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Smith theory and the functor T

William G Dwyer and Clarence W Wilkerson

§1. Introduction

J Lannes has introduced and studied a remarkable functor T [Ll] which takes

an unstable module (or algebra) over the Steenrod algebra to another object of the

same type This functor has played an important rôle m several proofs of the

generalized Sullivan Conjecture [Ll] [L2] [DMN] and has led to homotopical
ngidity theorems for classifying spaces [DMW1] [DMW2] In this paper we will use

techniques of Smith theory [DW] to calculate the functor rexphcitly in certain key
spécial situations (see 1 1 and 1 3) On the one hand, our calculation gives gênerai
structural information 1 4) about T îtself On the other hand, up to a convergence
question which we will not discuss hère our calculation produces a direct analogue
of Smith theory (1 2) for actions of elementary abehan /?-groups on certain
înfimte-dimensional complexes, this analogue differs from Smith theory only in that
&quot;homotopy fixed point set&quot; îs substituted for &quot;fixed point set&quot;

We will now state the main results, which are completely algebraic m nature
although they hâve a géométrie motivation Fix a prime p, the field ¥p with p
éléments will be the coefficient ring for ail cohomology Let Ap dénote the mod p
Steenrod algebra, and % (resp X) the category of unstable modules (resp unstable

algebras) over \p (see [Ll]) If jR îs an object of Jf, an unstable Ap O R module M
îs by définition an object of °U which îs also an R module in such a way that the

multiplication map R®M-+M obeys the Cartan formula, we will dénote the

category oî Kp O R modules by tft(R) An object of %(R) typically anses from a

map q E -* B of spaces, in this case the induced cohomology map q* makes H*E
an object of W(R) for R H*B

Let V be an elementary abehan p-group, î e a finite-dimensional vector space
over ¥p, and Hv the classifying space cohomology H*BV Lannes [Ll] has

constructed a functor Tv %-+°U which îs left adjoint to the functor given by
tensor product (over F,,) with Hv and has shown that Tv lifts to a functor jf -&gt; Jf
which îs also left adjoint to tensonng with Hv The adjointness property of Tv
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produces for any space X a natural map

kx : Ty(H*X)-+H* Hom(BV, X)

which is often an isomorphism [Ll] [L2] [DS]. Given an object R of Jf* there is a

simple way (see §2) of using a particular Jf*-map/: R-+Hv io single out a quotient

r/(/Q of T%R) or for MeW(R) a quotient Tvf(M) of 7^(M). Thèse quotients
correspond via À to subspaces of function spaces; more precisely, if q : E -? B is a

map of spaces and/: H*B -+Hy is a map Jf, then Af induces a quotient map A£/
from Tf(H*E) to the cohomology of the subspace of Hom(i?K, E) consisting of
maps r : BV-+E with r*q* =/

For any JT-map R-+Hv9 we will let Sfc:R dénote the multiplicative subset

of R gênerated by the Bockstein images in R2 of the éléments of Rl which map
non-trivially under / Recall from [Wl] [Si] that if M is an object of ^1{R) any
localization of the form S/1M inherits an action of Xp, although this action is not
necessarily unstable. Dénote the largest unstable A^-submodule [DW, 2.2] of such

a localization by

THEOREM 1.1. Let W be an elementary abelian p-group, V a subgroup of W,

andf: Hw -&gt; Hv the map induced by subgroup inclusion. Suppose that M is an object

of °U{HW} which is finitely-gênerated as a module over Hw. Then there is a natural
isomorphism

This theorem has a géométrie background. Let V and W be as in 1.1. Suppose
that X is a flnite CW-complex with a cellular action of W and let M be the

cohomology of the Borel construction EWX EW x^Ion this action. According
to [L2] there is an isomorphism

where Xv is the fixed point set of the action of V on X. Similarly, by Smith theory

[DW, 2.3] there is an isomorphism

H*EW(XV)^ Un Sf l(M).

The composite of thèse two maps is the isomorphism of 1.1; the présent paper
sprang in part from a désire to produce this isomorphism in a purely algebraic way
without assuming that M £ H*EWX for a finite complex X.
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With Theorem 1.1 in hand, though, it is possible to work backwards through
the above géométrie example. Suppose that X is a space with an action of W but
instead of assuming that X is finite assume only that H*X is finite. Again let

M H*(EWX); a spectral séquence argument shows that M is finitely generated as

a module over Hw. Let Xhv dénote the homotopy fixedpoint set [M, p. 581] of the

action of V on X. It is not hard to see that the Borel construction Ew(Xhv) is

homotopy équivalent to the space of maps BV-+EWX which up to cohomology
cover the map BV-+BW induced by VœW, so that kEwXf produces a map
Tf(H*EwX)^H*Ew(Xhv). Theorem 1.1 now computes the domain of kEwX%f\

this gives the following corollary.

