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Sous-variétés lagrangiennes et lagrangiennes exactes des
fibrés cotangents

FRANCGOIS LALONDE* ET JEAN-CLAUDE SIKORAV

0. Introduction

Soit M une variété différentiable. Le fibré cotangent T*M est muni de la
structure symplectique canonique w =dA, A = p - dq. Si L est une variété¢ fermée de
méme dimension que M, on s’intéresse ici a l’existence et aux propriétés d’un
plongement lagrangien j: L — T*M. Plus particulierement, nous étudierons les
plongements exacts, c’est-a-dire tels que j*4 est une forme exacte. Soulignons que
nous ne considérons que des plongements: la théorie des immersions lagrangiennes
(exactes ou non) est beaucoup plus flexible puisqu’elle reléve du A-principe de
M. Gromov [7] (pour une présentation détaillée de cette théorie, voir M. Audin
[2]). Par exemple, si M = R", une condition nécessaire et suffisante & 'existence
d’une immersion lagrangienne de L dans T*R" = R>" est la trivialit¢ de TL ® C.
Pour I’existence d’un plongement, M. Audin [4] obtient comme condition nécessaire
des contraintes sur y(L) a partir de sa formule des points doubles d’une immersion
totalement réelle (voir la section 1). Ces contraintes ne contredisent pas encore une
eventuelle flexibilité des plongements lagrangiens, mais c’est le cas pour les résultats
suivants, obtenus par des méthodes analytiques (courbes pseudo-holomorphes) ou
variationnelles (principe de Hamilton):

(D ([6], th. 2.3.B; et 2.3.B;) Si M est une variété fermée et L < T*M une
sous-variété fermée lagrangienne exacte, alors L rencontre la section nulle M. De
plus, si L’ est hamiltoniennement isotope & L, L n L’ est non vide.

(2) ([6], 2.3.B,) Si M = R", T*M ne contient aucune sous-variété fermée lagrang-
ienne exacte.

En fait, ’'argument de [6], 2.3.B; montre que c’est encore vrai si M est une variété
ouverte quelconque (voir 2.1).

(3) (L. V. Polterovich [11] [12], C. Viterbo [14]; voir 2.5) Si M =R" et
L =T" tout plongement lagrangien L - T*M a une classe de Maslov non
nulle.

*Recherches soutenues par le CRSNG-Canada (subvention URF0035045) et le FCAR-Québec
(subvention EQ-3518).



Sous-variétés lagrangiennes et lagrangiennes exactes des fibrés cotangents 19

On supposera dorénavant que M est fermée et que L < T*M est une sous-variété
fermée lagrangienne exacte. Un exemple est I'image de la section nulle par un
difftomorphisme hamiltonien. Dans ce ‘cas, le résultat (1) peut étre précisé en
donnant une borne inférieure pour le nombre de points de L n M,, ([8], [10], et [13]).

QUESTION. Une sous-variété fermée exacte d’'un cotangent est-elle toujours
hamiltoniennement isotope a la section nulle?

Cette question a été évoquée par V. I. Arnold dans son survey [1]. La solution
semble pour I'instant hors de portée. Le but de cet article est de faire le point sur
les propriétés d’une telle sous-variété.

PREMIERE PROPRIETE. La projection f: L - M est surjective: ceci résulte
aisément de (1), voir 2.1.

Dans [1], Arnold pose la question: a-t-on deg(f)= +1, ou du moins
deg (/) #0? Nous ne savons pas y répondre en général, mais nous obtenons les
résultats suivants en utilisant (1) et (2).

THEOREME 1. (a) Fixons un point-base arbitraire sur L. Alors [I'image
S« (m (L)) est d’indice fini dans n,(M).

(b) L’application f, est surjective si M est une variété infra-homogeéne de la
forme M = K\G/H ou K est compact connexe.

Notons que les variétés vérifiant (b) incluent les espaces homogénes et les surfaces.

COROLLAIRES. (a) L’application f, : H(L; R) - H,(M; R) est surjective, et
en particulier on a b,(L) = b,(M) (nombres de Betti).
(b) Supposons L = M = T". Alors f est de degré + 1.

