships and sending simplices of a given dimension to simplices of the same
dimension. We use the term orientation of the embedding to mean the following. It
is possible to put a G-invariant partial order on the vertices of 4 in such a fashion
that the vertices of every simplex are totally ordered. If 7 is an r-simplex of 4 with
vertices (v, . . ., v,) taken in order, and if p = (vy, ..., v;_;, 0,44, ...,0,)1s a face
of 7 of dimension r — 1 then we put (p | t) = (—1)”. In the statement of the theorem
we are composing maps on the left and this will generally be our convention.

The sequences in the theorem are in fact natural with respect to G and this gives
rise to a stronger but more abstract statement, which we now give. In the notation
of Dress [7], we may regard Mackey functors as being defined on G-sets rather than
on subgroups of G. Thus we may write M(G/H) instead of M(H) to denote the
value of the Mackey functor M at the subgroup H. If Q is a G-set we let M, be the
Mackey functor with M,(¥) = M(¥Y x Q).

THEOREM B. In the situation of Theorem A we have split exact sequences of
Mackey functors

O->M—>Mpyay>Mp sy~ > M,y —0
and
OBM‘_MFO(A) ‘_Mr,(A) A ""Mrd(A)ﬁo.

The mappings in this theorem are described as follows. We give the component
maps with respect to the decomposition

Mr,(4)= @ MG/G,,
ceG\T,(4)

obtained by choosing representatives of the orbits of G on 4. The component
mapping Mg, — Mg, is zero unless o is a face of gt for some g € G, in which
case its evaluation at a G-set Q is

(o | gr)M*(1 x mGe - cg) 1 M(Q x G/G,) »M(Q x G/G,)
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in the case of the first sequence, or
(o | gn)M (1 x nggt cg) i M(Q x G/G,) > M(Q x G/G,)

in the case of the second sequence, where ¢,: G/G, - G/G,, is conjugation and
ng; :G/G,, = G/G, is the canonical quotient map. On evaluation at G (or,
equivalently, at the G-set consisting of a single point) these sequences become the
sequences in Theorem A. The sequences in Theorem B are resolutions of M by
induced functors, and they take a particularly nice form. They invite comparison with
the resolutions by functors M, constructed by Dress [7]. The sequences here have
the advantage that they are smaller and easier to compute with in specific examples.

In Section 2 we describe many situations in which Theorem A can be applied,
to do with computing the values of specific Mackey functors, and also deducing a
structure theorem for the chain complex of K. S. Brown’s simplicial complex of
p-subgroups of G. I have found Theorem A most useful for computing cohomology
groups, and indeed this was the origin of this paper. Theorem A implies the
conclusion of the Theorem A in [20] which expresses the cohomology as an
alternating sum. I noticed that this alternating sum could be given a more
satisfactory conceptual basis by arranging the terms in an exact sequence. I then
found that the same thing could be done with Mackey functors. More recently
Theorem A has found application in other areas, and we can refer the reader to [19]
for an application in connection with Alperin’s conjecture.

In Section 4 we give the proofs of Theorems A and B, and for this Section 3 on
Mackey functors in a prerequisite. Finally in Section 5 we make deductions about
the chain complex of 4, and in particular about Brown’s complex. The main result
here is stated as Theorem 2.7.1, which describes the chain complex of Brown’s
complex. There is also a result, stated as 2.6.1, which says that the quotient by G
of Brown’s simplicial complex is mod p acyclic.

2. Applications
2.1. Suitable simplicial complexes

We start by describing some specific examples of simplicial complexes which can
be used in Theorems A and B. In our applications 4 will always be obtained as the
simplicial complex of chains in a partially ordered set. If & is a poset the

corresponding simplicial complex 4 = A(£) has as its n-simplices the set

r,(4)={x,<---<x,|x;€P}.
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The subsimplices of an n-simplex are the shorter subchains. If G acts on 2 as a
group of poset automorphisms there is induced a simplicial action of G on 4(P). A
G -simplicial complex constructed in this way will always satisfy condition (i) of the
theorem, provided the poset in finite, because if x, y are two vertices of a simplex
o then they are comparable as elements of the poset, and they must therefore lie in
distinct G-orbits.

There are three posets which we use all the time, consisting of p-subgroups of
G. We fix a prime p and put

£(G) = {all non-identity p-subgroups of G}
& ,(G) = {all non-identity elementary abelian p-subgroups of G}

B,(G)={H<G|H=0,Ng(H), H#1}.

G acts on each of these posets by conjugating the subgroups. It turns out that from
a certain point of view we get effectively the same answer in our applications no
matter which of these three posets we use. This is a consequence of the following
result.

2.1.1. THEOREM (Quillen [14], Bouc [1], Thévenaz, Webb [18]). The three
simplicial complexes A(%(G)), A(A,(G)) and A(#B,(G)) are all G-homotopy equiva-
lent.

For a discussion of what this means see [22]. A consequence is that if any one
of these simplicial complexes satisfies (ii) then so do the others. The significance of
%,(G) is that when G is a finite Chevalley group in defining characteristic p,
A(#,(G)) is the barycentric subdivision of the building of G. In particular A(%,(G))
and the building are G-homotopic.

As well as the simplicial complexes associated to the above posets we will be
using posets of the form 2 = %(G) — %, where % is some set of subgroups of G
closed under conjugation and taking subgroups. For these simplicial complexes the
fixed point condition (ii) in the theorem will be verified using;

2.1.2. LEMMA. (i) Let 4 be the simplicial complex of one of %(G), +,(G) or
#,(G), and let H be a subgroup of G which has a non-trivial normal p-subgroup. Then
A" is contractible.

(ii) Let ¥ be a set of subgroups of G closed under taking subgroups and
conjugation, and let A = A(S,(G) —¥). Let H be a subgroup of G which has a
non-trivial normal p-subgroup H, with H, € S,(G) —%. Then A" is contractible.
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Proof. Part (i) in the case of A(%(G)) follows from (ii) by taking % to be
empty. Now the result for 4(+/,(G)) and 4(%#,(G)) follows in view of 2.1.1.
We prove (ii) by contracting 4” onto {H,}. Now

(A(F(G) — ¥ = A(£(G) —B)").

Take any Ke(%(G)—%)”. The chain of inequalities K<K-H,>H, in
(£(G) — ¥)* contracts (%(G) —%)” onto {H,}, as in [4, p. 268]. O

Of course, one may try to apply the theorem with whatever simplicial complex
and Mackey functor one may have in mind. Other candidate simplicial complexes
come from the sporadic geometries which people construct for certain simple
groups [16].

2.2. Overview of the Mackey functors to which the theorem applies

The notion of a Mackey functor will be described in Section 3. We first describe
in general terms a proceedure we can follow which produces a Mackey functor M
and simplicial complex 4 satisfying the conditions of Theorem A. In order to apply
Theorem A to some candidate Mackey functor M we may have in mind, the first
step is to find a set & of subgroups of G with respect to which M is projective, and
preferably a minimal such set. Now choose a simplicial complex 4 satisfying (i) of
Theorem A, and such that 4# is contractible for as many of the subgroups H € &
as possible. To avoid triviality, G should not stabilize any simplex of 4. Take # to
be a set of subgroups of G closed under conjugation and taking subgroups so that
% 2{H e & | 4" is not contractible}. We define two more Mackey functors

MH, %)= Y ind¥ M(Y), M y(H) =M(H)/M(H, %).

Ye¥ ,Y< H

One sees that if the original Mackey functor M were to satisfy M(Y) =0 for all
Y €%, then we would have M =M 5

2.2.1. PROPOSITION. Conditions (i)—(iv) of Theorem A are satisfied for the
quadruple Mo, ¥, % and A.

This result is proved in Section 3.6, where it is also shown that M 4 is characterised
as the largest quotient Mackey functor of M which vanishes on the subgroups in #.
We now give a list of examples of how the above construction turns out in
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particular cases. These will be examined in greater detail in the ensuing sections. We
fix a prime p. We use the following symbols to denote some familiar Mackey
functors.

r(G)—the ring of virtual complex characters
Br(G)—the ring of Brauer characters in characteristic p
a(G)—the Green ring of FG-modules, where F is a field of characteristic p
A(G)—the Green ring Q ®; a(G) with rational coefficients
H"(G, V)—Tate cohomology with coefficient module V
A"G, V'),—the p-torsion subgroup of Tate cohomology
w(G, V)—cohomology relative to %

In the case of a(G) we will need to suppose F is a splitting field for G, but not in
the case of A(G).