COROLLARY 1.2. Let W be an elementary abelian p-group, V a subgroup of W

andf: Hw&apos;-? Hv the map induced by subgroup inclusion. Let X a space on which W
acts and assume that H*X is finite and that kEwXf is an isomorphism. Then there is

a natural isomorphism.

H*EiV(Xhy) £ Un SflH*(EwX).

REMARK. The conclusion of Corollary 1.2 implies that the localized restriction

map

S/ lH*(EwX) -S/ xH*Ew(Xhv)

is an isomorphism. This is the promised extension of Smith theory [H, Chap. III]
to infinité dimensional complexes (the only finiteness condition on X is a cohomo-

logical one). The question of whether ^ewxj *s an isomorphism is essentially a

spectral séquence convergence problem [DS] [B] and we intend to consider it in a

future note.

REMARK. As in [DW, 2.5], for V W the conclusion of Corollary 1.2 gives

an isomorphism H*(Xhw) ^Fp «^Un SflH*(EwX).

An unstable Ap Q Hv algebra is an object R of JT together with a Jf-map
Hv-+R. Dénote the category of Ap Q Hv algebra by Jf(Hv). (We will also

occasionally consider the category X(R) for other objects R of Jf\) If M is an R
module and / c R is an idéal, let M7A stand for the completion of M with respect
to powers of /, i.e. for the inverse limit lim5 M/FM.

THEOREM 1.3. Let V be an elementary abelian p-group andf: R-+Hv a map
in Jf(Hv) with kernel I. Assume that R is finitely-generated as a ring and that M is
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an objecî of ^1{R) which is finitely-gênerated as a module over R. Then there is a

natural isomorphism

REMARK. Example 4.6 shows that the appearance of something like a com-
pletion is necessary in Theorem 1.3. It is easy to set (4.4) that in the statement of
Theorem 1.3 the localization S/lMcan be replacée by the localization S~lM oîM
with respect to the multiplicative set S gênerated by the Bockstein images in H2BV
of the non-zero éléments of HlBV.

The restriction in Theorem 1.3 that R be an algebra over Hv is not too serious,
since it is possible to make any object of Jf into an object of iï(Hv) by tensoring
with Hv. If g : R -+Hv is a map of X and /: Hv ®Fp R-+Hv is the map of
Jt(Hv) which extends g, then (see 2.2 and the proof of 1.4) there is a natural
isomorphism T} {Hv ®FpR) s Hv ®Fp Tg(R). In conjunction with Theorem 1.3

this calculation leads to the following resuit.

THEOREM 1.4. Let V be an elementary abelian p-group, R an object of Jf
which is finitely generated as a ring and M an object of tft(R) which is finitely
gênerated as a module over R. Then TV(R) is finitely generated as a ring and TV{M)
is finitely generated as a module over TV(R).

Organization of the paper. In sections 2 through 4 we will prove the above theorems
in the spécial case in which V is the rank one elementary abelian /?-group Z/p; for
this particular F, Tv is simply denoted by T and Hv by H. Section 5 describes the

argument that extends the results to gênerai V. Section 6 contains some auxiliary
algebraic material on Jf.

§2. Some properties of the functor 7

The purpose of this section is to set up some machinery involving the functor T.

Let f:R-+H be a Jf-map. The adjoint of/is a jT-map T(R)-^Fp, which

amounts to a ring homomorphism/: T(R)°-&gt;FP. For M e W(R), let 7}(M) dénote

the tensor product T(M) &lt;8)T(R)oFp9 where the action of T(R)° on ¥p is given by/.
Note that Tf(R) s Jf.

PROPOSITION 2.1. For any Jf-mapf: R-*H the construction Tf{-) induces

functors 9t(R) -+&lt;%(Tf(R)) and Jf(R)-+Jf(Tf(R)). Moreover, 7} is exact, and
préserves tensor products in the sensé that if M and N are objects of W(R) there is a
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natural isomorphism

Tf(M ®R N) s Tf(M) ®Tf{R) Tf(N).

