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Smith theory and the functor T

WILLIAM G. DWYER AND CLARENCE W. WILKERSON

§1. Introduction

J. Lannes has introduced and studied a remarkable functor T [L1] which takes
an unstable module (or algebra) over the Steenrod algebra to another object of the
same type. This functor has played an important role in several proofs of the
generalized Sullivan Conjecture [L1] [L2] [DMN] and has led to homotopical
rigidity theorems for classifying spaces [DMW1] [DMW?2]. In this paper we will use
techniques of Smith theory [DW] to calculate the functor T explicitly in certain key
special situations (see 1.1 and 1.3). On the one hand, our calculation gives general
structural information (1.4) about T itself. On the other hand, up to a convergence
question which we will not discuss here our calculation produces a direct analogue
of Smith theory (1.2) for actions of elementary abelian p-groups on certain
infinite-dimensional complexes; this analogue differs from Smith theory only in that
“homotopy fixed point set” is substituted for “fixed point set”.

We will now state the main results, which are completely algebraic in nature
although they have a geometric motivation. Fix a prime p; the field F, with p
elements will be the coefficient ring for all cohomology. Let A, denote the mod p
Steenrod algebra, and % (resp. ') the category of unstable modules (resp. unstable
algebras) over A, (see [L1]). If R is an object of X", an unstable A, © R module M
is by definition an object of # which is also an R module in such a way that the
multiplication map R® M —» M obeys the Cartan formula; we will denote the
category of A, © R modules by %(R). An object of %(R) typically arises from a
map ¢q : E — B of spaces; in this case the induced cohomology map ¢* makes H*E
an object of #(R) for R = H*B.

Let V be an elementary abelian p-group, i.e., a finite-dimensional vector space
over F,, and H" the classifying space cohomology H*BV. Lannes [L1] has
constructed a functor T":% — % which is left adjoint to the functor given by
tensor product (over F,) with H" and has shown that T lifts to a functor )" — X’
which is .also left adjoint to tensoring with H". The adjointness property of T
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produces for any space X a natural map
Ay : TY(H*X) - H* Hom(BV, X)

which is often an isomorphism [L1] [L2] [DS]. Given an object R of ¢ there is a
simple way (see §2) of using a particular 2 -map f: R - H" to single out a quotient
T/ (R) of TY(R) or for M € %(R) a quotient T/(M) of T"(M). These quotients
correspond via A to subspaces of function spaces; more precisely, if g : E— B is a
map of spaces and f: H*B - H" is a map ', then 4, induces a quotient map A, ,
from T/(H*E) to the cohomology of the subspace of Hom(BYV, E) consisting of
maps r : BV —» E with r*q* =f.

For any X" -map R— H", we will let S, R denote the multiplicative subset
of R generated by the Bockstein images in R? of the elements of R' which map
non-trivially under f. Recall from [W1] [Si] that if M is an object of #(R) any
localization of the form S/ 'M inherits an action of A, although this action is not
necessarily unstable. Denote the largest unstable A, -submodule [DW, 2.2] of such
a localization by Un(S; 'M).

THEOREM 1.1. Let W be an elementary abelian p-group, V a subgroup of W,
and f: HY — H" the map induced by subgroup inclusion. Suppose that M is an object
of U(HY) which is finitely-generated as a module over HY. Then there is a natural
isomorphism

T/ (M) = Un S/ ' (M).

This theorem has a geometric background. Let ¥ and W be as in 1.1. Suppose
that X is a finite CW-complex with a cellular action of W and let M be the
cohomology of the Borel construction E, X = EW x ,, X on this action. According
to [L2] there is an isomorphism

TY (M) = H*E, (X")

where X'V is the fixed point set of the action of ¥ on X. Similarly, by Smith theory
[DW, 2.3] there is an isomorphism

H*E,(X") =2 Un S;'(M).
The composite of these two maps is the isomorphism of 1.1; the present paper

sprang in part from a desire to produce this isomorphism in a purely algebraic way
without assuming that M =~ H*E, X for a finite complex X.



