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Embedded minimal annuli in R> bounded by a pair of straight lines

DAviD HOFFMAN*, HERMANN KARCHER** AND HAROLD ROSENBERG

1. Introduction

The subject of this paper is embedded minimal annuli bounded by two straight
lines. The only known examples of such surfaces are given by subdomains of the
singly periodic Riemann examples, #. There is a 1-parameter family of these
surfaces. A fundamental domain of a Riemann example consists of a minimal
annulus bounded by two straight lines, and a copy of that surface produced by
Schwarz reflection about one of the boundary lines. (See Figure 1 and the analytic
description of these surfaces in Section 2.)

We will prove that the examples of Riemann constitute all of the examples,
under certain geometric hypotheses.’

THEOREM 1. Suppose L =L, VL, is a pair of parallel lines and A is an
embedded minimal annulus whose boundary is L. Assume further that A lies between
two parallel planes with one line in each plane. Then A extends by Schwarz reflection
to a Riemann example A.

In [13], Shiffman proved that a minimal annulus bounded by circles in parallel
planes is fibred by circles in parallel planes. The assumptions of Theorem 1 can be
viewed as a limiting case of Shiffman’s assumptions, but his proof does not extend.
As is well known, the Riemann examples are fibred by circles. In fact, Riemann

*Partially supported by research grant DEFG02-86ER250125 of the Applied Mathematical Science
subprogram of the Office of Energy Research, U.S. Department of Energy, and National Science
Foundation, Division of Mathematical Sciences research grants DMS-8802858.

**Partially supported by Sonderforschungsbereich SFB256 at Bonn.

'Recently Eric Toubiana has been able to strengthen Theorem 1 significantly by showing that the
same conclusion holds even if the lines are not assumed to be parallel (*“On the minimal surfaces of
Riemann”, preprint Université de Bourgogne, Dijon, France.)
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Figure 1. Part of one of the Riemann examples. Illustrated here are four minimal annuli bounded by
parallel lines. Joining two annuli together on a common line boundary produces a fundamental domain
for the surface modulo its orientation-preserving translations.

constructed these surfaces by explicitly determining the coordinate functions, in
terms of elliptic integrals, of all minimal surfaces fibred by circles in parallel
planes. This was published posthumously [10]. Very soon after the publication
date of this paper, Enneper published a work [2] in which he proved that a
minimal surface fibred by pieces of circular arcs (not necessarily assumed to lie in
parallel planes) was in fact a piece of one of the Riemann examples, or a piece of
the catenoid. An excellent summary is given in [9], where we learned about the
work of Enneper.
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From the results cited in the above paragraph, it follows, as observed
by Shiffman, that a minimal annulus bounded by circles in parallel planes is a part
of one of the Riemann examples. As an immediate corollary of Theorem 1 we
have

COROLLARY 1.1. Suppose L =L, UL, is a pair of parallel lines and A is an
embedded minimal annulus whose boundary is L. Assume further that A lies between
two parallel planes with one line in each plane. Then A is fibred by round circles in
parallel planes.

We wish to mention some recent papers that are related to our work. Meeks
and White have studied minimal annuli bounded by convex curves in parallel
planes [8]. In [4], Jagy studies minimal hypersurfaces that are foliated by codimen-
sion-2 round spheres in R”. He proves that when n > 3, the only possibilities are
hypersurfaces of rotation: generalized catenoids. Thus the phenomenon of singly-
periodic minimal embedded surfaces fibred by spheres and planes does not exist in
dimensions higher than three. Hoffman and Meeks [3] provide a geometric ap-
proach to the Riemann examples, characterizing them by determining their Gauss
mapping. Karcher [6] provides a geometric approach to the requisite elliptic
function theory for the Riemann examples and related minimal surfaces.

2. A characterization of the Riemann examples

The examples of Riemann can be described easily in terms of their Enneper—
Weierstrass Representation. On a rectangular torus, 7, = C/L, where L is the
lattice generated by {4, i}, for some real 2 > 1, consider the elliptic function P
with a double pole at 0, a double zero at w; = (4 + i)/2 and no other zeros or
poles. The Weierstrass P-function £ has the property that 2 — #(w;) has exactly
the same poles and zeros. This determines the function up to a multiplicative
complex constant. That is:

P = (2 — P(w3)).

