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Large time behavior of the heat kernel: the parabolic
A-potential alternative

Isaac Chavel1 and Léon Karp2

Let M be a noncompact Riemannian manifold with Laplace-Beltrami operator
A acting on functions on M,À= k(M) the bottom of spec(— A), and attendant
minimal positive heat kernel p(x9 y, t) (where (x, y, t) îs an élément of
M x M x (0, -f oo In this note we prove the foliowing

THEOREM For ail x,y in M we hâve the existence of the limit

km e&quot;p(x,y,t)=&lt;F(x,y), (1)
/î + oo

for which we hâve the following alternative
Either &amp; vanishes identically on ail of M x M, in which case À possesses no L2

eigenfunctwns, or !F is stnctly positive on ail of M x M in which case k possesses a

positive normahzed L2 eigenfunction &lt;/&gt; {normalized in the sensé that Us L2 norm is

equal to 1) for which

km e&quot;p{x,y,t) &lt;j&gt;(x)(Ky) (2)
Î

locally uniformly on ail of M x M Furthermore, if M is noncompact Riemannian

complète with bounded geometry (to be explicated below), then

Irai &lt;t&gt;(x) 0 (3)
x-* oo

The simplest example of the case #&quot; 0 is M&quot;, n ^ 1, m which case we hâve

X 0, p(x,y, t) (4nt)~n/2 e^x-
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So

e?&apos;p(x9y9t)=p(x9y9t)-&gt;0

as t î +00.
When M is noncompact with compact closure and smooth boundary, we dénote

its minimal positive Dirichlet) heat kernel by q(x, y, t). Then one always has !F
strictly positive, and (2) follows from the Sturm-Liouville expansion of q:

9(x,y,t)= £ e-^&apos;hixWjly), (4)

where {A,, A2,..., î + oo} dénotes the spectrum of M (with eigenvalues repeated

according to their multiplicity), and {(pl9 &lt;f&gt;l9...} is a complète orthonormal basis

of L\M) for which each &lt;f&gt;j is an eigenfunction of A,.

We also hâve the following easy conséquences of our theroem.

COROLLARY 1. (P. Li [9]) We always hâve

^ -A (5)
fî + oo /

locally uniformly on M x M; and when M has finite volume V we hâve

lim p(x,y,t) l/V (6)

locally uniormly on M x M.

Indeed, we wish to show

If the limit function #&quot; is positive, then the resuit is obvious. So we are only
concerned with the situation where &amp; is identically equal to 0.

For any domain D in M, let qD dénote the Dirichlet heat kernel of D and XD the

lowest Dirichlet eigenvalue of D. Then, of course, we hâve

In eXtqD(x, y, t)
^

In eAtp(x9 y91)
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We let /î + oo. Then

Now let D t M. We conclude that

But since 3F 0, we hâve In eXtp(x, y, t) &lt; 0 for large /, which implies

lneXtp(x9 y, t)
hm sup

^v y } ^ 0,
î t

which implies (5).
When M has finite volume then X 0 with normalized L2-eigenfunction

/ (for ail x), which implies (6).

COROLLARY 2. For a«y M we hâve

lim /&gt;(*,;M) 0 (7)
fî + oo

// M has infinité volume.

Indeed, if M has fini te volume then (6) implies that lim/?, as / f +oo, is

nonzero. If, on the other hand, M has infinité volume, then (i) for X &gt; 0 simply
use (1); and for (ii) X 0, then if 3F were positive, we would hâve the existence of
an L2 harmonie function on M, which is impossible by a theorem of Yau [14].

COROLLARY 3. Suppose M noncompact is a covering of a compact Rieman-
nian manifold. Then &amp; is identically equal to zéro. Consequently, if the covering is

nonamenable - by [1], X &gt; 0 - then p tends to 0 faster thon e~Xt.

Indeed, if X 0, one uses the above corollary, since M has infinité volume. If
X &gt; 0 and &amp; &gt; 0 then the L2 eigenspace of A, which is nontrivial, is 1-dimensional

by Theorem 2.8 of [12]. But this is impossible, by the invariance of the eigenspace

under the action of the deck transformation group.
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REMARK 1. We note that there are very few results valid, with any sharpness,
for large time diffusion. The only cases we know, of sharp estimâtes from above
and below, are those of [10] when the Ricci curvature of M is nonnegative. The

only case of a précise limit (the resuit of sharp estimâtes from above and below), of
which we are aware, is that of nonnegative Ricci curvature with maximal volume

growth [9].

