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Sous-variétés lagrangiennes et lagrangiennes exactes des
fibres cotangents

François Lalonde* et Jean-Claude Sikorav

0. Introduction

Soit M une variété différentiable. Le fibre cotangent T*M est muni de la

structure symplectique canonique œ dÀ, k p • dq. Si L est une variété fermée de

même dimension que M, on s&apos;intéresse ici à l&apos;existence et aux propriétés d&apos;un

plongement lagrangien j : L-+ T*M. Plus particulièrement, nous étudierons les

plongements exacts, c&apos;est-à-dire tels que j*À est une forme exacte. Soulignons que
nous ne considérons que des plongements: la théorie des immersions lagrangiennes
(exactes ou non) est beaucoup plus flexible puisqu&apos;elle relève du h -principe de

M. Gromov [7] (pour une présentation détaillée de cette théorie, voir M. Audin
[2]). Par exemple, si M — (Rw, une condition nécessaire et suffisante à l&apos;existence

d&apos;une immersion lagrangienne de L dans T*Mn U2n est la trivialité de TL®C.
Pour l&apos;existence d&apos;un plongement, M. Audin [4] obtient comme condition nécessaire

des contraintes sur #(L) à partir de sa formule des points doubles d&apos;une immersion
totalement réelle (voir la section 1). Ces contraintes ne contredisent pas encore une
éventuelle flexibilité des plongements lagrangiens, mais c&apos;est le cas pour les résultats

suivants, obtenus par des méthodes analytiques (courbes pseudo-holomorphes) ou
variationnelles (principe de Hamilton):

(1) ([6], th. 2.3.B; et 2.3.BJ) Si M est une variété fermée et LaT*M une
sous-variété fermée lagrangienne exacte, alors L rencontre la section nulle Mo. De

plus, si U est hamiltoniennement isotope à L, Lc\U est non vide.

(2) ([6], 2.3.B2) Si M — IR&quot;, T*M ne contient aucune sous-variété fermée lagrangienne

exacte.
En fait, l&apos;argument de [6], 2.3.B4 montre que c&apos;est encore vrai si M est une variété

ouverte quelconque (voir 2.1).

(3) (L. V. Polterovich [11] [12], C. Viterbo [14]; voir 2.5) Si M M&quot; et

L Tn, tout plongement lagrangien L -&gt; T*M sl une classe de Maslov non
nulle.

?Recherches soutenues par le CRSNG-Canada (subvention URF0035045) et le FCAR-Québec
(subvention EQ-3518)
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On supposera dorénavant que M est fermée et que L cz T*M est une sous-variété

fermée lagrangienne exacte Un exernple est l&apos;image de la section nulle par un
diffeomorphisme hamiltonien Dans ce cas, le résultat (1) peut être précisé en

donnant une borne inférieure pour le nombre de points de L n Mo ([8], [10], et [13])

QUESTION Une sous-vaneté fermée exacte d&apos;un cotangent est-elle toujours
hamiltoniennement isotope à la section nulle7

Cette question a été évoquée par V I Arnold dans son survey [1] La solution
semble pour l&apos;instant hors de portée Le but de cet article est de faire le point sur
les propriétés d&apos;une telle sous-variété

PREMIÈRE PROPRIÉTÉ La projection/ L-+M est surjective ceci résulte

aisément de (1), voir 2 1

Dans [1], Arnold pose la question a-t-on deg(/) ±l, ou du moins
deg(/) #09 Nous ne savons pas y répondre en général, mais nous obtenons les

résultats suivants en utilisant (1) et (2)

THÉORÈME 1 (a) Fixons un point-base arbitraire sur L Alors Vimage

f#{nx(L)) est d&apos;indice fini dans nx(M)
(b) Uapphcatwn /# est surjective si M est une variété infra-homogène de la

forme M K\G/H où K est compact connexe

Notons que les variétés vérifiant (b) incluent les espaces homogènes et les surfaces

COROLLAIRES (a) Uapplication /* //,(£, U) -+HX(M, R) est surjective, et
en particulier on a bx(L) &gt; bx(M) {nombres de Betti)

(b) Supposons L M Tn Alors f est de degré ± 1

Intéressons-nous aux propriétés d&apos;intersection Une question naturelle est. si L
et U sont deux sous-variétés exactes, a-t-on Lr\U # 07 Notons que c&apos;est vrai si
L et L&apos; ont une phase génératrice quadratique au sens de [13] On a aussi le cas

particulier suivant

THÉORÈME 2 On suppose que M est un espace homogène G/H avec G compact
et que L et U sont deux sous-variétés lagrangiennes fermées exactes de T*M Alors
Lc\U est non vide

