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Perturbatively unstable eigenvalues of a periodic Schrôdinger operator

Joël Feldman, Horst Knôrrer and Eugène Trubowitz

1. Introduction

Let F be a lattice of maximal rank in R**, d ^ 3, and

r# {b g Rd | &lt;*, y&gt; € 2ttZ for ail y g F}

the lattice dual to F. For q g L2(Rd/r) and k g Rd the spectrum of -A + q acting
on the space

+ y) «&apos;^^^(jc) for ail y g F},

or equivalently, the spectrum of — Ak +q, where

Ak A+2ik-F- k2

acting on

is called the Floquet spectrum of q with crystal momentum k. For example, the

Floquet spectrum with crystal momentum k when q 0, is the set

The corresponding eigenfunctions are

It is shown in [FKT] that for almost every k g Rrf, and any sufficiently regular

q, there is a density zéro subset S{k) of fc + T# such that for ail / e (fc 4- F#) -
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there is exactly one point in the spectrum of — Ak + q lying in the interval

JR^/r Kl jR^/r

Moreover, the corresponding eigenfunctions are close to el&lt;ltX&gt;. We called the

eigenvalues 12J e(k + F*) - S(k) of -Ak + q stable under the perturbation q. The

purpose of this paper is to discuss some of the Floquet eigenvalues /2, / e S(k) that
are unstable under the perturbation q.

We now recall the construction of [ERT] Section 3.b. It yields a class of
unstable eigenvalues. Let y e F — {0}, and set

Jo
q(x -h sy) ds

J

where

is the &quot;è&apos;th&quot; Fourier coefficieint of q. The averaged potential qy(x) is constant on
ail translates of the Une R • y.

Fix t&apos;eR^. Let &lt;f&gt; be an eigenfunction of — A -h #y(x) with crystal momentum k&apos;

and eigenvalue \i that is constant on ail translates of the Une R • y. Then,

is in the space ^{ty^kl and satisfies

The last estimate, combined with the spectral theorem, guarantees that there is a

genuine Floquet eigenvalue k of q with crystal momentum ty 4- k&apos; close to /2y2 + fi.
Consequently, the unperturbed eigenvalues /2, / near the Une R • y, may be moved
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far out of the interval

]Rd/r \l\

by fi and are therefore unstable in the sensé of [FKT]. This phenomenon is

consistent with the observation made in [FKT], Section 4, that points of k + F#
close to a Une R • y for some y g F lie in S(k).

The main object of this paper is to show that for each primitive y e F and
almost every k&apos; satisfying &lt;*:&apos;, y&gt; 0 and almost every sufficiently large t the
&quot;WKB&quot; Floquet eigenvalue A produced in the last paragraph is bounded away
from ail other points of the Floquet spectrum of q with crystal momentum ty + k\
and that the corresponding eigenfunction is close to the quasimode

We first, using the techniques of [FKT], make the WKB construction above

more quantitative, giving estimâtes for the allowed values of t and the accuracy
with which Floquet eigenvalues of q are determined. See, (i) of the Theorem below
for a précise statement.

Next, for d — 2, counting carefully, it is shown ((ii) of the Theorem) that there is a

constant g, depending only on a norm of q, such that for ail k lying in a density one
subset of the Une A:&apos; -f R * y the eigenvalues of q with crystal momentum k in the interval

[k2-Q,k2 + Q]

are ail accounted for by stable eigenvalues of - A and eigenvalues constructed as

above from -A +qy.
Finally (part (iii)) for most k9 the eigenvalues in the interval [k2 — Q,k2 + Q]

accounted for by — A are effectively separated from those accounted for by
— A +qy. This allows us to estimate how well the true eigenfunctions are approxi-
mated by the quasi-modes {//(x) ett&lt;y&apos;x&gt;&lt;t&gt;(x).

2. Construction of eigenvalues and eigenfunctions

As in [FKT] we introduce a monotonically increasing function/ ^ 1 on R+ such

that/ts)/(/) £/(* + 0 and use the/-weighted /,-norm ||?||/ E*6r# /(|*|)|$(*)|.
Furthermore choose constants p &lt; \9 Q &gt; 0. We restrict ourselves to potentials q

with mean zéro and ||^||y ^ Q.
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THEOREM. Let y be a primitive vector of F and k&apos; e R^ with (k\ y &gt; 0. Let
q be a function on Rd/F with mean zéro and \q\f ^ Q.