REMARK 2. Our theorem gives no discussion of the rate of convergence to &amp;

as t î +oo. For some gênerai results, see [4], [13]. In [4] it is shown that when M
is A-transient, then

ex&apos;p(x,y,t)=o(t-1)

as t î + oo ; and in [13] is it shown that if M is complète noncompact with bounded

geometry, then

for every e &gt;0, as t î -f oo. This last resuit was improved in [3] to

under the explicit bounded geometry hypothesis of Ricci curvature bounded from
below, and positive injectivity radius. For a sampling of results under more explicit
géométrie hypothèses, we refer the reader to [9], [2], [3], and the références therein.

REMARK 3. When A possesses an L2 eigenfunction, then (2) has potential
application to the &quot;movement of hot spots&quot; [5]. Simply put, for any if/ ^ 0 in

Lf(M)9

Jm
x9y,tMy)dV(y)

is the minimal positive solution of the heat équation on M satisfying

lim Pti// i//
tiO

at ail points of continuity of ^. For nonnegative ^ in Lf{M), under not-so-restric-
tive hypothèses on the geometry of M (see [15], [7], [8]), the locus

H(t) H(t; $) =: {x : (P,M*) **iax (P^Xy)}



Large time behavior of the heat kernel the parabolic A-potential alternative 545

of &quot;hot spots&quot; is compact for ail / &gt; 0. If M possesses a compact set K such that
H(t) is contained in K for ail t &gt; 0, and if #&quot; &gt; 0, then (2) implies that the limiting
locus of H(t), as t î + oo, is contained within the locus of maxima of ^ - indepen-
dent of the location of the support of the initial data \j*. (Of course, which maxima
of (j&gt; are realized might very well dépend on \j/). This contrasts to the examples of
Euclidean and hyperbolic spaces. See [5] for background on the gênerai question of
&quot;movement of hot spots&quot;.

REMARK 4. In an addendum, we prove the C°° locally uniform convergence
of e&quot;p(x, y, t) to ^(x, y) on M x M, that is, that space derivatives on M x M of
e/fp(x, y, t) of ail orders converge, as t ] +oo, locally uniformly to the correspond-
ing derivatives of J^(x, y).

Proof of the theorem.

Step 1. We start the proof by noting that the existence of a limit of eAtp{x, y, t)
as t t + oo is rather easy. The argument goes as follows:

First, for each x g M the function

e&quot;p(x9 x, t)

is a decreasing function of t. Indeed, let D be a relatively compact domain in M
with smooth boundary, and Dirichlet heat kernel q. Then one has ektq{x, x, t) is a

decreasing function of / from the Sturm-Liouville expansion (4) of q. Now pick an
exhaustion of M,D, î M as y&apos; î + oo, by domains which are relatively compact in M
and which possess smooth boundary. Let q} dénote the Dirichlet heat kernel of D7.

It is standard that

The claim follows immediately.
So e&quot;p(x, jc, /) is strictly decreasing with respect to t, Next, note that the

semigroup property of the heat kernel p implies

p(x, y,t+s)= p(x, z, t)p(z9 y, s) dV{z).
Jm

(8)

Set

.fXJ(z)=te&quot;p(x,z9t).
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Then (8) implies

II f f 112 __ || f 112 9/ f f \ 1 II f 112

||A r —A r H2 — ||/jc t II2 — 4A r»A 772 t ||A r ||2

é&gt;2/&apos;/&gt;(;c, x, 20 - 2e/(t+T)p(x, x9t + T)+ e2/Tp(x, x, T)

as t, T ] +00 (where )2 and || ||2 refer to mner product and norm in L\M\
respectively) We therefore hâve the L2(M)-hmit Fx oî fxt as r|+oo Since

e&quot;p(x, x, t) decreases with respect to /, we also hâve the local uniform boundedness,
with respect to x, of the convergence of fxt in L2(M) as / î -h 00 (By locally
umformly bounded convergence of the functions fx t to Fx we mean that fxt-*Fx as

t t +00, and to each x there exists a neighborhood U of x, T&gt; 0, and a positive
constant cx such that ||/z, ||2 &lt; c^ for ail z e U and t &gt; T)

But (8) implies

e&quot;p(x9 y91) (fx tl2Jy tl2)2 -+ (Fx9 F,)2, (9)

with the convergence locally umformly bounded with respect to x and y (Hère the
local uniform boundedness of the convergence îs with respect to the sup norm