Par exemple, c&apos;est vrai si M Tn ou M Sn

Un autre type d&apos;intersection est celle avec un fibre conormal v*Ka T*M où

KczM est une sous-variété fermée On rappelle que v*K est l&apos;ensemble des



20 F LALONDE ET J -C S1KORAV

covecteurs qui sont orthogonaux à K, et que c&apos;est une variété lagrangienne;
en particulier, on a v*M M0 et v*{q} T*M. Lorsque L est le graphe de la
différentielle d&apos;une fonction/, Lnv*K est en bijection avec crit (f\K), et en

particulier est non vide. En utilisant (1) et les résultats sur les phases génératrices de

[10], nous montrons le

THÉORÈME 3. Soit K a M une sous-variété fermée. Alors L rencontre v*K au
moins dans les trois cas suivants:

(i) L est hamiltoniennement isotope à M
(ii) K est une fibre d&apos;une submersion n : M -+ B où B est une variété fermée,
(iii) K est homotope à un point dans M.

Enfin, une autre question naturelle est: le plongement i est-il régulièrement
lagrangiennement homotope à la section nulle. Du moins, la classe de Maslov
fi(i) 6 Hl(L; Z) est-elle nulle? En utilisant (3), on prouve le

THÉORÈME 4. Supposons M Tn, et soit i : M -&gt; T*M un plongement la-
grangien exact. Alors la classe de Maslov fx{i) est nulle.

Ceci se généralise à d&apos;autres variétés, voir 2.4.

Supposons maintenant que M soit une surface orientée, pas nécessairement

compacte. Le Théorème 5 résume ce que nous savons sur l&apos;existence de plongements
lagrangiens dans T*M, exacts ou non.

THÉORÈME 5. (a) Une surface orientée L admet un plongement lagrangien
dans T*M dont le degré de la projection sur M est d e Z si et seulement si
X(L) d2x(M), à l&apos;exception des cas L M T2 avec \d\ &gt; 2 qui ne sont pas
réalisables.

(b) Une surface non orientable L admet un plongement lagrangien dans T*M dont
le degré de la projection sur M est d e Z2 si et seulement si /(L) est paire et

X(L) — dx(M) est non positif et nul mod 4, à l&apos;exception peut-être de la bouteille de

Klein dans M4 (x(L) 0 et rf 0).

Enfin, supposons que M soit une surface fermée orientable et que L soit
orientable lagrangienne exacte dans T*M. On a alors le

THÉORÈME 6. (a) L&apos;indice de la projection f=n\L de L sur M est ± 1, et le

degré est non-nul sauf peut-être pour M S2 et L T2.

(b) Si L et L&apos; sont lagrangiennes exactes dans T*M, Lc\U ^ 0.
(c) Si M est le tore T2, alors L T2 et le degré de la projection / est ±1.
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PLAN Dans les deux premières parties, nous travaillons en dimension quelconque

Dans la première, nous explicitons les propriétés des plongements lagrangiens
(et aussi totalement réels) donnés par le h -principe et par les calculs de nombres de

points doubles d&apos;immersions Dans la seconde, nous traitons le cas des variétés
exactes Dans la troisième partie, nous traitons plus en détail le cas des surfaces, en

nous intéressant aux sous-vanétes lagrangiennes exactes et non exactes Les résultats

seront démontres dans l&apos;ordre de l&apos;Introduction sauf le Théorème 2 qui dépend
du Théorème 3,(u)

1. Sous-variétés lagrangiennes et totalement réelles

II existe deux types d&apos;obstructions topologiques à l&apos;existence d&apos;un plongement
lagrangien d&apos;une variété fermée L dans T*M, ou M est une variété sans bord La

première est donnée par le h -principe pour les immersions lagrangiennes ([7] et [2]),
la seconde par la nullité du nombre de points doubles de l&apos;immersion (voir [3] pour
les plongements lagrangiens dans Cw)

Le h -principe énonce que la différentielle induit une équivalence d&apos;homotopie

faible entre l&apos;espace des immersions lagrangiennes (ou lagrangiennes exactes)

j L -* T*M et l&apos;espace des applications flbrées

I
L &gt; T*M

dont la restriction à chaque fibre est un îsomorphisme linéaire sur un plan
lagrangien Notons A la forme de Liouville sur T*M, co dX la forme symplectique
et (&lt;,),/) une structure presque kahlénenne sur T*M compatible avec
ùj œ &lt;/ &gt; La condition que l&apos;image par q&gt;

d&apos;une fibre FpczT^L soit lagran-
gienne s&apos;exprime par Porthogonalité de cp{F) et J(&lt;p(F))9 d&apos;où

