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On the reflection representation in Springer’s theory

N. SPALTENSTEIN

Summary. The theory of arrangements of hyperplanes allows to attach to every parabolic subgroup of
a finite Coxeter group some numbers which look very much like exponents of the Coxeter group. In the
case of Weyl groups similar numbers arise from the character theory of finite groups of Lie type, and
more generally from the theory of Springer’s representations. For exceptional Weyl groups these
numbers were known to coincide, at least if the characteristic is not a small prime. Lehrer and Shoji [8]
have shown that in characteristic 0 the same is true for classical Weyl groups, by computing the
multiplicity of the reflection representation in the Springer representations associated to various
nilpotent orbits. According to a note added in proof, they can handle all nilpotent orbits which are
relevant to the connection with arrangements of hyperplanes, but some nilpotent orbits still evade their
investigation.

In this paper we show that there is an additional structure on the cohomology spaces they consider.
This allows to recover their results in a more direct way, to complete the determination of the
multiplicity of the reflection representation in the Springer representations for classical groups, and to
extend these results to arbitrary characteristic, including characteristic 2, for which we consider both
unipotent elements in the group and nilpotent elements in the Lie algebra. We refer to [loc. cit.] for a
description of the problem as far as arrangements of hyperplanes are concerned and deal here only with
Springer representations.

1. Introduction

1.1. Let g be the Lie algebra of a connected reductive algebraic group G defined
over an algebraically closed field k. Let £ be the variety of all Borel subgroups of
G. For Aeglet #,={Be®|AceLie(B)}. The Springer representation for 4 is
a natural action of the Weyl group W of G on the cohomology H*(#,). The
cohomology theory used here is /-adic cohomology, where / is a prime distinct from
the characteristic of k. A construction of the representation is sketched in 2.1.

Let p be the reflection representation of W. What we actually determine in this
paper is the multiplicity of p in the cohomology groups H{(#,) for A nilpotent,
when G is a classical group.

Let g be an indeterminate and let Q, = Q% =2X,.,(—1)'H/(# ,)q"?, a polyno-
mial in ¢'/2 with virtual representations of W as coefficients. We want to compute
4, p>=Zi50(=1)KH(R,), p>q"*, a polynomial in ¢'/> with coefficients in Z.

Let B be a Borel subgroup of G, T = B a maximal torus. Then W can be
identified with Ng(T)/T. The action of Ngi(T)/T on G/T by right multiplication
induces a left action of W on H*(G/T) =~ H*(G/B). This action coincides with the
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Springer representation on the cohomology of %, = # [3], [10]. This can be used to
show that {Q,, p> =X]_, g™, where r is the semisimple rank of G and m,, ..., m,
are the exponents of G.

Remark. 1t is known under mild restrictions on the characteristic that £, has
no odd cohomology. When this is the case, in the alternating sum defining Q, the
terms with i odd vanish and Q, is therefore a polynomial in ¢ with representations
of W as coefficients. We shall not need this result here.

For x € G we can consider in a similar way the variety #, = {B € # | x € B}.
There is an action of the Weyl group W on H*(%,). If G is defined over a finite
field K, the polynomials Q, with x unipotent are tightly related to the Green
functions of the finite group G(X) [7], [9].

As long as the characteristic is good there is no essential difference between the
unipotent and the nilpotent case, as follows from [2, Prop. 9.3.3], and even for bad
characteristic many arguments apply to both cases with obvious changes. We shall
usually treat only one of them.

1.2. There is a natural bijection between W and the set of all G-orbits in # x 4.
Let 0, = # x # be the orbit corresponding to w € W.

Let 2 be a conjugacy class of parabolic subgroups of G. Then {(B,, B,) €
A x B | there exists P € # such that B,, B, P} is a G-stable subset of # x 4,
hence of the form | ), c w(s 0, for a well-defined subset W(#) of W, and W(2) is
a subgroup of W which can be thought of as the Weyl group of P € #. Let also
N(P) = N (W(P)), W2 = N(P)|W(P). For Aeglet 2, ={Pe?P|AcelLie(P)}
Then W? acts on the cohomology of 2, (see 2.1). Let n, : #,— %P, be the map
which associates to B € #, the unique element of # which contains B. The
following result, a proof of which is outlined in 2.1, could (or should) have been
stated by Borho and MacPherson [4].

THEOREM. The homomorphism n% : H¥(#,) > H*(#,) induces an isomor-
phism of W?Z-modules

H*P,) = H*B,)"®. (1.2.1)

In view of this result we define also P, =X, o (—1)'H(? 4)q"?, a polynomial in
g with virtual representations of W as coefficients. When W? =1 we consider
P, as a polynomial with coefficients in Z.

1.3. The approach used by Lehrer and Shoji to determine {Q,, p) is to use 1.2.1,
considered as an isomorphism of graded vector spaces, with a conjugacy class of
parabolic subgroups £ such that the cohomology groups H*(#,) can be deter-
mined explicitly and for which the representation ind}} 4, 1 is small. For s, (or gl,)
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we can arrange to have ind} 5, 1 =1+ p. As (Q,, 1> =1 (this can be deduced
from 1.2.1 with 2 ={G}), we get <Q,, p> =P, — 1. For the remaining classical
groups the best one can achieve is indj s 1 =1+ p + ¢ for some irreducible
representation £ of W. Then in P, — 1 we have contributions from both p and ¢.
Shoji and Lehrer can separate them to a large extent by using the commutative
diagram

HY?) —— H*?,)

| | (1.3.1)

H*(.@) W@ ___, H*('@A) w(2)

in which the vertical arrows are isomorphisms. They however overlook the fact that
1.3.1 is a commutative diagram of W?Z-modules, as follows from the following
lemma which is proved in 2.3.