(i) Let t0 obey t0 ï&gt; 2&quot;* \toy\p * l/(2^Q)\k&apos;\ and \toy\ &gt; ((12Q\y\/n) + IZjQ) •

1 H- k&apos;2)p + |/O?|2/7)- Let fi be any Floquet eigenvalue of —A + qy (acting onfunctions
on the hyperplane [x e Rd\ &lt;x, y} 0}) with multiplier k&apos; of finite multiplicity m

fulfilling | \i — k&apos;2\ &lt; Q — t where

Then there are at least m Floquet eigenvalues À (counted with multiplicity) of —A +q
with multiplier k&apos; + toy satisfying \fi -\- t^y2 — k\^x.

(ii) Suppose in addition that d 2, p &lt; 1/2. Let h(t) 1 -h min (tl/2(l/2~p\ t2p).

Then there is a subset K K{k\ y, Q, p, h) ofdensity one in k&apos; + R? such that for any
k k&apos; + toy € K the following holds. Let kl9..., Xr be Floquet eigenvalues of
— A +q with multiplier k in the interval [k2 — Q -h f, k2 + Q — f] where

t(*)=4&lt;2
f(K\k\))f

Let fÀX9...9fim be the Floquet eigenvalues of —A+qy with multiplier kf in

the interval [k&apos;2 — Q, k&apos;2 + Q], v^.^fa+k2— k&apos;2, and vw+,,..., vw the numbers

(k + b)2, b e F # with &lt;ft, y &gt; # 0 and (k+b)2€ [k2 -Q,k2 + fi].

Aj A2 A3 A4 A5

—, X • H «—# 1 » » M # • ^

v, v, v5 k&apos; v6 v2 v7

1Q
are counted with multiplicity. Then there is an injection &lt;r:{l,...,r}-&gt;{l,...,/î}
such that for i 1,..., r

Furthermore v, is in the image of a whenever \Vj—k2\^Q —t.
(iii) Suppose that for large t

and
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Then for any 0 &lt; à &lt; 2p there is Kf c K of density one such that for every
keK&apos; the sets IJ;=m+ i ivj &quot;M, + fi and [/iM + k2 - k&apos;1 - f, p., + *2 - k&apos;2 + f],
[^2 + A:2-r2-f, /il2 + *2-*&apos;2 + f], s[AI| +A:2-Â:&apos;2-f, ^ + ^-fc&apos;2 +f],
w/zere /*,1,. fitg runs over the différent Floquet eigenvalues of —A+qy to the

multiplier k\ are mutually disjoint and hâve distance at least l/\k\2p ~ ô from each other.

If for some i 1,.. m one takes a Floquet eigenvalue k of —A+q in

[jxt +k2 — k&apos;2 — f, \it +k2 — /c&apos;2 + f] with multiplier k and if ij/ is a normalized
eigenfunction for that eigenvalue then there is a Floquet eigenfunction (f&gt; of —A + qy

for the eigenvalue \it and multiplier k&apos; that is constant in y-direction such that
1^ &lt;kk&gt;t\\L Q/\tQy\ô.

Remarks

(1) In [ERT] and also [KT] it was shown that the Floquet spectrum of — A -h q
détermines that of — A +qy. The proofs given there were non-constructive. For
d — 2 the theorem above gives a constructive way of determining the Floquet
spectrum of — A +q from that of — A +qy. Suppose you want to détermine the

Floquet eigenvalues of — A + qy with multiplier kf (&lt;&amp;&apos;, y&gt; 0) up to accuracy c.

By minimax they are contained in {Jber#xb,y&gt; o[(k&apos; + b)2 — Q, {k&apos; + b)2 + Q].
We show how one détermines the desired spectrum up to accuracy e in one of
thèse intervais. Without loss of generality we may assume that this is the interval
[k&apos;2 -Q,k&apos;2 + Q]. Choose R so big that

(a) the set {k&apos; + ty | |/||y| ^ R} nK(k\ y, Q,p, h) has measure at least 3R/2 in
k&apos; + Ry.