La donnée de &lt;p est donc équivalente à celle d&apos;une application fibrée
(p T^L ® C -? T+(T*M)) induisant un îsomorphisme sur chaque fibre, c&apos;est-à-dire

un isomorphisme T^L ® C ^ (p*(T+(T*M)) Comme

(p*(T*(T*M)) * (n o &lt;p)*(T+(T*M)) - (n ° cp)*(T+M® C), n T*M -&gt; M
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les classes d&apos;homotopie régulière d&apos;immersions lagrangiennes sont déterminées par
les classes d&apos;homotopie de / n ° cp et de l&apos;isomorphisme

Le second type d&apos;obstruction topologique provient du nombre algébrique de

points doubles d(i) d&apos;une immersion lagrangienne i : L -&gt; T*M (d(i) eZ si

n dim L est pair et L est orientable, et d(i) e Z/2 dans tous les autres cas).

M. Audin a calculé d(ï) dans [3] pour M Un quand n est pair et dans un grand
nombre de cas particuliers quand n est impair. On tire de là sans difficulté le calcul
du nombre de points doubles pour un cotangent quelconque, en se limitant aux
dimensions paires de L. Précisons les orientations: il y en a trois naturelles sur T*M
qui sont, en coordonnées locales, Vorientation de fibre {dxx a • • •

a dxn a dyx a • • • a dyn), l&apos;orientation complexe (dxx a dyx a • • • a dxn a dyn), et

l&apos;orientation symplectique wn — 1)&quot; dxx a dyx a • • • a dxn a dyn). Dans ce qui
suit, à moins d&apos;indication contraire, toutes les définitions—en particulier celle de

d(i)—sont relatives à l&apos;orientation de fibre, et donc compatibles avec la définition
de la caractéristique d&apos;Euler.

Supposons d&apos;abord L orientable. Si z&quot; est une petite perturbation de i dont
l&apos;image est en position générale par rapport à celle de /, le nombre algébrique
d&apos;intersection entre Im i et Im z&quot; dans T*M s&apos;obtient en comptant d&apos;une part le

nombre d&apos;intersection dans le fibre normal v(i) entre Im z&quot; et la section nulle de v(z),

et d&apos;autre part deux points d&apos;intersection pour chaque point double comptés avec le

signe de ce point double:

où [Im i] e Hn(T*M; Z). Comme / est lagrangienne, / induit un isomorphisme entre

v(z) et T+L qui préserve l&apos;orientation. Si d 6 Z désigne le degré de n o / : L -&gt; M, la

formule de points doubles est donc:

d(i) —^— ~
c&apos;est-à-dire x(L) d2x(M) pour un plongement.

Si L est non orientable la même formule de points doubles, considérée mod 2,

est encore valable. On la déduit de la même manière en généralisant aux cotangents
la formule pour une immersion lagrangienne dans Cw calculée par M. Audin dans

ce cas-ci à partir d&apos;un résultat de Lannes ([9]).



Sous-variétés lagrangiennes et lagrangiennes exactes des fibres cotangents 23

COROLLAIRE. Si L a T*M est une sous-variété lagrangienne plongée de degré
d, alors

X(L) d2%(M) si L est orientable

X(L) d2x(M) mod. 4 si L n&apos;est pas orientable.

Comme ces obstructions sont de nature homotopique, elles restent valables aussi

bien pour les immersions totalement réelles que lagrangiennes. On précisera ces

résultats dans la troisième partie qui traite le cas des surfaces.

2. Sous-variétés exactes

Soit L ci T*M une sous-variété lagrangienne fermée exacte. On note
/ : L -? T*M l&apos;inclusion et / : L -» M la restriction de la projection.

2.1. Preuve de la surjectivité de f
Sinon, il existe qGe M tel que L a T*(M\{q0}). Comme M\{q0} est une variété

ouverte, il existe une fonction g : M\{qo}-+M sans point critique. La translation

par tdg dans les fibres donne alors une isotopie hamiltonienne de T*(M\{q0}):

vMiP) =(&lt;1&gt;P + tdg(q)).

Donc q&gt;t(L) est exacte pour tout t, et il est clair qu&apos;elle est disjointe de M pour t

assez grand; ceci contredit le th. 2.3.B4 de [6] (voir (1) de l&apos;Introduction).