Intéressons-nous aux propriétés d’intersection. Une question naturelle est: si L
et L’ sont deux sous-variétés exactes, a-t-on L n L’ # J? Notons que c’est vrai si
L et L’ ont une phase génératrice quadratique au sens de [13]. On a aussi le cas
particulier suivant:

THEOREME 2. On suppose que M est un espace homogéne G/H avec G compact
et que L et L’ sont deux sous-variétés lagrangiennes fermées exactes de T*M. Alors
LNL’ est non vide.

Par exemple, c’est vrai si M =T" ou M =S".
Un autre type d’intersection est celle avec un fibré conormal v*K < T*M ou
K <M est une sous-variété fermée. On rappelle que v*K est ’ensemble des
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covecteurs qui sont orthogonaux a K, et que c’est une variété lagrangienne;
en particulier, on a v*M = M, et v*{q} =T*M. Lorsque L est le graphe de la
differéntielle d’'une fonction f, L nv*K est en bijection avec crit (f|K), et en
particulier est non vide. En utilisant (1) et les résultats sur les phases génératrices de
[10], nous montrons le

THEOREME 3. Soit K = M une sous-variété fermée. Alors L rencontre v*K au
moins dans les trois cas suivants:
(i) L est hamiltoniennement isotope a M
(11) K est une fibre d’une submersion n : M — B ou B est une variété fermée,
(i) K est homotope a un point dans M.

Enfin, une autre question naturelle est: le plongement i est-il réguliérement
lagrangiennement homotope a la section nulle. Du moins, la classe de Maslov
u(i) € H'(L; Z) est-elle nulle? En utilisant (3), on prouve le

THEOREME 4. Supposons M =T", et soit i : M —T*M un plongement la-
grangien exact. Alors la classe de Maslov u(i) est nulle.

Ceci se généralise a d’autres variétés, voir 2.4.

Supposons maintenant que M soit une surface orientée, pas nécessairement
compacte. Le Théoréme S résume ce que nous savons sur I’existence de plongements
lagrangiens dans 7*M, exacts ou non.

THEOREME 5. (a) Une surface orientée L admet un plongement lagrangien
dans T*M dont le degré de la projection sur M est d e Z si et seulement si
x(L) =d*y(M), a Iexception des cas L =M =T? avec |d| 22 qui ne sont pas
réalisables.

(b) Une surface non orientable L admet un plongement lagrangien dans T*M dont
le degré de la projection sur M est d e Z, si et seulement si y(L) est paire et
x(L) — dx(M) est non positif et nul mod 4, a 'exception peut-étre de la bouteille de
Klein dans R* (x(L) =0 et d = 0).

Enfin, supposons que M soit une surface fermée orientable et que L soit
orientable lagrangienne exacte dans 7*M. On a alors le

THEOREME 6. (a) L’indice de la projection f = n|, de L sur M est +1, et le
degré est non-nul sauf peut-étre pour M = S* et L = T

(b) Si L et L’ sont lagrangiennes exactes dans T*M, LNL’" # (.

(c) Si M est le tore T?, alors L = T? et le degré de la projection fest +1.
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PLAN. Dans les deux premicres parties, nous travaillons en dimension quelcon-
que. Dans la premiére, nous explicitons les propriétés des plongements lagrangiens
(et aussi totalement réels) donnés par le A-principe et par les calculs de nombres de
points doubles d’immersions. Dans la seconde, nous traitons le cas des variétés
exactes. Dans la troisiéme partie, nous traitons plus en détail le cas des surfaces, en
nous intéressant aux sous-variétés lagrangiennes exactes et non exactes. Les résul-
tats seront démontrés dans ’ordre de I'Introduction sauf le Théoréme 2 qui dépend
du Théoreme 3,(ii).

1. Sous-variétés lagrangiennes et totalement réelles

Il existe deux types d’obstructions topologiques a I’existence d’un plongement
lagrangien d’une variété fermée L dans T*M, ou M est une variété sans bord. La
premiere est donnée par le A-principe pour les immersions lagrangiennes ([7] et [2]),
la seconde par la nullit¢ du nombre de points doubles de I'immersion (voir [3] pour
les plongements lagrangiens dans C”).