LEMMA 1.4. For every Ae€g, the map H*(P)—- H*(P,) induced by the
inclusion 2 , = P is W?-equivariant.

1.5. Let now G be one of the groups GL,, Spy or SOy. For Spy and SO, we
set n = [N/2]. In all cases we have a natural representation of G in V =k", Sp,, is
defined by a non-degenerate alternating bilinear form on V, and SO, is defined by
a non-degenerate quadratic form Q on V. Let 2 be the conjugacy class of parabolic
subgroups of G which consists of the stabilizers of isotropic lines in V (in the case
of GL, all lines are considered to be isotropic). Then £ is isomorphic to the
subvariety of P(V) formed by the isotropic lines. For GL, and Sp, we get in this
way the full projective space P(V). In the orthogonal case we get a quadratic
hypersurface 2 in P(V). In the case of GLy we have ind}}, 5 1 =1+ p and W? =1.
For Spy and SOy, ind} s, 1 =1+ p + &, where £ is a permutation representation
of degree n — 1, and W has order 2. If o is the generator of W?, the contribution
coming from p in H*(#,) is the (—1)-eigenspace of ¢, and the fixed points of &
correspond to ¢ and the trivial representation of W.

The following terminology is used in the orthogonal case. Let g be a quadratic
form on a vector space U. By the radical of ¢ we mean the set of all vectors x e U
such that g(y + x) = ¢q(y) for all y € U. Let f be the bilinear form on U defined by
B(u, v) = q(u + v) — q(u) — q(v). The radical of g is also the set of all g-isotropic
vectors in U+, where U* is defined using . If char (k) # 2, then the radical of g is
simply U+.

The following results are due to a large extent to Lehrer and Shoji. They
assume that char (k) =0, but for 1.6, 1.7 and 1.8 their proofs carry over to
arbitrary characteristic. In the even orthogonal case there are some orbits
which they cannot handle, and the characteristic 2 case requires some additional
arguments.
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PROPOSITION 1.6. (cf. [8,86]) (a) Let x € GLy be unipotent and let
d =dimKer (x — 1). Then

d-—1
@y, p)= Z qi'

i=1

(b) The same result holds for A € gl nilpotent, with d = dim Ker (A).

Proof. We take 2 as in 1.5. Then W% =1 and we consider P, as a polynomial
with coefficients in Z. Moreover ind}} 5, | =1+ p and therefore {Q,, p> =P, — 1.
Let U = Ker (4). Then £, can be identified with P(U). It follows immediately that
P,=X{_0q" Thus {Q,,p>=2{/¢q"

PROPOSITION 1.7. (cf. [8,6.5,6.6]) (a) Let x € Sp,, be unipotent and let
d = dim Ker (x — 1). Then

d—1 d—1 ‘
Qopd=% d" L.O=F ¢

i=1
i odd i even

(b) The same results hold for A € sp,, nilpotent, with d = dim Ker (A4).

Proof. In this case ¢ acts as multiplication by (—1)" on H*(#). Let U =
Ker (4). Then 2, can be identified with P(U) <« P(V), and the natural map
H*(P(V)) - H*(P(U)) is surjective. The result follows.

PROPOSITION 1.8. (cf. [8,7.15]) (a) Let x € SO,, ., be unipotent and let
d =dim Ker (x — 1), r the dimension of the radical of the restriction of Q to
Ker (x — 1). Then the following hold.

(i) If r is even or char (k) =2, then

d-2 d-2
(Qupd=Y ¢4, <(Qui>= ;z q"

i=1

i odd i even

(ii) If r is odd and char (k) # 2, then

d—2 d—2
<Qx, p>= Z qi’ <Qx9€>= Z qi+q(d+r—2)/2.

i=1 fa=2
i odd i even

(b) The same results hold for A € so,, , | nilpotent, with Ker (x — 1) replaced by
Ker (4).
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Proof. In this case o acts as multiplication by (—1) on H*(#). Let U =
Ker (4). Then 2, can be identified with 2, = P(U) n 2. If char (k) =2, then U
contains V. As we shall see in 3.3 and 3.5 we have then

1 ifiisevenand 0 <i <2(d —2),

dim H'(2y) = {0 otherwise,

and the natural map H*(2) - H*(2,) is surjective. The result follows. The proof
for char (k) # 2 is given in 4.3.

PROPOSITION 1.9. (cf. [8,7.28]) (a) Let x € SO,, be unipotent and let
d=dim Ker (x — 1), r the dimension of the radical of the restriction of Q to
Ker (x — 1). Then the following hold.

(1) If r is odd, then

d—2 ) d—2 .
Qupd=3% 4% <2uld=1% 4

i=1
i odd i even

(ii) If r is even, then

d—2 d—2
(@upd= T d'+q“ % (0.O= T 4

i=1
i odd i even
(b) The same results hold for A € sv,, nilpotent, with Ker (x — 1) replaced by
Ker (A).