Une variante de ce raisonnement permet de montrer la

PROPOSITION 1. Si U est une variété ouverte, il n&apos;y a pas de sous-variété

lagrangienne fermée exacte dans T*U.

DÉMONSTRATION. Supposons le contraire. Il existe une fonction g : U -&gt; R

sans point critique. La construction ci-dessus donne une isotopie hamiltonienne
q&gt;t(L) œT*U telle que (pt(L)nL est vide pour t assez grand: ceci contredit le th.

2.3.B3 de [6]: il est applicable car on peut supposer que U est de type fini, ce qui
implique l&apos;hypothèse de convexité à l&apos;infini pour T*U.

REMARQUE. Il est tentant d&apos;utiliser la Proposition 1 pour montrer
deê (/) ^ 0; il suffirait pour cela de montrer que toute application L -+M de degré
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zéro se factorise par une variété ouverte U, l&apos;application U -+M étant une immersion.

Ceci n&apos;a pas l&apos;air d&apos;être vrai en général, mais peut-être y a t-il une version
stable (après produit par SN par exemple)?

2.2. Preuve du Théorème 1

(a) Soit Mx -*M le revêtement associé àf#(nx(L)): on peut alors relever L en

une sous-variété exacte Lx a T*MX. Si l&apos;indice est infini, Mx est ouverte, ce qui est

impossible d&apos;après la Proposition 1.

(b) Nous allons généraliser un argument de [1], Supposons d&apos;abord M
homogène. Soit F, le plus grand sous-groupe normal de tu, (M) contenu dans

f#(nx(L)): comme ce dernier est d&apos;indice fini dans kx(M), il en est de même de

T,. Soit MX-*M le revêtement galoisien fini associé à Fx\ Mx est encore
homogène, disons Mx G /H. Les transformations de revêtement sont induites par
des translations de G, donc sont isotopes à l&apos;identité. On en déduit que le

revêtement T*MX-*T*M est galoisien et que Aut (T*MJT*M) est formé de

difféomorphismes hamiltoniens de T*MX.
D&apos;autre part, soit L,-&gt;L le revêtement associé à f#l(Fx) c nx(L)9 et soient

ç&gt;1?.. 9&lt;pk : LX^&gt;T*MX (k [nx{M)\ T,]) les relevés de l&apos;application composée
J : Lx-&gt; L -+T*M. Désignons par N le nombre de sous-variétés mutuellement
disjointes parmi Im &lt;p1?. Im &lt;pk. Comme

[nx(L) : nx(L,)] [/#(*,(£)) : A] &lt; oo,

Lx est compacte, et on a donc N sous-variétés compactes exactes, hamiltoni-
ennement isotopes et disjointes: on en conclut N 1 par le Théorème 1. Or la
théorie des revêtements donne

N [nx(M):nx(Mx)]/[nl(L):nx(Lx)]

donc N 1 équivaut à/#(7Cj(L)) nx(M).
(ii) On se ramène au cas (i) de la façon suivante. On associe à L une variété Lx

obtenue en prenant le produit fibre de L et de G /H au-dessus de M K\G/H:

Lx {(l,x)eLxG/H:f(l)=n(x)},

où n est la projection de G/H sur M.
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Comme n est une fibration de fibre K, Lx est une variété fermée et l&apos;application

p:Lx-+L est une fibration de fibre K. On définite ensuite /, : L]-^T*(G/H) en

posant

où (dng)* : T*ig)(M) -» T*(G/H) est l&apos;application différentielle cotangente. Comme
n est une submersion, (dng)* est injective, donc /, est un plongement. De plus
iT^g/h =P*(î*^m)i donc c&apos;est un plongement exact.

On a deux suites exactes envoyées l&apos;une sur l&apos;autre:

nx(K) &gt; nx(Lx) &gt; nx(L) &gt; 1

\ F

nx(K) &gt; nx(G/H) &gt; nx{M) &gt; 1

D&apos;après (a), F# est surjective, donc/# est surjective.

Le Corollaire (a) est alors évident. Quant au Corollaire (b), il résulte du fait que
si/est une application de Tn dans lui-même, induisant A e Mn(Z) au niveau du nx,

ona|deg(/)| |det

2.3. Preuve du Théorème 3

(î) Ceci résulte du fait, démontré dans [13], que L admet une phase génératrice
S, définie sur M x UN, et égale à une forme quadratique non dégénérée sur UN hors
d&apos;un compact. Donc Lnv*K est en bijection avec les points critiques de la
restriction S \ K x UN, ce qui prouve que son cardinal est au moins égal à

CL{K) -h 1 où CL(K) est la &quot;cuplength&quot;. A fortiori Lnv*A:est non vide.