Smith theory and the functor T 3

With Theorem 1.1 in hand, though, it is possible to work backwards through
the above geometric example. Suppose that X is a space with an action of W but
instead of assuming that X is finite assume only that H*X is finite. Again let
M = H*(E, X); a spectral sequence argument shows that M is finitely generated as
a module over H"Y. Let X"*¥ denote the homotopy fixed point set [M, p. 581] of the
action of ¥ on X. It is not hard to see that the Borel construction E, (X"") is
homotopy equivalent to the space of maps BV — E, X which up to cohomology
cover the map BV — BW induced by V < W, so that Ag, ., produces a map
TY (H*Ey,X) > H*E,(X"). Theorem 1.1 now computes the domain of AEy s
this gives the following corollary.

COROLLARY 1.2. Let W be an elementary abelian p-group, V a subgroup of W
and [ : HY — HY the map induced by subgroup inclusion. Let X a space on which W
acts and assume that H*X is finite and that A, , is an isomorphism. Then there is
a natural isomorphism.

H*E,(X") = Un S; 'HXE, X).

REMARK. The conclusion of Corollary 1.2 implies that the localized restric-
tion map

S, HYEwX) - S;'H*Ey (X*)

is an isomorphism. This is the promised extension of Smith theory [H, Chap. III]
to infinite dimensional complexes (the only finiteness condition on X is a cohomo-
logical one). The question of whether Ag y, is an isomorphism is essentially a
spectral sequence convergence problem [DS] [B] and we intend to consider it in a
future note.

REMARK. As in [DW, 2.5], for V' = W the conclusion of Corollary 1.2 gives
an isomorphism H*(X"") =F, @ y» Un S; 'H*(E, X).

An unstable A, © H" algebra is an object R of A together with a % -map
H” - R. Denote the category of A, © H" algebra by #'(H"). (We will also
occasionally consider the category £ (R) for other objects R of ¢.) If M is an R
module and 7 = R is an ideal, let M stand for the completion of M with respect
to powers of I, i.e. for the inverse limit lim, M /I°M.

THEOREM 1.3. Let V be an elementary abelian p-group and f : R - H" a map
in X" (H") with kernel 1. Assume that R is finitely-generated as a ring and that M is
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an object of U(R) which is finitely-generated as a module over R. Then there is a
natural isomorphism

TV (M) =~ Un((S;'M)} ).

REMARK. Example 4.6 shows that the appearance of something like a com-
pletion is necessary in Theorem 1.3. It is easy to set (4.4) that in the statement of
Theorem 1.3 the localization S; ' M can be replaced by the localization S ~'M of M
with respect to the multiplicative set S generated by the Bockstein images in H>BV
of the non-zero elements of H'BV.

The restriction in Theorem 1.3 that R be an algebra over H" is not too serious,
since it is possible to make any object of " into an object of )" (H") by tensoring
with HY. If g: R—> H" is a map of X and f: HY ®FPR—>HV is the map of
H'(H") which extends g, then (see 2.2 and the proof of 1.4) there is a natural
isomorphism T} (H" ® r,R)=H Y ®F, T¢ (R). In conjunction with Theorem 1.3
this calculation leads to the following result.

THEOREM 1.4. Let V be an elementary abelian p-group, R an object of A
which is finitely generated as a ring and M an object of U(R) which is finitely
generated as a module over R. Then TY(R) is finitely generated as a ring and T"(M)
is finitely generated as a module over T"(R).

Organization of the paper. In sections 2 through 4 we will prove the above theorems
in the special case in which V is the rank one elementary abelian p-group Z/p; for
this particular ¥, T" is simply denoted by T and H" by H. Section 5 describes the
argument that extends the results to general V. Section 6 contains some auxiliary
algebraic material on J".

§2. Some properties of the functor T

The purpose of this section is to set up some machinery involving the functor 7.

Let f: R— H be a ) -map. The adjoint of fis a X -map T(R) —F,, which
amounts to a ring homomorphism f : T(R)*—F,. For M € U(R), let T,(M) denote
the tensor product T(M) ® (g0 F,, where the action of T(R)° on F,, is given by 12
Note that T,(R) € JX".

PROPOSITION 2.1. For any A -map f: R — H the construction T;( —) induces
Sfunctors U(R) - U(T,(R)) and A (R) = A (T;(R)). Moreover, T, is exact, and pre-
serves tensor products in the sense that if M and N are objects of U(R) there is a



Smith theory and the functor T 5

natural isomorphism
T,(M @rN) =T, (M) ®r.r T/(N).