In the next statement we list & and % so that the reader can see what is going
on, but as far as practical applications are concerned we might as well forget them
because they do not appear in the conclusions of Theorems A or B. For the sake
of generality we have put 4(%(G) — %) all the time, but the simplest situation is
when % consists just of the p’-subgroups of G, and in this case % (G) — ¥ = %(G).

We will use the following terminology:

DEFINITION. Let & be a class of groups. We say a group H is 2 mod p if H
has a normal p-subgroup H, < H with H/H, € Z. Recall that a subgroup is said
to be Brauer elementary if it is the direct product of a cyclic group with a g-group,
for some prime g.

2.2.2. THEOREM. Conditions (i)—(iv) of Theorem A are satisfied with the
Sollowing choices of M, , % and A.

M(G) type of subgroups in & % a4
ry(G) Brauer elementary 3 p’-subgroups A&p(G) —%)
Br5(G) Brauer elementary 2 p’-subgroups AZ,(G) - %)
a,5(G) Brauer elementary mod p 2 p’-subgroups A& ,(G) —F)
A4,5(G) cyclic mod p D p’-subgroups AZ,(G) - %)
H7G, V), p-subgroups {1} A& ,(G))
Hiy(G, V), p-subgroups 2{1} A ,(G) — %)

HY(G,V),,n21 p-subgroups 2 {1} AS,(G)-%)
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The meaning of 2 in the third column is that we may take % to be any set of
subgroups closed under taking subgroups and conjugation which contains the named
set of subgroups.

Proof. We deduce this from 2.2.1. We must show that A satisfies (i) and (ii),
which it does from 2.1.2 and the remarks in Section 2.1. Note in this connection
that if a Brauer elementary subgroup is not a p’-group then it has a non-trivial
normal p-subgroup, so 2.1.2 may be applied. We must also show that M is
Z -projective in the various cases. This is discussed in Section 3.4. O

2.2.3. REMARK. It will be apparent from Proposition 3.4.2 that if we start
with an & -projective Mackey functor N, let 2 be some class of subgroups closed
under taking subgroups and conjugation, and put M(H) = N(H, Z) then M, is
also & -projective. By this means quadruples such as

M(G) =a(G, Z)/a(G, %),
Z = subgroups ‘Brauer elementary mod p’,
% = any subconjugacy closed set such that {p’-subgroups} c % < Z,
4 = A(S,(G))

may be included in the list in Theorem 2.2.2. There is also some freedom in the
choice of 4 in that we may take 4 = A(#) where 2 is any G-invariant poset
satisfying & ,(G) — ¥ = ? = &,(G) (see Lemma 2.1.2(ii)).

2.3. Character rings

In using Theorem A to compute either a character ring or a Green ring in the
manner of Theorem 2.2.2 it is necessary to factor out the span of the projective
modules (or the characters of the projective modules, in the case of a character
ring). To be explicit about this, let R be a complete discrete valuation ring in
characteristic 0 containing a primitive |G|th root of unity with residue field of
characteristic p. Then

r(G, p’-subgroups) = the Z-span of characters of projective RG-modules
Br(G, p’-subgroups) =the Z-span of Brauer characters of projective FG-
modules
a(G, p’-subgroups) = the Z-span of projective FG-modules
A(G, p’-subgroups) = the Q-span of projective FG-modules.

For Br and a we require F to be a splitting field. These statements follow from [8]
and [5]. In view of this, Br, qugroups(G) = Z"P/C(G)Z"® where C(G) is the Cartan
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matrix of G and /(G) is the number of p-regular conjugacy classes of G, and this is
a finite abelian p-group whose torsion coefficients are the elementary divisors of
C(G). Theorem A now states that this group is computable as the end term in an
exact sequence where all the remaining information is p-locally determined.

2.3.1. COROLLARY. With the above notation, there is a short exact sequence

0-72'9IC(6)Z2'O > @D 7/'6C(G,)Z!C
0eG\I o(4)
~s @D ZU9ICG,)Z >0

oceG\I'4(4)
where A is any one of A(%(G)), A(A,(G)) or A(B,(G)), and where the maps
correspond to restrictions of Brauer characters, some with minus signs. There is a
similar short exact sequence with maps in the opposite direction corresponding to
induction of characters.

By equating the alternating sum of the terms in either of the above sequences to
zero one obtains a formula for the number of elementary divisors of C(G) of a
given size as an alternating sum of these numbers for the groups G,. This formula
has been observed by Robinson [15].

In a similar way to the above, 7/, sugroups(G) 1s the quotient of #(G) by the span
of the columns of the characteristic p decomposition matrix D. Since the rank of D
equals the number of p-regular conjugacy classes in G, 1, _qubgroups(G) has torsion
free rank equal to the number of classes of elements of order divisible by p. We
obtain a result which was first observed in a different form by Knorr.

2.3.2. COROLLARY. Let p be a prime and for each finite group G let m(G) be
the number of conjugacy classes of elements of G of order divisible by p. Then

m(G) = Y (=1)""m(G,)

oceG\4

where A is any one of A(%(G)), A(2,(G)) or A(%,(G)).

2.4. Cohomology

In [20] and [21] I obtained the cohomology H"(G, V), additively as an alternat-
ing sum Z, g (= 1)9™°H"(G,, V), valid in K,(Ab, 0), the Grothendieck group of
finite abelian groups with relations given only by direct sum decompositions. Such
an expression as an alternating sum is evidently a consequence of the result here,
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but I demonstrated the existence of the alternating sum in [21] under a weaker
hypothesis on 4, which in fact is a necessary and sufficient condition for its
existence. The split exact sequence formulation has certain advantages. In [21] I
required the coefficient module V to be finitely generated in order that the
cohomology groups be finite, and hence that the alternating sum would make
sense. With the exact sequence here we may perfectly well have non-finitely
generated modules. With this sequence it is also possible to determine the cup
product structure of cohomology. To do this, note that in the start of the
sequence
. (resg,) "
0-H%G,2,—> @ HA*G,,2),- -
oeG\TI' ¢(4)

the first morphism embeds H*(G, Z), by a sum of restriction maps, and this is a
ring homomorphism. We know the cohomology ring of G once we know the
cohomology rings of the G, for ¢ € I'j(4), and once we have computed the kernel
of the map @aeG\FO(A)ﬁ*(Ga7 Z), = @qgec\r (4) ﬁ*(Gaa Z),.

2.5. Equivariant cohomology

In the situation where G acts on a simplicial complex A there is defined the
equivariant cohomology HZ% (4, V) and in case 4 = 4(%(G)) it is a result of Brown
[4, X.7.2] that this has the same p-torsion subgroup as A*(G, V),. The restriction
sequences of Theorem A applied to cohomology groups M(G) = H*(G, V), n€ Z,
but with the left hand terms M(G) removed, make up the E, page of the equivariant
cohomology spectral sequence associated to this situation, the restriction maps
giving the differential [4, VII.8.1]. Because of exactness of these sequences (except
where M(G) has been removed), the p-torsion part of the homology of the E, page
consists just of groups A™(G, V), concentrated on the fibre. This is then the E,
page, and its differential is the zero map. We thus obtain the following result.