The proof is given in 4.4 and 4.5.

1.10. One of the ingredients used in [8] is the following result of Lusztig, which
is stated in [1].

PROPOSITION. Let L be a Levi factor of some parabolic subgroup of G. Let
x € L be unipotent. Then Q. (1) =indy,, Q =(1), where W(L) is the Weyl group of L,
considered as a subgroup of W.

This result is characteristic free. A crucial ingredient in Lusztig’s unpublished
proof is the fact that Springer’s Green functions, which are defined in terms of the
W-action on H*(#,), are integer valued, and this is now known to hold in every
characteristic [9]. The corresponding result for nilpotent elements is however not
proven.
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COROLLARY. In this situation, let x be a regular unipotent element of L. Then
<Qx(l)’ p> = <1, p)W(L) = rankss G— rankss L.

Proof. In this case Q% =1. The first equality follows then from Frobenius
reciprocity and the second from geometric properties of p.

The corresponding results for nilpotent elements in g hold at least when the
characteristic is good. For nilpotent elements in bad characteristic, we will use
instead the following result.

PROPOSITION 1.11. Let M be a connected reductive subgroup of G containing
a maximal torus of G, m its Lie algebra and W' its Weyl group. Let A € m have
Jordan decomposition A, + A,. Suppose that ¢,(A,) = m. Then Q$ =indy. Q¥. If
moreover ¢y(A,) =m, then Q§ =indy. Q¥ .

The proof is given in 2.7.

2. Partial resolutions

2.1. We sketch a proof of Theorem 1.2, following essentially [4]. The key tool
is intersection cohomology. Recall that intersection cohomology is a functor which
assigns to a pair (X, £) consisting of an irreducible algebraic variety X and a local
system of Q,-modules £ defined over a smooth dense open subset of X a complex
of Q,-sheaves IC(X; £), viewed as an object in a suitable triangulated category.

Let X ={(x,B)egx #|xeLie(B)}, Y={(x,P)egx P |xelLie(P)},p: X
— g and ¢ : Y — g the first projections and = : X — Y the map which associates to
(x, B) € X the pair (x, P) € Y such that P o B. Let also g,, be the set of all regular
semisimple elements in g, X,s =P " '(0rs), Yes = ¢~ '(8ys)-

At this point let us note that g,, may be empty, as is the case for symplectic Lie
algebras in characteristic 2. This difficulty, which does not arise in the group case,
can be overcome by enlarging the center of G in a suitable way. For example, in
characteristic 2 we may replace Spy by the subgroup of GL, generated by Sp, and
the center of GL,.

Let us assume henceforth that g, # . The restriction p, of p to X, —g,, is a
Galois covering with Galois group W and the restriction g, of g to Y, —g,, is a
covering on which W? acts by deck transformations. Let also =, : X,,— Y,, be the
restriction of x.

If Z is any variety, let 1, or simply 1, denote the constant local system on Z
with Q, as stalk. The results above imply that p,,1 and g¢,,,1 are local systems on
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g,s- Moreover p,, 1 is equipped with a W-action which affords the regular represen-
tation on the stalks and g, 1 is equipped with a W?-action, hence also with an
N(#)-action. Lete : 1 - Rn 1= Rn_n*1 be the adjunction morphism and let ¢, be
its restriction to Y. Then ¢, (&) : Grsyel = GrouTisye 1 18 N(2)-equivariant and
induces a W?-equivariant isomorphism

Gesa 1 = (P, DV, (2.1.1)

The group actions can be taken out of the local systems in the following way.
Let W(2)" be a complete set of representatives for the isomorphism classes of
irreducible Q,W(#2)-modules, and for 0 € W(2)" let My = Homy ) (0, prsy 1),
where 0 is the constant local system on g,; with stalk 6. Then .#, is a local system
of @,-vector spaces on g,,, and there is a natural isomorphism

Prsx1 = @ My g, 0. (2.1.2)
Be WP~

Notice that .#, = (p,1)*®, and hence 4, = g,,,1 by 2.1.1.
The maps p and g are small in the sense of [5, 6.2]. They are also proper and
both X and Y are smooth. Following [loc. cit.] we have then natural isomorphisms

Rp 1=1C(g; prsi 1) and Rq,1=1C(g; g5, ). (2.1.3)
The morphism of local systems g, & : @rsy 1 = Prsy 1 induces a morphism

IC(8; Grsytrs) - IC(8; Grsy 1) = IC(G; Prsyc 1)-

Moreover both IC(g; gs,&s) and Rq,e:Rq,1-Rq,Rn, 1=Rp,1 restrict to
rox Ers OVET g5 Hence IC(g; .5, &.5) agrees with Rq, e under the isomorphisms 2.1.3.
By functoriality of intersection cohomology, W acts on IC(g; p,,, 1) and N(Z)
acts on IC(g; ¢, 1). Therefore W acts on Rp,1 and N(£) acts on Rq,1. Since
GrsxErs 1S N(2P)-equivariant, so are IC(g; ¢,,&) and Rqe. For 0 € W(#) " we have
IC(g; M, ®q,0) =1C(g; #,) ®q,0, and in view of 2.1.1 we have therefore

IC(G; Pes VP 2 IC(; (Pron D).
It follows then from 2.1.1 that IC(g; ¢, ¢,,) induces a W?-equivariant isomorphism

IC(8; Grsy 1) = IC(G; e, NP
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and hence that Rq, ¢ induces a W?-equivariant isomorphism
Rq*lng*IW(m. (2.1.4)

This is the form of the Borho—MacPherson theorem which is needed here.