(b) For each \i e [-Q, Q] the set

W + ty | |f||y| ^ R, there is b e T* with (b, y) # 0 such that

K*7 + ty 4- b)2 - (k&apos; + ty)2 - ji| £ 2t\k&apos; + ty\}

has measure at most R/2 in k&apos; + Ry.

(C) f|*&apos; + Jfy|&lt;£/2.

It is possible to find such an R by part (ii) of the Theorem above and

Proposition 2 of Section 3. We will see that bounded pièces of the set K can be

determined by finitely many opérations. Similarly the constants involved in Proposition

2 of Section 3 can be estimated in terms of k\ y and the lattice. So the choice

of jR is constructive.
Now choose k0 e (k&apos; + Ry) nK with \k0 - k&apos;\ £ R. By part (ii) of the Theorem

the Floquet spectrum of - A + qy in [k/2 -Q,k&apos;2 + Q] is contained in the union of
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the intervais of length e around the points k + k&apos;2 — kl, where k runs over ail points
of the Floquet spectrum of — A + qy with multiplier k0 in [kl — Q,k\ + Q]. To test

whether the interval around such a point k + k&apos;2 — kl actually contains a point of
the Floquet spectrum of — A + qy we proceed as follows. Put fi k —kl. By (a)
and (b) there is kx e (k&apos; + Ry) n K with \kx -k&apos;\£R such that for ail b e r # with
(b, y} t* 0 one has \(kx + b)2 — k2 - pt\ &gt; 2x{kx). Again kx can be found by finitely
many opérations. By part (ii) of the Theorem the interval around k + k&apos;2 — k\ of
length e contains a point of the Floquet spectrum of — A + qy if and only if the

interval of length 2î{kx) around the point (k+k&apos;-kl) +k2x-k&apos;2 k2x + /i
contains a point of the spectrum of — A + q with multiplier fc,.

(2) If q is sufficiently regular then the higher terms in the asymptotic expansion
for the eigenvalues gênerated by the WKB-Ansatz (cf. [ERT2]) can also be

determined by this method.

(3) With some extra work it should be possible to put ail the sets

K(k\y&gt; Q&gt;p) together in a subset of full density in a set of the form
{k&apos; -h ty | &lt;*&apos;, y&gt; 0, |/| :&gt; Cy - \k&apos;\N} for some Cy9 N&gt;0.

In the proof of the Theorem we use the techniques and results of [FKT]. For
koeRd we put AkQt=A +2ik0- V —kl. Then {//(x) is a periodic eigenfunction of
-AkQ + q for the eigenvalue X if and only if the function eKk°-xy^{x) is a Floquet
eigenfunction for the eigenvalue k with multiplier k0. We showed in [FKT] that the

eigenvalues of — Ako + q in a neighborhood of kl are the zeroes of the second

regularized déterminant of a certain infinité matrix. Precisely for r &gt; 0 put

If r is sufficieintly big then the eigenvalues of —AkQ + q in the interval
[&amp;o — ô&gt; ^1 + Q] are the zeroes of det2 of

Gr Rr-k
(1)

Furthermore if (vk)keko + r# lies in the kernel of this matrix then

%keko+r# vkel&lt;k~k°tX&gt; is in the kernel of — àk +q — k. As r-*oo the eigenvalues
and eigenfunctions of Rr approximate those of the whole infinité matrix above.
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PROPOSITION. Assume that \q\f^Q ^\r.
(i) Let kx,..., kn be eigenvalues {allowing multiplicities) of —Ako + q that obey

\kf — k\\ &lt;&gt; Q — 3(?2/(r — Q). Then Rr has at least n eigenvalues (counting multipli-
city) in U;= i [kj - 3Ô2/(r - Q), k, + 3Q2/(r - Q)].

(ii) Let k\,...,X&apos;n be eigenvalues {allowing multiplicities) of Rr that obey

\K-kî\-Q-3Q2Kr-Q)- Then Ak0 + q has at least n eigenvalues

{counting multiplicity) in \J% [A; - 3Q2/{r - Q), X] + 3Q2l{r - Q)].

{m) Let I&lt;=[k20-Q + 3Q2/{r-Q),k20 + Q-3Q2/{r-Q)] be an interval of
length e, such that ail eigenvalues of —Ak() + q and of Rr either lie in I or hâve

distance at least p from I. Let n resp. n&apos; be the orthogonal projections to 9 •¦=

© Xs, ker {-Ako + q - X) resp. 9&apos;== ©,-e/ {ZkeGrvk *«*-*».*&gt; | „ 6 ker {Rr - X&apos;)}.