Therefore, the work lies in the careful study of the hmit function

f(x, y) hm e&quot;p(x, y, t),
/î + 00

which we carry out below Of course, f(x, y) îs symmetnc with respect to x and y
(The function f(x,y) îs our #&quot;(x, y) in the statement of the theorem, but, since in
what follows we wish to view y as a parameter, we temporanly stay with the

notation f(x, y)
If for any

m M x(0, +oo)-»R

we defîne the operator

du

et

then direct calculation vérifies that

{Se&gt;)x(eMp(x,y, t)) {&lt;?x)y{extp{x,7, 0) 0 10)
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Set

u(x, t) u(x,t,y) =p(x,y,t)

- so we are considenng y as a parameter Our first goal (in Steps 2 through 4

below) îs to show that / îs a solution of

Af+Xf=0 (11)

Step 2 Fix o e M, and R &gt; 0 sufficiently large so that y e B(o, R/2), set

i? B(o, R\ B* B\B(o, R/2),

and consider w(x, /) on B x (0, +oo) Let ^ dénote the Dinchlet heat kernel of B,
and pick (p e Cf(B), such that

ç\B(o,R/2) \

Then for x e B(o, R/4) we hâve

/) ^(x, y, t) + db w(i, ^){2 div, (^(x, z, r -
Jo J^*

Indeed, Green&apos;s theorem implies, for x e B(o, R/4),

0 f
&apos;

ds [ {(ucp)(z, s)(Azq){x, z, t - s) - (Az(ucp))(z9 s)q(x, z, / - s)} dV(z)
JO JB

- f ds [ |- {(M(z, 5)(?(x, z, r - 5)} rfK(z)
Jo J^ ^

- f &amp; f {2(V2u, Vcp) + w J^}(z, j)«(x, z, r - j) dV(z)
Jo Jfi

-w(x, t) + q(x,y9t)

4- f &amp; f w(z, 5){2 divz (g(x, z, t - s)(Vcp)(z)) - (^&lt;p)(z)^, z, r - 5)}

which implies (12) as claimed
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We therefore hâve

ekt{u(x, t) - q(x, y, t)} ek&lt; [&apos; ds [ w(z, s){2 div2 (q(x, z, t - s)(Vcp)(z))
JO JB*

-(A(p)(z)q(x,z,t-s)}dV(z)

\ds J eÀsu(z9 s) eKt ~ s){2 div2 (q(x9 z, t - s)(V&lt;p)(z))

-(Acp)(z)q(x,z,t-s)}dV(z)

1*1 e«&apos;-Mz,t-s)eXs{2divz(q(x,z,s)(V(p)(z))

-(A&lt;p)(z)q(x9z,s)}dV(z)

f °°

IM(s) ds f e* ~ Mz, t - s) e^Q(x, z, s) dV(z\
Jo Jb*

that is,

eXtu(x, t) eÀtq(x, y, t)

+ [&quot; IM(s)ds f ^-jyz,/-5)^e(jC,Z,j)i/K(2), (13)
Jo Jb*

where

Q(x, z, 5) =: 2 div2 (^(x, z, s){Vq&gt;)(z)) - (A&lt;p)(z)q(x, z, 5).

Step 3. Restrict jc and y to i?(o; i^/4), and consider ektu(x, t). Let A5 dénote the

lowest Dirichlet eigenvalue of B. Since k&lt;XB we hâve by (4), ektq(x, y, t) -»0

uniformly in x on B(o; R/4) as / î -foo.
For any AT 0,1, 2,..., we hâve

AXN e&apos;*&apos;u(x91) AXN eÀtq(x, y, t)

f °°

IM(s) ds f
^

eA&lt;&apos; &quot;

^&gt;W(z, / - s) eXs AxNQ(x, z, s) dV(z)9 14)

with

^ds [\AxNQ(x9z9s)\dV(z)
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locally bounded with respect to x, since

AXN eXsQ(x, z, s) ON(e(À~ À*)s)

locally uniformly in x and z.

Let / î +oo. Then (13) becomes

f(x; y)=1°°ds Lf(z; y) eksQ{x*z? s) dv(z) 5)

since

locally uniformly boundedly, which shows/is smooth with respect to x for fixed y.
Consequently,

^&quot;/(*; y) f °°
ds [ f(z; y) e&quot;s AxNQ(x9 z, s) dV(z).

Jo J5*
(16)

Now there exist positive constants cu c2 such that for any function w g C°° we
hâve, by the Sobolev lemma and interior L2 estimâtes (see [11, pp. 197, 207]),

*/2 B(o,R/2),\&lt;x\ £ k

for

(The subscripts R/29 3R/4, and R, indicate the radius of the disk centered at o on
which the respective function spaces are defined.)