Proof. Most of what is asserted follows from the fact that T is exact and
preserves tensor products [L1]. To see that T is exact, note in addition that f makes
F, into a flat module over T(R) this flatness is an algebraic consequence of the
fact that T(R)° is a p-boolean ring [L1, 3.5] (that is, each element x in T(R)°
satisfies the equation x” = x). In fact, if T(R)° is finite, then T,(R) is a summand of
T(R).

PROPOSITION 2.2. Let f,:R,»H, i=1, 2 be A -maps with M, e U(R;)
and let [ be the product map f,-f,: R, ®r, Ry~ H. Then there is a natural
isomorphism

Tf(Ml ®F,, M,) - Tf, (M) ®Fp sz(Mz)-
Proof. This is again a consequence of the fact that T preserves tensor products.

PROPOSITION 2.3. Suppose that Re A", M € U(R), and that x € R is an
element such that x - M =0. Let f: R— H be a X -map such that f(x) #0. Then
T,(M)=0.

Proof. By the Cartan formula the annihilator ideal 7 of M in R is invariant
under A, and hence the quotient map R — R/l is a morphism of J". By Proposition
21 T,(M) =T,(R/I) ®1,r) T,(M) so we will be done if we can show that T,(R/I)
vanishes in dimension 0. Now T;(R)°~F, and the map T,(R)°— T,(R/I)° is
surjective, so non-vanishing of T,(R/I)® implies that T,(R)®— T,(R/I)® is an
isomorphism and therefore that f: T(R)® — T;(R)° = F, extends to a map T(R/I)°
—F,. This is impossible, because by assumption the adjoint map f : R — H does not
extend to a map R/I - H.

For any object M of % the adjunction map M — H ®g, T(M) can be combined
with the unique algebra map H - F, to give a map M — T(M); call this map e. (If
M = H*X for some space X, then ¢ corresponds via A, to the cohomology
homomorphism induced by the basepoint evaluation map Hom(BZ/p, X) —» X.) If
ReA, MeZR) and f: R— H is a A -map, we will denote the composite
M S T(M) - T,(M) by ¢,.

If f: H— H is the identity map then ¢,: H — T (H) is an isomorphism [L1, 4.2],
so that by (2.1) T lifts to a functor %(H) »U(H) (or X (H) - X (H)).
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PROPOSITION 2.4 (SPLITTING PROPERTY). Let ¢ : H— H be the identity
map and I = H the kernel of the unique A -map H —¥,. Then for any object R of
A (H) there is a natural X (H)-isomorphism

T,(R) = H ®g, (T,(R)/I - T,(R))

where the action of H on the tensor product is by multiplication on the left-hand
factor.

REMARK. The proof of Proposition 2.4 also shows that if R € X (H) and
M € U(R) there is an isomorphism T,(M) = H ®p, (T,(M)/I. T,(M)). The action
of T,(R) on T,(M) then respects the tensor product splittings of both objects.

Proof of 2.4. The adjunction map R - H g, T (R) can be combined with the
Hopf algebra coproduct map H - H ® r, H to giveamap R—-H ®r, H O, T(R);
the adjoint to this is a map T(R) - H ®g, T(R) which has as quotient a )" (H)-map
T,(R) = H ®g, T,(R). The desired isomorphism ¢ is the composite of this map
with the projection

H ®¢, T,(R) > H ®¢, (T,(R)/I - T,(R)).

The fact that ¢ is the identity map insures that the action of H on the target tensor
product is the desired one. Note that ¢ induces an isomorphism on Tory (H/I, —)
and an epimorphism on Tor{(H/I, —) (the latter because Tor{(H/I, —) vanishes
on the free H-module which is the target of ¢). Let C be the cokernel of ¢ and k
the kernel. The fact that Tory'(H/I, C) = C/I - C =0 implies that C =0, since [ is
a connected ideal. The long exact sequence for Tor¥(H/I, —) then shows that
Tor{!(H/I, K) vanishes, which similarly implies K = 0.

§3. Spherical elements

The purpose of this section is to prove Proposition 3.1, which is the algebraic
basis of all of the results in this paper.

Let S « H be the multiplicative subset generated by the non-zero elements of
degree 2. The closure of an object M of %(H) is defined to be Un(S~'M); M is
closed if the natural map from M to the closure of m is an isomorphism. An element
x of an unstable A, module is spherical if ax =0 for each strictly positive-dimen-
sional element a € A,,.
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PROPOSITION 3.1. If M € %(H) is non-zero, closed and finitely generated as a
module over H then M contains a non-zero spherical element.