Then for any feS, V&apos;e3&apos;

l/
2(2\( 2Q2

Proof. We put W{X)-={q{k - l)/{k2- A))t,/e(,0 + r#)XGr. Since \k2-X\*r-Q
for ail X e A ¦¦= [kl -Q,kî + Q] and k e k0 + T#\Gr one has

for A e A (2)

(The operator norm || • \\f and its properties are introduced in [FKT eq. (3.4)].) In
particular 1 H- W{k) is invertible for k e A. So the eigenvalues of —Ako -h q in A are
the zeroes of

dtt(Rr-kl-VU),

where

»-

Furthermore, for a vector y in the kernel of R - Al - VU the vector I li

in the kernel of the matrix (1).

lies
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Similar to [FKT], Lemma 3.2, one gets the bounds

&apos;-Q&apos; - (3)
Q3 2Q2 1

&lt;.

(r-Q)3 (r-Q)2 4&apos;

As in the proof of [FKT], Theorem 3.3, we define the matrix R(A, v) «=

R — A1 + vVU and call the eigenvalues of this matrix

p, (A, v) £ p2(A, v) £ • • &lt;&gt; pk(A, v).

Then

202
|pf(A, v) - p,(A, vO| ^ ^g |v - v&apos;| for A e A; v, v&apos; e [0, 1],

PÀ^v)-pl(A\v)^-^(A-Ar) for A ^ A&apos;; l,X&apos;eA9 v e [0, 1].

The zeroes of pt(A, 0) are the eigenvalues of R while the zeroes of p,(A, 1) in A are
the eigenvalues of — Ako + q in this interval. The estimâtes above show that for ail
v g [0, 1] the function p,( —, v) has at most one zéro in A, and that this zéro moves
with speed at most \(Q2l(r - 0) with v. This proves part (i) and (ii) of the Proposition.

To prove (iii) let n resp. n&apos; be the orthogonal projections onto §-•=

@ x 6, ker (Rr - Al - V{A)U{A)) resp. S&apos;«= @ Àe 7 ker (Rr - A1). First we show that
for ail ve§, v&apos; e$&apos;

Let for example v e ker (Rr - XI - V(X)U(X)) with A e /. Then

hence

||t) I + I V{k)U{X) -v|
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by (3) Since v - n&apos;(v) îs orthogonal to S&apos; and the norm of (Rr - Xl)~~l on $&apos;x îs
at most p

x this gives the estimate (4)

matnx (1) and \Uv\ £ (2Q/(r - Q))\\v\\ by (3) we get the estimâtes stated in part
(ni) of the Proposition

Since for ail v e ker (Rr - Àl - VU) the vector lies in the kernel of the

We now proceed to the proof of the theorem Let

m

We will apply the Proposition with ko k,r= 4Q( 1 + k2)p Spht Gr into the union
of

Let Bt — {l2àlm -h q(l — m))/ me^t be the subblock of Rr corresponding to &lt;£t The
key observation îs that Bx — (k2 — kr2)\ îs equal to a subblock of the matnx
descnbmg —Ak + qy Precisely put

G; ={{k&apos; + b) \ber*,(b9y} 0,\(k +b)2-k&apos;2\ &lt;&gt; r%

Then

and the proposition above also apphes to the operator —Ak +qY and r&apos; Thus
eigenvalues and eigenvectors of Bx are related to those of — Ak +qy In order to
also relate them to eigenvalues and eigenvectors of Rr (and then of —Ak+q) we

use that the entnes q(l - /&apos;) of Rr with / e seu V e &amp;2 are small This will be a

conséquence of

LEMMA Assume that \k&apos;\ &lt; 2y/Q(l + k2)p/2, and

I2y/Q(\ +*2)^ + 72|y|e(l +k2y/n
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Then for ail beT* with \(k +b)2 - k2\ &lt; 4Q( 1 + k2)p one has either

&lt;Z&gt;,y&gt; 0 and \b\ £

or

&lt;Z&gt;,y&gt;*0 and \b\ &gt;

In particular for any I e &amp;l9 I&apos;e &amp;2 one has \l -1&apos;\ &gt; ^/Q( 1 + k2)pl2.