Proof. Most of what is asserted follows from the fact that T is exact and

préserves tensor products [Ll]. To see that 7}is exact, note in addition that/makes
F^ into a flat module over T(R)°; this flatness is an algebraic conséquence of the
fact that T(R)° is a p-boolean ring [Ll, 3.5] (that is, each élément x in T(R)°
satisfies the équation xp x). In fact, if T(R)° is finite, then Tf(R) is a summand of
T(R).

PROPOSITION 2.2. Let /:i*,-//, i l, 2 be JT-maps with M,
and let f be the product map f -f2&apos;R\ ®f R2-+H. Then there is a natural
isomorphism

Tf(Mx ®Fp M2) -+ Tfx(Mx) ®Fp Tf2{M2).

Proof. This is again a conséquence of the fact that T préserves tensor products.

PROPOSITION 2.3. Suppose that ReJf, Me ^(R), and that x e R is an
élément such that x • M 0. Let f: R-+H be a Jf-map such that f(x) ^ 0. Then

7}(Àf)=0.

Proof. By the Cartan formula the annihilator idéal / of M in R is invariant
under Ap and hence the quotient map R -+ R/I is a morphism of Jf. By Proposition
2.1 Tf(M) ^ Tf(R/I) ®T/{R) Tf(M) so we will be done if we can show that Tf(R/I)
vanishes in dimension 0. Now Tf(R)°^¥p and the map Tf(R)°-+Tf(R/I)0 is

surjective, so non-vanishing of Tf(R/I)° implies that Tf(R)°-+Tf(R/I)° is an
isomorphism and therefore that/: T(R)°^Tf(R)° ^¥p extends to a map T(R/I)°
-&gt;¥p. This is impossible, because by assumption the adjoint map/ : R-&gt;H does not
extend to a map R/I-+H.

For any object M of °U the adjunction map M -+H ®F T(M) can be combined
with the unique algebra map H-+Fp to give a map M-* T(M); call this map ê. (If
M H*X for some space X, then e corresponds via kx to the cohomology
homomorphism induced by the basepoint évaluation map Hom(i?Z//?, X) -+X.) If
ReJf, MeûH{R) and f:R-+H is a Jf-map, we will dénote the composite

If/://-?// is the identity map then cf: H -&gt; 7}(H) is an isomorphism [Ll, 4.2],
so that by (2.1) 7} lifts to a functor ^(//) -&gt;^(//) (or Jf(H) -? Jf(//)).
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PROPOSITION 2.4 (SPLITTING PROPERTY). Letcp:H-&gt;Hbe the identity
map and I a H the kernel of the unique Jf-map H ^&gt;Fp. Then for any object R of
JT(//) there is a natural $T{H)-isomorphism

TV(R) s H ®Fp(Tv(R)/I ¦ T^R))

where the action of H on the tensor product is by multiplication on the left-hand
factor.

REMARK. The proof of Proposition 2.4 also shows that if R e Jf(//) and

M g qi(R) there is an isomorphism T^M) s H ®Fp (7^(M)//. T^M)). The action
of T^R) on 7^ (M) then respects the tensor product splittings of both objects.

Proof of2.4. The adjunction map R^H ®F T(R) can be combined with the

Hopf algebra coproduct map //-&gt;// ®F H to give a map R-+H ®F H ®F T(R);
the adjoint to this is a map T(R) -&gt; H ®F T(R) which has as quotient a Jf(//)-map
7^(7?)-?// ®F T^R). The desired isomorphism cr is the composite of this map
with the projection

H ®Fp T^R) -&gt; // ®Fp (7;(*)// • T^R)).

The fact that cp is the identity map insures that the action of H on the target tensor
product is the desired one. Note that a induces an isomorphism on Totq(H/I, —

and an epimorphism on Torf(////, — (the latter because Torf(///7, — vanishes

on the free //-module which is the target of g). Let C be the cokernel of a and k
the kernel. The fact that Tor^(////, C) C/I • C 0 implies that C 0, since / is

a connected idéal. The long exact séquence for Tor?(////, — then shows that
ToTq(H/I, K) vanishes, which similarly implies K 0.

§3. Spherical éléments

The purpose of this section is to prove Proposition 3.1, which is the algebraic
basis of ail of the results in this paper.

Let S c H be the multiplicative subset generated by the non-zero éléments of
degree 2. The closure of an object M of $t(H) is defined to be Un(S~lM); M is

closed if the natural map from M to the closure of m is an isomorphism. An élément

x of an unstable A^ module is spherical if eux 0 for each strictly positive-dimen-
sional élément a e Ap.
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PROPOSITION 3.1. IfMe % (H) is non-zéro, closed andfinitely gênerated as a
module over H then M contains a non-zero spherical élément.