Let H, be the subalgebra of H generated by the elements of S; H, is an
unstable A, algebra which is isomorphic to the cohomology ring of CP*. The
multiplicative set S is contained in H_ and so it is possible to speak of the closure
of an object M of %(H, ); as above, M is closed if the natural map from M to the
closure of M is an isomorphism. An object of % is even-dimensional if it vanishes
in odd degrees. Proposition 3.1 is a consequence of the following result.

PROPOSITION 3.2. If M e (H. ) is non-trivial, closed, even-dimensional,
and finitely generated as a module over H, , then M contains a nonzero spherical
element.

Proof of 3.1 (given 3.2). We will assume that p is an odd prime since the case
p =2 is a little simpler. Consider the map ¥~ : M — M given by

[P |x|=2k
7 = {ﬁw(x) x| =2k +1°

The map ¥” is not an A,-map, but the image of ¥” is an A,-submodule of M [Li].
Let N be the closure of the H_ -submodule of M generated by the image of 7. It
is clear that N is an A, © H, submodule of M which is closed, even-dimensional
and finitely generated over H . If N is non-trivial we are done, since by Proposition
3.2 N contains a non-zero spherical element. If N is trivial, then ¥~ is the zero map
and M is the suspension [Li] of a closed A, © H module M’. We can argue by
induction on the largest degree in which M ® 4,  F,, fails to vanish that M’ contains
a non-zero spherical element; the suspension of this element is then a non-zero
spherical element of M. The induction begins with the fact that any zero-dimen-
sional class is spherical.

In order to prove Proposition 3.2 we will need some additional notation. Let R
be an even-dimensional object of /" and M an even-dimensional object of %(R).
Given a degree 2 element a of R and a degree 2k element x of M, define &,(x) by
the formula

2,09 = ¥ (~1)ae =D ()
(=0

1

(cf. [DW, 3.2]). The Cartan formula shows that &,(x) is multiplicative in x
whenever this makes sense; in particular, @,(a) = 0 implies that &,(x) =0 if x is



8 W. G. DWYER AND C. W. WILKERSON

a-decomposable in M. We will be particularly interested in the case R = H, and
will let ¢ denote a chosen fixed degree-two generator of H, .

The following lemma is essentially a reformulation of the Adem relations for the
reduced p-th powers.

LEMMA 3.3. Let R be an even-dimensional object of X", M an even-dimensional
object of U(R), and a, b degree 2 elements of R. Then, for any xe M,
D, Py(x) = P, P,(x).

Proof. Suppose that |x| = 2k. Let F,, be the free object in % on a single gen-
erator 1,, of dimension 2k; F,, is isomorphic to the submodule of H*K(Z/p, 2k)
generated by the fundamental class. By a universality argument we can assume that
x is the element 1 ®1,, of R ®g, Fox. By [AW, 2.7] we can assume that x is the
element 1 ® (c®*) of R ¢, (H, )®. In fact, by multiplicativity of @ we can even
prove the lemma by checking the desired relation on the element x = 1®c¢ of
R® H_ . In this case explicit calculation gives

p—1
D, (x) =xP—a’"'x =[] (x +ia)

i=0
and hence

p—1p—1

®,0,(x) =[] [l (x+ia+,b).

i=0j=0
The lemma follows from the fact that this expression is symmetric in a and b.

LEMMA 34. Let M € %(H ) be closed and even-dimensional, and let x be an
element of M. Then there exists an element y of M such that x = ¢ - y if and only if
d.(x)=0.

Proof. If such a y exists, then @.(x) = @.(c)®,.(y) =0. On the other hand, sup-
pose that @.(x) =0 and let |x| = 2k. The Cartan formula shows that 2**(x/c) =
(—1)'c"~'®.(x), so that the vanishing of @ .(x) implies that 2/(x/c) vanishes for
j>k —1. Since M is even-dimensional, this easily ([Li] [AW, §2]) leads to the
conclusion that y = x/c e Un(S " 'M) =M. Then x =c¢ - (x/c) =c¢ - y.