2.5.1. COROLLARY. Let G be a finite group and A a G-simplicial complex such
that for every simplex o € A the vertices of & lie in distinct G-orbits. Suppose that
for every non-identity p-subgroup H < G, A¥ is contractible. Then the equivariant
cohomology spectral sequence

Er= @ HG,,V),=H0:4,7V),

oeG\I',(4)

stops at the E, page, and the only non-zero terms E%* lie on the fibre.
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2.6. Relative cohomology and the groups H74 (G, V)

Let % be a class of subgroups of G closed under taking subgroups and
conjugation. The cohomology of G relative to % is defined as follows. Let

P=->5P,>P ->P,>7Z-0

be a ¥ -split % -projective resolution of Z. This means that the sequence splits on
restriction to every Ye%, and every indecomposable summand of every module
which appears is projective relative to some Y € #. The relative cohomology is
defined as

H%(G, V) = H,(Homys(P., V)).

These are not the same as the groups H'(G, V) defined previously as
Hy(G, V) = HY(G, V)/Z ycy cores§ H'(Y, V). As an example of the difference,
take G = A x B where A and B are both cyclic of order 2 and let # = {4, {1}}. One
readily sees that a minimal % -split % -projective resolution of Z is periodic, being
the splice of short exact sequences 0 »Z - 719 —+Z —0, and hence H%(G, V) is
periodic. On the other hand putting kK = Z/2Z we have dim, H"(G,k) =n + 1 and
dim, H"(A, k) =1 so dim, H'(G, k) is unbounded as a function of n. This demon-
strates that H% (G, V) and H7y (G, V) behave quite differently. They do, however,
share the important property that they vanish if G € %.

The following is a corollary of Theorem A applied to H7 (G, Z),. Recall that a
space is said to be mod p acyclic if it has the same homology with Z/pZ coefficients
as a point.

2.6.1. COROLLARY. Let % be a set of p-subgroups of G closed under conjuga-
tion and taking subgroups. If % does not contain a Sylow p-subgroup of G then
AL (G) —%)/G is mod p acyclic.

Proof. We apply Theorem A with M(G) = H},(G, Z),. In this context the
mapping ‘ind’ of the Mackey functor is cores, and H% (G, Z) is the quotient of
H%G,Z)=Z by the sum of the images Im (cores§) =|G:Y|Z, Y e%. Thus
H?% (G, Z), = Z/p*Z where p* is the highest power of p dividing all |G Y|, Ye®.
I claim that p I |G, : Y| for every simplex ¢ € A(%(G) —%) and every subgroup
Y <G,, Y e%. This is equivalent to saying that no Sylow p-subgroup of G, is in
%. To see this, suppose that ¢ is the chain P, < P, < - < P, where the P; are all
p-subgroups not in %. Then P, < G, and it follows that no Sylow p-subgroup of G,
is in %, otherwise one of them would contain P,, and P, would be in #, a
contradiction.
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Write 4 for A(%(G) —%). Theorem A now states that the sequence

0> H(G,2),» @ H}WG, 2),» - D H}WG, 2),-0

oceG\T ¢(4) ceG\I' 4(4)

is split exact. For each orbit of simplices there corresponds in this sequence a
non-trivial cyclic p-group. We now reduce the sequence modulo p (to reduce all
cyclic groups to Z/pZ). Because of the splitting the sequence remains exact:

0-Z/pZ—> @ Zpz----- @D zZ/pz-0.

0eG\I"o(4) ceG\T'4(4)

The component morphisms are the reductions mod p of the (o | g7) "¢, -1 - resg;,
which acting on Z are just (o | g7), so we have the augmented cellular cochain
complex of G\4 with Z/pZ coefficients. Its dual is the chain complex, and is also
acyclic. O

By Theorem 2.1.1, G\A(¥,(G)), G\4(#,(G)) and G\A(#,(G)) are homotopy
equivalent, and hence they are all mod p acyclic, provided p I |G|. Corollary 2.6.1
thus improves on 8.2(i) in [20] where it was shown that these spaces had Euler
characteristic one. It is conceivable that they are always contractible.

2.7. A structure theorem for the chain complex of (G)

fC.=--- —da—> C, ﬁ» C, —(-1—1» C, is a chain complex of modules over some ring R,
we say C, is acyclic split if it has zero homology and for every r the sequence
0—-kerd, —» C, -»Imd, -0 is split. If C. is augmented by an epimorphism C,— R,
by saying C. is acyclic split augmented we mean the same condition applied to the
augmented complex (i.e. zero reduced homology, all the sequences split, and the
augmentation splits). Let Z, be the ring of p-adic integers. The following theorem
applies when 4 is the simplicial complex of % (G), ,(G) or #,(G).

2.7.1. THEOREM. Let A4 be a G-simplicial complex satisfying
(1) For every simplex o € A the vertices of o lie in distinct G-orbits.
(i) For every non-identity p-subgroup H < G, 4" is contractible.
Let C.(A) be the chain complex of A over Z,, as a complex of Z,G-modules. Then
C.(4) =D.® P. where D. is an acyclic split augmented subcomplex, and P. is a
subcomplex of projective Z,G-modules.

We may immediately deduce that C.(4) and P. have the same reduced homol-
ogy. Another implication of the theorem is obtained by considering the Lefschetz
module Z¢_, (—1)'C;(4).
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2.7.2. COROLLARY. In the circumstances of the last theorem,

Z

P

= ) (=1)%°Z,18 (mod projectives).

oceG\4

This congruence holds in the Green ring of Z,G-lattices.

This was the conclusion of Theorem A in [20] and one implication of the theorem
in [21].

We derive Theorem 2.7.1 from our split exact sequences of cohomology groups.
The proof is immediate from the next two results, proved in Section 5.

2.7.3. PROPOSITION. Let M(G) = H(G, V), for some integer n 2 1 and ZG-
module V. In this situation the sequences in Theorem A are Ext;pG(C.(A), V®az2Z,)
and Ext;pG(C.(A)*, V ®z Z,) where * denotes the contragredient and C.(4) is the
augmented chain complex of A.

2.7.4. THEOREM. Let R denote either Z, or Z[pZ and let C. be a finite
dimensional chain complex of RG-modules which are permutation modules. The
following conditions are equivalent:

(1) For some integer n = 1, Extiq(C., V) is acyclic for all RG-modules V.
(11) For some integer n 2 1, Exts(C., V') is acyclic split for all RG-modules V.
(1) C. has a subcomplex D. which is acyclic split over RG so that the quotient
C./D. is a complex of projective modules.

(iv) C.=D.@® P. as complexes of RG-modules where D. is acyclic split over RG,

and P. is a complex of projective modules.

2.8. An example

We take an uncomplicated example to illustrate the principles involved in the
previous sections, where the statements we make were more fully explained. Let
G =GL(3,2) and let 4 be the building of G. This is the graph whose vertices are
the subgroups Z,, the edges are the subgroups Dg, and the two end vertices of an
edge are the two X, subgroups containing the Dg. These are the proper parabolic
subgroups of G.

The quotient G\4 is the graph

Z, Dy Z,
*—o
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with representative stabilizers as shown. We choose the representative vertices and
edge so that the two vertices are actually the end vertices in 4 of the edge, and
equivalently so that the particular copies of the subgroups X, contain the Dy
subgroup. These X, subgroups are representatives of the two conjugacy classes in G
of such subgroups. For a Mackey functor M as prescribed in Section 2.2 we obtain
split exact sequences as follows:

0 M(G) —(—l M(Z,) ® M(Z) =" M(Dg) -0

(ind,ind) (_?,}3)
0 M(G) —— M(Z,) DM(Z,) —— M(D3) «0.

