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Perturbatively unstable eigenvalues of a periodic Schrédinger operator

JOEL FELDMAN, HORST KNORRER AND EUGENE TRUBOWITZ

1. Introduction
Let I" be a lattice of maximal rank in R? 4 < 3, and
r*={beR*|<b,y>e2nZ forall yerl}

the lattice dual to I'. For ¢ € L?*(R?/I') and k € R the spectrum of — 4 + q acting
on the space '

Fi={¥ € Hie(RY) [ Y(x +7) = “Py(x) for all y e I'},
or equivalently, the spectrum of — 4, + ¢q, where

Ay =4 +2ik -V —k?
acting on

L%(RYI)

is called the Floquet spectrum of g with crystal momentum k. For example, the
Floquet spectrum with crystal momentum k when ¢ =0, is the set

{(k+b)*|ber*}.
The corresponding eigenfunctions are
eik+bx>  ber#*,

It is shown in [FKT] that for almost every k € R% and any sufficiently regular
g, there is a density zero subset S(k) of k + I' * such that for all / € (k + I' *) — S(k)
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there is exactly one point in the spectrum of — A4, + ¢ lying in the interval

[12+J qu————il_—c,12+f qu+—-31:7].
RA/T |l| Ré/I lll

Moreover, the corresponding eigenfunctions are close to e “*>. We called the
eigenvalues /2, € (k + I'*) — S(k) of — 4, + g stable under the perturbation g. The
purpose of this paper is to discuss some of the Floquet eigenvalues /2, / € S(k) that
are unstable under the perturbation g.

We now recall the construction of [ERT] Section 3.b. It yields a class of
unstable eigenvalues. Let y e I' — {0}, and set

q,(x) = L q(x + sy) ds

= Z qA(b) ei(b,x),

bel #
<byy)> =0
where
é(b) = __1_____ q(x) e ~Kbx>
‘Rd/ F l Rd/[‘

is the “b’th” Fourier coefficieint of ¢. The averaged potential g,(x) is constant on
all translates of the line R - y.

Fix k’ € R% Let ¢ be an eigenfunction of — 4 + ¢,(x) with crystal momentum &’
and eigenvalue u that is constant on all translates of the line R - y. Then,

Y(x) = e ¢(x)

is in the space &, ., and satisfies

W‘/—" [(=4 + QW — (2 + | = 0.

The last estimate, combined with the spectral theorem, guarantees that there is a
genuine Floquet eigenvalue A of ¢ with crystal momentum ry + k’ close to %% + p.
Consequently, the unperturbed eigenvalues /2, [ near the line R - y, may be moved



Perturbatively unstable eigenvalues 559

far out of the interval

1
[12+J qu-———?_——__—c,lz+jv qu+—21-:;:l
RYT || RYT |

by u and are therefore unstable in the sense of [FKT]. This phenomenon is
consistent with the observation made in [FKT], Section 4, that points of k + I'*
close to a line R -y for some y e I' lie in S(k).

The main object of this paper is to show that for each primitive y e I' and
almost every k’ satisfying <(k’,y> =0 and almost every sufficiently large ¢ the
“WKB” Floquet eigenvalue A produced in the last paragraph is bounded away
from all other points of the Floquet spectrum of g with crystal momentum ¢y + k’,
and that the corresponding eigenfunction is close to the quasimode

Y(x) = e" " P(x).

We first, using the techniques of [FKT], make the WKB construction above
more quantitative, giving estimates for the allowed values of ¢ and the accuracy
with which Floquet eigenvalues of ¢ are determined. See, (i) of the Theorem below
for a precise statement.

Next, for d = 2, counting carefully, it is shown ((ii) of the Theorem) that there is a
constant Q, depending only on a norm of ¢, such that for all k lying in a density one
subset of the line £’ + R - y the eigenvalues of g with crystal momentum k in the interval

[k*—Q,k*+ 0]

are all accounted for by stable eigenvalues of — 4 and eigenvalues constructed as
above from —4 +g¢,.

Finally (part (iii)) for most k, the eigenvalues in the interval [k?— Q, k* + Q]
accounted for by —A4 are effectively separated from those accounted for by
—4 + g,. This allows us to estimate how well the true eigenfunctions are approxi-
mated by the quasi-modes Y(x) = e @(x).

2. Construction of eigenvalues and eigenfunctions

As in [FKT] we introduce a monotonically increasing function f =2 1 on R, such
that f(s) f() 2 f(s + f) and use the f-weighted /;-norm |q|, =Z; r« f(|B)|4(0)|-
Furthermore choose constants p <3, Q >0. We restrict ourselves to potentials g
with mean zero and |gq||, < Q.
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THEOREM. Let y be a primitive vector of I' and k' € R? with <k’,y)> =0. Let
g be a function on R/l with mean zero and ||q|, < Q.