Let H+ be the subalgebra of H generated by the éléments of S; H+ is an
unstable A^ algebra which is isomorphic to the cohomology ring of CP°°. The

multiplicative set S is contained in H+ and so it is possible to speak of the closure

of an object M of W(H+ ); as above, M is closed if the natural map from M to the

closure of M is an isomorphism. An object of % is even-dimensional if it vanishes
in odd degrees. Proposition 3.1 is a conséquence of the following resuit.

PROPOSITION 3.2. If MeW{H+) is non-trivial, closed, even-dimensional,
and finitely generated as a module over H+, then M contains a nonzero spherical
élément.

Proof of 3.1 (given 3.2). We will assume that p is an odd prime since the case

p 2 is a little simpler. Consider the map Y : M -? M given by

?k(x) \x\ 2k + 1&apos;

The map Y is not an A^-map, but the image of Y is an Ap-submodule of M [Li].
Let TV be the closure of the H+ -submodule of M generated by the image of Y. It
is clear that N is an Ap O H+ submodule of M which is closed, even-dimensional
and finitely generated over H+. If TV is non-trivial we are done, since by Proposition
3.2 N contains a non-zero spherical élément. If N is trivial, then &apos;V is the zéro map
and M is the suspension [Li] of a closed Ap Q H module M&apos;. We can argue by
induction on the largest degree in which M ®H+ ¥p fails to vanish that AT contains
a non-zero spherical élément; the suspension of this élément is then a non-zero
spherical élément of M. The induction begins with the fact that any zero-dimen-
sional class is spherical.

In order to prove Proposition 3.2 we will need some additional notation. Let R
be an even-dimensional object of Jf and M an even-dimensional object of &lt;%(R).

Given a degree 2 élément a of R and a degree 2k élément jc of M, define &lt;Pa(x) by
the formula

k

(cf. [DW, 3.2]). The Cartan formula shows that &lt;Pa(x) is multiplicative in x
whenever this makes sensé; in particular, &lt;Pa(a) 0 implies that &lt;Pa(x) 0 if x is
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tf-decomposable in M. We will be particularly interested in the case R H+ and
will let c dénote a chosen fixed degree-two generator of H+.

The following lemma is essentially a reformulation of the Adem relations for the
reduced /?-th powers.

LEMMA 3.3. Let R be an even-dimensional object of $T, M an even-dimensional

object of °U{R), and a, b degree 2 éléments of R. Then, for any x g M,
&lt;Pa&lt;Pb(x) &lt;Pb&lt;Pa(x).

Proof Suppose that |jc| 2k. Let F2k be the free object in % on a single
generator i2k of dimension 2k; F2k is isomorphic to the submodule of H*K(Zjp9 2k)
generated by the fundamental class. By a universality argument we can assume that
x is the élément 1 ®i2k of R ®F F2k. By [AW, 2.7] we can assume that x is the
élément 1 ®(c®k) of R ®¥p (H+ )®k. In fact, by multiplicativity of &lt;P we can even

prove the lemma by checking the desired relation on the élément x 1 ® c of
R ® H+. In this case explicit calculation gives

P-\
&lt;Pa(x) xp - ap~ [x Yi (x + ia)

i 0

and hence

****(*) =ÏI ÏI (x + ia+jb).
0 y 0

The lemma follows from the fact that this expression is symmetric in a and b.

LEMMA 3.4. Let M e &lt;%(H+ be closed and even-dimensional, and let x be an
élément of M. Then there exists an élément y of M such that x c • y if and only if

Proof If such a y exists, then #c(x) &amp;Àc)&amp;c(y) 0- On tne other hand,
suppose that &lt;Pc(x) 0 and let |jc| 2k. The Cartan formula shows that 0&gt;k + l(x/c)

— \)lcl~ ï(Pc(x), so that the vanishing of &lt;Pc(x) implies that 0&gt;J(x/c) vanishes for
j&gt;k~\. Since M is even-dimensional, this easily ([Li] [AW, §2]) leads to the

conclusion that y x/c e Un(S~lM) M. Then x c • (x/c) c - y.