Taking M(G) to be Tate cohomology H™(G, V), and specializing to the case
A%G, 2), = H,(G, Z), = (G/G"), we obtain the sequence

0-(G/G);»Z /2D 2,4/25— Dg/Dg—0

with + the classical transfer homomorphism as the component morphisms, and
also the sequence

0(G/G),—24/25@ 24/24+ Dg/Dg 0
with the component homomorphisms given by =+ inclusion of subgroups. We
obtain similar sequences with the 2-torsion subgroup of the Schur multiplier
H~ (G, Z), = H,(G, Z),, one of which identifies as

0-C,-C,dC,-»C,—0.
The Mackey functor M(G) = Br , uueroups(G) takes as its value the abelian group

which is a direct sum of cyclic groups whose orders are the elementary divisors of
the Cartan matrix. For this Mackey functor the first sequence is

0-Csg->Co@Cy—Cy—0.
The group 7, upgroups(G) has torsion-free rank the number of conjugacy classes of
elements in G of order divisible by p. With p = 2 the first sequence for this Mackey

functor is

02227 > 7*->0.
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Turning to the chain complex C.(4) of 4 over Z,, one knows from the
Solomon—Tits theorem that the reduced homology is zero except in dimension 2,
where it is the Steinberg module S?(G), a projective Z,G-module. In the notation of
Theorem 2.7.1 this is the homology of the subcomplex P. so we have an exact
sequence

0-S:(G)>P,—»P,»P,—0

and since all modules are projective, it splits. It follows from 2.7.1 that the
augmented chain complex C.(4) is the direct sum of an acyclic split complex and
the homology group S#(G). This splitting has also been observed for Chevalley
groups by Kuhn and Mitchell [11].

3. Mackey functors
3.1. First notions

The notion of a Mackey functor is designed to capture the common features of
such constructions as character rings, cohomology groups, certain K-groups, vari-
ous representation rings, etc., and in the form in which we will take them they were
first defined by Dress [7]. Dress’s work followed soon after work of Green [9], who
made a similar definition. The Mackey functors here may be subsumed into Green’s
theory of G-functors by considering them as G-functors with zero multiplication.
We choose not to do this because Green’s definition of relative projectivity is not
the appropriate one to use here. In the present context the definition of relative
projectivity given by Dress is more fundamental and convenient, and it is for this
reason that we follow Dress. Our concepts agree with those of Yoshida [23, 24] and
Sasaki [17] but we differ in terminology. They use Green’s term ‘G-functor’ to mean
a Mackey functor regarded as a being defined on the subgroups of G, but this
differs from Green’s usage. They reserve the term ‘Mackey functor’ for a Mackey
functor regarded as being defined on G-sets, which is the same as the terminology
of Dress. Here we prefer to regard these two ways of viewing Dress’s Mackey
functors as being little more than a change of notation, and so we will call them
both Mackey functors.

We will summarise the work of Dress [7], often taking a different point of view.

DEFINITION. A Mackey functor for G over a ring R is a function

M : {subgroups of G} — R-mod
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with morphisms

ind4 : M(K) - M(H)
res : M(H) - M(K)

c, . M(H)— M(2H)

g
whenever K < H are subgroups of G and g € G, such that

(0) indf, rest, ¢, : M(H) —» M(H) are the identity morphisms for all subgroups

Hand he H

(1) resX resf =res”

(2) ind¥ ind¥ = ind¥

(3) cpen=cyu forall g, heG

&H — H

E:; :;Zgﬁggg =ngrf:§ '1?} for all subgroups K < H and g € G

(6) res) ind{ =X, y/x indJ«xc, resf. x for all subgroups J, K < H.

The most important of these axioms is (6), which is the Mackey decomposition
formula. As is well-known, this definition is equivalent to the definition given by
Dress, except that Dress works with a more general domain of definition. We now
remind the reader of Dress’s version.

Let € and 2 be categories. A bifunctor M = (Mx, M*) : € -2 is a pair
consisting of a covariant functor M« :4¥ —>2 and a contravariant functor
M* : € — 2 such that on objects, M, (C) = M*(C) for all C € Ob(¥). We write
M(C) for the common value of these functors.

Let G-set denote the category of finite left G-sets. The morphisms in
this category are the G-equivariant mappings. A Mackey functor is a bifunctor
M : G-set - R-mod such that the following two conditions hold:

} for all subgroups J < K< H

(1) for every pullback diagram

Q, 5 Q,
in G-set we have M*(O)M . (y) = M ,(B)M*(x).

(2) The two mappings Q - QU ¥ « ¥ into the disjoint union define an isomor-
phism M(QUY) =M Q) D M(Y) via M,.
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The purpose of giving these definitions is that we will sometimes switch notation
and write either M(H) or M(G/H) for the value of the Mackey functor M, using
either the subgroup H as the argument as in the first definition, or the G-set G/H
as in the second. In technical arguments it is usually easier to work with the second
definition. On the other hand it is generally the case that whenever one has a natur-
ally occuring example of a Mackey functor, one most easily recognizes that it is a
Mackey functor by verifying the first definition. Thus both definitions have their uses.

3.2. Relative projectivity

For the sake of establishing notation we recall the definition of relative
projectivity from [7]. Using the G-set notation, let S be a fixed G-set and M a
Mackey functor. Then

Mg : T — M(T x S)

M3(f) =M*(f xids),  Ms,(f)=M,(fxids)

defines a Mackey functor Mg, as one easily checks. Projection pr: T x S — T onto
the first coordinate defines a natural transformation of bifunctors

BS:MS_)M’ HS(T)=M*(pI').

DEFINITION. The Mackey functor M is called S-projective if O is split-
surjective as a natural transformation of Mackey functors. If Z is a set of
subgroups of G we put X = | )yco G/H and say M is & -projective if it is X-projec-
tive.

The most powerful general method we have of showing that a particular
Mackey functor M is projective relative to a set of subgroups Z depends on the
theorem of Dress [7], which states that in case M happens to be a Green functor (in
the sense of Dress) then it is sufficient that

Y ind§ : @ M(H)- M(G)

HeXx HeZ

be surjective. Furthermore, a Green module over a Green functor which is & -projec-
tive is itself & -projective. Using this result we are able to determine the relative
projectivity of all the Mackey functors we consider here, and we summarize this
information in the following table.
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Mackey functor projective relative to
rG) Brauer elementary subgroups
Br(G) Brauer elementary subgroups
a(G) subgroups Brauer elementary mod p
A(G) subgroups cyclic mod p
H"G, V), p-subgroups
Hy(G,V),,n21 p-subgroups

These assertions of relative projectivity follow, respectively, from Brauer’s
induction theorem, Brauer’s induction theorem together with surjectivity of the
decomposition map, Dress’s induction theorem [8], Conlon’s induction theorem [5],
and for the cohomology groups the fact that corestriction from a Sylow p-subgroup
is surjective on the p-torsion subgroup.

We will combine this with the work of Section 3.4 to deduce the & -projectivity
of the Mackey functors in the list in Theorem 2.2.2.

3.3. Induction and restriction of Mackey functors

It will be important for us later on to interpret the notion of relative projectivity
in terms of induction and restriction of Mackey functors. These are introduced in
[17), where they are attributed to Yoshida. We present them in a different way using
G-set notation. First we go back to G-sets, where we have a notion of induction
and restriction

1¢ . H-set — G-set
and
1% : G-set - H-set
whenever H is a subgroup of G. Induction is defined by the formula
Q15 =G x4 Q
which, by definition, is the set of equivalence classes of G x © under the equiva-
lence relation (gh, w) ~ (g, hw), g€ G, he H, w € Q. It has the property that

(H/K)1% = G/K. The restriction Q)% is defined simply to be Q regarded as an
H-set by restriction of the action.
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We define induction and restriction of Mackey functors. We denote the category
of Mackey functors on G by Mack (G). Now induction and restriction are functors

1% : Mack (H) —» Mack (G)
and
1% : Mack (G) - Mack (H).
They are defined in a formal fashion by
M1T5(Q) = M(21})
M 5(Q) = M(Q15).

To make the connection with the notion of relative projectivity we will need the
following lemma.

3.3.1. LEMMA. (i) 21461 ~Q x G/H
(i) Mgy = M1

Proof. (1) The isomorphism is given by

G xyQ—-Q xG/H

(8, w) — (v, gH).
(i1) Evaluating at a G-set 2 we have

Mgy (Q) = M(Q x G/H)
=N@QI5TH)
= M |51Q).