(ii) Supposons au contraire Lnv*K 0. Si K n~~l(b0), il existe alors un
voisinage U de b0 dans B tel que Lnv*F — 0 pour toute fibre F de n dans n~l(U).
De plus, il existe h : B -&gt; U telle que crit (f) a U. Posons g — h o n et considérons
l&apos;isotopie hamiltonienne &lt;pt de T*M obtenue par translation de / dg dans les fibres.
Alors

(a) La restriction g \ M\U n&apos;a pas de point critique, donc pour t assez grand on
a &lt;pt(L) n(M\U) =0, où M\U est considérée comme contenue dans la section
nulle Mo c T*M.

(b) Pour toute fibre F de rc, l&apos;image de F par dg est contenue dans v*F. Donc
si F an~~l(U), (pt(L) reste disjoint de v*F pour tout t, et a fortiori on a
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(pt(L) nF 0, où F est considérée comme contenue dans la section nulle
MQ c r*M. On en déduit que pour tout / on a cpt{L) n U 0.

Il résulte de (a) et de (b) que pour / assez grand on a cpt(L) r\M0 0, ce qui
contredit la propriété (1) de l&apos;Introduction.

(iii) Notons i\K-+M l&apos;inclusion et KoczT*K la section nulle. Considérons
AT K x M, U Ko x L c r*Af&apos;, #&apos; (id x /)(#) c= M&apos;. Supposons d&apos;abord que
K soit de codimension au moins 2 dans M. Comme / est homotope à un point, K&apos;

est isotope à une fibre K x {point} de la projection M&apos; -» M, donc est une fibre
d&apos;une submersion M^M. De plus U est exacte et (ii) implique L&apos;nv*r/0.
Soit (q, p) un point de l&apos;intersection, avec

q (x, y) e K x M

p=(t,ri)eT*KxT*M.

Alors (q, p) e U se traduit par: &lt;J 0 et (y, rj) e L. Et (q, p) e v*K&apos; par: y i(x)
et (£, rç) g [(id x /jX^A:) c TqM&apos;]L. Donc i/ est orthogonal à i^(TxK), autrement
dit (y, y]) g v*K. Comme on a déjà (y, rj) e L, ceci prouve Lnv*K ^ 0. Reste le

cas où K est de codimension 1: il suffît alors de faire un produit de plus:
M&quot; K x K x M, L&quot; KoxKoxL, K&quot; (id x id x i)(K).

2.4. Preuve du Théorème 2

Par la construction du produit fibre donnée plus haut, on associe à L et L&apos; deux
sous-variétés exactes Lx et L\ de T*G (connexes par la preuve du Théorème 1, mais

peu importe), et l&apos;on a une application naturelle de Lxr\L\ dans LnL&apos;. Il suffit
donc de montrer que LxnL\ est non-vide.

Or Lxc\L\ est en bijection avec (Lx x L\) nAT*G &lt;z T*G x T*G. De façon
équivalente, en notant — L\ la symétrisée dans les fibres et A c T*G x T*G
l&apos;antidiagonale, Lxc\L\ est en bijection avec (Lx x — L\))nA. Il suffit pour
terminer de noter que si l&apos;on identifie T*G x T*G au cotangent T*(G x G), alors
A v*AG et que AG est une fibre de la submersion (gh) \—&gt;gh~x de G x G sur G:

donc le Théorème 3, Partie (ii), implique que L, nL\ est non vide.

2.5. Preuve du Théorème 4

Nous allons utiliser le résultat suivant de Viterbo ([14], th. A&apos;): Soit

j : Tn-+(M2n, œ0) un plongement lagrangien. Alors sa classe de Maslov est de la

forme n(j) ma, où a e Hl(T&quot;; Z) est primitive et 2 ^ m &lt; n + 1.
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Supposons d&apos;abord que M soit une variété quelconque admettant un plongement
lagrangien j : M -» IR2w, et que i soit un plongement lagrangien de L dans T*M.
Par un théorème de Weinstein, j s&apos;étend en un plongement symplectique (encore
noté j) de Ux dans U2n, où Ux est un voisinage de Mo dans T*M. Par homothétie
dans les fibres, la sous-variété /(M) peut être supposée contenue dans Ux, donc on

peut définir le plongement lagrangien composé j ° i : L -+UX-+ R2n. Notant / la

projection de L sur M, on montre aisément la formule reliant les classes de Maslov:

ii(j ° 0 MO +/*(M j)) e //&apos;(£; z). (*)