(i) Let 1, obey 1o 2 2", |to7]? 2 1/(2/Q)|K’| and |tyy| = (72Qy|/7) + 12,/0Q) -
(1 + k%7 + |toy|*). Let u be any Floquet eigenvalue of — A + q, (acting on functions
on the hyperplane {x € R?|{x,y) =0}) with multiplier k' of finite multiplicity m
fulfilling |u — k| < Q —t where

1 1
=4 — .
' Q<|’07| 7 f(6\/§|tovl”))

Then there are at least m Floquet eigenvalues 2 (counted with multiplicity) of — A4 + q
with multiplier k' + tyy satisfying |p + t3y?> — 4| <.

(ii) Suppose in addition that d =2, p < 1/2. Let h(t) = 1 + min (¢'/2(72=P_2p),
Then there is a subset K = K(k', y, Q, p, h) of density one in k’ + Ry such that for any
k=k’+1tyy € K the following holds. Let A,,...,A, be Floquet eigenvalues of
— A + q with multiplier k in the interval [k*> — Q + 1, k* + Q — 1] where

1 1 l
f(k) = 4 + ' |
t(k) Q(Itovlz” £(6/0Qlts7]7) f(h(|k|)))

Let py,...,H, be the Floquet eigenvalues of —A +q, with multiplier k' in
the interval [k?—Q,k*+ Q), v,==u, +k*—k”, and v,,,,,...,v, the numbers
(k +b)%, bel”* with<{b,y>#0 and (k + b)?> € [k?> — Q, k* + Q). All these numbers

v, v, Vs k* . v W, v, Vs
’1— f — 4
¢ Q ok Q

are counted with multiplicity. Then there is an injection o : {1,...,r}—>{l,...,n}
such that for i=1,...,r

|4 — Vo | < £

Furthermore v, is in the image of ¢ whenever |v;, —k?| < Q — 1.
(iii) Suppose that for large t

f(6/Q|0y|7) = |ty and  f(h(\/1)) = |ty |
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Then for any 0<06 <2p there is K'< K of density one such that for every
k€K' the sets \)7_pmir[v,—%,v;+7%] and [p; + k> —k?— %, 4, +k*— k" + 1],
(o, + k2 =k =%, py, + k> =k + 1], .., [, +KP—k? =1,y + k> =k + 1],
where ;.. .., W, runs over the different Floquet eigenvalues of —A4 +gq, to the
multiplier k', are mutually disjoint and have distance at least 1/|k|* ~° from each other.
If for some i=1,...,m one takes a Floquet eigenvalue A of —A4+q in
[ +k?>—k? =1, u; +k*— k> + 1) with multiplier k and if Y is a normalized
eigenfunction for that eigenvalue then there is a Floguet eigenfunction ¢ of —4 + g,
for the eigenvalue i, and multiplier k' that is constant in y-direction such that

[y — e *k=*2¢| < const. Q/|tyy]°.

Remarks

(1) In [ERT] and also [KT] it was shown that the Floquet spectrum of —4 + ¢
determines that of —4 + ¢g,. The proofs given there were non-constructive. For
d =2 the theorem above gives a constructive way of determining the Floquet
spectrum of —A4 + ¢ from that of —4 +¢,. Suppose you want to determine the
Floquet eigenvalues of —4 + ¢, with multiplier k¥” (<k’, y> = 0) up to accuracy e.
By minimax they are contained in |J,cr# sy =0l(k’+b)*—Q, (k" +b)*+ Q).
We show how one determines the desired spectrum up to accuracy € in one of
these intervals. Without loss of generality we may assume that this is the interval
[k’ — Q, k’>+ Q). Choose R so big that

(a) the set {k’+ty ||t||[y| < R}nK(k’, 7, Q, p, h) has measure at least 3R/2 in

k' + Ry.
(b) For each u € [—Q, Q] the set

{k’+ 1ty ||t]ly| € R, there is b € I'* with (b, y) # 0 such that

|k + 1ty + b)> — (k" + 1y)* — p| < 2%

k' +ty[}

has measure at most R/2 in £’ + Ry.

(c) T|k’+ Ry| <¢/2.

It is possible to find such an R by part (ii) of the Theorem above and
Proposition 2 of Section 3. We will see that bounded pieces of the set K can be
determined by finitely many operations. Similarly the constants involved in Propo-
sition 2 of Section 3 can be estimated in terms of k’, y and the lattice. So the choice
of R is constructive.