Apply the above estimate to w(x) ektu(x, t); then

a
»(e»u -f)\Ll + \\e»u -f\\Ll}

iovk and JV as above. Now let t î +oo; the représentation (14) converges locally
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uniformly boundedly to the représentation (16), which implies the local uniform
convergence (with respect to x) of the x-derivatives of eXtu, of ail orders, to the

corresponding x-derivatives of/.

Step 4. We now wish to show that / is a solution of the eigenvalue équation
(11). From (10) we know that the time derivatives of ektu converge locally
uniformly (with respect to x) as t | H-oo. The question is: to what? Well, since eXtu

itself converges, and the time derivative converges, the time derivative must
converge to 0. Thus / satisfies (11) with respect to x. Also, with respect to y.

So for each fixed y in M, we hâve the locally uniform convergence (with respect
to x)

e&apos;tp(x,y,t)-+f(x;y)&gt;0

as t î -f oo, with/a solution of (11) - symmetric with respect to x and y. This was

our first task. We now continue our study/, using the methods of [12].

Step 5. Fix y € M. If/is a nonnegative solution of (11) on M, then for any
relatively compact Q in M with smooth boundary, x e Q,f(x) is given by the
k-Poisson intégral formula:

/(x) f + C°

e&quot; dt f - ^ (x, w, t)f(w) dA(w),
Jo JôQ SV

where q is (now) the Dirichlet heat kernel of Q. Then Green&apos;s theorem implies, for
any T &gt; 0,

ôQ

K, Z, T)/(Z) dV(z).

By taking an exhaustion of M by relatively compact domains Q with smooth

boundary, we obtain

?&apos;T f p(x9 z,
JM

f(x)&gt;e&apos;T\ p(x, z, T)f{z) dV(z). (18)
JM

Since p is always positive, we conclude that either/&gt; 0 on ail of M, or/= 0 on ail
of M.
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Since / is symmetric with respect to x and y, we hâve either / positive on ail
M x M or / identically equal to 0 on ail of M x M.

Step 6. We now assume /is positive on ail of M x M. Then for any compact K
in M we hâve by (18)

;y)&gt; e&quot;p(x,z,

f

f(x;y)&gt; e&quot;p(x,z,t)f(z;y)dV(z)

e»p(x9z,t)f(z;y)dV(z)

for ail t &gt; 0, which implies

f(x;y)&gt; f f(x;z)f(z;y)dV(z).

Now set x y and use the fact that f(x\ y) is symmetric in x and y. Then

f(y;y)&gt; f f(z;y)dV(z) (19)
Ja

for ail compact K in M. So for each y g M9f( ;y) e L2(M).
This implies, by Theorem 2.8 of [12], that À has precisely a 1-dimensional

eigenspace, each of whose nontrivial éléments never vanish on M. So there exists a

positive normalized L2 eigenfunction 0 of X so that

f(x;y)=c(y)(t&gt;(x).

But the symmetry of/with respect to x and y implies

which implies

c(x) a&lt;£(x)

for some constant a &gt; 0. Thus

(20)
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Step 7. We note that (20) implies, whether/is identically equal to 0 or always
positive, that / : M x M -&gt; M is continuous.

Let x y. Then eXtp(x, x, t) decreases to the continuous function a&lt;/&gt;2(x) as

ff+oo; so Dini&apos;s theorem implies the convergence is locally uniform. Said

differently, (see Step 1 for the notation) fxt -&gt;FX as t î +oo, locally uniformly with
respect to x. But (9) then implies that eXtp(x, y, t) converges as t | + oo, locally
uniformly with respect to (x, y) e M x M.

Step 8. Since $ is a positive L2 eigenfunction of À, we hâve, by Theorem 2.10

of [12], for ail / &gt;0,

&lt;K*) f e»p(x9 y, t)&lt;Ky) dV{y), (21)
JM

which implies

e&quot;tp(x,yit)(t&gt;(y)dV(y)

for ail compact K in M and t &gt; 0, which implies

*&lt;Kx)&lt;t&gt;2(y)dV(y)

[
Jk

L

for ail compact K in M. Since (f) has L2 norm equal to 1, we conclude a ^ 1.