En itérant cette construction, on définit ainsi, à partir du plongement initial

j =70, une suite de plongements lagrangiens

Jk=jQo(iy:M^Uk^Uk__x^--^Ux^U2\ £ 1,2,...,

où les Uk sont des voisinages (de plus en plus petits) de Mo dans T*M. La formule
(*) donne alors, en posant A =/* e End Hl(M; Z):

KJk) tiJk-i ° 0 MO + Afi(jk_l)),

d&apos;où par récurrence sur k:

Plus généralement, soient cpx, &lt;pk des difféomorphismes de M, et 4&gt;l9. &lt;Pk leurs

extensions symplectiques à T*M. On peut modifier jk en intercalant des compositions

par les &lt;p* :jk=jo&lt;ploio&lt;p2o-&gt;o&lt;pko /. H vient alors, en posant
Bj =q&gt;f eA\itH\M;Z):

ABkABk__x AB2}Qi(i))

Dans le cas où M=Tn, le Théorème 1, Corollaire b, implique que A est

bijective. De plus Diff(!Fw) agit transitivement sur les classes primitives dans

H](Tn; Z). Donc, en écrivant ju(y&apos;) —ma et \i(ï) xb, où a et b sont des classes

primitives et m, x &gt; 0, on peut imposer que pour tout r e [2, k] on ait
ABkABk_x ABr(b) b et que ABX (a) b. L&apos;égalité (**) devient alors

tiÂ) ={kx+m)b.
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D&apos;après le théorème de Viterbo, on doit donc avoir kx + m &lt; n + 1 pour tout
k &gt; 1 : ceci implique x 0.

REMARQUES. (1) Pour n 2, le résultat de Viterbo a aussi été prouvé par L.
V. Polterovich [11], ainsi que l&apos;application au Théorème 4 [12]. D&apos;autre part, dans

la version définitive de [14], Viterbo déduit du Théorème 2 le fait que tout
plongement lagrangien Tn-+ T*Tn de degré non nui a une classe de Maslov nulle.
C&apos;est équivalent au Théorème 4 car un tel plongement peut être rendu exact par une
translation dans les fibres, qui ne change pas la classe de Maslov.

(2) Le Théorème 4 reste valable sous les hypothèses:

(i) M admet une métrique riemannienne à courbure négative ou nulle.

(ii) M se plonge lagrangiennement dans (R2w, a&gt;0).

(iii) Le groupe Diff(M) agit transitivement sur les classes primitives dans

H\M\ Z).
(iv) /est de degré ±1.

En effet le résultat de Viterbo reste valable sous les hypothèses (i) et (ii), et la

preuve ci-dessus utilise seulement les hypothèses supplémentaires (iii) et (iv). Il y a,
à part les tores, plusieurs autres variétés vérifiant les hypothèses (i), (ii) et (iii)
obtenues par exemple de la façon suivante: selon ([3], 7.2.5), V x Tm admet un
plongement lagrangien dès que V admet une immersion lagrangienne, et il suffit
donc de prendre V admettant une métrique à courbure non-positive avec

Hl(V;Z) 0 et 7T®C trivial. En dimension 3 par exemple, cette dernière

condition est toujours réalisée et les théorèmes d&apos;uniformisation de Thurston
donnent un grand nombre de variétés hyperboliques avec premier groupe de

cohomologie nul (par exemple, la chirurgie de Dehn de rapport p/q sur la figure
huit de S3, pour presque toute valeur de p/q).

Enfin, tout récemment Polterovich [12] a étendu le résultat de Viterbo à une
classe de variétés comprenant les produits de sphères par des tores. Appliquant
notre méthode, il en déduit que pour ces variétés le Théorème 4 reste vrai.

3. Cas des surfaces

Dans cette section L et M sont des surfaces, L étant fermée et M orientable.
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3 1 Immersions lagrangiennes