It can be easily checked that this elliptic function has the property that
P(w,/2) =i, precisely when ¢ =1 and that, when c is real, P is real precisely on
the lines

Re (z) =0, Re (z) = 4/2, Im(z)=0 and Im(z) =1/2.
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Another way to produce an elliptic function with these properties is to solve the
conformal mapping problem:

"y

A
Figure 2.
0— oo, w-»o,
2
1+
@D 0 ) =0,

and then extend by Schwarz reflection. The Riemann examples are then given by
the Weierstrass Data on T, — {0, (4 +7)/2}:

g=P, n=idz/P, (2.1)

producing via the Weierstrass Representation the multivalued immersion X(z),
whose components are:

x;(z) =Re (l—gz)n-——Ref i(P~!'—P)dz,

JO) w1

(*z z

x,(z) = Re i(1+g%n = —Re J (P + P 1Y) dz, (2.2)
v wy

x5(z) =Re 2gn =Re j 2idz = —21Im (2).

JO|

w,
Here the choice of w = 4/2 as the base point for integration is for convenience.

REMARK 2.1. Since (2.1) defines a minimal surface with a single period
corresponding to the closed curve on T, given by u(f) = (1/4) + i, 0 <t < 1, as will
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be shown in Proposition 2.1, it follows that on y(f) =(i/4) + 14, 0<t <1,
def
A =ReJ Pdz = —Rej P 'dz.
Y Y

It follows that if ¢ is any nonzero real number, the data g =cP, n =dz/cP on T,
has not only a period corresponding to u, but also

ReJ i(1+gHn = —-ReJ‘ (c'P'+cP)dz =(c"'—0)A.
¥ ¥

However, we may evaluate 4 by integrating P along § = (i/2) + tA4, 0 <t < 1, where
P dz is real and never changes sign. Hence 4 # 0, and this period is zero if and only
if ¢ = 1. We will have use of this observation later when we prove the uniqueness
of the Riemann examples.

The following Proposition establishes the properties of the Riemann examples.
They are all previously known.

PROPOSITION 2.1. The Weierstrass data (2.1) and the multivalued immersion
(2.2) defines a minimal surface # that has the following

a) Geometric properties:

1. R is complete and singly periodic, invariant under a translation T;

2. R is fibred by circles in horizontal planes xy = ¢ # 2m, m € Z. These correspond
to the closed curves on T, given by Im (z) = constant #0, 1/2;

3. BN {x3=2m}, m € Z, are straight lines, parallel to the x, axis. These correspond
to the lines on T, given by Im (z) =0, 1/2;

4. R is embedded,

5. & has an infinite number of flat ends, asymptotic to planes at height
X,=2m,meZ,

6. A is invariant under reflection in the x,,xy-plane. The intersection of this plane
with R consists of planar geodesics and they correspond to the lines on T, given
by Re {z} =0, 1/2;

7. R is invariant under rotation about horizontal lines that are parallel to the lines
R N {xy = Am}, lie at heights x5 = (m + 1/2)A, and meet the surface orthogonally;

b) Uniqueness properties:

8. Any minimal surface that is fibred by circular arcs, not necessarily assumed to
be in parallel planes or assumed to be closed, is a subset of either the catenoid
or some R,

9. Any minimal annulus bounded by circles in parallel planes is either a subset of
the catenoid or of some .
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We give proofs of 1-7 that are self-contained and simpler than those in the
literature. Statement 8 is a lengthy computation carried out by Enneper in [2] and
outlined in the modern text [9]. Statement 9 follows from Statement 8 and
Shiffman’s theorem: If a minimal annulus is bounded by circles in parallel planes,
it is fibred by circles [13].

Proof. From (2.2), it is clear that X has a period corresponding to the closed
curve (4/4) +ti, 0<¢ < 1. This period has x; component equal to —2. We will
call this period vector T; T = (a, 8, —2).