Let 4 €g. Since p is proper, h*((Rp,1),) = H*%,), and the action of W on
Rp 1 induces therefore an action of W on H*(%4,). This is the Springer representa-
tion. Similarly, g is proper and therefore h*((Rq,1),) = H*(#,), and we get in this
way an action of W¥ on H*(# ,). The homomorphism A*((Rg 1)) = h*((Rp 1)
induced by Rgq, ¢ corresponds under the above isomorphisms to the homomorphism
nY: H¥(?,) > H*(%,)induced by n, : B, > P ,. Thus n* is N(?)-equivariant and
induces a WZ-equivariant isomorphism H*(2,) = H*(#,)"®. This proves 1.2.

For later use, let us note that if Z € g is central, then the map 4 — 4 + Z from
g to g leaves g, invariant and lifts in a canonical way to X and Y. It follows that
for every A € g the Springer representations for 4 and A + Z are isomorphic.

2.2. Consider an algebraic variety Z and a morphism f:Z —g. Let
X' =2Z x,X, YY=2Z x_,Y. By proper base change we have canonical isomor-
phisms H*(X') ~ H¥(Z; f*Rp,1) and H¥Y') = H*(Z; f*Rq,1). It follows that
W acts on H*(X’) and W? acts on H*(Y’). Moreover f*Rq ¢ is N(#)-equivariant
and induces a W?Z-equivariant isomorphism H*(Y’') = H*(X)"®). Let Z, be a
second variety and let g:Z,—»Z be a morphism, fi=fog, X|=2Z, x X,
Y =2, x,Y. Then the homomorphisms (g x,X)*: H*X’) - H*(X}) and
(g x4 Y)*: HX(Y’) > H*(Y) are respectively W-equivariant and W?-equivariant.

Suppose for example that we have Z, ¢ Z < g and that fand g are the inclusion
morphisms. Then W? acts on H*(g~'(Z)) and H*(q ~'(Z,)) and the restriction
homomorphism H*(q ~'(Z)) — H*(q ~'(Z,)) is W?-equivariant. This can be used in
some cases to compare the WZ-module structures on H*(#,) and H*(#,), for
elements A, A’ € g, using a suitable subvariety Z of g containing both 4 and 4/,
and taking for Z, successively {4} and {4"}. We give here two simple applications.

2.3. Proof of Lemma 1.4
Taking A’ =0 and Z =g, we have equivariant homomorphisms
H*Py) « HX(Y) > H*(2 ).

But the projection pr,: Y — 2 is a vector bundle map and induces an isomorphism
(pry)* : H¥(#) = H*(Y) which is inverse to H*(Y) » H*(#,). This implies 1.4.
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LEMMA 2.4. Let Z be a connected subvariety of g such that P, = P, for all
A, A’ € Z. Then H*(?,) and H*(?,) coincide as W?-modules for all A, A’ € Z.

Proof. Let F be the common value of 2, for A € Z. Then Y'=¢q '(Z) =
Z xF For AeZ, let j,: F—>Z x F be defined by P+ (A, P). Since Z is con-
nected, j% : H¥(Y’) - H*(F) is independent of 4 € Z and surjective. We know also
that j% is W-equivariant when H*(F) is given the same structure of W-module as
H*(2,). The result follows.

2.5. Let P e 2, B c P a Borel subgroup, T < B a maximal torus, and L>T a
Levi factor of P. We have an obvious commutative diagram

G/T— G/B=%

L1

G/IL— G/P=2P
which induces a commutative diagram

H*(G/T) «—— H*(G/B) ~ H*(®)

I I I

H*(G/L) «— H*G/P) = H*(?)

in which the horizontal arrows are isomorphisms. The groups W =~ N,(T')/T and
W? ~ Ng;(L)/L act by right multiplication on G/T and G/L respectively, and hence
also on H*(#) and H*(&) respectively. As mentioned already in 1.1, this action of
W on H*(%,) is the Springer representation of W on H*(%,), and it follows
therefore from 1.2 that this action of WZ on H*(Z) coincides with the representa-
tion of WZ on H*(#,) defined in 2.1.

2.6. In the case of orthogonal groups and quadrics (cf. 1.5), we can replace the
variety G/L by the subset X of 2 x 2 consisting of the pairs (x, y) such that the
subspace x + y of V is not isotropic, and the action of ¢ on G/L corresponds to the
involution s : (x, y) — (», x). The first projection from X to 2 is an affine bundle,
hence induces an isomorphism H*(2) ~ H*(X), and the action of ¢ on H*(2)
corresponds to s*. Another way to look at the action of ¢ is to use also the second
projection from X to 2. The action of ¢ is then obtained by composing the
isomorphisms

HY2)'S H*(X)'2 H*2). (2.6.1)
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2.7. Let M be a connected reductive subgroup of maximal rank in G, m its Lie
algebra and W’ its Weyl group. Then each Borel subgroup of M is contained in
exactly [W : W’] Borel subgroups of G. Let m” be the set of all elements 4 e m
whose semisimple part A, satisfies ¢ (4,) = m. Then for every 4 em’ and Be &,
B M is a Borel subgroup of M whose Lie algebra contains A.