Proof Let b e T* such that \(k + b)2 - k2\ &lt; 4g(l + k2)p. First assume that
&lt;6,y&gt; 0. Then (Jfc -h*)2-k2 (k&apos; + b)2-k&apos;2 so that {k&apos; + b)2 ^ 4g(l +*V +

&amp;&apos;2 ^ 9g(l + A:2K so \b\ £ 3^/Q(l+k2y/2 + \k&apos;\ ^ 5^/Q(l+k2)p/2.
Now assume that &lt;è, y&gt;#0. Write è ft/-h^y with &lt;/&gt;&apos;, y&gt; 0. Since 7 is

primitive |,sy| ^ 27c/|y|. If |,sy| ^ 6&gt;/g(l -hA:2)^2 then there is nothing to prove, so

assume that \sy\ ^ 6^(1 +k2)pl2. Then

(k + b2) -k2 (k&apos; -f è&apos;)2 - k&apos;2 + (r0 + 5)2y2 - ^2y2,

so

+ s\\s\y2-SQ(l+k2)p

n\to\ -
Therefore

\b&apos;\ ^ 8^(1 +k2y&apos;2- \k&apos;\ &gt; 6^Q(\+k2y/2.

From now on we assume that t0 fulfills the hypothèses of part (i) of the theorem.
Then the lemma above applies.

Put

The lemma above implies that

Q

b f(g(k2))&apos;
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Now let /i be a Floquet eigenvalue of —Ak&gt; + qy of multiplicity m fulfilling
\fi — k&apos;2\ &lt; t. By the proposition applied to —A+qy there are at least m
eigenvalues of R&apos;r in the interval [ju - 3g2/(r - g), ju + 3g2/(r - 0]. So there are at least

m eigenvalues of Bx in the interval around fi + k2 — k&apos;2 of length 3g2/(r — g). By
(5) there are then at least m eigenvalues of Rr in the interval around jjl + k2 — k&apos;2

of length 3g2/(r - g) + Q/f(g(k2)). Applying the proposition to — d -h #y we see

that there are at least m eigenvalues of —Ako + q satisfying

Q f(g(k2))

This proves part (i) of the theorem.
For part (ii) we put

c&apos;, y&gt; ^ 0 such that

and \c - c&apos;\ &lt; h(\k\)}.

M:= {k g R^ | there are c # cr in T* with &lt;c, y&gt; ^ 0,

|(Jfc + c)2 - k2\ &lt; 2g, |(ifc + cf)2 - k2\ £ 4g( 1 + A:2

Then we define Ksls the intersection of {k=k&apos; + ty\ \t\ &gt; 2l/2p9 \ty\p î&gt; l/(2y/Q)\k%
\ty\ &gt; ((72/7r)|y| + I2y/Q)((l +k&apos;2Y + \ty2p\)} with R*\Af. In Section 3, Proposition
1, we show that

\{k g (k&apos; -h Ry) nM | \k - k&apos;\ ^ s}\ O(sl~c)

for some e &gt; 0, so K is of density one in k&apos; + Ry.

Now assume that k k&apos; 4- /07 lies in ^- We keep the notation used in the proof
of part (i) of the theorem. Put

and let B2 resp. Bn2 be the subblocks of B2 corresponding to S£&apos;2 resp. g2.
Furthermore let D be the diagonal part of B2. Since for ail / g j£?2&gt; /&apos; e S£&apos;2 one has

by the définition of M

se*2

D
0 -B,

hence

/B, 0 0

iO 0 B
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By minimax B&apos;{ has no eigenvalues in [k2 — Q,k2 + Q]. Therefore the eigenvalues of
0 0\

0 D 0 I in the interval [k2 — Q9k2 + Q] are the eigenvalues of Bx in this

0 By
interval, and the numbers (k + b)2, b e F#, (b, y} # 0 that lie in this interval. We

already know that the eigenvalues of Bx in the interval under considération are
obtained from the eigenvalues of — A+qY by adding k2 — k&apos;2 and shifting
by at most 3Q2/(r — Q). Similarly the eigenvalues of Rr are obtained from
those of -A +q by shifting by at most 3Q2/(r - Q). This yields part (ii) of the
theorem.