Because the isomorphism in part (i) is natural with respect to 2 we deduce that we
have a natural isomorphism between M, and M |§15. a

It is because of the identification of M, just given that we refer to the
sequences in Theorem B as resolutions of M by induced functors. We point out a
further property of induction and restriction, but we will not use it in this paper. It
turns out that 15, is both the left and the right adjoint of |§. With the identification
of M, just given the natural transformation 0, : Mg,y = M, which arises in the
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definition of projectivity relative to G/H, corresponds to the counit M | 1S — M of
one of these adjunctions.

In Section 4.2 we will need to know the following result, which has an easy
direct proof.

3.3.2. LEMMA. Induction of Mackey functors is exact.

Proof. Given an exact sequence of Mackey functors for H
0O-L->-M->N-0

the induced sequence
0 L15 > M1 > N1 -0

1s exact if and only if it is exact on evaluation at each G-set Q. But this is
0 L(QF) - M(QF) — N(QF) -0

which is exact because it is an evaluation of the original sequence. O

3.4. The construction of M, and the proof of 2.2.1

In Section 2.2, starting with a Mackey functor M and a set % of subgroups of
G closed under taking subgroups and conjugation, we defined Mackey functors

MH, %)= ) ind] M(Y), My(H)=MH)/MH,¥).

Ye¥ Y<H

We should observe first that these are Mackey functors, and for this it suffices to
note that M(H, %) is stable under ind and res and c,. This is straightforward from
the axioms. We now prove 2.2.1. Conditions (i) and (ii) of Theorem A hold
immediately by construction. It remains to verify conditions (iii) and (iv). These
will follow from 3.4.1 and 3.4.3.

3.4.1. PROPOSITION. M 4 is the largest quotient of M which vanishes on the
subgroups in ¥.

Proof. First, M, vanishes on % because if H € % then M(H, %) contains
M(H) =ind} M(H) so M, (H) = M(H)/M(H) =0. To say it is the largest means
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that whenever we have an epimorphism of Mackey functors v: M - N (i.e. a
natural transformation) and N(Y) =0 for all Y € # then there is a factorisation

Consider the short exact sequence of Mackey functors
0->M(,%)->M->M4,y—0.

Now for any Y e%, v(ind¥ (M(Y))) =ind¥ wM(Y)) =0 since v is a natural
transformation, and vM(Y) < N(Y) =0. Thus v vanishes on M( , %) and hence v
lifts to a mapping M, — N are required. U

3.4.2. PROPOSITION. Suppose M is & -projective. Then M( , %) and M 4 are
& -projective.

We first need to prove:

3.43. LEMMA. Let T =\)yca G/Y. Then M( ,%) is the image of the natural
transformation 0 : M - M.

Proof. Recall from 3.2 that M, (Q)=M(Q xT) for any G-set €, and
Or=M,(pr): M(Q x T) > M(L). To say that M( , %) is the image of 6, means
that M(Q, %) is the image of 0, for every G-set . Using a mix of subgroup and
G-set notation,

0rMy(H) =0M(G/H) x T)
=Y Y indf..y M(HN*Y)

Ye¥ xe H\G/Y

and this is M(H, %) since all terms in the above sum are contained in M(H, %); and
conversely taking the terms with x = 1 we obtain ind% ., (M(HnY))for all Y e %
in the above sum, and this includes every term ind¥ M(Y) with Ye %, Y<H.(O

Proof of 3.4.2. Let S =|)xeca G/X and T ={Jycs G/Y. Consider the diagram

0 — M(.,%); — Mg — Mgs — 0

o e e
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The bottom row is exact, by definition of M,. The top row is obtained by
evaluating the bottom on © x S, and it follows that the top row is exact, because
the bottom row is exact on every evaluation. The diagram commutes, because the
horizontal arrows are natural transformations and the vertical arrows are obtained
from evaluation on Q2 x § - Q. We are given that M is & -projective, so there is a
natural transformation « : M — M which splits 6, i.e. Osa =1,,. We show that a
sends M( ,%) to M( ,%)s. This is because for any G-set Q,
o M(Q, %)) =aIm (M(Q x T) > M(Q)) by 3.4.3

clm(Ms(Q x T) - Mg (Q)) from the diagram below

=Im(M@Q xT xS)->M(Q x35))

=Im(M(Q xS xT)-> M xS)) byswapping Sand T

=M, %)s.
The containment above follows by considering the commutative diagram

Ms(Q xT) — MyQ)

T‘lnxr T“n

M@® xT) — M(Q).

It follows that a restricts to a splitting of 85 on M( , %)s and induces a splitting
of 65 on M,5s. Thus M( ,%) and M, are both ¥ -projective. O

4. Proof of the main theorems
4.1. Semisimplicial constructions

Throughout the constructions we consider we will be working with a G-
simplicial complex 4 which satisfies

(*) for every simplex o € 4, the vertices of ¢ lie in distinct G-orbits.

If 4 does not have this property then its barycentric subdivision does.

We will be interested in two consequences of (*), the first of which is the fact
that in the presence of (*) every fixed point set 47 is also a simplicial complex. The
other consequence is the following lemma.
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4.1.1. LEMMA. Let A be a G-simplicial complex satisfying (*). Then we may
put a G-invariant partial order on the vertices of A in such a way that in every simplex
the vertices are totally ordered.

Proof. Totally order the set of orbits of vertices. The partial order we require
has x <y if and only if the orbit of x is less than the orbit of y. O

A G-simplicial complex satisfying the conclusion of this lemma is sometimes
called an ordered G-simplicial complex, and we might as well be working in the
category of ordered G-simplicial complexes.

We will need to use the language of semisimplicial objects, and for this we refer
the reader to [13]. Starting with an ordered G-simplicial complex 4 we may form
the associated simplicial set

—

S(4) = - -T5(4) [(d) S TIyd)

«—
_}
S
where the face maps 0, : I',(4) » T, _,(4) are
0i(Wos .+ s 0,) =05 -+ Vj_ 1,041,500 ,0,)

and the degeneracy maps are

5;(Wos o5 0,) =(Vpy v, Vs Uy oo, 0,).

It is immediate from the fact that G preserves the order of vertices in every simplex
that all the 0; and s; are G-equivariant mappings. We thus see that in fact S(4) is
a simplicial G-set. We really wish to consider the augmented simplicial object
associated to 4, which is

$(4) = - - - I'1(4) Id) 5 Tod)-T_(4)

AN

where I'_,(4) is a single point, and this is also a simplicial G-set.

We now perform some further operations. These rely on the observation that
whenever we are given a functor @ : G-set - % where % is some category then the
diagram @S(4) is a simplicial object in €. Suppose we are given a Mackey functor
M for G (over a commutative ring R). Let Mack(G) denote the category of Mackey
functors for G over the ring R. We define two functors @,,, @M : G-set » Mack(G)
in the following fashion, such that @,, is covariant and @* is contravariant. For
a G-set Q we put @,,(Q2) = @¥(Q) = M,. Given a morphism a : Q - ¥ of G-sets
we define @,,(x) : My - My and @ ¥(a) : My - M, as follows. The effect of @,,(a)
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on the Mackey functor M, evaluated at a G-set X is M (1 xa) : M(X x Q) -
M(X x ¥). The effect of ©®(«) is similarly M*(1 x o) : M(X x ¥) > M(X x Q). In
Mack(G) we may now form the chain complexes of Mackey functors associated to
©,,5(4). These will be denoted CC(O,,5(4)) and CC(O@MS(4)). Explicitly, we
mean the objects in the first chain complex to be the @ ,,(I',(4)) with differential
X7 _o (—1)0,,(9;), and similarly for the second one. We summarise the operations
we have just performed, writing @ instead of @,, or @

G-simplicial complex 2, simplicial G-set

2, simplicial Mackey functor

%, chain complex of Mackey functors.

We will show that the chain complexes we finish with are the ones specified in
Theorem B.

The chain complexes in Theorem A are the evaluations at the trivial G-set (or,
equivalently, at G) of the chain complexes in Theorem B. We can therefore
construct them by repeating what we have just done, and evaluating always at the
trivial G-set. A more direct proceedure is indicated by the following scheme:

G-simplicial complex =, simplicial G-set

Bl simplicial R-module

RN chain complex of R-modules.