The conformal metric on T, induced by the immersion (2.2) has length element

(1 + |g[*) = (|P[ +[P~"]) |dz]. (2.3)

Because of the way that P is constructed in Figure 2, it is evident that reflection in
the line Re {z} =0 (equivalently Re (z) = 4/2), or in the line Im z =0 (equiva-
lently Im z = i/2) induces an isometry of the induced metric. Since these four lines
are fixed in T, by one of these reflections, they are geodesics. The second
fundamental form of the immersion (2.2) is given by Re {fg’ dz’} = Re {i(P’/
P) dz?*}. Along all four lines in question, P and (dz)? will be real, while P’ is
necessarily real along the horizontal pair and purely imaginary along the vertical
pair. This means that {fg’ dz?} is imaginary along the lines Im (z} =0,  and real
along Re {z} =0, 4/2. Thus, this second pair of lines is mapped by X to planar
geodesic lines of curvature, while the first pair is mapped into straight lines. (See
[6] or [5] for details of this sort of argument.) This proves 3. As a consequence of
this, # is invariant under rotation about these lines and reflections through the
planes of these geodesics. It is clear from the formula for the third component of
X, that the horizontal line Im {z} =c¢ is mapped into the horizontal plane
x; = —2c (mod 2). In fact these curves are circles; in particular, they are closed.
We will show this in Lemma 2.1 below. For now we assume it to be true; this
gives Statement 2. This means that there are no periods, except perhaps at the
punctures 0 and i(4 +i). But through each puncture pass a line of rotational
symmetry and an orthogonal plane of reflectional symmetry. Since the period of X
must be orthogonal to both the plane and the line, it has no period at a puncture.
Hence T is the only period and £ is singly periodic. We note that the period
vector T must reflect into itself through {x,=0}. That is T = (a, 0, —2). From
(2.3) it is clear that # is complete since |P|+ |P|~' has a double pole at either
puncture; the length of any curve diverging to 0 or (4 + i)/2 must be infinite. This
completes the proof of 1.

Note that from 2 and 3, we know that the intersection of # with any horizontal
plane is an embedded curve. In particular, # is embedded. This proves 4.
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We now look at an end corresponding to 0 or 3(4 + i). It is embedded, contains
a line, and the Gauss map has order 2 there. Moreover, it is period-free. This forces
it to be planar. Since the Gauss map is vertical at the end and the end contains a
horizontal line at height x; = 2m, we have proved Statement 5.

Because of the fact that the planar curves

X(7.(0), V() =ci+1t, 0<:r<1,

are closed circles, the planes which contain the images of fi(f) =(4/2) + ti and
((t) = ti must coincide. Since g = P is real on u this plane of symmetry of Z is
vertical and parallel to the plane {x, =0}. Since we have chosen to integrate from
w; = u(0), this vertical plane of symmetry is exactly the coordinate plane {x, = 0}.
This proves 6.

To prove 7, we observe that if

Q(2) = P(I(2)),

where IG(A + 1) +2) =34 +1i) — z,

Q(0) =0,
Q(W3) = 00,

(A+D) .
o(“57)-

Checking that Q solves the same mapping problem as —1/P on the rectangle
with vertices 0, w,, w;, w, shows that Q = —1/P. Therefore (|P|+|P|"") oI =
|P|+ |P|~". Since |I* dz|=|dz|, it follows from (2.3) that I is an isometry in the
induced metric on T;. In fact I is induced by a symmetry of R*® consisting of
rotation by n about a horizontal line orthogonal to the (x,, x;)-plane and bisecting
the line segment between X(w,) and X(w,). The horizontal line meets # orthogo-
nally at the points X((4 + i)/4) and X((1/4) + 2i). To see this, simply observe that
because I* dz = —dz, and since

o ~(P—P7N)dz
P =|¢,|=|—i(P+P dz|, (2.4)
b5 i2dz
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it follows that

— ¢
ro=|+¢,)|.
— ¢

That is I* acts on the integrands @ in (2.4) by rotation about the x,-axis. Since /
fixes (4 +1)/4, (1/4) +3i, it follows that I is induced by rotation about the line,
parallel to the x,-axis, which passes through X((4 +i)/4) and X((4/4) + 2i). This
proves 7. It also proves that the curves Im(z) = const 5 0, 4 are mapped into closed
curves. U

LEMMA 2.1. The level curves x;= c # m in the Riemann example are circles.