Le A-principe énonce que la différentielle induit une équivalence d’homotopie
faible entre I’espace des immersions lagrangiennes (ou lagrangiennes exactes)
J:L—>T*M et I'espace des applications fibrées

T,L—— T (T*M)

L

L — T*M

dont la restriction & chaque fibre est un isomorphisme linéaire sur un plan
lagrangien. Notons 4 la forme de Liouville sur T*M, w = dA la forme symplectique
et ({,>,J) une structure presque kéhlérienne sur T*M compatible avec
w:w=<J-,-). Lacondition que I'image par ¢ d’une fibre F, c T, L soit lagran-
gienne s’exprime par 'orthogonalité de @(F) et J(¢(F)), d’ou

P(F)RC ~T,,,(T*M).
La donnée de ¢ est donc équivalente a celle d’une application fibrée
¢ :T,L®C-T,(T*M)) induisant un isomorphisme sur chaque fibre, c’est-a-dire

un isomorphisme 7T, L ® C ~ o *(T,(T*M)). Comme

@X(T (T*M)) =~ (n o @) X(T(T*M)) ~(m o 9)*(T M RC), n: T*M - M
= ((m o )T, M) ®C,
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les classes d’homotopie réguliére d’immersions lagrangiennes sont déterminées par
les classes d’homotopie de f =7 - ¢ et de I'isomorphisme

T,L®C~fXT,M)QC.

Le second type d’obstruction topologique provient du nombre algébrique de
points doubles d(i) d’une immersion lagrangienne i:L—->T*M (d(i))eZ si
n =dim L est pair et L est orientable, et d(i) € Z/2 dans tous les autres cas).
M. Audin a calculé d(i) dans [3] pour M = R” quand » est pair et dans un grand
nombre de cas particuliers quand » est impair. On tire de 1a sans difficulté le calcul
du nombre de points doubles pour un cotangent quelconque, en se limitant aux
dimensions paires de L. Précisons les orientations: il y en a trois naturelles sur 7*M
qui sont, en coordonnées locales, [’orientation de fibré (dx, A - -
Andx, Ady, A -+ Ady,), Porientation complexe (dx, A dy, A -+ Adx, Ady,), et
I’orientation symplectigue w" (=(—1)"dx, Ady, A"+ Adx, Andy,). Dans ce qui
suit, & moins d’indication contraire, toutes les définitions—en particulier celle de
d(i) —sont relatives a ’orientation de fibré, et donc compatibles avec la définition
de la caractéristique d’Euler.

Supposons d’abord L orientable. Si i’ est une petite perturbation de i dont
I'image est en position générale par rapport a celle de i, le nombre algébrique
d’intersection entre Im i et Im i” dans 7*M s’obtient en comptant d’'une part le
nombre d’intersection dans le fibré normal v(i) entre Im i’ et la section nulle de v(i),
et d’autre part deux points d’intersection pour chaque point double comptés avec le
signe de ce point double:

[Im ] - [Im "] = x(v(@)) + 2d(i)
ou [Im i] € H(T*M; Z). Comme i est lagrangienne, J induit un isomorphisme entre

v(i) et T, L qui préserve l'orientation. Si d € Z désigne le degré de noi: L —> M, la
formule de points doubles est donc:

d*y(M) — x(L)
) ;

d(i) = c’est-a-dire y(L) = d*y(M) pour un plongement.

Si L est non orientable la méme formule de points doubles, considérée mod 2,
est encore valable. On la déduit de la méme maniére en généralisant aux cotangents
la formule pour une immersion lagrangienne dans C” calculée par M. Audin dans
ce cas-ci a partir d’un résultat de Lannes ([9]).
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COROLLAIRE. Si L c T*M est une sous-variété lagrangienne plongée de degré
d, alors

x(L) = d*y(M) si L est orientable

x(L) =d?*x(M) mod. 4 si L n’est pas orientable.

Comme ces obstructions sont de nature homotopique, elles restent valables aussi
bien pour les immersions totalement réelles que lagrangiennes. On précisera ces
résultats dans la troisiéme partie qui traite le cas des surfaces.

2. Sous-variétés exactes

Soit L < T*M une sous-variét¢ lagrangienne fermée exacte. On note
i:L—T*M Pinclusion et f: L - M la restriction de la projection.

2.1. Preuve de la surjectivité de f

Sinon, il existe g; € M tel que L = T*(M\{q,}). Comme M\{q,} est une variété
ouverte, il existe une fonction g: M\{q,} = R sans point critique. La translation
par t dg dans les fibres donne alors une isotopie hamiltonienne de T*(M\{q,}):

®.(q, p) = (q, p + t dg(q)).