LEMMA 3.5. Let M be an even-dimensional object of °té(H+ and x e M an
élément of degree 2k with the property that &amp;lx is c-decomposable for each i &gt; 0.
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Then the action of \p on &lt;P( (x) is given by the formula

Proof. Identify M with the submodule \®MoîN //+ ®F M; it is clear that
N is an object of W(H+ ® F H+ Let a dénote the élément c ® 1 of H+ ® H+ and
b the élément 1 ®c. Since ^&apos;(x) is 6-decomposable for / &gt;0, it foliows from the

multiplicativity of 0 that &lt;Pb&lt;Pa(x) dépends only on the leading term of &lt;Pa(x), in
particular,

&lt;Pb&lt;Pa(x) €&gt;b({ - \)kak{p~X)x) - \)\ap -bp~ la

By définition, however,

Pk

The proof is finished by equating thèse two expressions (Lemma 3.3) and matching
up the coefficients of corresponding powers of a.

Proof of 3.2. Let 2k be the largest dimension in which Mftc • M) is not zéro,
and choose an élément z e M of dimension 2k which is not divisible by c. It is clear
that â?l(x) is odecomposable for each i &gt; 0, so the action of Ap on 4&gt;c(x) is given
by the formula of Lemma 3.5. A check with the Cartan formula shows that

y c~k{p~ l)Q&gt;t(x) is a spherical élément of M. The élément y is non-zero by
Lemma 3.4.

§4. The rank one case

This section contains the proofs of Theorems 1.1, 1.3 and 1.4 in the spécial case

in which the elementary abelian /7-group involved is Z/p. Recall from §3 that S
dénotes the multiplicative subset of H generated by the non-trivial éléments of
degree 2. Throughout this section cp : H -+H will dénote the identity map.

PROPOSITION 4.1. If M e °U(H) isfinitely generated as a module over H there

is a natural isomorphism
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REMARK. An unstable Ap module F is finite if FJ is finite-dimensional
for ail j and zéro for almost ail / Suppose that M e °U{H) is finitely generated
as a module over H. Propositions 2.4 and 4.1 combine to give the surprising
fact that Un(S~xM) splits as a tensor product H ®F F for some finite A^ module
F.

Recall from §2 that T^H) ^ H so that TV(M) e W(H) if M e &lt;%(H). It is easy
to see that the map e^ : M-&gt; 7^ (M) is a map of //-modules.

LEMMA 4.2. Let M e %(H) be the tensor product H ®¥p F, where F e^ll is

finite. Then e^ : M -* 7^ (M) is an isomorphism.

Proof. Combine Proposition 2.2 and the fact [Ll, 4.1] that e :F-+T(F) is an

isomorphism.

LEMMA 4.3. If M e °U(H) is finitely generated as a module over H, then the

map S&quot;lc(p : S~XM-+S~xT(p{M) is an isomorphism.

Proof. Work by induction on the rank rk^^&apos;M) of S1M as a module over

Sl(H+ Let M&apos; \Jn(S~lM), so that rkOS-&apos;M&apos;) rk(S-lM) and M&apos; is closed.

If M&apos; 0 then T^M) vanishes by Proposition 2.3; this case begins the induction.
Suppose then that M&apos; is not trivial. By Proposition 3.1 M&apos; contains a non-zero

spherical élément x. The annihilator idéal / of x in H is closed under the action of
the Steenrod algebra, but, since M&apos; embeds in S~lM&apos;, I contains no élément of S.

It follows from Proposition 6.4 that / is trivial and thus that the cyclic Ap Q H
submodule &lt;x&gt; of Mr generated by x is a free H module of rank one. This shows

both that rk(S~lM&apos;) &gt;0 and, by Lemma 4.2, that the map &lt;&gt;&gt;-? T^Ot) is an

isomorphism. Let M&quot; M/&lt;x&gt;. By induction the map S~XM&quot;-+S~xTq,(M&quot;) is an

isomorphism. Exactness of 7^ and exactness of localization now together imply that
S~1M/-&gt;£&apos;~1r&lt;/î(Àf/) is an isomorphism. The inductive step is completed by
observing that the map M-+M&apos; induces isomorphisms S1M s S~XM&apos; and

s T^M&apos;) (the last by Proposition 2.3).

Proof of4.\. By lemma 4.3 the map S~xe(p : SXM -^S&quot;1!^) is an isomorphism.

By Proposition 2.4 T^M) is a tensor product H ®F F for some F e ^, so

[DW, 3.6] guarantees that the map T(p(M)-+\}n(S~xT(p{M)) is an isomorphism.
The proposition follows.