Let m;;=m"ng,. Then m is also the set of all regular semisimple elements
of m which are contained in m’. Let m’ be the variety of all pairs (4, B’) with
Aem’ and B’ a Borel subgroup of M whose Lie algebra contains 4, and let
p’:m’ —»m', (4, B’) — A be the first projection. Let also m/ = p’~'(m}) and let
Dis - i —>my, be the restriction of p’. Suppose that g, # . Then

Rp 1 =1C(m; prg, 1) (2.7.1)

is the intersection complex which defines the Springer representations relative to M
and W’ for the elements of m’.

Let X and p: X —g be as in 2.1. Let X' =p~'(m’), X, =p~'(m)), and let
p X -»m, p,: X —-m; be the restrictions of p. Consider (A,, By) € X'.
Then (4,, Byn M) e m’. Moreover there is a unique irreducible component X}
of X’ which contains (A4,, By), X is obtained by applying M-conjugation to
(Lie (By) nm’) x {B,}, and (4, B) > (4, BN M) defines an isomorphism from X
to m’. Let py: Xg— m’ and pg,s : XoN X,s = m be the restrictions of p’. Comparing
with 2.7.1, we get an isomorphism

Rpo 1 = IC(M; pory 1) (2.7.2)

The description of the components of X” shows also that they are disjoint.
Summing 2.7.2 over the components of X', we get an isomorphism

Rp, 1 2 IC(m; pls, 1). (2.7.3)

We get a W-action on the right hand side of 2.7.3 by using the functoriality of
intersection cohomology together with the W-action on the local system py,1.
However the definition of Springer representations for g requires that we use as
W-action the restriction to Rp, 1 of the W-action on Rp 1 defined in 2.1. Fortunately
these two actions of W have the same restriction to p;,, 1, and hence coincide.

Choose a maximal torus 7" < M and a Borel subgroup B € # containing 7. Using
B to identify W with N;(T)/T and B n M to identify W’ with N,,(T)/T, W’ becomes
a subgroup of W. We get then an isomorphism of local systems

pl/.s*l = Q[W ®QIW’p_;S* 1. (2.7.4)
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Separating group actions from local systems as in 2.1, we find that 2.7.4 induces
W-equivariant isomorphisms

IC(m’; pisy D) ZIC(m; QW @q,m Prsx 1) = QW Qq,u IC(M; pr, 1. (2.7.5)
Combining with 2.7.1 and 2.7.3, we get a W-equivariant isomorphism
Rp, 1=Q,W Qq,uw Rp, 1. (2.7.6)

Looking at the stalks at 4 e m’ and taking cohomology in 2.7.6, we get an
isomorphism of graded W-modules

H*(B,) = QW Qq,w H*(#(M),),

where %#(M) is the variety of all Borel subgroups of M. Thus Q¢ =ind}}. Q%.
When the semisimple part A4, of A4 satisfies ¢,(4,) = m, then 4, is central in m, and
therefore Q% = Q%4 , . This proves 1.11.

3. Cohomology of quadrics
In this section we review some classical results on the cohomology of quadrics.

3.1. Let V be a finite dimensional vector space over k, of dimension N €
{2n, 2n + 1}, equipped with a non-degenerate quadratic form Q, and let 2 < P(V') be
the corresponding quadric, G the full orthogonal group defined by Q, and G = G° the
special orthogonal group. Let also B(x, y) = O(x + y) — Q(x) — Q(y) be the bilinear
form associated to Q. The radical of the restriction of Q to a subspace U of V'is denoted
U,, and we say that U is of type (d, r) if dim U = d and dim U, = r (recall that by the
radical we mean the set of all isotropic vectors in U n U*). Given integersd =2 r 2 0,
there are subspaces of type (d, r) in Vif and only if d + r < N. Moreover the subspaces
of type (d, r) are all G-conjugate, except when char (k) = 2, both N and d + r are odd
and d + r < N, in which case we must know whether they contain ¥'*. For a subspace
Uof V, let 2, = 2 P(U). Our object in this section is to describe H*(2,) and to
understand the restriction homomorphism H*(2) - H*(2,).

3.2. It is convenient to consider sequences of subspaces
UOcpUWe...cym (3.2.1)

in ¥, with U? of type (d;, r;), such that d; + r, = M is constant (0 <j < m). Given
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such a sequence, we can find a linearly independent family (e,, ..., e, ) such that
OZ;<mXi€)=X;cms1y2XXu—;+1 and such that each U is generated by
(¢;); < ;- In particular, the sequence (3.2.1) can be extended to a similar sequence
in which dy—ry <1, m =r, and d, = d, + i, and all such sequences are G-conju-
gate, unless char (k) = 2, both N and M are odd and M < N, in which case there
are two orbits.

In particular, let U be a subspace of V of type (d,r). If d —r 22, then U
contains a subspace U’ of type (d — 1,r + 1), and U’ is unique up to conjugation
under the stabilizer of U in G. Similarly, if r > 1, then U is contained in a subspace
U” of type (d + 1, r — 1), and all such subspaces are conjugate under the stabilizer
of U in G.