Donc ¢,(L) est exacte pour tout ¢, et il est clair qu’elle est disjointe de M pour ¢
assez grand; ceci contredit le th. 2.3.B; de [6] (voir (1) de I'Introduction).
Une variante de ce raisonnement permet de montrer la

PROPOSITION 1. Si U est une variété ouverte, il n’y a pas de sous-variété
lagrangienne fermée exacte dans T*U.

DEMONSTRATION. Supposons le contraire. Il existe une fonction g : U » R
sans point critique. La construction ci-dessus donne une isotopie hamiltonienne
¢,(L) =« T*U telle que ¢,(L) L est vide pour t assez grand: ceci contredit le th.
2.3.Bj de [6]: il est applicable car on peut supposer que U est de type fini, ce qui
implique I’hypothése de convexité a I'infini pour T*U.

REMARQUE. 11 est tentant d’utiliser la Proposition 1 pour montrer
deg (/) # 0: il suffirait pour cela de montrer que toute application L — M de degré
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zéro se factorise par une variété ouverte U, I'application U — M étant une immer-
sion. Ceci n’a pas l'air d’étre vrai en général, mais peut-€tre y a t-il une version
stable (aprés produit par SV par exemple)?

2.2. Preuve du Théoreme 1

(a) Soit M, —» M le revétement associé¢ a f, (m,(L)): on peut alors relever L en
une sous-variété exacte L, = T*M,. Si 'indice est infini, M, est ouverte, ce qui est
impossible d’apres la Proposition 1.

(b) Nous allons généraliser un argument de [1]. Supposons d’abord M
homogeéne. Soit I'; le plus grand sous-groupe normal de =,(M) contenu dans
S (@ (L)): comme ce dernier est d’indice fini dans n,(M), il en est de méme de
r'y. Soit M,—> M le revétement galoisien fini associé a I',: M, est encore
homogéne, disons M, = G/H. Les transformations de revétement sont induites par
des translations de G, donc sont isotopes a lidentité. On en déduit que le
revétement T*M,— T*M est galoisien et que Aut (7T*M,/T*M) est formé de
diffétomorphismes hamiltoniens de T*M,.

D’autre part, soit L, — L le revétement associé a f,'(I')) = n,(L), et soient
@y O Ly > T*M, (k =[rn,(M):T',]) les relevés de I'application composée
J:L - L—-T*M. Désignons par N le nombre de sous-variétés mutuellement
disjointes parmi Im ¢,, ..., Im ¢,. Comme

[m,(L) : (L)) = [fp(my (L)) : T ] < 0,
L, est compacte, et on a donc N sous-varietés compactes exactes, hamiltoni-

ennement isotopes et disjointes: on en conclut N =1 par le Théoreme 1. Or la
théorie des revétements donne

N =[m (M) : my(M)))/[r, (L) : 7, (Ly)]
=[m (M) : I'}/[f4 (mi (L)) : I'1],
donc N =1 équivaut a f, (n,(L)) = n,(M).
(i) On se raméne au cas (i) de la fagon suivante. On associe @ L une variété L,
obtenue en prenant le produit fibré de L et de G/H au-dessus de M = K\G/H:
Li={(,x)e L xG/H :f() =n(x)},

ou 7 est la projection de G/H sur M.
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Comme = est une fibration de fibre K, L, est une variété fermée et I’application
p:L,— L est une fibration de fibre K. On définite ensuite i, : L, » T*(G/H) en
posant

i(l, g) = (dry)*(i(1)

ou (dn,)* : Tk, (M) — T3(G/H) est I'application différentielle cotangente. Comme
n est une submersion, (drn,)* est injective, donc i; est un plongement. De plus
¥ Agu = p*(i*As ), donc C’est un plongement exact.

On a deux suites exactes envoyées I’'une sur 'autre:

T (K) — m (L)) — (L) —> 1

o L e

1 (K) — n,(G/H) — (M) —> 1
D’apres (a), F, est surjective, donc f, est surjective. O

Le Corollaire (a) est alors évident. Quant au Corollaire (b), il résulte du fait que
si f est une application de 7" dans lui-méme, induisant 4 € M,(Z) au niveau du =,
on a |deg ()| = |det (4)].