Let/ : R -&gt; H be a map in Jf(H). Any object M of °U(R) is an H module as well

as an R module, so it is possible to form T^ (M) as well as Tj(M). There is a natural
surjection T^M) -? Tf(M).
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LEMMA 4.4. Let f\R-+H be a map in Jf(H) with kernel I, and let M be an

object of W(R). Then for each s^O
(1) the map 7} (M) -? Tf(M/PM) is an isomorphism up through dimension s — 1

and

(2) the map T^M/PM) -&gt; Tf(M jPM) is an isomorphism.
Suppose moreover that R is finitely generated as a ring and M is finiteîy generated as

an R module. Then for each s ^ 0

(3) there is a natural isomorphism Tf(M/FM) s Un Sf\M/IsM).

Proof To prove 1 observe that the map

is an isomorphism, so by exactness Tf(I) vanishes in dimension 0. By Proposition
2.1, Tf(I ® R I ® R

• • • ®R I) (s factors) vanishes through dimension 5 — 1. The rest
follows from exactness of Tf. To prove (2), argue from the fact that l/P is nilpotent
to conclude [Ll, 4.3.2] that the projection map R/P-+R/I ^ H induces an isomorphism

hom^//, H) -?homjr(i?//3, H) and thus by adjointness an isomorphism
T(R/P)° ^ T(H)°. It follows that there are isomorphisms

Tf(M/PM) T(MjPM)

S T(MjPM) ®nH)»Fp T^M/PM).

Statement (3) now follows easily from (2) and Proposition 4.1. The hypothèses

imply that M/PM is finitely generated as a module over H. It is clear that given an
élément x of Sf there is an élément y of S such that the image of x in R/P differs
from the image of y by a nilpotent élément; this implies that the natural map
S-l(M/PM)-*Sfl(M/PM) is an isomorphism.

Proofof\3 (for V Z/p). Lemma 4.4(1) implies that there is an isomorphism
Tf(M) £ lûnA Tf(M/PM) and it is clear by inspection that there is an isomorphism
Un((5^IAf)/A) =H?\ Un Sf1 (M/PM). The theorem follows from Lemma 4.4(3).

Proof of 1.4. (for V Z/p): We will prove only the statement about T(R).
Suppose first that R e Jt(H) and that/: R-+H is a Jf(H) map. By Lemma 4.4(1)
and exactness there are isomorphisms

Tf(R) s Kmâ 7}(tf//&apos;) s Km, Tf(R)/Tf(P)
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and the proof of 4.4( 1) shows that the associated graded ring gr Tf(R) Z5 Tf(Is)/
7}(/5+1) is generated as an H algebra by Tf(I)/Tf(I2) 7}(///2). Lemma 4.3(3)
and exactness of 7} imply that 7}(///2) is finitely generated as an H module. It
follows that Tf(R) is finitely generated as a ring.

Now choose R e Jf, pick a Jf-map g : R-+H, and let / : // ®F/7 R-*H be the

product of g with the identity map cp of H. The above considérations show that

Tf(H ®FpR) is finitely generated as a ring, and Proposition 2.2 shows that

(TfH ®Fp R) is isomorphic to T^H) ®¥p Tg(R) s // ®F/j ^(i?). This proves that
Fp

Tg(R) is finitely generated. There are only a finite number of choices for the map g
(since R is finitely generated as a ring) and T(R) is isomorphic to a product
ïlg Tg(R) indexed by thèse choices (cf. [Ll, 3.5]). This implies that Tg(R) is finitely
generated.

The next lemma requires an additional bit of notation. For any JT-map

f:R-+Hy\elZfciR dénote the multiplicative subset of R consisting of éléments x
such that/(x) is not a zero-divisor in Hy.

LEMMA 4.5. Let f:R-+H be a map in X(H) and M an object of &lt;%{R).

Suppose that R is finitely generated as a ring, that M is finitely generated as an R

module, and that Cj : R -+ Tr(R) is an isomorphism. Then there is a natural isomor-
phism

Proof. Calculating with Lemma 4.4 shows that the map ef : M -+ Tf(M) induces

an isomorphism 7}(M) -+TfTf(M). It follows that Tf(N) =0 if N is either the

kernel or cokernel of M -? 7}(M). Theorem 1.4 guarantees that N is finitely-gener-
ated as an R module, so by Lemma 4.4(3) the localization I/l(N/IN) vanishes, and
hence by Nakayama&apos;s lemma [AM, p. 21] the localization Z/lN itself vanishes. In
other words, the map ef induces an isomorphism EflM-&gt;ZfXTf(M). Now Proposition

2.3 (together with a finite génération argument) shows that there is an

isomorphism 7} (M) -» 7} Un ljx (M) and hence that there is a map ef from
Un ZfXM to 7}(Un E/lM) ^ Tf(M). The above considérations produce a map in
the other direction from TfM to Un ZfXTf{M) ^ Un I/XM. The lemma follows
easily.