To prove part (iii) put

K&apos;,*=\k ek&apos; + Ry\ for ail ief# with &lt;ô,y&gt;#0 one has

K* + b)2 _** + *&quot;_ A | s&gt;

^~rô + 2x{k) J,

m
K&apos;.= f) K&apos;tnK.

In Section 3 we will show that each K\ and hence also Kf has density one in k&apos; H- Ry

(Proposition 2 of Section 3). Now suppose that k e K&apos; is big enough that
\\\kfp~â + 2î(k) £ |ixt - iij| for ail i, j such that ji, # \ir Then the first statement of
part (iii) of the Theorem is trivially true.

Now let k e [pit + k2 - k&apos;2 - f, \it + k2 - ka + f] and f(x) I/e k + r # vtel&lt;l ~ k&lt;x&gt;

be a unit vector in ker — Ak + q — X). Put / «= [ ju, - f, /i, -f f] and £&apos; :=

0^6/ ker (jR^ — /i&apos;)- Then Vi=(vl)IeGr is an eigenvector of Rr — VU to the

eigenvalue X and || (^ )7 6 (k + r #)XGr
|| || t/i; || £ f. Put / := [ /i, - f, ^ + f] and

§i= 0 ^e/ ker (R&apos;r — jj). Let w be the projection of v onto £ Then

Since ail eigenvalues of J i) w
} that lie in [k2 — Q, k2 -f Q] are actually

contained in (J&quot;=, [v, - f, v, + f]
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As in the proof of part (iii) of the proposition we get (using (3) and (6)) that

||t; -w || &lt;4i\k\2p-â.

After part (iii) of the proposition there is $ e ker( — Ak -f qy — fxt) such that\\$\\ \\-* + £ Hence

Under the hypothèses in the theorem f ^ \2Q(\/\toy\2p). So if t0 was chosen big
enough we get the claimed estimate. D

3. Lattice properties

In Section 2 we used two purely lattice theoretic results, which we are going to

prove now. As before fix 0 &lt;&gt;p &lt;&gt;\ and Q &gt; 0, and choose a monotonically
increasing function h(t) ^ 1. With this notation put

M(P, Q, h) := {k e R21 3b, c g T * with &lt;c, y &gt; # 0, (b + c, y &gt; ^ 0 such that

\(k + c)2 - k2\ £2Q,b* 0, \(k + b + c)2 - k2\ £ 4Q(\ + fc2)*

and |*||
PROPOSITION 1. Assume that p &lt;!, A(0 0(min (/1/2(1/2-^,/20. 7Tten

A:&apos; g R2

\{k e*&apos;+ Ry | |fc| ^ r}

e &gt; 0.

The other resuit we needed can be phrased as follows. For any 0 ^ a &lt; 1 and

put

M&apos;(a, fi) «= \k g R2 I there is b g f # with &lt;6, y&gt; ^ 0 such that
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PROPOSITION 2. Letk&apos; g R2 and m&gt;0. Then there is a constant C &gt; 0 such

that for ail fi eR with \fi\£m

Remark. The proofs given below are constructive, i.e. each bounded pièce of the
sets M(p, Q, h) resp. M&apos;(a, n) can be determined by finitely many opérations.

For the proof of Proposition 1 and Proposition 2 we may, after rotating and

scaling the lattice, assume that y (0, 2n). We prove the propositions in the case
k&apos; 0, the gênerai case is similar. To simplify notation write Br -•= [x g R21 |x| &lt; r}.

Proof of Proposition 1. Split M(p, Q,h) into the union of

M\ (P&gt; Q&gt; h) -•= {k g R21 36, c g r # with b2 0, b # 0, c2 # 0 and \b\ ^ h(\k\),

\(k + c)2 - k2\ £ 2g, \(k + b + c)2 - A:2| £ 4g(l + |Â:|2)^},

and

M2(p, Ô» *) &apos;= {* g R21 3*, c g T # with b2 # 0, c2 ^ 0, b2 + c2 # 0 and |6| &lt; A(|it|),

\(k+c)2-k2\^2Q, \(k+b + c)2-k2\&lt;&gt;4Q(l + \k\2Y}.