2.3. Preuve du Théoréme 3

(1) Ceci résulte du fait, démontré dans [13], que L admet une phase génératrice
S, définie sur M x R", et égale a une forme quadratique non dégénérée sur R" hors
d’'un compact. Donc L nv*K est en bijection avec les points critiques de la
restriction S| K x RY, ce qui prouve que son cardinal est au moins égal a
CL(K) + 1 ou CL(K) est la “cuplength”. A fortiori L nv*K est non vide.

(i) Supposons au contraire Lnv*K = . Si K=n"1(b,), il existe alors un
voisinage U de b, dans B tel que L nv*F = & pour toute fibre F de n dans = ~'(U).
De plus, il existe 4 : B— R telle que crit () = U. Posons g = 4 o n et considérons
I'isotopie hamiltonienne ¢, de T*M obtenue par translation de ¢ dg dans les fibres.
Alors

(a) La restriction g | M\U n’a pas de point critique, donc pour ¢ assez grand on
a o, (L)yn(M\U) =, ou M\U est considérée comme contenue dans la section
nulle My < T*M.

(b) Pour toute fibre F de =, I'image de F par dg est contenue dans v*F. Donc
si Fean~Y(U), ¢,(L) reste disjoint de v*F pour tout ¢, et a fortiori on a
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o,(LynF=¢f, ou F est considérée comme contenue dans la section nulle
My,c T*M. On en déduit que pour tout ¢z on a ¢,(L)nU = .

I1 résulte de (a) et de (b) que pour ¢ assez grand on a ¢,(L) "M, = J, ce qui
contredit la propriété (1) de I'Introduction.

(iii) Notons i : K — M linclusion et K, T*K la section nulle. Considérons
M =KxM,L'=Ky,x LcT*M’, K'=(id xi)(K) < M’. Supposons d’abord que
K soit de codimension au moins 2 dans M. Comme i est homotope a un point, K’
est isotope a une fibre K x {point} de la projection M’ — M, donc est une fibre
d’une submersion M’ — M. De plus L’ est exacte et (ii) implique L' nv*K’ # .
Soit (g, p) un point de I'intersection, avec

g=((x,y)eKxM
p=EmMeTIKxTM.

Alors (g, p) € L’ se traduit par: £ =0et (y,n) € L. Et (g, p) € v*K’ par: y =i(x)
et (&, n) e[(id x i (T.K) < T,M’]*+. Donc n est orthogonal a i (T, K), autrement
dit (y,n) e v*K. Comme on a déja (y,n) € L, ceci prouve L nv*K # . Reste le
cas ou K est de codimension 1: il suffit alors de faire un produit de plus:
M'=KxKxM,L"=Kyx Kyx L, K" = (id x id x i)(K). O

2.4. Preuve du Théoreme 2

Par la construction du produit fibré donnée plus haut, on associe a L et L deux
sous-variétés exactes L, et L} de T*G (connexes par la preuve du Théoréme 1, mais
peu importe), et 'on a une application naturelle de L, nL] dans L nL’. 1l suffit
donc de montrer que L, L] est non-vide.

Or L,nL7 est en bijection avec (L, X L})NAgpeg € T*G x T*G. De fagon
équivalente, en notant — L) la symétrisée dans les fibres et 4 <« T*G x T*G
I’antidiagonale, L,nL| est en bijection avec (L, x (—L}))nA. Il suffit pour
terminer de noter que si 'on identifie 7*G x T*G au cotangent T*(G x G), alors
A =v*A; et que A; est une fibre de la submersion (gh) — gh~' de G x G sur G:
donc le Théoréme 3, Partie (ii), implique que L, n L] est non vide.

2.5. Preuve du Théoreme 4

Nous allons utiliser le résultat suivant de Viterbo ([14], th. A’): Soit
j: T"—(R*, w,) un plongement lagrangien. Alors sa classe de Maslov est de la
forme u(j) = ma, ou a € H'(T", Z) est primitive et 2<m <n + 1.
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Supposons d’abord que M soit une variété quelconque admettant un plongement
lagrangien j: M — R?", et que i soit un plongement lagrangien de L dans T*M.
Par un théoréme de Weinstein, j s’étend en un plongement symplectique (encore
noté j) de U, dans R*", ou U, est un voisinage de M, dans T*M. Par homothétie
dans les fibres, la sous-variété i(M) peut étre supposée contenue dans U,, donc on
peut définir le plongement lagrangien composé joi: L — U, —R*. Notant f la
projectfon de L sur M, on montre aisément la formule reliant les classes de Maslov:

u(j o i) = p@) +*u( j)) € H'(L; 2). (%)

En itérant cette construction, on définit ainsi, a partir du plongement initial
Jj =Jo, une suite de plengements lagrangiens

k=Joe ) M->U -U_» >U->R" k=12,...,

ou les U, sont des voisinages (de plus en plus petits) de M, dans T*M. La formule
(*) donne alors, en posant 4 = f* € End H\(M; Z):

#Cjie) =tk -1 © ) = p(@) + AW - 1)),

d’ou par récurrence sur k:

pU) = {id + A+ + 4%~} @) + 4*(u()).