Proof of 1.1 (for V Z/p). Any subgroup of W is a summand, so the map
f:Hw^His split and can be treated as a map in Jf(H). Since ef: Hw-&gt; Tf(Hw)
is an isomorphism [Ll, 4.2], Lemma 4.5 applies and reduces the proof of the

theorem to showing that the natural map Un S/x (M) -»Un IfX(M) is an isomorphism.

Let N dénote either the kernel or the cokernel of the map
cf\ M-+Tf(M) ^\JnEfX(M). It is clear that Ne%(Hw) is a finitely generated
module over Hw with the property that I/X(n) 0; to finish the proof it is enough
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to show that any such module N has SfrX{N) 0, or in other words, it is enough
to find an élément w of Sf which annihilâtes N. By the finite génération of N there
exists an élément x of If which annihilâtes N. Write x u + v where m belongs to
the polynomial subalgebra H% of Hw generated by the image of the Bockstein
P : HXBW ^&gt;H2BW and v is nilpotent. By replacing x with xpL for large L we can
in fact assume that x u e H+; note that x ^ 0 because the image of x in H is

non-nilpotent. Let / c //^ be the annihilator idéal of Af, and write the radical of /
in H% as an intersection p], P* °f prime ideals p, which are closed under the action
of the Steenrod algebra (Proposition 6.1). By Proposition 6.3 each p, is generated
as an idéal by two-dimensional classes, If any p, has ail of its two-dimensional

generators contained in the kernel of/then / &lt;= ker(/), which is impossible because

x e I. Consequently, it is possible to choose from each p, a two-dimensional

generator wt such that the image of w, in H is non-zero. It is clear that wte Sf. If
w is set equal to a sufficient high power of the product FI, wn then w is the desired

élément in Sfnl.

EXAMPLE 4.6. The following example from Smith theory illustrâtes that it is

necessary to include a completion of some type in the statement of Theorem 1.3.

Letp 2, let R H*BO(2) and letf:R-+Hbe the map induced by an homomor-
phism Z/2-» 0(2) sending the non-trivial élément of Z/2 to a matrix of déterminant
— 1. Note that the déterminant map 0(2) -?Z/2 lifts R to an H algebra and/to a

morphism in Jf(H). It follows from [L2], say, that Tf(R) is isomorphic to
H*(RPCC x RP00), but there is only one unstable one-dimensional generator in

S^lR. Let w, and w2 be the Stiefel-Whitney classes which generate H*B0(2) as a

polynomial algebra. The additional necessary one-dimensional generator appears in
the completion of the localization of R as the finite sum

£ wl(w2/w2l)2&apos;

i 0

(a formula which can be derived by the a posteriori knowledge that this generator
a satisfies the équation oc2 + wxol + w2 — 0).

§5. The gênerai case

In this section we will describe the argument which is used to prove Theorems

1.1, 1.3 and 1.4 for a gênerai elementary abelian /?-group V. We will use the fact
that for V Z/p thèse theorems hâve already been proven in §4.
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Let Sy cz Hv be the multiplicative subset generated by the non-zero éléments in
the image of the Bockstein map £: HlBV-+H2BV and Hv+ the subalgebra of Hv
generated by the éléments of Sv. It is possible to check that the proofs in §2 and §4

hold almost Verbatim with H replaced by Hv, H+ by Hv+, T by Tv and S by Sy;
the only exception is the proof of Lemma 4.3 to the extent to which it relies on
Lemma 3.1. To complète the proof of the desired results for K, then, it is enough
to give an appropriate generalization of Lemma 3.1.

The closure of an object M e W{HV) is defîned to be UnOS^M; M is closed

if the natural map from M to the closure of M is an isomorphism.

LEMMA 5.1. If M e %(Hy) is non-zero, closed and finitely generated as a

module over Hv then M contains a non-zero spherical élément.