Proof. We first derive for the curvature x of the level lines x; = constant on a
minimal surface

k =Im <%>(|g|+|g|”“)“, (2.5)

where ’ is differentiation with respect to a specially adapted conformal coordinate.
Then we conclude A = constant from the differential equation of the elliptic function
g = P. We choose conformal coordinates z =u +iv so that v =x;, up to an
additive constant. If g is the stereographic projection of the Gauss map, we must
have 2gn = 2i dz. Hence the Weierstrass representation is given by

X2 = J )

[}

where

d=(1-g%i(1+g8),2em=(g" ' —gi(g""'+8),2idz.

In particular, the conformal metric is given by A = (|g| + |g|~"). The level curves of
x; are of the form

c(u) = X(u + ivy).
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We observe that if N(u) is the normal to S at c(u), the projection of Nu) onto the
plane x;=1v, is a scalar multiple of the vector (Re g, Im g). Adopting complex
notation, we may then write the normal n(u) to the plane curve c(u) as

£

I{

n(u) =

and the unit tangent vector to this curve as

ig
g

b

dc
= (u(s)) =

where s denotes arc length on ¢. We now compute

d’cu(s)) (g\au_ (g\._, (8 & R
a5? "(Ie‘l) 'Js'"(rg|>‘ "’<1g| g <g’g>>‘ ’ S

where {f, h) = Re fhis the usual inner product, and 4 is, as computed above, equal
to |g| + |g|~". Noticing that the second term on the right-hand-side is a multiple of
dc/ds (or equivalently that (g, ig)> =0), we may write the curvature of ¢ in the
following form.

valid for any complex numbers z, @, o # 0. Thus indeed

K= (Im g—)(|gl +lgl™hH "
g
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We wish to show that k is constant on ¢. We will do this by showing that dx/du = 0.
We begin by calculating dA~!/du.

Ak _lz[<g’,g> _ <g’,g>]
du du lg] lgf?

= —i g -] ) K2

= —A"%(|g| - Igl“)<§, 1>-
Thus
(0 -5l o
du g g’ g’
) on(ols)
[m(g)) A7 '(|gl - g )Re(g Im .
- e+l o (5 ) - () 3 ()
(g +g]™ [+Im(g) (lgl2+1 () )| (2.7)

For the Riemann examples #, g = P, as defined in (2.1). This elliptic function
on a rectangle satisfies the differential equation

(P)? = —pP(P — a)(P + ),

where aff =1 and p is a real positive constant. In fact +a and — f are the values
of P at the half periods w, and w, (see Figure 2.1, as well as [6], [S]). From this it
follows that

Pf 2
(?) =—uP—-P'—a+p), (2.8)

and

Pi Pl ’ , P/ _ PI *l
N5)- o B rter
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or

P’ ’___—_,u )
(7;> == (P+P7 ). (2.9)

Using (2.7), (2.8) and (2.9), we have

dk

1 |PP—1/1
— =u(lP|+|P|"H" Y —= ~1 _ — Pyl
- u(|P|+|P|™" [ 2Im(P+P )+|P|2+1(21m(1> P ))]

But notice that in general if w =u + v

u’>+0v2+1
Im(@—ow-") = L0 T
m(w-—w"") v( 1o )
B w>+v2—1\ uw?+0v2-1

e l)=v( u? +v? >=u2+v2+llm(w~w )
o] — 1
= I — =1
|w|2+l m(-—w™")

Thus dx/du = 0 on the Riemann examples. This shows that the planar curves ¢ are
round circles, except when k = 0 (and the curve c is a line) which happens precisely
when P is real along c¢. From the behavior of P, this happens precisely when
X3=2m, me”Z. O

3. The proof of Theorem 1

We will use the following result, proved in [1]. See also [7].

THEOREM 3.1. Suppose M is a properly embedded minimal surface with an
infinite symmetry group and more than one topological end. Then either M is the
catenoid or:

(i) M is invariant under a screw motion T,
(i) M/T has finite topology if and only if the total curvature of M|T is

2n(x(M|T) —r),
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where r is the number of ends of M|T;
(iii) All the annular ends of M are flat ends. If M|T has finite topology, all its
ends are flat.