LEMMA 3.3. Let UcV be a subspace of type (d,r). Then the following
hold.

(a) If U’ < U is a subspace of type (d —1,r + 1), then 2,\2, = A4~ 2,

(b) If d —r is odd, then

1 if i <2(d—2) is even,

~dim H'(2,) = {0 otherwise.

(c) If d —r is even and d > r, then

1 ifi<2(d—2)isevenandi#d+r—2,
dim H(2,) =<2 ifi=d+r—-2,
0 otherwise.

(d) If d —r =0, then

i ; it if i <2(d —1) is even,
a1 2g) = {O otherwise.

Proof. This follows easily from the discussion in 3.2. Notice that 2, = P(U) if
d—r=0and 2, =PU,) ifd—r=1.

3.4. If V, and V, are two finite dimensional vector spaces, we say that a linear
map f: V, - V, has maximal rank if rank (f) = min {dim V,, dim V,}.

LEMMA. Let U be a subspace of V. Then for every m € N the restriction map
H™"(P(V)) - H™(2,) has maximal rank.
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Proof. Let (d,r) be the type of U. Choose a subspace V' > U of dimension
d +r and to which Q has a non-degenerate restriction. Using 3.3 and the factor-
ization

H™(P(V)) > H"(P(V')) » H™(2,)) > H™(2y ),

the problem reduces to the well-known fact that the restriction map H”™(P(V")) —»
H™(2,.) has maximal rank.

LEMMA 3.5. For every m € N, the restriction map H"™(2) - H™(2,) has max-
imal rank.

Proof. Let e = min {dim H"(2), dim H"(2,)}. The result is obvious if e =0,
and it is an immediate consequence of 3.3 if ¢ =2. We may thus assume that
e = 1. Then dim H™(P(V')) = 1. Using the obvious commutative diagram

H*(2y) «— H*(2)

NS (3.5.1)
H*(P(V))

the result follows from 3.4.

4. The orthogonal case

As in Section 3, V is a vector space of dimension N € {2n,2n + 1} equipped
with a non-degenerate quadratic form Q and G = 0(Q), G = SO(Q) are the
corresponding orthogonal and special orthogonal groups. We choose £ as in 1.5.
Then £ is isomorphic to the quadratic hypersurface 2 < P(V) defined by Q,
W?={1,0}, indjys, (1) =1+ p + & where £ is a permutation representation of
degree n—1, and ¢ acts trivially on &"® and as —1 on p"@. Let
A ={A eg|A is nilpotent} be the nilpotent variety of g. If 4 €4 and
U = Ker (4), we can identify £, with 2, and we let i, denote both inclusion
maps , -2 and 2, — 2.

4.1. Suppose that N = 2n. Then dim H*"~1(2) = 2. We can identify the action
of ¢ on H*"~%(2) = H*"~1)(3,) by using the subvariety X of 2 x 2 defined in 2.6.
Let V' and V" be maximal isotropic subspaces of V such that V=V'@V".
Let U = (P(V’) x P(V")) n X. Then both projections ¥ — P(V’) and Y — P(V") are
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affine bundles. We have therefore a commutative diagram

pri

Hz(n _ 1)( P(V’)) ~ H2(n - 1)( Y) pg H2(n - l)( P( VI/))

[ (4.1.1

H2(n — l)(Q) Ig H2(n —- l)(X) pé” H2(n - 1)(3)

in which the vertical arrows are restriction morphisms. Notice that H*(P(V")) and
H*(P(V")) are naturally isomorphic. The subvariety X of P(V’) x P(V") is defined
by the perfect pairing ¥’ x V" —k induced by Q. The same pairing is also induced
by a non-degenerate alternating form. From the symplectic case, the composition of
the isomorphisms in the top row of 4.1.1 is multiplication by (—1)"~".

If n is even, then V' and V" are G-conjugate. It follows that o acts as
multiplication by —1 on the image of H*"~D(P(V")) in H*"~Y(2). Since the same
holds for every maximal isotropic subspace of V, ¢ acts as multiplication by —1 on
the whole of H*"~1(2).

If n is odd, then V'’ and V" are not G-conjugate and the restriction map

H2"=(2) > H* = D(P(V")) @ HX"~ Y(P(V"))

is an isomorphism. Since (—1)"~!=1, the action of ¢ on the left hand side
corresponds to the permutation of the two factors in the right hand side. Thus ¢
acts as the identity on the image of H*"~Y(P(V)) in H*"~(2) and as multiplica-
tion by —1 on the cokernel.

More generally we have for every N, even or odd:

LEMMA. ¢ acts as multiplication by (—1)' on the image of H*(P(V)) in H*(2)
and as multiplication by —1 on the cokernel.

Proof. Using 1.2 with 4 =0, we get (Py, —1)> =<0y, p> =Zj_, ¢™, where
my, ..., m, are the exponents of G. We know therefore the dimension of the
(—1)-eigenspace of ¢ on H*(2). Comparing with 3.3, and using 3.4, we find that
the results stated in the lemma hold, except maybe when i =n — 1, N=2n and n is
odd, a case we have just discussed above.