Proof. The argument is by induction on the dimension of V as an F^ vector

space. By Lemma 3.1, we can assume that this dimension is greater than one. Write
V as a direct sum Z//&gt; © W for some W\ this gives a map g : H ^&gt;HV which lifts H v

to Jf(//), as well as a map/: Hv-&gt;H such that/- g is the identity map of H. By
the spécial case of Theorem 1.3 proven in §4 there is an isomorphism

Tf(M) s Un Sf l (M). It follows from Proposition 2.4 that there is a tensor product
splitting Tf(M) £ H ®F N which is compatible with the évident [Ll, 4.2] splitting
Tf(Hv) £ Hv^Hv^H®¥p Hw. Since M is closed, Un S/1 (M) is isomorphic to
M. The conclusion is that M splits as a tensor product H ®F N where N is an

object of ^{Hw) which is necessarily non-zero, closed and finitely generated as a

module over Hw. By induction n contains a non-zero spherical élément x. The
élément 1 ®x g H ®F N ^ M is the desired spherical élément of M.

§6. Some algebraic facts

The purpose of this section is to gather together some standard algebraic results.

Proposition 6.3 is used in the proof of Theorem 1.1 (see §4) and Proposition 6.4 in
the proof of Lemma 4.3 (particularly in the inductive setting described in §4).

PROPOSITION 6.1. Suppose that R e Jf is evenly graded andfinitely generated
as a ring, and that I a R is a homogeneous idéal which is closed under the action of
Ap. Then the radical of I in R can be written as an intersection (\ pt of homogeneous

prime ideals p, closed under the action of Ap.

Proof. Let / be the radical of / (that is, the idéal of ail éléments x e R such that
some power of x lies in /). It is easy to prove by induction on j and the Cartan
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formula that £PJx g J if x g J, in other words, that y is closed under the action of Ap.
Write /as an intersection f]t at of (homogeneous) prime ideals (see [AM, Chap. 7]),

For each / let crj0 be the set of éléments x g &lt;x, such that &amp;Jx g a, for ail j ^ 0. The

argument of [AW, p. 138] shows that aj0 is a prime idéal contained in an although
it is not évident that &lt;x&lt;!) is closed under the action of Ap. Iterate the procédure of
passing from g, to a) to obtain a descending chain

of prime ideals in R. Such a chain must eventually become constant [ZS, p. 241];
let pt dénote the limiting constant value. It is clear that pl is a prime idéal of R

which is closed under the action of A^ and that J f]lpl.
The following propositions use some of the notation of §5.

PROPOSITION 6.2. Let V be an elementary abelian p-group, and suppose that

I a Hv is a non-trivial homogeneous idéal closed under the action of Ap. Then I
contains a non-zéro élément of //+

Proof Let eu ek be a collection of generators for HlBV and /,,. tk

their Bockstein images in H2BV, so that //+ is the polynomial algebra
Fp[&apos;i ,...,**] and Hv is isomorphic as an algebra to the tensor product of Hv+ and

an exterior algebra on el9. ek. Pick a non-zero élément x in /. By multiplying x,
if necessary, by a suitable product of e,&apos;s we can assume that x has the form
tele2-&apos;-ek where teHv+ is non-zero. Define a séquence dXy...dk of integers

inductively by setting rf, |r|/2+l and dl+l=pdl + \ (i &gt; 1). Define éléments

cc0,.. &lt;xk__, of A^ by setting a0 fi and a,+ x
P&amp;d&apos;+ lat(i &gt; 0). A short calcula-

tion then shows that

where a runs through the permuation group on k letters. It is clear that ock __ x x is

a non-zero élément of InH+.

PROPOSITION 6.3. Suppose that V is an elementary abelian p-group and that

I c H1^ is a homogeneous prime idéal which is closed under the action of Ap. Then I
is generated as an idéal by its éléments of dimension 2.

Proof The resuit is due to Serre ([Se], cf. [AW, 1.11]).
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PROPOSITION 6 4 Suppose that V is an elementary abelian p-group and that

I a Hv is a non-trwial homogeneous idéal closed under the action of Ap Then I
contains an élément of Sv

Proof Let J be the intersection of the radical of / with //+ By Proposition 6 1

and 6 3,/ can be wntten as an intersection f)tpt °f pnme ideals in // + each of
which is generated by éléments of dimension 2 Proposition 6 3, guarantees that /
is not trivial, so each of the pt is also a non-trivial idéal Pick non-zero two-dimen-
sional éléments jc, e p, and let x be the product of the x/s It is clear that some

power of x lies in InSy

REMARK The top Dickson invariant c0 [W2] m Hv is by définition the

product of the two-dimensional éléments of S v It follows from Proposition 6 4 that
any idéal / of the indicated type actually contains some power of c0
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