To show that a ^ 1, note that by the Cauchy-Schwarz inequality and the

semigroup property we hâve

&lt;Kx) f eÀtp(xy y, t)4&gt;{y) dV(y) (22)
Jm

ktp{x*y*o}2 dv(y)}m{L ^2(&gt;o dv{y)Y (23){L

Let t î +oo; we obtain

which implies a ^ 1. Therefore a 1, and we hâve (4) on ail of M.
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Step 9 We now wish to prove (3) under the hypothesis of &quot;bounded geometry&quot;

Our &quot;bounded geometry&quot; will be a umform lower bound on the Ricci curvature of
M, and the uniform positivity of the mjectivity radius on ail of M For any compact
K in M we hâve

eAtp(x, y,
JM

eÀtp(x, y,

+ ektp(x, y,
JM\K

&lt; f eup(x,y,,

&lt;t&gt;{x)= I e*&apos;p(x9y,t)&lt;t&gt;(y)dV(y)

t)&lt;t&gt;(y)dV(y)

t)&lt;Ky)dV(y)

&gt;t)&lt;t&gt;(y)dV(y)

Then the fact that the Ricci curvature îs bounded uniformly below implies

e&quot;p(x,y,t)&lt;t&gt;(y)dV(y)^Of

as x-&gt;oo ([15], [7], [8]), from the bounded geometry hypothèses on the Ricci
curvature and the mjectivity radius of M we hâve

p(x, x, t) &lt; const t

uniformly on ail of M (by an easy argument from [6] and [10]) This then implies
(3)

Step 10 The last thmg we must prove îs that if X possesses an L2 eigenfunction
0, then enp(x, y, t) îs bounded away from 0 as t î +oo

This simply follows from (23), and fact that &amp; either vanishes identically or îs

everywhere positive
An alternative argument goes as follows Let Pt dénote the heat semigroup, and

Efi the spectral family, associated to the Laplacian on L2 Then the spectral theorem
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implies, for any positive u in L2,

ç+*&gt;

(eXtPtu, u) eV-û&apos;idE^u, u

p + ao

where

EM E,-EÀ.

This implies eÀtp(x, y, t) is bounded away from 0 as t ] +00.

Addendum. We give hère an alternative proof of the continuity of ^(x, y) on
M x M. It will also hâve the added feature that the argument also proves the C°°
smoothness of &amp; on M x M, and the locally uniform convergence on M x M of
derivatives of eXtp(x, y, t) to the corresponding derivatives of &amp; on M x M.

Consider the natural Riemannian product structure on M x M. The associated

Laplace-Beltrami operator acting on fonctions on M x M is given by

where zl7 is the Laplacian on the y-th variable, y 1,2. Then /?(x, &gt;&gt;, /) satisfies the
&quot;heat équation&quot; on M x M:

A n-0ÔPA M x MF — 757 *

We hâve (see Steps 2 and 3)

+ f °°

/[0)/](^) A f
^

^A(f- JV(z, y,t-s) e^Q(x, z, s) dV(z), (24)

where

Q(x, z, 5) =*2 div, (^(x, z, ^)(P&lt;p)(z)) - (,d&lt;p)(z)?(x, z, 5),
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and, using the symmetry of p(x, y, t) with respect to x and y9

AM x MN e&quot;p(x, y, t) AMx MN e&quot;q(x, y, t)

+ f °°

I[0,t](s) ds [ {e*~ s)p{z, y,t-s) eks AxNQ{x, z, s)
Jo Jb*

+ e&apos;«-Mz, x,*-s) eAS AxNQ(y, z, s)} dV(z\ (25)

for any N 0, 1, 2,. with

[°°e&quot;ds f \AxNQ&amp;yz,s)\dV{z)

locally bounded with respect to Ç, since

locally uniformly in and z.

Let t î + oo. Then (25) becomes, for N 0,

Jo
y) e&quot;Q(x, z, s) + J^(z, x) eksQ{y, z,

Each integrand is smooth in (x, y), since J27 is smooth as a function of each variable

separately (as already shown), which implies &amp; is smooth on M x M. Conse-

quently,

AMxMNn*,y)= [&quot; ds f {&amp;(z,y)e&quot;AlNQ(x,z,s)
Jo J^*

2, x) e&quot; AxNQ(y, z, 5)} dV(z). (26)

There exists a positive constant such that for any function W e C™(M x M) we

hâve

/2
&lt; const. {\\am x M»ar \Ll

for

A: + « &lt; 2N.

(The subscripts il/2, 3i?/4, and R, now refer to radii of disks, centered at (0, o), in

M xM.)
Apply the above estimate to iV(x) =e&apos;&apos;p(x,y91); then
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for k and N as above Now let t1 +00, the représentation (25) converges locally
umformly boundedly to the représentation (26), which implies the local uniform
convergence of eXtp and îts spatial denvatives, of ail orders, to &amp; and îts

corresponding denvatives D
Added in proof We refer the reader to the récent prepnnt of Y Pmchover,

Large time behavior of the heat kernel and the behavwr of the Green function near
cnticahty for nonsymmetnc elhptic operators, where the author generahzes our resuit
to nonsymmetnc operators on domains in Euchdean space
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