4.2. We need a few facts about nilpotent infinitesimal orthogonal transforma-
tions. Let 4 € A"

Suppose that char (k) # 2. Then V can be written as an orthogonal direct sum
of A-stable subspaces such that the restriction of 4 to any of these subspaces has
either only one Jordan block (necessarily of odd size) or two Jordan blocks of even
size (the sizes are necessarily equal). In particular, the partition 1 of N whose parts
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are the dimensions of the Jordan blocks of A4 is an orthogonal partition, that is, for
each even integer m > 0 the number of parts of 4 equal to m is even. Each block of
dimension 1 is a one-dimensional non-degenerate subspace of Ker (4) and the other
blocks contribute to the radical of Ker (A4).

Suppose that char (k) = 2. Following Hesselink [6], we can decompose V as an
orthogonal direct sum of A4-stable subspaces on which the restriction of 4 has one
of the following forms. In Hesselink’s notation, the various possibilities are W(m)
mz=1), Wum)(m=1,[(m+1)/2] <s <m)and D(m) (m = 1). There is exactly one
factor of type D(m) (for some m) if N is odd, and none if N is even. A factor D(1)
is a one-dimensional non-degenerate subspace. The other factors consist all of two
Jordan blocks, both of dimension m for W(m) and W, (m), one of dimension m and
one of dimension m — 1 for D(m) (m = 2). The kernel of the restriction of 4 to any
of these factors has thus dimension 2. It is non-degenerate for W(1), completely
isotropic for W(m) (m = 2) and W,(m) (s < m), and has a radical of dimension 1 for
W,.(m) and D(m) (m = 2). The factors of type W(m) are characterized by the fact
that they can be written as the direct sum of two A-stable completely isotropic
subspaces. '

LEMMA. For every A € A, the WZ-structure on H*(?,) depends only on
Ker (A4).

Proof. Let U be a subspace of V which is the kernel of some nilpotent element
of g and let (d, r) be its type. If U+ N U # U,, then d — r is odd, as follows from the
discussion above, and using 4.1 and the results in Section 3 we find that ¢ acts as
multiplication by (—1)‘ on H*(#,) for every A € 4" such that Ker (4) = U.

We may therefore assume that U nU = U,. Let E = {4 € & | Ker (4) = U}.
In view of 2.4 it is enough to show that E is irreducible.

Let V' be a complement to U, in U and let V"= V’'+, Let ¢" =gl (V") be
the orthogonal Lie algebra defined by the restriction of Q to V" and let
E"={A"€g"| A" is nilpotent and Ker (4”) = U, }. Then E is the set of all elements
A € g which leave both ¥V’ and V" stable, restrict to 0 on V'’ and to an element of
E” on V". Thus E =~ E”. We may therefore assume that U is completely isotropic.

Assuming now that U = U,, the stabilizer H of U in G is a parabolic subgroup
of G. Let B be a Borel subgroup of H and let Egz = E nLie (B). Then Ej is an open
subset of a subspace of Lie (B), and hence is irreducible or empty. Moreover E is
the image of the morphism H x Ez—gq, (h, A) — Ad h(A). Since E# J, E is
therefore irreducible.

COROLLARY 1. Suppose that char (k) # 2. Then for every A € A, there exists
an element Ay€ N such that H(#,) = H¥?,,) as W?Z-modules, with A, corre-
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sponding to a partition which has either no part 23, or exactly one part 23
(necessarily odd), or exactly two parts = 3 and these parts are equal. In particular A,
is a regular nilpotent element in a Levi factor | of some parabolic subalgebra of g.

COROLLARY 2. Suppose that char (k) =2 and N is even. Let A € N be such
that Ker (A) is of type (d, r) with r even and d + r < N. Then there exists an element
Ao e N such that H¥(P,) = H¥(P,,) as WZ-modules and such that A, has a
decomposition into factors of the form W(1), W(2) and exactly one factor of the form
W(m) with m = 3.

4.3. Suppose that char (k) # 2 and let N be odd. Then ¢ acts as multiplication
by (—1)' on H*(2). Let A € g be nilpotent, (d, r) the type of U = Ker (4). Notice
that d is odd.

Suppose first that r is even. Then ¥ : H*(#) - H*(Z?,) is surjective. It follows
that o acts as multiplication by (—1)’ on H*(#,), and we get the result stated in
1.8(i).

Suppose next that r is odd and r # d. In view of 4.2 we may assume that A is
a regular nilpotent element in a Levi factor | of some parabolic subalgebra of g,
with rank g — rank, [ = (d — 1)/2. By 1.10 we have (P,, —1)(1) ={Q4,p)(1) =
(d — 1)/2. As for r even we can identify the action of ¢ on Im i%. Considering Im i%
as a part of P,, we have

(mi%, -1>= Y 4 Imi% 1= Y ¢’
Osf'sdz-z Osiiesv:;-—z

In particular {Imi%, p>(1) =(d — 1)/2. This implies that ¢ acts trivially on the
cokernel of i% which has dimension 1, and we get 1.8(ii) for r #d.

Finally suppose that r=d. Then U is totally isotropic, 2, =P(U) and
dim 2, =d — 1. In this case i¥% is surjective and therefore ¢ acts as multiplication
by (—1)" on H*(2,). We find

Qap>= Y 4, Q4,8>= Z q'.

1<i<d-~1 2<i<d-—-1
i odd i even

Since d is odd and r =d these formulas coincide with those in 1.8(ii). This
completes the proof of 1.8.