LEMMA 3.1. Suppose A is an embedded minimal surface that is bounded by a
pair of lines L = Ly, L, and lies in a slab between parallel planes, P = Py P, with
L, c P,. Then A extends by Schwarz reflection to a singly-periodic embedded minimal
surface &, invariant under a screw motion T, where T is R, - Ry, R, being rotation by
n about L;. If A has genus k, S|T has genus 2k + 1, two flat ends and total curvature
—4n(2k + 2). Furthermore, T is a pure translation if and only if L, is parallel to L,,
and in that case the translation vector lies in the plane containing Lyu L, and is
orthogonal to these lines. If T is a translation, the Gauss map of S descends to a
well-defined meromorphic function on S/T.

Proof. The hypothesis that the surface lies between two parallel planes and is
embedded and minimal means that it extends by Schwarz reflection about the lines
to a complete embedded minimal surface. Let T be the symmetry of the surface
produced by the composition of rotations about the two line boundaries of 4. T
must be the composition of a nontrivial translation, transverse to the planes of the
slab containing A, and a (possibly trivial) rotation. Thus 4 extends to a singly-
periodic surface 4" that is, modulo 7, a twice-punctured genus = (2k + 1) surface.
Two copies of 4 having a line in common form a fundamental domain of A4"/T.
The assumption that 4 is embedded in a slab forces the singly-periodic surface to
be embedded. By Theorem 3.1(iii) the two ends of A"/T are flat. By Theorem 3.1(ii)
A"|T has finite total curvature equal to —4n(2k + 2).

If in addition the lines L are assumed to be parallel, the symmetry T, which is
generated by successive rotations about the two distinct lines in the quotient, is a
pure translation. (This translation will be orthogonal to the boundary planes of the
slab if and only if the lines L both lie in a plane orthogonal to the slab.) In
particular, there is no rotational component to 7. This implies that the Gauss map
of A" descends to A"/T. Since A°/T has finite total curvature and is complete in
R3/T, the Gauss map of A"/T extends to the compactified surface. a

REMARK 3.1. Since 4" is embedded, we may assume without loss of general-
ity that the Gauss map of 4" is vertical at the two ends. Denote by g the Gauss map
of #//T. Then & may be represented as a multivalued conformal immersion of
A |T by using the Enneper—Weierstrass representation with the data g, 5, where
n = dx;/2g. Since the two ends are flat, » must have a double pole at each one. But
A is constructed in a manner that insures that there is a single line diverging into
each end, which in this normalization must be horizontal.
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Proof of Theorem 1

Step 1. By Lemma 3.1, the annulus A extends by Schwarz reflection to a
singly-periodic minimal surface S, invariant under a translation 7, and S/T a
torus with two flat ends and total curvature —8n. Also, the Gauss map of S
descends to S/T, and extends to S§/T. Thus g, the stereographic projection of the
Gauss map is a degree-two elliptic function on this torus. By Remark 3.1 g may
be assumed to have a pole of order two at one end, say p, € L, and a zero of
order two at the other end, say p, = L,. Because the degree of g is two, it has no
other zeros or poles. The lines L = L,u L, are horizontal and we may assume
without loss of generality that they are parallel to the x,-axis. This forces g to be
real on L. Since g is real along L and has degree equal to two on §/T, it follows
that there is a single simple branch point of g on each of the lines. We will label
the branch point of the Gauss map on L; by b,, i =0, 1.

Step 2. We will prove that S is a Riemann example by determining
its Weierstrass representation. In this step we will determine S/T and the one-form
n. -

First, we determine the underlying conformal structure of S/T. The two
lines L =L,ulL, correspond to disjoint closed curves on this torus. Rotation
about one of the lines is an order-two isometry, whose fixed-point set is L.
Consider this isometry as a conformal involution on the torus. Only rectangular
or rhombic tori possess conformal involutions which fix a curve (namely reflec-
tions for the flat metric). However a rhombic torus cannot have two such curves
in the same homotopy class as is the case for L, and L,. Hence S/T is a
rectangular torus.