D&apos;après la Section 1, il existe une immersion lagrangienne de L dans T*M si et
seulement s&apos;il existe une application fibree T^L®£,-*T+M®C induisant un
isomorphisme sur chaque fibre Puisque BSO{2) est simplement connexe et que
l&apos;application BSO(2) -? BU(2) induit une application nulle sur le n2, le complexifié
d&apos;un fibre réel orientable de rang 2 sur une surface est trivial Toute surface

orientable admet donc une immersion lagrangienne dans le cotangent de toute
surface Le même genre d&apos;argument montre qu&apos;une surface non-orientable L admet

une immersion lagrangienne dans T*M si et seulement si la caractéristique d&apos;Euler

de L est paire

3 2 Plongements lagrangiens preuve des conditions nécessaires du Théorème 5

Soit L a T*M un plongement de degré d, où d e Z/2 si L n&apos;est pas orientable

(a) Si L est orientable, la Section 1 donne la condition nécessaire

X(L) d2x(M) Reste le cas ou M T2 un plongement lagrangien i T2 -» T*T2 de

degré \d\ &gt; 2 produirait un plongement lagrangien exact ie T2-+T*T2 de même

degré en translatant i par des multiples C, dd et C2 d(p des formes fermées

génératrices de Hl(T2, U) Ceci est interdit par le Corollaire (b) du Théorème 1

(b) Si L n&apos;est pas orientable, on a vu en 3 1 que %(L) doit être paire De plus
la Section 1 donne la condition nécessaire x{L) d2x{M) mod 4

3 3 Eclatement d&apos;un point d&apos;intersection de deux surfaces lagrangiennes

Pour la construction des plongements lagrangiens ayant les propriétés
annoncées dans le Théorème 5, on a d&apos;abord besoin d&apos;une construction locale

remplaçant le voisinage d&apos;un point d&apos;intersection par un anneau lagrangien Nous
allons l&apos;obtenir à partir de courbes complexes

Soit IR4 C2 {(z, (xj, yx), z2 (x?9 y2)) muni de la métrique standard Soit
V c |R4 une surface minimale II existe sur U4 une structure complexe (constante)
pour laquelle V est lagrangienne si et seulement s&apos;il existe une structure complexe
(constante) pour laquelle V est complexe ([4]) Comme une courbe complexe est

minimale, toute courbe complexe de C2 donne lieu à une surface lagrangienne de
K4 Identifiant de la façon classique la grassmannienne des 2-plans orientés de IR4 à
S2 x S2 et les grassmanniennes des plans lagrangiens orientés A(2) et des droites
complexes CP1 aux sous-espaces S1 x S2 et {pt} x S2 respectivement, on voit qu&apos;il
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existe un sous-espace R des rotations de R4, paramétré par le cercle, qui appliquent
CP1 dans A(2) (par exemple, la rotation (pXiy2 de n/2 dans le plan [xi,j&gt;2]

appartient à R). L&apos;image par cp e R de toute courbe complexe C est donc une
surface lagrangienne de (R4. En particulier, l&apos;image par &lt;pXiy2 de la courbe
C {zxz2 e 7^0} est un anneau lagrangien asymptotique aux plans [xt,x2] et

— [y\*yi] Qu^ après lissage sur les asymptotes, coïncide avec [xx x2]kj —[yx,y2]
hors d&apos;un compact. Ainsi, deux plans lagrangiens orientés Px et P2 se coupant en un
point p donnent lieu, après chirurgie, à un anneau lagrangien plongé coïncidant
avec Pxu ±P2 hors d&apos;un voisinage arbitrairement petit de /?, le signe étant positif
si [Px, P2] définit la même orientation que celle de C2, c&apos;est-à-dire l&apos;opposé de

l&apos;orientation (de fibre) de T*M2. On appellera cette chirurgie l&apos;éclatement du point
d&apos;intersection.

Il faut encore s&apos;assurer que le lissage lagrangien de (pXiy2(C) sur les plans [xx, x2]

et — [^1,^2] est possible. Pour cela, il est nécessaire et suffisant que cpXiy2(C) soit

exacte, c&apos;est-à-dire que J£ À 0 où c est une courbe non-triviale sur l&apos;anneau

(pXiy2(C)\ la condition est clairement nécessaire car, après lissage, \ck \c À=0,
où c&apos; est une courbe dans le plan [jc15x2] (ou — [yx,y2])l e^e est suffisante car la

condition \c À 0 entraîne que cpX{y2{C) est le graphe d&apos;une forme exacte définie sur

un anneau D2\D{ de [jc15 x2] centré à l&apos;origine de [xu x2] : le lissage revient donc à

prolonger une fonction définie sur D2\DX à une fonction définie sur [*,, x2]\Dx et

constant sur [xl9 x2]\D3 (où D3 =3 D2).
Maintenant, il est facile de voir que &lt;p*lV2(C) est exacte, c&apos;est-à-dire que

a &lt;Piiy2(X) 1 (z\ dz2 + f, dz2)

est exacte sur C: comme C est une courbe quadratique de C2 asymptotique à la

droite D {zx 0}, a est exact sur C si le résidu de la 1-forme fermée singulière

/*(a) e Çï\D) est nul, où /: D\K-+C est un paramétrage de C par D défini hors
d&apos;un voisinage compact K de l&apos;origine de D. Soient f(z2) (e/z2, z2) et c une
courbe de Jordan autour de l&apos;origine de D. On a rés (/*a) Jc/*a (e/2) Jc (dz2/z2

+ dz2/z2)=0.