4.4. Let N be even, and assume that char (k) # 2. Let 4 € g be nilpotent, (d, r)
the type of U = Ker (A). Then d is even. The involution ¢ acts as multiplication by
(—1)' on H¥(P), except for i =n — 1 when n is odd. In this case H*"~(#) has
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dimension 2, and as observed in 4.1 ¢ acts trivially on the image of H*"~ Y(P(V))
in H*"~1(2) and as multiplication by —1 on the cokernel.

Suppose first that dim H**~(2,) < 1. Then ¢ acts as multiplication by ( —1)’
on i%(H*(2)) « H*(2y). If r is odd, then i* is surjective and we get 1.9(i). Suppose
that r is even. Using 4.2 we find that we may assume that A is regular nilpotent in
a Levi factor of some parabolic subalgebra of g. By 1.10 we find then that
(P4, —1) =d/2. As there are only (d/2) — 1 odd numbers between 1 and d — 2, ¢
must act as —1 on the cokernel of i¥%, and 1.9(ii) follows.

We are left with the case where dim H*"~Y(2,) = 2. Then d + r = 2n and i* is
surjective. It follows easily that 1.9(ii) holds also in this case.

4.5. Consider the same situation as in 4.4, but assume now that char (k) = 2. As
in 4.4, the problem reduces to proving that ¢ acts as —1 on the cokernel of i%. We
may thus assume that r is even and d 4+ r < N, and we must find a substitute for
1.10.

In view of Corollary 2 in 4.2, we may assume that there exists an A-stable
orthogonal decomposition V' = V'@ V” such that the restriction of 4 to V' is of
type W(m) and the restriction of 4 to V" has only factors of type W(1) or W(2).
We define a morphism ¢ — A, from A' to g such that 4, = A as follows. We require
first that each A, stabilizes both ¥V’ and V. For every ¢, the restriction of 4, to V"
coincides with the restriction of 4. Choose a basis (e, . . ., e,,,) of ¥’ such that the
restriction of Q to V"’ corresponds to X, ;< ,, XiX2, - ;1 and such that the matrix
of the restriction A’ of 4 to V' has coefficients

| if j=i+1andi#m,
@ = 0 otherwise.

Choose also distinct non-zero elements 4,,...,4,,_, €k. Setting 4,,_,=4,, =0, let
D be the endomorphism of ¥’ whose matrix is diagonal with diagonal coefficients
(A1s -+ Ams Ams - - - » A1). Then for every ¢t € A! the restriction of A4, to V’ is defined
to be A"+ tD.

Let U, =Ker(4,), U,=U,nV, U =UnV"=UnV". Then U,=U,@ U},
where the two factors are mutually orthogonal, and U, is generated by the vectors
e, and

m—1 /j—1
u =y (H M,,)ej.
j=1 \h=1

Notice that U; is completely isotropic. For ¢ #0 and 1 <i<m —2, the (t4;)-
eigenspace of A4, has dimension 2 and contains exactly two isotropic lines which are
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generated respectively by the vectors

1 i1 m—i+1 fj—1
v;.i=2(nt(li+lh)>ej and vy = Z (ﬂt(li+}*m+l~h))em+j-

J=1\h=1 j=1 \h=1

It follows that for ¢ # 0, 2, is the union of 2,, with 2(m — 2) isolated points given
by the isotropic lines kv;; and kv;; (1 <i<m —2).

Let Y be as in 2.1. Making ¢ vary, we find that ¥'=A' x_ Y has 2m —3
irreducible components. Using 2 instead of £, the irreducible components of Y’
have the following description.

(1) The subvariety Z = J,. a1 {t} X 2,,, which is isomorphic to A' x 2.
(2) For 1 <i<m—2, the subvariety Z; = {(t,kv;;) |t e A'} = A"
(3) For 1 <i<m—2, the subvariety Z] = {(t, kv;,) |t e Al} x A

The components Z and Z; (1 <i < m — 2) all contain the point (0, ke;). The
components Z and Z; (1 <i<m —2) all contain the point (0, ke,,, ). The
components of ¥’ do not meet otherwise. This implies that for j > 1 the restriction
morphism H’(Y’) - H/(#?,) is an isomorphism. In particular H/(#,) and
H/(2,,) are isomorphic as W?-modules, for j 2 1. Let B = 4, and let B = B, + B,
be the Jordan decomposition of B, M = C¢(B,), m = ¢,(B,) = Lie (M). Then M is
of type D, _,,. ». Moreover B, € m corresponds to an element of so, _,,, , 4 Which
has r/2 factors W(2) and (d — r)/2 factors W(1). Let W’ be the Weyl group of M,
p’ the reflection representation of W’. Then

<Qg,p/>= Z qi+q(d+r——2)/2

and res})j. p =p’ +(m —2)1,.. By 1.11, 0§ =indy. Q3 . Therefore

(0§, p>=<ind}y QF, p> =<Q%, resy. p
={0%, p">+(m—-2)<QH, 1>
- Z g +qét =2 4 (m —2).

I<i<d-2

In view of the isomorphism between H/(2,) and H’/(#;) for j = 1, we find that
1.9(ii) holds for A4, and in particular ¢ acts as multiplication by —1 on the cokernel
of i%. This completes the proof of 1.9.
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