Without loss of generality, we may assume that this torus is 7, that is C
modulo the lattice determined by {i, A}, for some real 4, and that the afore-
mentioned involution is induced by complex conjugation. Hence L corresponds to
the set Im {z} = 0,1, modulo 4, and we will label Imz =0 as L,, and Imz =3 as
L,. Let z = u, + iu, be the complex parameter on C. Since the lines L are horizontal
and the height function x; is harmonic on S, it defines a function on C which is a
real multiple of u, (up to an additive real constant). Hence dx; =idz on C, up to
a multiplicative real constant, which by a homothety of R*> we may assume to be
equal to 1. Since dx; = 2gn, where 7 is the one-form in the Weierstrass representa-
tion, we have

_ta (3.1)

on S and S/T.
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Step 3. It remains to determine the Gauss map g. Recall from Step 2 that we
know g is a degree-two elliptic function on the rectangular torus 7;, which has a
double pole at p, =0, a finite branch point on Im z =0 and a double zero and a
finite branch point on Imz =3. We now observe that the branch points of a
degree-two elliptic function on a rectangular torus, which has a double pole, must
coincide with the branch points of any other such function, up to translation.?
Taking the function P defined in Figure 2 as a model, we may conclude that the
branch points of g, namely p,, p,, by, b, are distributed in one of the following
ways:

b, P P '
Po b, Py by
Case 1 Case 2
Figure 3

In Case 1, note that g has exactly the same zeros and poles as P, constructed in
Figure 2. Hence g = cP for some nonzero complex constant ¢. However both g and
P are real on Im z = 0. Hence

g =cP, c real. (3.2)

Thus in Case 1, (3.1) and (3.2) give the Weierstrass data for S on the rectangular
torus 7,. However, in Remark 2.1, we noted that the Weierstrass representation
will always have nonzero period in the x,-coordinate on a horizontal generator of
T, unless ¢ = 1. Since this must be a closed curve or a line parallel to the x,-axis,

2Here is a simple proof. Let A be an elliptic function of degree 2 on T,. After a translation in C and
composition with a fractional linear transformation on Cu {0} we may assume that » has a double pole
at 0, as does the P-function defined in Figure 2 of Section 2. Suppose 4 is not branched at w; = (4 +i)/2,
where P has a double zero. Then (& — h(w,))/P has a simple pole at w; and no other poles, a
contradiction. Hence A must be branched at w,. Similar arguments show 4 is branched at w, = 1/2 and
w, =1i/2, the other branch points of P, and nowhere else. If one only “knows” elliptic functions from
their Riemann mapping definition then one needs such an argument. The standard Mittag—Leffler
expansions are even with respect to the pole and therefore also give the result quickly.



Embedded minimal annuli in R? 613
we conclude that ¢ = 1. Hence

 d-z
g =P, n:’P on T, (3.3)

are the Weierstrass data in Case 1. This case is exactly the Riemann example given
in (2.1) and (2.2).

REMARK 3.2. The fact that S/T is a rectangular torus T, on which the branch
points of g are essentially determined can be proved by working more directly with
the minimal surface. Consider the sum of S/T < R*/ T with itself in the sense of
minimal herissons, according to [11]. At each 7i € S? we define #(#) to be the sum
of all g € §/T where G(q) =1, G being the Gauss map. Since S/T has flat ends, it
follows from [11] that J# is constant on S2. However, we may arrange things so
that X(b,)/T =0€ S/T and b, is the only point g € S/T where G(q) = G(b,).
Hence # =0. Moreover, since G has degree two, inversion about 0 in R*/T
(X¥—> —X mod T) must be a symmetry of S/T. Hence inversion about 0 is a
symmetry of S. Therefore inversion about 0 followed by rotation about L,
(=x,-axis) is a symmetry of S. This symmetry is precisely reflection in the vertical
plane {x, = 0}. o L

The symmetry lines L and {x, =0}nS/T divide S/T into four rectangles
bounded by geodesics, each one congruent to any other one by a rotation, reflection
or a composition of the two. Therefore, S/T is a rectangular torus. The symmetries
force the finite branch points to be located as in Case 1 or 2 above.