LEMMA 3.5. Let M be an even-dimensional object of U(H,) and x e M an
element of degree 2k with the property that P'x is c-decomposable for each i > 0.
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Then the action of A, on @ (x) is given by the formula
. -1\ .
Pid (x) = (k(p , ))c‘(”’ D (x).
i

Proof. ldentify M with the submodule 1 @ M of N =H ®F,, M; 1t is clear that
N is an object of %(H g, H, ). Let a denote the element c® 1 of H,. ® H_ and
b the element 1® c. Since 2(x) is b-decomposable for i > 0, it follows from the
multiplicativity of & that &,®,(x) depends only on the leading term of &,(x), in
particular,

@, 8,(x) = B(( — D*ak? = Vx) = (— 1)(a” — b7~ 'a)? =V, ().

By definition, however,

pk
®,P,(x) = Y. (—1)'a"? =P i@y (x).

i=1

The proof is finished by equating these two expressions (Lemma 3.3) and matching
up the coefficients of corresponding powers of a.

Proof of 3.2. Let 2k be the largest dimension in which M/(c - M) is not zero,
and choose an element z € M of dimension 2k which is not divisible by c. It is clear
that 2(x) is c-decomposable for each i > 0, so the action of A, on & (x) is given
by the formula of Lemma 3.5. A check with the Cartan formula shows that
y=c ¥ P=D®_ (x) is a spherical element of M. The element y is non-zero by
Lemma 3.4.

§4. The rank one case

This section contains the proofs of Theorems 1.1, 1.3 and 1.4 in the special case
in which the elementary abelian p-group involved is Z/p. Recall from §3 that S
denotes the multiplicative subset of H generated by the non-trivial elements of
degree 2. Throughout this section ¢ : H — H will denote the identity map.

PROPOSITION 4.1. If M € %U(H) is finitely generated as a module over H there
is a natural isomorphism

T,(M) = Un(S~'M).
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REMARK. An unstable A, module F is finite if F’ is finite-dimensional
for all j and zero for almost all j. Suppose that M € #(H) is finitely generated
as a module over H. Propositions 2.4 and 4.1 combine to give the surprising
fact that Un(S ~'M) splits as a tensor product H ¢, F for some finite A, module
F.

Recall from §2 that T,(H) = H so that T,(M) e %(H) if M € %(H). It is easy
to see that the map ¢, : M - T,(M) is a map of H-modules.

LEMMA 4.2. Let M € %U(H) be the tensor product H ®r, F, where F € U is
finite. Then ¢, : M — T,(M) is an isomorphism.

Proof. Combine Proposition 2.2 and the fact [L1, 4.1] that ¢ : F— T(F) is an
isomorphism.

LEMMA 4.3. If M € U(H) is finitely generated as a module over H, then the
map S~ '¢, :S™'M - S~ 'T, (M) is an isomorphism.

Proof. Work by induction on the rank rk(S ~'M) of S~'M as a module over
S—'(H, ). Let M’ =Un(S~'M), so that rk(S ~'M") =rk(S~'M) and M’ is closed.
If M’ =0 then T,(M) vanishes by Proposition 2.3; this case begins the induction.

Suppose then that M’ is not trivial. By Proposition 3.1 M’ contains a non-zero
spherical element x. The annihilator ideal 7 of x in H is closed under the action of
the Steenrod algebra, but, since M’ embeds in S ~'M’, I contains no element of S.
It follows from Proposition 6.4 that I is trivial and thus that the cyclic A, © H
submodule {x) of M’ generated by x is a free H module of rank one. This shows
both that rk(S~'M’) >0 and, by Lemma 4.2, that the map {x)>—>T,{x) is an
isomorphism. Let M" = M /{x). By induction the map S 'M" > S~'T, (M") is an
isomorphism. Exactness of T, and exactness of localization now together imply that
S 'M’'->S~'T,(M’) is an isomorphism. The inductive step is completed by
observing that the map M — M’ induces isomorphisms S~ 'M ~S~'M’ and
T,(M)=T,(M’) (the last by Proposition 2.3).

Proof of 4.1. By lemma 4.3 the map S~ '¢, : S™'M - S~ 'T, (M) is an isomor-
phism. By Proposition 2.4 T,(M) is a tensor product H ®g, F for some F e, so
[DW, 3.6] guarantees that the map T,(M) —Un(S~'T,(M)) is an isomorphism.
The proposition follows.