Plus généralement, soient ¢, . .. ¢, des difftomorphismes de M, et @,, ... P, leurs
extensions symplectiques a 7*M. On peut modifier j, en intercalant des composi-
tions par les @} :ji=jo® cio®yo-- o, oi Il vient alors, en posant
B =¢¥eAutH'(M; Z):

p(ji) ={id + AB; +- - -+ ABAB, _, ... AB,}(u(i))
+ABABy_, . .. AB(u()))- (*x)
Dans le cas ou M =T", le Théoréme 1, Corollaire b, implique que A4 est
bijective. De plus Diff (T") agit transitivement sur les classes primitives dans
H(T™; Z). Donc, en écrivant u( j) = ma et u(i) = xb, ou a et b sont des classes

primitives et m, x =20, on peut imposer que pour tout re[2,k] on ait
AB, AB, _,...AB,(b) =b et que AB,(a) = b. L’égalité (**) devient alors

#(ji) = (kx +mb.
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D’apres le théoréme de Viterbo, on doit donc avoir kx +m <n + 1 pour tout
k = 1: ceci implique x = 0. O

REMARQUES. (1) Pour n =2, le résultat de Viterbo a aussi été prouvé par L.
V. Polterovich [11], ainsi que I’application au Théoréme 4 [12]. D’autre part, dans
la version définitive de [14], Viterbo déduit du Théoréeme 2 le fait que tout
plongement lagrangien 7" — T*T" de degré non nul a une classe de Maslov nulle.
C’est ¢équivalent au Théoréme 4 car un tel plongement peut étre rendu exact par une
translation dans les fibres, qui ne change pas la classe de Maslov.

(2) Le Théoréme 4 reste valable sous les hypotheses:

(i) M admet une métrique riemannienne a courbure négative ou nulle.
(il) M se plonge lagrangiennement dans (R*", w,).
(1) Le groupe Diff (M) agit transitivement sur les classes primitives dans
H\(M; 7).
(iv) fest de degré +1.

En effet le résultat de Viterbo reste valable sous les hypothéses (i) et (ii), et la
preuve ci-dessus utilise seulement les hypothéses supplémentaires (iii) et (iv). Il y a,
a part les tores, plusieurs autres variétés vérifiant les hypothéses (i), (i) et (iii)
obtenues par exemple de la fagon suivante: selon ([3], 7.2.5), V x T™ admet un
plongement lagrangien dés que V admet une immersion lagrangienne, et il suffit
donc de prendre V admettant une métrique a courbure non-positive avec
H'(V;Z)=0 et TVQ®C trivial. En dimension 3 par exemple, cette derniere
condition est toujours réalisée et les théorémes d’uniformisation de Thurston
donnent un grand nombre de variétés hyperboliques avec premier groupe de
cohomologie nul (par exemple, la chirurgie de Dehn de rapport p/q sur la figure
huit de S>, pour presque toute valeur de p/q).

Enfin, tout récemment Polterovich [12] a étendu le résultat de Viterbo a une
classe de variétés comprenant les produits de sphéres par des tores. Appliquant
notre méthode, il en déduit que pour ces variétés le Théoréme 4 reste vrai.

3. Cas des surfaces

Dans cette section L et M sont des surfaces, L étant fermée et M orientable.
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3.1. Immersions lagrangiennes

D’apres la Section 1, il existe une immersion lagrangienne de L dans T*M si et
seulement s’il existe une application fibréee T,L®C—-T, M @C induisant un
isomorphisme sur chaque fibre. Puisque BSO(2) est simplement connexe et que
I'application BSO(2) — BU(2) induit une application nulle sur le n,, le complexifié
d’un fibré réel orientable de rang 2 sur une surface est trivial. Toute surface
orientable admet donc une immersion lagrangienne dans le cotangent de toute
surface. Le méme genre d’argument montre qu’une surface non-orientable L admet
une immersion lagrangienne dans T*M si et seulement si la caractéristique d’Euler
de L est paire.