Here M denotes either M, or M*. We apply M, and M* to all the mappings and
objects which make up S(4). We thus obtain two simplicial R-modules denoted
M, S(4) and M*S(4). In the category of R-modules, we may now form the chain
complexes of R-modules associated to M, S(4) and M*S5(4) and these are denoted
CC(M , S(4)) and CC(M*S(4)).

4.1.2. LEMMA. The sequences in Theorem A are CC(M*$(4)) and
CC(M*g(A)). The sequences in Theorem B are CC(OMS(4)) and CC(O,,85(4)).

Proof. We give the proof for the sequences in Theorem B and then indicate the
modifications we must make for the sequences in Theorem A.

We work first with CC(@*S(4)). The typical Mackey functor in CC(@MS§(4))
is @M(I',(4)) = M (4) and since

r.a= \J Gq/aG,

oceG\I'(4)
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broken up according to the given set of representatives ¢ for the G-orbits on I',(4),
we have

Mr,(A)g @ MGo'

ceG\I',(4)

The differentials in the chain complexes are Z7_, (—1)/O™(0,). If 1 = (v, . . . v,)
is an r-simplex with the vertices taken in order then 6,(t) = (v .. . v;_,, 041 ... 0,).
Putting 0;(t) = p, say, we use the notation (p | 1) = (—1), and this is what we mean
by the ‘orientation of the embedding of p in t’. Thus the component of the
differential between the orbit containing 7 in I',(4) and the orbit containing p in
I,_(4)is (p |70 M(0;) where on the orbit containing 7, ; is the map

9,:G/G, -GG,

8G,.— gG,.

Suppose that in fact p was not one of our originally chosen orbit representatives,
but ¢ was, and that ¢ = gp for some g € G. Then ¢ is a face of gr. Identifying the
orbit containing p and ¢ with G/G, we now write 0, as

3, :G/G.—G/G,

xG,.— xg~'G,.
This factorizes as
Go
G/G, —— GG, = G/G,. —= G/G,,

where ¢, is the map xG, — xg 7' #G, and ngs_is xGg, > xG,. Applying OM to this
we conclude that the component morphism Mg — M_is

(o |gt)@M(ng;cg) = (o | gOM*(1 x ng; ¢g) : M(?x G/G,) > M(? x G/G,).

The proof for the second chain complex CC(©,,5(4)) is similar to this, but we
apply @, instead of ®*. Thus the component morphism Mg — Mg_ is

(0 |g0)0p(nEe c,) = (0 | gIM (1 x 7, - ¢;) : M(? x G/G,) > M(? x G[G,).

These are the mappings described in Theorem B.
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For the sequence in Theorem A we proceed in the same way but we only have
to apply the functors M* and M. Thus the component morphisms are

b = (0 |gOYM*(nE: ;) = (0 | g7) - cp—1 - resy,

and

l//ot = (6 |8T)M*(ﬂg;cg) = (0' |gt) . iIlClg;t " Cqe O

Remark. 1t is clear from the above discussion that the sequences in Theorem A
are obtained by evaluating the sequences in Theorem B at the trivial G-set. Because
of this, Theorem A is a consequence of Theorem B, since a sequence of Mackey
functors which is exact and split must be exact and split on each evaluation. In view
of this we will only prove Theorem B in the next sections. A direct proof of
Theorem A may be obtained by following the arguments we give and replacing ©,,
and M, and ©M with M*.

4.2. The reduction step

We suppose we are given a G-simplicial complex 4, a Mackey functor M and
sets of subgroups & and % satisfying the conditions of Theorem A. We will show

4.2.1. PROPOSITION. To prove Theorems A and B it suffices to assume the
structure of G is such that G e &.

The proof of this is obtained by combining the next two results. If H is a
subgroup of G we let M |§, denote M with the domain of definition restricted to the
subgroups of H. Similarly 4 |¢ denotes 4 regarded as an H-simplicial complex by
restriction of the action. We put

It is an elementary observation that the hypotheses of Theorem A are inherited by
the quadruple M|§, 41§, ¥, and #y. The immediate implication of the next
results is that it suffices to show that CC( ,,,5,5(41$))1§ and CC(OM¥4S(4 |91
are split acyclic for all H € Z. Since induction is exact (and hence preserves direct
sums), it suffices to show that CC(0,,,¢5(41%)) and CC(OM%5(4]5)) are split
acyclic for all H € Z, and in view of the observation made just previously this is the
same as assuming that G € 4.
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4.2.2. LEMMA. CC(0,,8(4)) is a direct summand of

@D CC(O,,55(415)1G.

HeX

Similarly CC(O@MS(4)) is a direct summand of

@ cce*%SA1gn1s.

He&

4.2.3. LEMMA. A direct sum of chain complexes is split acyclic if and only if its
summands are split acyclic.

Proof of 4.2.2. This is an exercise in using the relative projectivity of M. We
work first in an abstract setting where we have a functor @ : G-set = ¥ for some
abelian category %, thus obtaining a simplicial object @(S(4)) in ¢. In our
application we will take ® = @,, or @, Suppose we have another functor
Z : G-set > € and natural transformations o : £ - @, f: @ — E such that af = 1.
Then a, B give rise to simplicial maps

o(S(4)) 2 2(5(4)) = O(5(4))
and hence to maps of chain complexes
CCOS(4)) - CCES(4)) = CCOS(4))

such that the composite of the two maps is the identity. By this means we deduce
that CC(@(S5(4))) is a direct summand of CC(E(5(4))) as chain complexes.

In our situation we put X = | )4.oG/H, and take @ =0, and & = O, - The
projectivity of M relative to 4 means that the natural transformation 6, : M, - M
is a split epimorphism. We will show that 8, gives rise to a natural transformation
2:0y, >0, At a G-set Q we define the effect of a to be another natural

transformation ag : @y, (2) = (My)o = M, = 0,,(2), whose effect at a G-set ¥ is
(My)o(P) = My (¥ x Q) =5 M(¥ x Q) = Mo(¥).

It is apparent that « is natural with respect to 2 because when we expand the G-sets
as direct products the G-set morphisms which take place in the Q factor commute
with morphisms which take place in the other factors. In a similar fashion the
natural transformation M — M, which splits 6, gives rise to a natural transforma-
tion f:0, —6,,, and we have af = 1. We have now shown that the abstract
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situation just described in the previous paragraph is in force here, and we deduce
that CC(0,,5(4)) is a direct summand of CC(0,,, S(4)).

Evidently CC(®@ MX§(A)) = @pea CC(Oy, /H§(A)) and it remains to show that
Ou, ,HS~(A) ~ (O mg§(4 1%))1%. This is immediate from the fact that @, . factor-
izes as a composite

' Om.G 5
G-set —— H-set —— Mack(H) —— Mack(G).

We see this by considering the chain of isomorphisms

O rg,w (DY) = (Mg 1) (')
= Mgu(‘¥ x Q)
=M¥Y x Q2 xG/H)
= MY x QI51%)
=M|5(Yi5 xQlF)
=(M1%)a5(¥15)
=((M)aig) 15 (F).

The argument which shows that CC(©@*S§(4)) is a direct summand of

@ ccoeME$)1§

He¥

is similar. O

Proof of 4.2.3. Suppose C, @ C, is a direct sum of chain complexes. Then
H (C,®C)=H,(C)®H,(C,) so if C,® C, is acyclic, so are its summands.