Step 4. It remains to show that Case 2 cannot occur. We will do this by
determining g explicitly, and then showing that the period problem is not solvable.
Recall that in this case g has a double pole at 0 a double zero at i/2 and branch
points at 5 and (4 + i)/2. (See Figure 3.) Let Q be the elliptic function defined by
first solving the Riemann mapping problem:

i/2

N2 -1 0

Figure 4. The construction of Q. i/2 -0, (4/2) + (3i/4) > 1, 3i/4—> —1.
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Figure 5. The zeros, poles and branch values of Q along with the horizontal generator 7.

and then extending to C by reflection. The mapping Q is an elliptic function of
degree 2, defined on the torus T;. It has a double pole at 0 and a double zero at i/2.
Noting that Q(w,) is some real number (depending on 1) between 0 and 1, we may
write Q(w;) = cos a, for some a, 0 < a < /2. This implies that Q((4/2) + i) = sec a.
With this information it is straightforward to see that the zeros and poles of
(Q’/@)* and Q + (1/Q) — (cos & + sec ) coincide. Since both functions are real and
positive on the line segment (i/2) + ¢, it follows that

Q') 1
(—é) = cz(Q + —Q— — (cos o + sec cx)), (3.4

for some positive ¢ € R.

Note that Q is also real on the lines Re {z} =0, 1/2, and has the same zeros and
poles as g. It follows immediately that the Gauss map g is a real multiple of Q. That
is:

g=A40, A#0,4eR. (3.5)

As observed in Remark 3.2, S must have a vertical plane of symmetry that passes
through the finite branch points of g. This implies that the lines Rez =0, 4/2
correspond to planar lines of curvature in vertical planes. Since Q is real on these
lines, the vertical plane(s) of symmetry must be parallel to the (x,, x;)-plane. (Of
course, we could have deduced this directly from the properties of Q. The metric is
(A|Q| + 47 |Q|™") |dz[’, which is invariant under reflection in the lines Re z =0, A/2.
Hence these lines are geodesics. The second fundamental form is given by
sRe {g'fdz?} =1 Re {iQ’/Q dz*}. On these lines dz =idv, Q is real and Q' is
imaginary. Hence (iQ’/Q) dz? is real, which means that this geodesic is a line of
curvature in a vertical plane parallel to the (x,, x;)-plane.)
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We will now show that along the horizontal curves Im z = constant there is
always a nonzero period, which means that the Weierstrass data (3.1), (3.5) on T,
can never produce the required example. Because these curves lie in horizontal
planes and are symmetric with respect to the (x,, x;)-plane, the only possible period
is in the x,-direction. We will choose our generator to be p(t) =3i+1, 0<t =4,
The period condition is then

Reji(1+g2)fdz=—ReJ(g*‘+g)dz=0, (3.6)

where y(t) =2i 4+ ¢, 0 <t < 4. Using (3.5) we have that condition (3.6) is equivalent
to

A" 'Re  _ =—A ReJde (3.7)
, 9
But along y, dz is real and moreover Q is unitary, so Q' = Q. Hence (3.6) is
equivalent to
mjg&:a (38)
7

In other words, the parameter A is irrelevant to the closing of the period on y with
the Weierstrass data (3.1), (3.5) on T;; either no example exists in Case 2, or there
is a one-parameter family of examples for each rectangular torus. We will now
show that no example exists. To do this, we will show that (3.8) is false.

By construction Q o y(f) = Q((3i/4) + t) is a one-to-one and onto map from the
closed curve represented by y onto the equator |z| = 1. Therefore we may write
0 =e, ¢ = ¢(t). Along y, we have dQ/Q =i d¢p and

pof2_0d0 10, @9

Also note that along 7, Q +Q ~'=Q + Q =2 cos ¢. Hence the right-hand side of
(3.4) is real and negative. This means that Q’/Q is purely imaginary on y; in fact
when Q = e,

0’

0" +ic/(cos & + sec &) — 2 cos . (3.10)
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2n
Re | Qdz = iRej e*®[c~'(cos a + sec & — 2 cos @) ~ '] d¢

=_+__c—1r" cos ¢ d¢ (3.11)

o ((cosa +seca) —2cos ¢)'/?’

The integral in (3.11) is clearly not zero for the following elementary reason. Note
that (3" cos ¢ d¢ =0. However, when cos ¢ is positive the denominator in the
integrand of (3.11) is smaller than cos o + sec « while it is bigger than cos a + sec «
when cos ¢ is negative. Hence,

r” cos ¢ do o il

o (cosa +seca —2cos¢)l2”

Thus condition (3.8) is not satisfied. Since this condition was necessary for the
existence of an example with data given in Case 2, we have shown that Case 2 is
impossible. O
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