3.2. Plongements lagrangiens: preuve des conditions nécessaires du Théoréme 5
Soit L « T*M un plongement de degré d, ou d € Z/2 si L n’est pas orientable.

(a) Si L est orientable, la Section 1 donne la condition nécessaire
x(L) = d*y(M). Reste le cas ou M = T un plongement lagrangien i : T2 — T*T? de
degré |d| > 2 produirait un plongement lagrangien exact i, : T>— T*T? de méme
degré en translatant i par des multiples C,df et C,dp des formes fermées
génératrices de H'(T? R). Ceci est interdit par le Corollaire (b) du Théoréme 1.

(b) Si L n’est pas orientable, on a vu en 3.1 que x(L) doit étre paire. De plus
la Section 1 donne la condition nécessaire y(L) = d?y(M) mod. 4.

3.3. Eclatement d’un point d’intersection de deux surfaces lagrangiennes

Pour la construction des plongements lagrangiens ayant les propriétés an-
noncées dans le Théoréme 5, on a d’abord besoin d’une construction locale
remplagant le voisinage d’un point d’intersection par un anneau lagrangien. Nous
allons I'obtenir a partir de courbes complexes.

Soit R*=C?={(z; = (xy, ¥1), 2> = (X3, ¥,)) muni de la métrique standard. Soit
V < R* une surface minimale. Il existe sur R* une structure complexe (constante)
pour laquelle V' est lagrangienne si et seulement s’il existe une structure complexe
(constante) pour laquelle V est complexe ([4]). Comme une courbe complexe est
minimale, toute courbe complexe de C? donne lieu a une surface lagrangienne de
R*. Identifiant de la fagon classique la grassmannienne des 2-plans orientés de R* a
§% x S? et'les grassmanniennes des plans lagrangiens orientés A(2) et des droites
complexes CP' aux sous-espaces S!' x S? et {pr} x S? respectivement, on voit qu’il
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existe un sous-espace R des rotations de R*, paramétré par le cercle, qui appliquent
CP' dans A(2) (par exemple, la rotation ¢, , de n/2 dans le plan [x,, y,]
appartient a R). L’image par ¢ € R de toute courbe complexe C est donc une
surface lagrangienne de R®. En particulier, I'image par ¢.,, de la courbe
C ={z,z,=¢ #0} est un anneau lagrangien asymptotique aux plans [x,, x,] et
—[»y, ¥,] qui, apres lissage sur les asymptotes, coincide avec [x, x,] U —[y;, y»]
hors d’un compact. Ainsi, deux plans lagrangiens orientés P, et P, se coupant en un
point p donnent lieu, aprés chirurgie, & un anneau lagrangien plongé coincidant
avec P, u + P, hors d’un voisinage arbitrairement petit de p, le signe étant positif
si [P,, P,] définit la méme orientation que celle de C?, c’est-a-dire 'opposé de
I'orientation (de fibré) de T*R?. On appellera cette chirurgie ’éclatement du point
d’intersection.

Il faut encore s’assurer que le lissage lagrangien de ¢, ,,(C) sur les plans [x;, x,]
et —[y;, y,] est possible. Pour cela, il est nécessaire et suffisant que ¢, ,,(C) soit
exacte, c’est-d-dire que [.A =0 ou c¢ est une courbe non-triviale sur I'anneau
@x,,,(C): la condition est clairement nécessaire car, apres lissage, [A=[.A=0,
ou ¢’ est une courbe dans le plan [x,, x,] (ou —[y,, y,]); elle est suffisante car la
condition [, A = 0 entraine que ¢, ,,(C) est le graphe d’une forme exacte définie sur
un anneau D,\D, de [x,, x,] centré a 'origine de [x,, x,] : le lissage revient donc a
prolonger une fonction définie sur D,\D, a une fonction définie sur [x,, x,]\D, et
constant sur [x;, x,]\D; (ou D; > D,).