LEMMA 1. Suppose that h(t) ^ t2p. Then for any e&gt; 0

|Ry n M, (p, g, A) n 5r | O(r2* + *)•

Proo/ Take e &gt; 0 and put

JV«= {â: g Ry | 3c g T#\{0} such that |(A: + c)2 - k2\ ^ 2Q and

Below we show that |{Jfc g N | |it| ^ r}\ O(r2p + C). We claim that there is an R &gt; 0

such that Mxn{k eRy\\k\^R}c:N. So suppose that iteRynM, but k 4 N. By
définition ttiere are b,cgF# with 62 0» ^2^0 and |6|^A(|*|) such that with

|/2 - k2\ &lt;L 2Q and |(/ -h b)2 -12\ £ 6g( 1 + k2)p.
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Since k $ N this implies

\l\-kl\&gt;\k\*&quot; + 2t

and therefore

l2z\k\4&quot; + 2&lt;-2Q. (1)

On the other hand, the inequality |(/ + b)2 -12\ £ 6Q{\ +k2)&quot; gives

Since |Z&gt;,| &lt; h(\k\) &lt;, \kf&quot; we get

which is a contradiction to (1) whenever k is big enough.
It remains to prove the estimate for N. For each c e T#\{0} the intersection of

{k e R21 \(k + c)2 - k2\ &lt; 2Q} with the Une Ry is contained in the interval Jc of
length 2Q/\c2\ around the point (0, -j(\c\2/c2)). The inequalities \(k2 H- c2)2-k%\ £
\k\4p + 2c and \(k + c)2 - k2\ &lt;L 2Q imply cf ^ |fc|^^2c + 2Q. Therefore there is a

compact subset C of N such that for ail r &gt; 0

k\£r}^ (J Jc.

The measure of the latter set is bounded by

4 £

where L is the length of the shortest non-zero vector in F. This proves Lemma 1.

n

We now discuss the set M2. Again for ce F* the intersection of
{k eR2\ \(k + c)2-k2\ ^ 2g} with the line Ry is contained in the interval Jc of

«length 2Q/\c2\ around (0, -{-(\c\2/c2)). If c2/\c2\ is big enough then for any b e F#
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with b2 + c2 # 0 this interval meets

{k e R2 | \(k + b + c)2 - k2\ £ 4g(l + k2)p)

only if

So up to a finite interval Ry nM2 is contained in the union of the intervais Jc over
ail c in the set

p.= I

c2 # 0 and there is b g F # with fe2 ^ 0, Z&gt;2 + c2 9e 0 and

c2 c2

Therefore we put for each b eT*

l^ie^cH) —

Then

r- U

By elementary computation

p*

-1). M * i, 1*2+6 * 1}.
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LEMMA 2. Suppose that p &lt;\, lim,.^ (h~l(t)/t2) oo.

(i) There is a constant A such that for ail but finitely many beF* with

(ii) There is a constant fi such that for ail b e F# with b2¥&gt;0 and ail n e R with
\rj\ &gt; fi\b2\ the intersection of Pb with the Une {x eR2\x2 rj} is contained in the

union of at most two intervais, each of length at most const. (\b\4p~l/b2P)\*l\2p- Hère
const. is a constant independent of b and y\.

Let us first explain how Lemma 1 and Lemma 2 imply Proposition 1. By
Lemma 2 and the assumption on h there is a finite set S c r# such that for ail
b er#\Swith 62#0,

An jceR2

and

T2|-- |è|2
•

Put p :=max {n\b2\ \ b e S}, and for b e r* with b2 ï 0,

\x e Pb max

Then

(J Pb.
ber

Now by Lemma 2 for each |rç|^p and each ief# with 2,Pbn{x €R2\x2 rj} contains at most const. 1 -h \b\4p~l/bip)\fj\2p points of T*.
Let l(t) be the inverse function of Ah~x(t)jt2. The assumptions on h imply that

/(/) O(tl/2-p~c) for some e &gt; 0.
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Then for sufficiently large r

X |jc|£const. Y, t—]+const Z E n-ceP ceT* \C2\ beT* ceT#n Pb\C2\
B*0 \L\\^ Z#0 ||2^2||

The first sum clearly is O(rl/2). By what we said above the second sum is bounded

by
2r

const. £ Z
c2=l ber*

2r
&lt;&gt; const. Yj clp~xKC2)2 0(rx ~e)

c2= 1

So |M2n2?,.| O(rl~6). This, together with Lemma 1, implies Proposition 1.