Now choose k, € (k' + Ry) n K with |k, — k’| = R. By part (ii) of the Theorem
the Floquet spectrum of —4 + g, in [k’> — Q, k> 4+ Q] is contained in the union of
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the intervals of length ¢ around the points 1 + k"?> — k3, where A runs over all points
of the Floquet spectrum of — 4 + g, with multiplier k, in [k — Q, k3 + Q). To test
whether the interval around such a point 4 + k"> — kj actually contains a point of
the Floquet spectrum of —4 + g, we proceed as follows. Put y =4 —kj. By (a)
and (b) there is k, € (k’ + Ry) n K with |k, — k’| < R such that for all b € I'* with
(b, 7> #0 one has |(k; + b)> — k7 — p| > 27(k,). Again k, can be found by finitely
many operations. By part (ii) of the Theorem the interval around 4 + k"> — k3 of
length € contains a point of the Floquet spectrum of —4 + g, if and only if the
interval of length 27(k,) around the point (A +k’ —k3) + k?—k>=k?+ u con-
tains a point of the spectrum of —A4 + ¢ with multiplier k&,.

(2) If g is sufficiently regular then the higher terms in the asymptotic expansion
for the eigenvalues generated by the WKB-Ansatz (cf. [ERT2]) can also be
determined by this method.

(3) With some extra work it should be possible to put all the sets
K(k’,y, Q,p) together in a subset of full density in a set of the form
{k'+1ty |<k’,y>=0,|t|2C, - |k’|"} for some C,, N > 0.

In the proof of the Theorem we use the techniques and results of [FKT]. For
ko€ R? we put 4, =4 + 2iky- V — k. Then y(x) is a periodic eigenfunction of
— 4, + g for the eigenvalue 4 if and only if the function e“**y/(x) is a Floquet
eigenfunction for the eigenvalue A with multiplier k,. We showed in [FKT] that the
eigenvalues of —4, + ¢ in a neighborhood of k2 are the zeroes of the second
regularized determinant of a certain infinite matrix. Precisely for » > 0 put

G =G,3={(k0+b) |b Er#, |(k0+b)2—kg| Sr}
R, :=(k*0y + 4k — D) seo,-

If r is sufficieintly big then the eigenvalues of —A4, +g¢ in the interval
[k2— Q, k% + Q] are the zeroes of det, of

»leky+T*
G,
G, | R -4 gk = 1)
gk —1) 5 gk =1 | - (1)
kKek,+T* | k2=2 %1%z,

Furthermore if (Vi)cex,+r+ lies in the kernel of this matrix then
Zhcko+r» U €<% is in the kernel of —A4, +¢ — 4. As r — oo the eigenvalues
and eigenfunctions of R, approximate those of the whole infinite matrix above.
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PROPOSITION. Assume that ||q|, < Q <gr.

(1) Let Ay, . .., A, be eigenvalues (allowing multiplicities) of — A, + q that obey
|A, — k3| < Q —3Q%(r — Q). Then R, has at least n eigenvalues (counting multipli-
city) in \Jj_ 1[4 — 3Q%( — Q). 4, + 30%(r — Q).

(i) Let Ay,..., A, be eigenvalues (allowing multiplicities) of R, that obey
A —k3|<Q—-30%(r—Q). Then A, +q has at least n eigenvalues
(counting multiplicity) in \ )7_, [4; —30%/(r — Q), 4 + 3Q%/(r — Q)].

(i) Let Ic[kd—Q +30%(r —Q),k3+ Q —30?%(r — Q)] be an interval of
length ¢, such that all eigenvalues of — A, +q and of R, either lie in I or have
distance at least p from I. Let n resp. ©’ be the orthogonal projections to 9 :=
@ircrker(=dp,+q—Dresp. 8= @ s {Zkcq, v e | v e ker (R, — 1)}
Then for any Y € 3, ¥ € §’

| —m(¥)] _1 20?2 20
| = (P 1( 2Q2) 20
] S\ Tr—o)tr—g

Proof. We put W(4):=(g(k — 1)/(k? = Dise o+ r#ng,- Since k> —Ai|zr—Q
for all A e A:=[k3— Q,k5+ Q] and k € k, + I *\G, one has

r—?Q Q for 4 € A. (2)

W@ |, < , “G_or

1 d

(The operator norm | - ||, and its properties are introduced in [FKT eq. (3.4)].) In
particular 1+ W(4) is invertible for 1 € A. So the eigenvalues of —4, +¢qin A are
the zeroes of

det (R, — A1 —-VU),
where

1 4k =D
U::( Z (1 + W)kJ}’ ) k,z—l ’
k¢G,leq,

k'e(kg+ I #)\G,

Vi=(Gk —Diec,i¢a,-

Furthermore, for a vector y in the kernel of R — A1 — VU the vector [—-yUy] lies

in the kernel of the matrix (1).
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Similar to [FKT], Lemma 3.2, one gets the bounds

202
-Q’
2Q2 1
Q)3 (r-°Q)2 4’

As in the proof of [FKT], Theorem 3.3, we define the matrix R(4,v):=
R — 21+ vVU and call the eigenvalues of this matrix

20

vl ==,

Vol =
(3)

[a0o] <52

pl(l’ V) = p2(l9 V) SRS pk(ﬂﬁ V).