Maintenant, il est facile de voir que ¢, ,.(C) est exacte, C’est-a-dire que

o« = (P;klyz(/{) = % (2 dz, + 2, dZ3)

est exacte sur C: comme C est une courbe quadratique de C? asymptotique a la
droite D = {z, =0}, a est exact sur C si le résidu de la 1-forme fermée singuliére
f*(o) € Q'(D) est nul, ou f: D\K — C est un paramétrage de C par D défini hors
d’un voisinage compact K de l'origine de D. Soient f(z,) =(¢/z,,2,) €t ¢ une
courbe de Jordan autour de l'origine de D. On a rés (f*a) = |, f*a = (¢/2) . (dz,/z,
+dz,/z,) =0. O

3.4. Construction de plongements lagrangiens

On termine la preuve du Théoréme 5 en construisant un plongement de L dans
T*M de degré d donneé.

(a) Cas orientable. Notons que la formule (L) = d*y(M) impose la topologie
de L.
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Supposons d’abord que y(M) <0 et d #0. Soient M, ..., Mldl’ a’l copies de la
section nulle M, de T*M, en position générale, obtenues comme graphes de formes
fermées sur M et munies de la méme orientation que M, si d est positif et de
'orientation opposée sinon. Comme le nombre minimal de zéros non-dégénérés
d’une forme fermée est |x(M)| et que x(M) est négatif, chaque point d’intersection
p, € M,nM, est de signe négatif relativement a l'orientation de fibre de T*M.
Léclatement de p,, € M,nM,, 1 <i <j <|d|, donne donc lieu 4 une anse lagrangi-
enne reliant M; a M, qui respecte les orientations de M, et M, et on obtient une
surface lagrangienne orientée L dans T*M, qui est clairement de degré d (on peut
aussi vérifier que le genre de L est le bon:

g(L) = |d|g(M) + (nombre d’anses rajoutées) — (|d| — 1)
= |d|g(M) = M)|d|(|d| — 1) — |d| + 1 = d?g(M) — d? + 1,

autrement dit: y(L) = d*y(M)).

Voyons les autres cas: si d est nul, le plongement lagrangien du tore dans T*M
est obtenu de fagon locale a partir du tore S! x S' de R*; si M = S? ou T?, les seuls
cas satisfaisant la condition y(L) = d?y(M) se réalisent trivialement.

(b) Cas non orientable. Soit L une surface non-orientable de caractéristique
paire, telle que y(L) = d’y(M) mod 4.

Si d =0, on construit un plongement lagrangien L — T*M de degré 0 a partir
des plongements lagrangiens dans R* que I’on obtient, a I’exception de la bouteille
de Klein, de la fagon suivante: pour un entier k£ > 2, on se donne k tores lagrangiens
T,,..., T, = R* obtenus par translation du tore standard orienté de R*, de sorte
que [T;nT,|=2si j=i+1 et 0 sinon. L'éclatement de chaque paire de points
d’intersection donne lieu a deux anses lagrangiennes, I'une respectant et 'autre
inversant l'orientation. La surface obtenue est non-orientable de caractéristique
—4 (k — 1) (Voir Givental [5] pour une construction différente).

Le cas d =1 se raméne également a une construction locale: I'attachement
d’anses a la section nulle. Si S? est une sphére de Whitney rencontrant la section
nulle My, =« T*M en deux points, I’éclatement des points d’intersection produit une
surface obtenue en attachant a M, une anse lagrangienne immergée ayant un point
double. L’éclatement du point double donne I'attachement a M, d’une anse
lagrangienne de genre 2, qui fait chuter la caractéristique d’Euler de 4. O

3.5. Preuve du Théoreme 6

(a) La premiére partie de ’énoncé est simplement le Théoreme 1(b). Si d =0,
alors y(L) = d?*y(M) implique L = T?2. On en déduit M = S? ou T? car autrement f,
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ne pourrait étre surjective. Mais un plongement exact 72— T*T? de degré nul est
exclu par le Corollaire (b) du Théoréme 1.

(b) Soient L,L’ < T*M deux sous-variétés lagrangiennes exactes. Alors
[L]-[L"] =dd y(M), donc I'intersection est non vide si d, d’ et y(M) sont non nuls.
Si y(M) =0, alors M est un espace homogéne de groupe compact, donc LNL’ # &
par le Théoréme 2. Si d ou d’ est nul, la Partie (a) entraine que M = S? qui est
encore un espace homogene.

(c) La formule de plongement totalement réel implique L = T2 et on a:
|degré| = indice =1 par (a).
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