We now prove Lemma 2. Fix any rç e R, b e F * with &amp;2 # 0. Without loss of
generality we may assume that b2 &gt; 0. Parametrise the line {x e R2\x2 rj} by &lt;P:

&apos;-?(&apos;&gt;*?)&gt; and dénote by f\(t), resp. /2(0&gt; the restriction of the fonctions

+ *4P1 iT&gt; t0 this line-
^j\~o2 -°2j\ *j * \n+b2\p

Then

{t gR|^(0 e Pb) {t e R||/i(0| ^/2(0 and f2 ^ ^(A&quot;1!^!) — 1) — rç2}

The matrix 2 M has ±|è| as eigenvalues. Its isotropic subspaces are
\-b2 -b2)

spanned by the vectors (bx±\b\,b2). The zéros of the restriction of

is aThe restriction of I x + - ](
2 l )l x -h - 1 to the line {x e R2 | x2 t\} i

quadratic polynomial in t with leading coefficient b2 and the zeroes described above,

so it equals b2{t - n(bxlb2))2 - b2b\t\\b2 -h |)2. Therefore
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The function

M

is symmetric about / -bx and increasing monotonically but slower than quadrat-
ically in \t + bx\.

We now show that any intersection point T with/,(r) =f2(T) obeys

£const. \\b\
V2

\tl\*2b2,
(2)

To prove (2) we introduce t J — {bxjb2)t] and observe that the équation

î.e.

2 -1 T(?y H-
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const.
max LJf|_tv V

When |rç| £ 2b2 we get

constconst.
l-2p |A |2P h2 \b\4p

r4p &apos;

&apos;&apos; Iwllrl2^ --w2 &apos;

&apos;

which yields

|t| £ const. max

£ const. J-ii,.
»2

The case |»j | 5 2b2 is treated similarly.
The inequality (2) implies that for any t e Pb {x2 tj}

h
lirM ifl

72

where the constant C is independent of b and rç. So if Pb n {x e R21 x2 &gt;;} is not
empty then

(\b\2 ifM*262,

When 1 &lt;, \tj\ &lt;L 2b2

which is satisfied only by finitely many b&apos;s since /i ~ 1(|i»))/j^&gt;j2 tends to infinity with
\b\. When 2b2 ^ |»/| &lt;: ^(A-&apos;(|6|)/|*|2) with A 1/(2C2) this would imply

which is impossible. We hâve thus shown part (i) of Lemma 2.
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We now prove part (ii). Assume that \rj\ ^ \ib2. Observe that

577

provided fi is chosen sufficiently large. (Consequently Pbn{tj e R21 x2 rj} is

contained in the union of two intervais, one to the left and one to the right of
rj(bjb2). The longer of thèse two intervais is that on the side of rj(bi/b2) opposite
to — bx. See the figure. Define the end points Tn, resp. 7}, of this interval to be the
solution of |/i(0|=/2(0 nearest to, resp. farthest, from rf(bl/b2) on the side of

i

T

r}(bjb2) opposite — bt. To bound \Tf—Tn\ observe that

MTn)=-f2(Tn),

-MT.) =f2(Tf) +f2(Tn),

b2(Tf- Tn)(rf+ Tn - 2i, fy =f2(Tf) +f2(Tn),
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Setting t Tf — rj -~ we hâve that

const. LJ \r\\ &lt;: |t| ^ const. -~ \rj\,
b2 b2

with the upper bound coming from (2) and the lower bound coming from the fact
h h Y ti2- ~11//2

that Tf is farther from rj-± than the zeroes ij-jr± fr^O/ + ^2) of fx{f).

Consequently

|7&gt;-rn|£ constr

\

const

b2

\b\Ap&apos;x

Proof of Proposition 2
Choose a finite set S c T * such that for ail 6 g T * \S with b2 # 0

(ii) for ail fi e [ -m, m] the intersection of {k e R2||(A: -h b)2 - k2 - /i| ^ y-^ with
ri

Ry is contained in the interval on this axis around this point

Then it suffices to show that there is a constant C and that for ail y, e [ — m, m]

The sum under considération is bounded by
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