Then

2

for Ae A; v,v e[0,1],

lpi(}‘a V) - pi()'s V,)I =
p;(4,v) —p;(4,v) < — %(A — A" for A2A4"; A, A eAd, vel01]

The zeroes of p;(4, 0) are the eigenvalues of R while the zeroes of p;(4, 1) in A are
the eigenvalues of —4, + ¢ in this interval. The estimates above show that for all
v € [0, 1] the function p,( —, v) has at most one zero in A, and that this zero moves
with speed at most $(Q%/(r — Q)) with v. This proves part (i) and (ii) of the Proposition.

To prove (iii) let # resp. #’ be the orthogonal projections onto §J:=
@ ser ker (R, — 41— V(A)U() resp. §":= @ 1, ker (R, — A1). First we show that
forallved, ved

gl 1, 200 botol L, 20) )
" Sp £+r-Q b o] p €+r——Q . (4)

Let for example v € ker (R, — A1 — V(A)U(A)) with A € I. Then

[(R, — AD)#E () — v +v)| < €|7' @) |,
hence

IR, — A1)(#F () —v) || S €||# @) | + | (R, — A1) - 0|

<eo] + |[VAUG) -] < (e +

2l
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by (3). Since v — 7(v) is orthogonal to §” and the norm of (R, — AD)"'on §tis
at most p ~' this gives the estimate (4).

Since for all v € ker (R, — A1 — VU) the vector UUU lies in the kernel of the

matrix (1) and ||Uv| < (2Q/(r — Q))|lv| by (3) we get the estimates stated in part
(111) of the Proposition. O

We now proceed to the proof of the theorem. Let
k=k"+tyy in R

We will apply the Proposition with k, =k, r = 4Q(1 + k2)”. Split G, into the union
of

Z={l€G,|k—1y>=0},

Ly={leG,|<k—1y>+#0}.
Let B;:=(1%6,,, + (I —m)), -« », be the subblock of R, corresponding to #;. The
key observation is that B, — (k*—k’?)1 is equal to a subblock of the matrix
describing — 4, + g,. Precisely put

Gr={(k'+b) [bel*, {b,y>=0, |k +b)> k">

Ry = (8 + 4~V 5

< r’},

Then
B, — (k*—k’>1=R,

and the proposition above also applies to the operator —4, +g¢, and r’. Thus
eigenvalues and eigenvectors of B, are related to those of —4, +g¢,. In order to
also relate them to eigenvalues and eigenvectors of R, (and then of —4, + g) we
use that the entries §(/ — /") of R, with /e &, I’e &, are small. This will be a
consequence of

K’

LEMMA. Assume that [k’| < 2./Q(1 + k?)7?2, and

Ity 2 12./0(1 + k%72 + 72y|Q(1 + k?)*/n.
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Then for all b € I'* with |(k + b)*> — k?| < 4Q(1 + k?)? one has either

<b,y>=0 and |b| <5./Q(1 + k?)*?

or
(b, y>#0 and |b| 2 6./Q(1 + kP2,

2 /Ol + k)2,

Proof. Let beI'* such that |(k + b)> — k?| < 4Q(1 + k?)”. First assume that
¢b,y>=0. Then (k +b)>— k%= (k' + b)>— Kk’ so that (k' + b)?> <4Q(1 +k?” +
k2 <90(1 + k)P so |b| < 3,/Q(1 + k»)P2 + |k’| < 5./Q(1 + k)P~

Now assume that (b,y)> #0. Write b =b"+ sy with {(b’,y> =0. Since y is
primitive |sy| 2 2n/ly|. If |sy| 2 6\/@_(1 + k?)?”> then there is nothing to prove, so
assume that |sy| < 6\/6(1 + k?)?2, Then

In particular for any le £\, '€ &, one has || =1’

(k+b%) — k2= (k' +b)2 =k + (1o + 9% — 13%,
SO
(k' +5)2 2 |(to + 5)> — 13y> — k™ — 4Q(1 + k)7

> |2ty + s||s|y? — 8Q(1 + k2P
> 2n |21 + 5| — 8Q(1 + k?)?