Let f: R — H be a map in ) (H). Any object M of %(R) is an H module as well
as an R module, so it is possible to form 7,(M) as well as T;(M). There is a natural
surjection T,(M) - T,(M).
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LEMMA 44. Let f: R— H be a map in X (H) with kernel I, and let M be an
object of U(R). Then for each s =0

(1) the map T,(M) - T,(M/I°M) is an isomorphism up through dimension s — 1

and

(2) the map T,(M/I°’M) - T,(M[I°M) is an isomorphism.
Suppose moreover that R is finitely generated as a ring and M is finitely generated as
an R module. Then for each s >0

(3) there is a natural isomorphism T,(M/I'M) = Un S; ' (M|I’'M).

Proof. To prove (1), observe that the map
F,~2T,(R°->T,(R/I)°=F,

is an isomorphism, so by exactness 7,(/) vanishes in dimension 0. By Proposition
21, T,(I ®rl ®pg - ®r 1) (s factors) vanishes through dimension s — 1. The rest
follows from exactness of T,. To prove (2), argue from the fact that 7/I° is nilpotent
to conclude [L1, 4.3.2] that the projection map R/I°— R/I =~ H induces an isomor-
phism hom, (H, H) -»hom,, (R/I?, H) and thus by adjointness an isomorphism
T(R/I)° = T(H)°. It follows that there are isomorphisms

T,(M/I’M) = T(M|I’M) ®7ryF,
=TM/IFM) ® 1y F,
=T(M|I'M) @7y F, = T,(M/I'M).

Statement (3) now follows easily from (2) and Proposition 4.1. The hypotheses
imply that M /I’'M is finitely generated as a module over H. It is clear that given an
element x of S, there is an element y of S such that the image of x in R/I° differs
from the image of y by a nilpotent element; this implies that the natural map
S Y MI’M) - S; ' (M/IFM) is an isomorphism.

Proof of 1.3 (for V =Z/p). Lemma 4.4(1) implies that there is an isomorphism
T,(M) = lim T (M/I’M) and it is clear by inspection that there is an isomorphism
Un((S;'M);) =lim Un S; ' (M/I’M). The theorem follows from Lemma 4.4(3).

Proof of 1.4. (for V =1ZJp): We will prove only the statement about T(R).

Suppose first that R € #'(H) and that f: R— H is a " (H) map. By Lemma 4.4(1)
and exactness there are isomorphisms

T,(R) = lim T, (R/P’) ~lim T (R)/T,(I*)
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and the proof of 4.4(1) shows that the associated graded ring gr 7,(R) = Z, T,(I°)/
T,(I**") is generated as an H algebra by T,(I)/T;(I*) = T;(I/I*). Lemma 4.3(3)
and exactness of T, imply that T,(I/I°) is finitely generated as an H module. It
follows that T,(R) is finitely generated as a ring.

Now choose Re A", pick a #'-mapg: R—-H,and let f: H ®§, R—>H be the
product of g with the identity map ¢ of H. The above considerations show that
T,(H ®g, R) is finitely generated as a ring, and Proposition 2.2 shows that
(T;H ®F, R) is isomorphic to T,(H) ¥, T, (R)=H ®g, T, .(R). This proves that
T,(R) is finitely generated. There are only a finite number of choices for the map g
(since R is finitely generated as a ring) and 7(R) is isomorphic to a product
I1, T,(R) indexed by these choices (cf. [L1, 3.5]). This implies that T,(R) is finitely
generated.

The next lemma requires an additional bit of notation. For any X -map
f:1R— H" let Z; c R denote the multiplicative subset of R consisting of elements x
such that f(x) is not a zero-divisor in H".

LEMMA 4.5. Let f:R— H be a map in X (H) and M an object of U(R).
Suppose that R is finitely generated as a ring, that M is finitely generated as an R
module, and that ¢, : R - T;(R) is an isomorphism. Then there is a natural isomor-
phism T,(M) = Un(Z;'M).

Proof. Calculating with Lemma 4.4 shows that the map ¢, : M — T,(M) induces
an isomorphism T,(M)—T,T,(M). It follows that T,(N) =0 if N is either the
kernel or cokernel of M — T,(M). Theorem 1.4 guarantees that N is finitely-gener-
ated as an R module, so by Lemma 4.4(3) the localization X '(N/IN) vanishes, and
hence by Nakayama’s lemma [AM, p. 21] the localization X/ 'N itself vanishes. In
other words, the map ¢, induces an isomorphism X, 'M — X~ 'T,(M). Now Propo-
sition 2.3 (together with a finite generation argument) shows that there is an
isomorphism T,(M)—T,UnZX;'(M) and hence that there is a map ¢, from
UnZX;'Mto T,(Un X;'M) = T,(M). The above considerations produce a map in
the other direction from T,M to Un Z;'T,(M) = Un 2 'M. The lemma follows
easily.