As for the splitting, we recall from [22, 7.1] (and it is easy to prove) that a chain
complex with differential d is split if and only if there is a chain map a of degree + 1
with dad = d. The differential on C,® C, is d =(d,, d,), where d, and d, are the
differentials on C, and C,. Suppose that C, @ C, is split by a map a of degree + 1
with dad = d. Then =, ai, splits C,, where

il:Cl""Cl@C2 and nl:C|$C2"‘>C|

are inclusion and projection, since d,r,ai,d, = n,dadi, = n,di, = d,. O
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4.3. The direct argument with subgroups in &

Our argument uses notions from topology, and in particular the notion
of G-homotopy. Given topological spaces X and Y on which G acts as a group
of homeomorphisms, we say that G-equivariant maps f, g : X — Y are G-homotopic
if they are homotopic by a homotopy H : X x I - Y which is itself a G-equivariant
map, where the unit interval I has the trivial G-action. The spaces X and Y
are G-homotopy equivalent if there are G-equivariant maps between them in
each direction so that the composites in both directions are G-homotopic to the
identity.

The final lines in our argument will rely on the following observation.

43.1. LEMMA. Let A, and A, be G-simplicial complexes satisfying (*)
which are G-homotopy equivalent, and let © denote one of the functors @,,, @™, M,
or M* as in Section 4.1. Then CC(®S(4,)) and CC(O8(4,)) are chain homotopy
equivalent.

Proof. For each G-simplicial complex 4 we will need to consider the simplicial
G-set of singular simplices of |4|, which we will denote Z(4), and also the
corresponding augmented simplicial G-set £(4). We will show two things, firstly that
A, ~; 4, implies CC(O£(4,)) ~ CC(OZ(4,)); and secondly that CC(O@S(4)) ~
CC(®Z(4)) for any G-simplicial complex 4. Putting these pieces together we obtain
the conclusion of Lemma 4.3.1, since CC(O@S5(4,)) ~ CC(O2(4,)) ~ CC(OL(4,)) ~
CC(0S(4,)).

To start, it is immediate that 4, >~ 4, implies £(4,) ~ £(4,) as in [25, p. 12],
and since all mappings are G-equivariant we have a homotopy equivalence
of simplicial G-sets. We now wish to apply the functor @ to both sides. It is
first necessary to say what this would mean, since @ has so far only been de-
fined on finite G-sets and we need to extend the domain of definition to infinite
ones. We define @ on an infinite G-set Q by first expressing it as a union of
its orbits @ = ( JQ, and then putting O(Q) = ®O(2;). On morphisms we define
© in terms of its components with respect to this direct sum decomposition,
each component being the effect of @ on the restriction of the morphism to the
corresponding orbit. Now to show that CC(@Z£(4,)) ~ CC(O©Z(4,)) we proceed as
in [25, p. 100]. The essential matter is to show that if we have two semisimplicial
mappings

foofi - E(4)) = £(4,)

which are homotopic by a homotopy H then the chain mappings CC(O( f,)) and
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CC(O(f,)) are chain homotopic. Using notation borrowed from [25], each of the
mappings
Ki:2,(4)) > Z,,1(4,)
x> H(s,x, (0...01... 1)

is G-equivariant, so we may form ©(k;). Now we put
k=Y (-=1)6(x)
i=0

and calculate in the usual way that dk + kd = CC(O( f;)) — CC(O( f,)). This is the
same as the usual calculation except that all the terms have @ applied to them. To
be explicit about this, we have to show that

n+1 n n—1

Y (-1/6@) T (~1/'6) + 3, (=16 T (~1Y6()
= 0(f}) — 6(fy)

We rely on the identities

{x,-_,aj if j<i
aj’ci"—" o 2. .
kK0, ifj>i+1

0i 41K = 0; 4 1Ki1

Ooko =/

an-+—lK:n =f0

which immediately show that terms cancel in pairs except for two of them, and
hence the above equation holds. Now the desired assertion about chain homotopy
equivalence of the complexes follows in the usual way from what we have just
shown about mappings.

Finally we need to show that CC(©S5(4)) ~ CC(OL(4)) for any G-simplicial
complex 4. To do this we follow a standard treatment which shows that the singular
and simplicial chain complexes of 4 are chain homotopy equivalent, such as [26].
One has the natural inclusion CC(S(4)) o CC(£(4)) and in [26, p. 115] there is
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constructed a map in the reverse direction which is a homotopy inverse to the
inclusion. We have to observe that in this construction the homotopy inverse may
be obtained on each orbit of simplices as an integer linear combination of
G-equivalent maps. This is because the constructions at every stage are natural, and
we may always proceed by making a definition on one element in an orbit and
extending to the rest of the orbit so as to be equivariant for the action of G. We
may now take instead the same linear combinations of these mappings but with @
applied to them. The result is a chain map CC(@£(4)) -» CC(OS(4)), and it is a
homotopy inverse to the canonical map CC(©S(4)) - CC(O@L(4)). One shows
these facts by exactly the same arguments as in [26] except that @ is applied to all
the terms in the equations. For the validity of these equations after @ has been
applied one relies on the fact that in every case the equations simplify because terms
cancel in pairs. Thus it makes no difference if we apply @ everywhere. We omit
the precise technicalities of this argument because they are complicated, and
well-known O

We now give the proof of Theorem B. By virtue of 4.2.1 we may assume that
G € Z, and so we are reduced to proving the following special case.

4.3.2. THEOREM. Let G be a finite group, M a Mackey functor for G, % a
set of subgroups of G closed under taking subgroups and conjugation, and 4 a
G-simplicial complex of dimension d. Suppose that

(1) For every simplex o € A the vertices of o lie in distinct G-orbits.

(ii) For every subgroup H ¢ %, A" is contractible.

(1v) For every Ye %, M(Y) =0.

Then the complexes of Mackey functors

0->M->Mp = Mp = = M, —0
and

OMeMrynye—Mp gy« <Mp,uy<0
are split acyclic.

The assumptions of this theorem will now remain in force throughout this
section. The key to the proof of the theorem is the following result.

4.3.3. LEMMA Suppose G ¢ %. Then A has a G-subcomplex E which is G-con-
tractible and such that every simplex ¢ not in E has its stabilizer G, in ¥.
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Proof. We define E = |y <6 n¢ad”. This is a subcomplex, since if o is fixed
by H then so is every face of o; and it is preserved under the action of G. Evidently
all simplices outside E have their stabilizers in #. We show that E is G-contractible.

Because 4 is contractible it is non-empty, so E is non-empty. Choose a vertex
x € A€ and consider the inclusion mapping i : {x} - E. We will show that this is a
G-homotopy equivalence. For each subgroup H < G there is a mapping of fixed
points i”:{x}— E¥. By a theorem of Bredon ([12, Section II] see also [22]) it
suffices to show that each map i* is a homotopy equivalence. For this we only need
show that E# is contractable for all subgroups H < G. There are two cases. When
H ¢ % we have E” = A¥ and this is contractible by hypothesis. When H € % we
have E¥ = | ), < x x¢ 4% since the right hand side is clearly contained in the left,
and if 0 € E¥ then H < G, ¢ % by construction of E, so ¢ € 4% which is in the
right hand side. Thus E# is a union of contractible spaces, every non-empty
intersection of which is also contractible since 4N 47 = A<%7>_ Hence E¥ is
homotopic to the nerve of the covering [3, p. 50]. Since the intersection of all the
sets in the covering is non-empty, the nerve consists of a single simplex, which is
contractible. 0J

4.3.4. LEMMA. Suppose G ¢ %. The complexes of Mackey factors obtained from
A4 and E are the same.

Proof. In the complex
0->M>Mryay > Mryay > > Mrym —0
the typical term has the form

Mr,(A) = @ MG/G,,-
o e G\I';(4)
If ¢ ¢ E then G, € % and hence Mg, = M| 1¢ =0 since M is zero on subgroups
of G,. Thus My, = M g,. Furthermore the restriction to M g, of the differential
coming from 4 is the same as the differential coming from E, so the two complexes
are the same.