> 7t|ty| — 12”*/6 (1 + k%P2 —8Q(1 + k?)” 2 64Q(1 + k?)*.

[7]
Therefore
2 8./0(1 + k)P — |k’| 2 6,/Q(1 + k?)?~. O

From now on we assume that ¢, fulfills the hypotheses of part (i) of the theorem.

Then the lemma above applies.
Put

g(t)=6/0(1 + 7=,

The lemma above implies that

B, 0
R, "(0 Bz)

b/

0
. 5
< 7eld) (%)
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Now let u be a Floquet eigenvalue of —4, + ¢, of multiplicity m fulfilling
|u —k’?| < 1. By the proposition applied to —A4 + g, there are at least m eigen-
values of R, in the interval [u — 3Q%/(r — Q), u + 3Q?/(r — Q)]. So there are at least
m eigenvalues of B, in the interval around u + k* — k’? of length 3Q?/(r — Q). By
(5) there are then at least m eigenvalues of R, in the interval around u + k% — k"
of length 3Q%/(r — Q) + Q/f(g(k?). Applying the proposition to —4 + g, we see
that there are at least m eigenvalues of —4, + g satisfying

60> 0

r—0 flek?)

s4Q( 12 + 1 )
¥ £(6/Qlte7]”)

This proves part (i) of the theorem.
For part (ii) we put

lp+k?—k2— 3| <

M:={k e R?|there are ¢ # ¢’ in I'* with {c¢,y) #0, {c¢’,y)> #0 such that
Ik + ¢)? — k2| < 20, |(k + ¢')* — k?| < 40(1 +k?)” and |c — ¢’| < h([k)}.

Then we define K as the intersection of {k =k’ + ry | [t| = 2%, || 2 1/(2./Q) |k,
lty] 2 ((72/m)|y| + 12/@)(1 + k%) + |ty??|)} with R‘\M. In Section 3, Proposition
1, we show that

[tk e k" +R) AM ||k —k'| <s}[=0(s""9)

for some ¢ >0, so K is of density one in k' + Ry.
Now assume that k =k’ + 7y lies in K. We keep the notation used in the proof
of part (i) of the theorem. Put

Pr={le L,||P—kY<20}, Ly=L\Ls,

and let B resp. B5 be the subblocks of B, corresponding to #; resp. Z5.
Furthermore let D be the diagonal part of Bj. Since for all / € &,, I’ € £/ one has
|l —I'| = h(|k|), by the definition of M

Ly Ly
D 0)_ 9
(0 B) Bl = ey
hence
B, 0 0
Q 0
R -0 D 0]}|=< + : (6)
0 0 B f(gk?)  f(h(|k))
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By minimax B} has no eigenvalues in [k — Q, k2 + Q). Therefore the eigenvalues of

B, 0 0

0 D 0 ] in the interval [k?— Q, k?+ Q] are the eigenvalues of B, in this

0 0 B
interval, and the numbers (k + b)?, b e I' *, {b, y)> # 0 that lie in this interval. We
already know that the eigenvalues of B, in the interval under consideration are
obtained from the eigenvalues of —A4 +g¢, by adding k*—k’> and shifting
by at most 30?/(r — Q). Similarly the eigenvalues of R, are obtained from
those of —A4 + g by shifting by at most 3Q?/(r — Q). This yields part (ii) of the
theorem.

To prove part (iii) put

K; =={k ek’ + Ry| for all b e I'* with (b, y) #0 one has

1

K= () K;nK.

i=1

In Section 3 we will show that each K; and hence also K’ has density one in £k’ + Ry
(Proposition 2 of Section 3). Now suppose that ke K’ is big enough that
1/|k[* =2 + 2#(k) < |p; — ;| for all i, j such that p, # u,;. Then the first statement of
part (iii) of the Theorem is trivially true.

Nowlet Ae[y, +k>—k?—1, u+k*>—k?+t)and P(x) =3, p o ru v, 0%
be a unit vector in ker(—4d,+qg—4). Put I:=[u,—% p+1% and §:=
@ werker (R, —p"). Then v:=(y),.s is an eigenvector of R, — VU to the
eigenvalue A and ||(v,)icw+r#png, | =|Uv| <% Put I=[p,—% p;+1] and
§:= @ ,cs ker (R, — ). Let w be the projection of v onto J. Then

”(<B b 3) } ”")w

B
Since all eigenvalues of ( 'D

< f|w].