3.4. Construction de plongements lagrangiens

On termine la preuve du Théorème 5 en construisant un plongement de L dans

T*M de degré d donné.

(a) Cas orientable. Notons que la formule x{L) d2x(M) impose la topologie
deZ,
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Supposons d&apos;abord que x(M) &lt; 0 et d ^ 0. Soient M,,. Af^, \d\ copies de la

section nulle Mo de T*M, en position générale, obtenues comme graphes de formes
fermées sur M et munies de la même orientation que Mo si d est positif et de
l&apos;orientation opposée sinon. Comme le nombre minimal de zéros non-dégénérés
d&apos;une forme fermée est |/(M)| et que /(M) est négatif, chaque point d&apos;intersection

ptJ g M,nMf est de signe négatif relativement à l&apos;orientation de fibre de T*M.
L&apos;éclatement de pl} e Mt nM7, 1 &lt; / &lt;j &lt; \d\, donne donc lieu à une anse lagrangi-
enne reliant M, à M7 qui respecte les orientations de M, et M, et on obtient une
surface lagrangienne orientée L dans T*M, qui est clairement de degré d (on peut
aussi vérifier que le genre de L est le bon:

g(L) \d\g(M) + (nombre d&apos;anses rajoutées) — (\d\ — 1)

\d\g(M) -\X(M)\d\(\d\ - 1) - \d\ + 1 d2g(M) - d2 + 1,

autrement dit: i(L) d2x(M)).
Voyons les autres cas: si d est nul, le plongement lagrangien du tore dans T*M

est obtenu de façon locale à partir du tore S1 x S] de R4; si M S2 ou T2, les seuls

cas satisfaisant la condition /(L) d2x(M) se réalisent trivialement.
(b) Cas non orientable. Soit L une surface non-orientable de caractéristique

paire, telle que x(L) d2x(M) mod 4.

Si d 0, on construit un plongement lagrangien L -&gt;T*M de degré 0 à partir
des plongements lagrangiens dans U4 que l&apos;on obtient, à l&apos;exception de la bouteille
de Klein, de la façon suivante: pour un entier k &gt; 2, on se donne k tores lagrangiens

r,,. Tk a U4 obtenus par translation du tore standard orienté de R4, de sorte

que \TtnT;\ 2 si j i H- 1 et 0 sinon. L&apos;éclatement de chaque paire de points
d&apos;intersection donne lieu à deux anses lagrangiennes, l&apos;une respectant et l&apos;autre

inversant l&apos;orientation. La surface obtenue est non-orientable de caractéristique
— 4 (k — 1) (Voir Givental [5] pour une construction différente).

Le cas d 1 se ramène également à une construction locale: l&apos;attachement

d&apos;anses à la section nulle. Si S2 est une sphère de Whitney rencontrant la section
nulle Mo c T*M en deux points, l&apos;éclatement des points d&apos;intersection produit une
surface obtenue en attachant à Mo une anse lagrangienne immergée ayant un point
double. L&apos;éclatement du point double donne l&apos;attachement à Mo d&apos;une anse

lagrangienne de genre 2, qui fait chuter la caractéristique d&apos;Euler de 4.

3.5. Preuve du Théorème 6

(a) La première partie de l&apos;énoncé est simplement le Théorème l(b). Si d 0,
alors x(L) d2x(M) implique L T2. On en déduit M S2 ou T2 car autrement/#
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ne pourrait être surjective Mais un plongement exact T2-+ T*T2 de degré nul est
exclu par le Corollaire (b) du Théorème 1

(b) Soient L, L&apos;c T*M deux sous-variétés lagrangiennes exactes Alors
[L] [Z/ ] d d&apos;x(M), donc l&apos;intersection est non vide si d, d&apos; et x{M) sont non nuls
Si x(M) 0, alors M est un espace homogène de groupe compact, donc LnL&apos; ^ 0
par le Théorème 2 Si d ou d&apos; est nul, la Partie (a) entraîne que M S2 qui est

encore un espace homogène
(c) La formule de plongement totalement réel implique L T2, et on a

|degré| indice 1 par (a)
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