Proof of 1.1 (for V =1Z/p). Any subgroup of W is a summand, so the map
f:HY > H is split and can be treated as a map in X' (H). Since ¢,: H” - T,(H%)
is an isomorphism [L1, 4.2], Lemma 4.5 applies and reduces the proof of the
theorem to showing that the natural map Un S; ' (M) - Un 2/ (M) is an isomor-
phism. Let N denote either the kernel or the cokernel of the map
¢: M- T,(M)=UnZ;'(M). It is clear that N e #(H"Y) is a finitely generated
module over H* with the property that Z - '(n) = 0; to finish the proof it is enough
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to show that any such module N has S;'(N) =0, or in other words, it is enough
to find an element w of S, which annihilates N. By the finite generation of N there
exists an element x of X, which annihilates N. Write x =« + v where u belongs to
the polynomial subalgebra HY of H" generated by the image of the Bockstein
B : H'BW — H?BW and v is nilpotent. By replacing x with x”“ for large L we can
in fact assume that x =u € H'; note that x # 0 because the image of x in H is
non-nilpotent. Let 7 « H” be the annihilator ideal of N, and write the radical of /
in H" as an intersection (N, p; of prime ideals p; which are closed under the action
of the Steenrod algebra (Proposition 6.1). By Proposition 6.3 each p; is generated
as an ideal by two-dimensional classes. If any p; has all of its two-dimensional
generators contained in the kernel of f then I < ker( f), which is impossible because
x € I. Consequently, it is possible to choose from each p;, a two-dimensional
generator w; such that the image of w; in H is non-zero. It is clear that w; € S,. If
w is set equal to a sufficient high power of the product IT; w;, then w is the desired
element in S N 1.

EXAMPLE 4.6. The following example from Smith theory illustrates that it is
necessary to include a completion of some type in the statement of Theorem 1.3.
Let p =2, let R = H*BO(2) and let f: R —» H be the map induced by an homomor-
phism Z/2 — O(2) sending the non-trivial element of Z/2 to a matrix of determinant
— 1. Note that the determinant map O(2) — Z/2 lifts R to an H algebra and fto a
morphism in J#'(H). It follows from [L2], say, that T,(R) is isomorphic to
H*(RP* x RP*), but there is only one unstable one-dimensional generator in
S;'R. Let w, and w, be the Stiefel-Whitney classes which generate H*BO(2) as a
polynomial algebra. The additional necessary one-dimensional generator appears in
the completion of the localization of R as the finite sum

co

Z wy (wy/wi)?

i=0

(a formula which can be derived by the a posteriori knowledge that this generator
a satisfies the equation a? + w,a + w, = 0).

§5. The general case

In this section we will describe the argument which is used to prove Theorems
1.1, 1.3 and 1.4 for a general elementary abelian p-group V. We will use the fact
that for ¥ = Z/p these theorems have already been proven in §4.
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Let S¥ = H" be the multiplicative subset generated by the non-zero elements in
the image of the Bockstein map 8: H'BV — H*BV and HY the subalgebra of H”
generated by the elements of S". It is possible to check that the proofs in §2 and §4
hold almost verbatim with H replaced by H", H, by HY, Tby T" and S by S/,
the only exception is the proof of Lemma 4.3 to the extent to which it relies on
Lemma 3.1. To complete the proof of the desired results for V, then, it is enough
to give an appropriate generalization of Lemma 3.1.

The closure of an object M € %(H") is defined to be Un(S") " 'M; M is closed
if the natural map from M to the closure of M is an isomorphism.

LEMMA 5.1. If M e U(H") is non-zero, closed and finitely generated as a
module over HY then M contains a non-zero spherical element.