B") that lie in [k2— Q, k*+ Q] are actually
2
contained in | J7_, [v, — £, v; + 1]

” ((B b B) - )(v —w)

1
2 s 10 =)
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As in the proof of part (iii) of the proposition we get (using (3) and (6)) that
o —w| < 4t|k|> 2.

After part (iii) of the proposition there is ¢ € ker (—4, + g, — ;) such that
| —Zicq we<!—¥=| < 4t|k|” % + . Hence

| & — F| <8¢k|r—¢ + 22
Under the hypotheses in the theorem 7 < 12Q(1/|t,y|*). So if t, was chosen big
enough we get the claimed estimate. O
3. Lattice properties

In Section 2 we used two purely lattice theoretic results, which we are going to
prove now. As before fix 0<p <1 and Q >0, and choose a monotonically
increasing function A(f) = 1. With this notation put

M(P,Q,h):={k e R*|3b,c e I'* with {c,y) #0, (b +c,y>+#0 such that
(k +0)> — k2 <20, b #0, [(k + b + )2 — k?| < 40(1 + k)7
and |b] < h(|k])}.

PROPOSITION 1. Assume that p <%, h(t) = O(min (t'2V2=P), 1), Then for
each k’ € R? '

{k ek’ + Ry ||k|<r}nM(p,Q, h)|=0¢"'"9
for some ¢ > 0.

The other result we needed can be phrased as follows. Forany 0 <a <1and u e R
put

M (a, p) = {k e R?|there is b e I'* with (b, > #0 such that

1
k+b)?*—k?*—p 5“7}-
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PROPOSITION 2. Let k'’ € R?> and m > 0. Then there is a constant C > 0 such
that for all p € R with |p|<m

Kkek’+Ry||k|<r}nM(au|<C-(1+r' 9.

Remark. The proofs given below are constructive, i.e. each bounded piece of the
sets M(p, Q, h) resp. M’(a, u) can be determined by finitely many operations.

For the proof of Proposition 1 and Proposition 2 we may, after rotating and
scaling the lattice, assume that y = (0, 2n). We prove the propositions in the case
k’ =0, the general case is similar. To simplify notation write B, = {x € R? | |x| <r}.

Proof of Proposition 1. Split M(p, Q, k) into the union of

M,(p, Q,h)={k eR?|3b,c e T* with b,=0, b #0, ¢, #0 and |b| < A([k
|k + ) — k% <20, |(k + b + )2 — k7 < 4Q(1 + [k)?},

)

and

M,(p,Q,h):={k e R?|3b,c e I' * with b, #0, ¢, #0, b, + ¢, # 0 and |b| < h(|k]),
|k +¢)? — k¥ <20, |(k + b+ ) —k? <4Q(1 + |k])?}.

LEMMA 1. Suppose that h(t) < t*”. Then for any ¢ >0
IR'}’ li(pa Qa h) f'\B,I = 0(r2p+c).
Proof. Take ¢ >0 and put

N:={k € Ry | 3c e I *\{0} such that |(k + ¢)> — k?* < 2Q and
l(k2 + Cz)z e k%l < |k|4p+2c}'
Below we show that |{k e N| |k| < r}| = O(r***). We claim that there is an R >0
such that M, n{k e Ry | |[k| 2 R} = N. So suppose that k e Ry n M, but k ¢ N. By

definition there are b,c e I'* with b,=0, ¢, #0 and |b| < h(|Jk[) such that with
l:i=k +c

|IP— k3 <20 and |(/+b)*—1*<60(1+k?".
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Since k ¢ N this implies
= k3] = fkftr
and therefore
B2 |kl +% - 20Q. (1)
On the other hand, the inequality |(/ + 5)? — I?| < 6Q(1 + k?)? gives

Rl -+ < 2+,
1

Since |b,| < h(|k|) < |k[* we get

6
24 < l—b% (1+ k27 + k|,
1

which is a contradiction to (1) whenever k is big enough.

It remains to prove the estimate for N. For each ¢ e I' *\{0} the intersection of
{k e R?||(k + ¢)>—k?* <2Q} with the line Ry is contained in the interval J, of
length 2Q/|c,| around the point (0, —3(|c[*/c,)). The inequalities |(k, + ¢,)? — k3| <
k|*+2 and |(k +¢)*—k? <2Q imply c}< |k|**2+2Q. Therefore there is a
compact subset C of N such that for all r >0

{keN\C|lk|<r}ec U J.
'Czl sr+1
The measure of the latter set is bounded by

r r2p+( 4Q

62'—“]

where L is the length of the shortest non-zero vector in I'. This proves Lemma 1.
O

We now discuss the set M,. Again for celI'* the intersection of
{k e R?||(k + ¢)*—k? <20} with the line Ry is contained in the interval J, of
‘length 2Q/|c,| around (0, —3(|c[*/c,)). If ¢?/|c,| is big enough then for any b e I'*
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with b, + ¢, # 0 this interval meets

{k eR?||(k + b + )2 — k| < 40(1 + k?))

only if
E_CHD op Lo+
c; Cy+b, lea+ by +2°

So up to a finite interval Ry n M, is contained in the union of the intervals J, over
all ¢ in the set

P:={cc—l‘* | c; #0 and there is b € I'* with b, #0, b, + ¢, # 0 and

lc +b|*
drewx ol lb!Sh(lc |) }

Therefore we put for each be I''*

¢ (c+b)?