Proof of Theorem 4.3.2. If G € % then M is the zero Mackey functor, so we may
assume G ¢ %. We work with @,, the argument for ©* being similar. Let E be the
subcomplex of 4 in Lemma 4.3.3. We have that CC(8,,5(4)) = CC(©,,S(E)). But
E is G-contractible, so by 4.3.1 CC(©,,S(E)) is chain homotopic to the zero complex.
Therefore it has zero homology, and is split since splitting is preserved under chain
homotopy equivalence [22, 7.2]. O



A split exact sequence of Mackey functors 65
5. Proof of theorems on the chain complex of A
5.1. Proof of Proposition 2.7.3

Let Z, denote the p-adic integers. For any ZG-module V we will write
V,=V ®zZ,. The statement we are due to prove is:

2.7.3. PROPOSITION. Take M(G)=H"(G, V), for some integer n 21 and
2G-module V. The sequences in Theorem A are Extz,6 (C.(4), V,) and
Extz ¢ (C.(a)*, V,) where * denotes the contragredient and C.(4) is the augmented
chain complex of A.

Proof. We verify first that the groups in the complexes are what they should be,
then that the maps are correct. A typical chain group C,(4) can be written
Docavr, ) L, 12, , because it is the free Z,-module on the simplices in dimension r
and these divide up into orbits, each giving a submodule Z,1¢ . Applying Ext we
obtain

Ext; o(C(4),V,) = @ Ext}(Z,15,,V,)

ceG\T',(4)

6-) EXt%PGU (Zp9 Vp)

ceG\I',(4)

@ EXt;G, (Z’ V)p

ageG\I',(4)

= @ HG,V),

ceG\I',(4)

{04

14

by means of standard isomorphisms. The fact that we can take completion at p
outside the Ext term follows from [10, p. 233]. There is a similar chain of
isomorphisms for the contragredient representations C,(4)*, since they are permu-
tation modules and C,(4)* = C,(4).

We have to show that ¢,, and y,, are the maps induced on the Ext groups by
the homomorphism Z,1§_—Z,1%_and its dual. We suppose here that ¢ is a face of
gt. Evidently the maps have the right sign from the definition of the boundary
operator. Regarding the modules now as free Z,-modules on the simplices, the map
is hgt - ho, h € G, and its dual is hé¢ — hzgt, where z is the sum of a set of
representatives for the cosets of G,, in G. A hat indicates the element of the dual
basis corresponding to the bare-headed symbol. Because these maps take place in
the first Ext variable and this commutes with what happens in the second variable,
they give natural transformations of the cohomological functors H*(G,, V,) and
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H™(G,, V,), so it suffices to check that they coincide with the original definitions of
¢., and ¥, on fixed points (see [10]). On fixed points the maps are

HomZpG (ZpTga’ Vp) —* HomZpG (ZpTg,’ Vp)

(c—v)>(t—g ')
and

HomZpG (ZpTg,’ Vp) "’HomZpG (ZpT(G;aa Vp)

(t > v) - (0 — zgv).

. . G . Go' .
These are respectively ¢, - resge, and degt Cg. O

5.2. Proof of Theorem 2.7.4

We first need a technical lemma. We work with modules over a finite dimen-
sional algebra A, and if 4 and B are A-modules we use the notation Hom , (4, B)
for the group of homomorphisms from A to B modulo those homomorphisms
which factor through a projective module.

5.2.1. LEMMA. Let A be a self-injective algebra finite dimensional over a field k,
and let . A — B be a monomorphism between finite dimensional A-modules. If the
induced map Hom, (B, V) - Hom, (A, V) is surjective for all A-modules V then u is
split.

With full homomorphism groups this result is immediate, and the point is that
it works with homomorphisms modulo projectives.

Proof. Taking V = A, there exists ¢ : B— A4 whose image in Hom, (4, V) is
the same as that of 1, i.e. ¢u =1 (mod projective homomorphisms). For some n,
(¢p)" has the same image as (Ppu)"*!, so A = A, @ A, where (¢u)" is an automor-
phism on A, and is zero on A,, and again (¢u)” =1 (mod projective homomor-
phisms). When we restrict the domain of u to 4, the monomorphism u : 4,— B is
split by [(¢u)"] ~'(¢w)" ~'¢, where [(¢u)"] ~' denotes the inverse of (du)” on A,.
Because (¢u)" is zero on A, 1, factors through an injective (=projective)
module, and so A, is injective and u: A, — B is split. Hence u is split as a
morphism 4 — B. O
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We now prove Theorem 2.7.4. The implications (iv) = (iii) = (ii) = (i) are
clear. We first prove (i) = (iii). Because trivial source modules and all morphisms
between them are liftable from Z/pZ to Z, [12, 1I, 12.4], it suffices to prove the
decomposition of C. in (iii) when R = Z/pZ =k, say.

We proceed by induction on the dimension d of the complex

C.=Cd“""'—’C0.

When d =0 then Exti; (C,, V) =0 for all V, so C, is projective. Now suppose
d >0 and the result is true for smaller dimensions. There is an isomorphism
Hom, (4. B) = Ext;; (4, 2 'B) and we apply the condition in (i) to these groups.
Let H, be the top homology of C., so

0-H,»C;,—>»C,_,
is exact. Then the composite
Homy¢ (Cy_y, V) » Homy( (Cy, V) » Homyg (Hy, V)

is zero and the left hand map is epi by the hypothesis (i), so the right hand map is
zero and the image of 1., in Hom,g (H,, C,;) (i.e. the inclusion map H,— C,)
factors through an injective module. Hence there is a factorisation H;,—»1—- C,
where I is the injective hull of H,, and I — C, is injective since / and H, have the
same socle and this embeds in C,. This means that C, =~ I @ Y for some submodule
Y of C;, and H, = I. Also Y embeds in C¢~! by restriction of the map C,—»C,_,
and we have a commutative diagram

HO_‘“/:G (Ci-1, V) —=Hom (Cy, V)
N s
Hom,; (Y, V)

since the summand I contributes zero to the homomorphisms modulo injectives.
Hence the monomorphism Y — C,_, splits by Lemma 5.2.1 and C,_, = Y @ W for
some submodule W. Now

Hom,; (C,_5, V) »Hom (Y ® W, V) -» Hom,¢ (Y, V) -0
is exact, and so

Hom,; (C,_,, V) = Hom,; (W, V)
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is epi. Thus W—-C,_,—----—C, is a complex of dimension d — 1 satisfying
the induction hypothesis, so there exists an acyclic split subcomplex
X-D; ,-»---->D, with C,=D,®P, for i<d—-2, W=X®P,_,. Put
D, \ =X®Y, D,=Y. Then D;—---— D, is our acyclic split complex D. and
C,2Y®LCy_,=2Y®OW=D,_,®P,_, as required. This completes the proof
of the implication (i) = (iii).

We now prove (iii) = (iv), showing by induction on n that for all r with
0 < r < n we may choose a projective submodule P, so that C, = D, ® P, and such
that the differential d, sends D, into D, _, and P, into P,_,. The induction starts at
n = 0. Here we only need the additive decomposition Cy, = D, @ C,/D, which results
from the fact that C,/D, is projective. Suppose now that n > 0 and the results holds
for smaller values. Because C,/D, is projective we may write C, =D, ® Q, for
some projeective module Q, and represent d,,|Q" in component form (f,,,)
corresponding to the decomposition C,_, =D, _,® P,_,. The picture of C is

—— 0, P, —5P, ;-
® AN @ @
n Yn —1
’Dn Dn——l'__')Dn—-Z_’

where for 0<r<n, d =y, ®a with 4| p,=7Y,- For any element xeQ,,
d, ,d,(x)=0,_8.(x), a,_,a,(x)) =0, from which we see that y,_,8,=0
and Imp,ckery,_,=Imy,. Hence by projectivity of Q, there exists a
map ¢, : Q, = D, so that B, =7v,¢,. Define P, = {(—¢,(x), x) | x € 0, }. This is an
isomorphic image of @, under the map x — ( —¢,(x), x) so P, = @, is a projective
submodule, and plainly C, = P, ® D,,. Furthermore for y =(—¢,(x), x) € P,,

d,(y) = d,((— ¢4(x), X))

= ( = n d)n(x) + ﬁn(x)’ a,,(x))
= (Oa an(x)) € Pn— 1

thus completing the induction step. O
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