Proof. The argument is by induction on the dimension of V as an F, vector
space. By Lemma 3.1, we can assume that this dimension is greater than one. Write
V as a direct sum Z/p @ W for some W; this gives a map g : H —» H" which lifts H"
to #'(H), as well as a map f: H” — H such that f - g is the identity map of H. By
the special case of Theorem 1.3 proven in §4 there is an isomorphism
T,(M) = Un S; ' (M). It follows from Proposition 2.4 that there is a tensor product
splitting T,(M) = H g, N which is compatible with the evident [L1, 4.2] splitting
T,(H")=H"xH"=H ®g, H". Since M is closed, Un S; ' (M) is isomorphic to
M. The conclusion is that M splits as a tensor product H ®g N where N is an
object of %(H") which is necessarily non-zero, closed and finitely generated as a
module over H¥. By induction n contains a non-zero spherical element x. The
element 1®@x e H ®g, N = M is the desired spherical element of M.

§6. Some algebraic facts

The purpose of this section is to gather together some standard algebraic results.
Proposition 6.3 is used in the proof of Theorem 1.1 (see §4) and Proposition 6.4 in
the proof of Lemma 4.3 (particularly in the inductive setting described in §4).

PROPOSITION 6.1. Suppose that R € A" is evenly graded and finitely generated
as a ring, and that I = R is a homogeneous ideal which is closed under the action of
A,. Then the radical of I in R can be written as an intersection (; p; of homogeneous
prime ideals p, closed under the action of A,.

Proof. Let J be the radical of I (that is, the ideal of all elements x € R such that
some power of x lies in #). It is easy to prove by induction on j and the Cartan
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formula that #/x € Jif x € J, in other words, that j is closed under the action of A,,.
Write J as an intersection (); g, of (homogeneous) prime ideals (see [AM, Chap. 7)),
For each i let a{" be the set of elements x € o, such that Z/x € g, for all j > 0. The
argument of [AW, p. 138] shows that ¢{" is a prime ideal contained in g;, although
it is not evident that (" is closed under the action of A,. Iterate the procedure of
passing from o, to ¢} to obtain a descending chain

6,26V 206@P 2

of prime ideals in R. Such a chain must eventually become constant [ZS, p. 241];
let p;, denote the limiting constant value. It is clear that p, is a prime ideal of R
which is closed under the action of A, and that J =), p,.

The following propositions use some of the notation of §5.

PROPOSITION 6.2. Let V be an elementary abelian p-group, and suppose that
I < HY is a non-trivial homogeneous ideal closed under the action of A,. Then I
contains a non-zero element of H, .

Proof. Let e,,...,e, be a collection of generators for H'BV and ¢,,...,1,
their Bockstein images in H?BV, so that HY is the polynomial algebra
F,[t;,..., 5] and H" is isomorphic as an algebra to the tensor product of H* and

an exterior algebra on ¢, .. ., ¢,. Pick a non-zero element x in /. By multiplying x,
if necessary, by a suitable product of e,’s we can assume that x has the form
te,e, - - e, where t € HY is non-zero. Define a sequence d,,...d, of integers
inductively by setting d, =|t[/2+1 and d,,,=pd,+1 (i 2 1). Define elements
o, ..., _, of A, by setting ay=f and o, , = fP%+1a;(i 2 0). A short calcula-
tion then shows that

-1 Kk — 1 k—2
g 4 X = e Z sgn(o)th, thay L
g

where ¢ runs through the permuation group on k letters. It is clear that o _ | x is
a non-zero element of InHY .

PROPOSITION 6.3. Suppose that V is an elementary abelian p-group and that
I < HY is a homogeneous prime ideal which is closed under the action of A,. Then I
is generated as an ideal by its elements of dimension 2.

Proof." The result is due to Serre ([Se], cf. [AW, 1.11]).
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PROPOSITION 6.4. Suppose that V is an elementary abelian p-group and that
I < HY is a non-trivial homogeneous ideal closed under the action of A,. Then I
contains an element of SV.

Proof. Let J be the intersection of the radical of I with HY . By Proposition 6.1
and 6.3, J can be written as an intersection (); p; of prime ideals in H* each of
which is generated by elements of dimension 2. Proposition 6.3, guarantees that J
is not trivial, so each of the p, is also a non-trivial ideal. Pick non-zero two-dimen-
sional elements x; € p; and let x be the product of the x,’s. It is clear that some
power of x lies in InSY.

REMARK. The top Dickson invariant ¢, [W2] in H" is by definition the
product of the two-dimensional elements of S”. It follows from Proposition 6.4 that
any ideal 7 of the indicated type actually contains some power of c¢,.
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