Cy Cy + bz

x* (x+b)?
X7 X7 + b2

|x + b|*
6Q IX2 + b2|l+2p ’

szz{x € RZ |x2| 2 1, |x2+b2| = 1,

x2 2 |x,|(h='(Jb)) — 1)}.

Then

P=|J (@,nT*).
ber#*
by#0

By elementary computation

bY( b —b b\ 1
] 2 i 2 1 b 1 3
4 {xER (x+2)(-b1 —-b2)<x+2)+4bzlb|
x + b|*
<6Q |3|c +b|'2p X2, x22 [ |(h 1B — 1), |x2] 2 1, |x2 + b,| 2 1}.
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LEMMA 2. Suppose that p <3, lim,_, , (h~'()/t?) = .
(1) There is a constant A such that for all but finitely many beT'* with
b2 # 09

-1
R L R

(11) There is a constant u such that for all b e I'* with b, # 0 and all n € R with
In| = ulb,| the intersection of P, with the line {x e R*|x,=n} is contained in the
union of at most two intervals, each of length at most const. (|b|* ~'/b%¥)|n|*. Here
const. is a constant independent of b and .

Let us first explain how Lemma 1 and Lemma 2 imply Proposition 1. By

Lemma 2 and the assumption on 4 there is a finite set S = I'* such that for all
b e I' *\S with b, #0,

P,,m{xeRszz[sfl—_—l;%,zﬁD}:Q

and

(2

plb,| = A4 P

Put p:=max { u|b,||b € S}, and for b e I'* with b, #0,
-1
P, = {x € P, | |x,| 2 max <y‘b2|, A h |b(llzbl))}

Then

Pc{xeR?||x,|splu |J B,
by so

Now by Lemma 2 for each |p|=p and each bel* with b,#0,
P, n{x e R?*| x, =1} contains at most const. (1 + [b|*~'/6%")|n|** points of I'*.

Let /(¢) be the inverse function of 4k ~'(f)/t. The assumptions on 4 imply that
I(1) = O@'?—7~) for some € > 0.
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Then for sufficiently large r

Y |J.|<comst. Y L1 comst. :
ceP celr# |c2, ber# cer#nbp, IC2|
J.N B, # & 1<|ca]<p by#0 [c]2S2r|cz|

Jel? < 2r|c 5|

The first sum clearly is O(r'/?). By what we said above the second sum is bounded
by

2r I l4p—1
const. y Y <l + G )czl’“l <

cr=1 bel#*
|8] < I(cy)

2r
<const. Y, ¢ 'l(c,)?>=0(r'"")

(.‘2=l

So |M,n B,|=O(r' ). This, together with Lemma 1, implies Proposition 1. O

We now prove Lemma 2. Fix any neR, beI'* with b, # 0. Without loss of
generality we may assume that b, > 0. Parametrise the line {x € Rx,=n} by &
t—(t,n), and denote by f,(¢), resp. f,(f), the restriction of the functions

b b, —b b 1 In| I
(x + —2—)(_1)2 __b;)(x + —i) +3 b,b?, resp. 6Q|x + b|* W+ b to this line.
Then

{teRB() e P,}={teR|Ai()| <fo() and 22 nh='(|b]) — 1) — 12}

b, —
The matrix ( b2 : ) has + |b| as eigenvalues. Its isotropic subspaces are
-2 T2

spanned by the vectors (b, %|b|,b,). The zeros of the restriction of

b bz —bl b 2 é_l_ l l
(x + )( b _bz)(x + 2) to {x eR*}x,=n} are at 1 =1 bzi lbl(b2+2).

b — ) )

The restriction of (x + 5)( zz :1)(x + %) to the line {x eR?|x, =7} is a
— — U2

quadratic polynomial in # with leading coefficient b, and the zeroes described above,

so it equals b,(t — n(b,/b,))* — byb*(n/b, + 3)°. Therefore

2
70 =b(1=n3t) =T+ b
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|f1(2)]
; t
ny
A()
—n(n+ ba)+
The function
7) = 2 n2p 1N
S2(1) = 60[(t + b))* + (n + b,)°] o+ by)%
is symmetric about t = — b, and increasing monotonically but slower than quadrat-

ically in |r + b,|:
We now show that any intersection point 7 with f,(T) = f,(T) obeys

|b|9 lr]ISsz,

< const. |b_|I | (2
b, "

b,
T

Iﬂl 2 2b2.

To prove (2) we introduce © =T — (b,/b,)n and observe that the equation

i b,

1.e.
2

szz :ﬂ?“(ﬂ +b2) +6Q ‘52+2‘b“l'f(7] +b2) +|‘l')"|i(" +b2)2 zp__"t'l—‘"
b, b, b3 (1 + by)%
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implies

const. In| b,
g —— — 7% —
T G T {(ﬂ+bz)2”1 ) lnllsz

lo[*

’ r’b (’7 +b2)5 b4p

In|(n + bz)z”}

When [n| 2 2b, we get

n|t -2 b. 12 bla
72 < const. max {lbzl T, ]b|2|1'|+2” In[z[?, bz'? 9bll-la-4p n|' + 23,

which yields

|t| < const. max {|11|”2,

%;lp/( |n|1/(2 2p) lbllr]| ('bl> |r’|1/2+p}

< const Ml |
Ayl
b,

The case || < 2b, is treated similarly.
The inequality (2) implies that for any ¢t € P, {x, =1}

5] if |n| < 2b,,

| < ¢S b
5. nl

= e+

if |n| = 2b,

where the constant C is independent of b and 5. So if P, n{x e R*| x, =1} is not
empty then

6P if | < 2b,,
h=Y(b) = 1) —n2 < C?2{|b]? .
Imlca="((6]) = 1) —n* |bL n? if |g| = 2b,.

When 1 < || < 2b,
h='([b) < (C*+4)p)* +1,

which is satisfied only by finitely many &’s since £ ~'(|b|)/|b|* tends to infinity with
|b|. When 2b, < |n| < A(h—'(|])/|b|") with 4 =1/(2C?) this would imply

p n~'(6D

h_l(’bl)—l 2b2 s

which is impossible. We have thus shown part (i) of Lemma 2.
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We now prove part (ii). Assume that || > ub,. Observe that

b, b2
fl(n-,;;)— —n—l;;(n +b,) <0,

(b b
A(r) <5

provided p is chosen sufficiently large. (Consequently P, {n e R?|x,=n} is
conlained in the union of two intervals, one to the left and one to the right of
n(b,/b,). The longer of these two intervals is that on the side of n(b,/b,) opposite
to —b,. See the figure. Define the end points T, resp. T, of this interval to be the
solution of |f,(¢)| =/»(r) nearest to, resp. farthest, from n(b,/b,) on the side of

| l
—b 77%21' 1, Tf

n(b,/b,) opposite —b,. To bound |T,— T,,| observe that

H(Ty) =1(Ty),
fl(Tn) = _f‘Z(Tn)’
= fi(Ty) —fi(T,) =fo(Ty) + f5(T),

b,
= b,(T,— Tn)(Tf+ T,—2n 7)‘2‘) = fo(T;) + £o(T,),

2 £
= |T,— T, sz--fil%b—.
2 1
T, an
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: b,
Setting t =T, —1n B— we have that
2

const. L ||n| <t < const. -

with the upper bound coming from (2) and the lower bound coming from the fact
b 5 1/2
that T, is farther from ”}Ij—l than the zeroes 7 Zl + [11 {;3(11 + b;_):l of f,(2).
2 2 2

Consequently

b] 2 . 2p
T+n—+b, ) +(n+by)
[Tf—-T,,ISConst—l— bz i
b, | (n + by)%

< const — 197 - Un|'—2
b,

b~

< const ———
by

In|* O

Proof of Proposition 2
Choose a finite set S < I' * such that for all b e I' *\S with b, # 0

Ibzla -1
b* - w*
1
(ii) for all u € [ —m, m] the intersection of {k € R?|(k + b)*> —k? — p| s - with

(i) b>=22m, 4 <m

Ry is contained in the interval on this axis around this point

—b2—y . lbz‘a——]
e | OF 4=
(0, 2b, )o radius b — )

Then it suffices to show that there is a constant C and that for all u € [ —m, m]

] < Cri =,
bel #\S,b,#0
Ip,nB, # &

The sum under consideration is bounded by

Ibzla——l Ibzla-l
o TE— o L e
b Fr (BP—p)* T |b[*

2 2
b B rrim b2 < 4(r +2m)lb,|.
46|

8 < O((r +2m)' —9), O
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