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Large time behavior of the heat kernel: the parabolic
A-potential alternative

ISAAC CHAVEL! AND LEON KARP?

Let M be a noncompact Riemannian manifold with Laplace—Beltrami operator
4 acting on functions on M, A =:A(M) the bottom of spec (—4), and attendant
minimal positive heat kernel p(x,y,f) (where (x,y,f) is an element of
M x M x (0, + o0)). In this note we prove the following

THEOREM. For all x,y in M we have the existence of the limit

lim e*p(x, y, ) =+ F (x, ), (1

for which we have the following alternative:

Either & vanishes identically on all of M x M, in which case A possesses no L?
eigenfunctions; or & is strictly positive on all of M x M in which case A possesses a
positive normalized L? eigenfunction ¢ (normalized in the sense that its L* norm is
equal to 1) for which

thf_l}o e*p(x, y, 1) = $(x)(y) (2)

locally uniformly on all of M x M. Furthermore, if M is noncompact Riemannian
complete with bounded geometry (to be explicated below), then

lim $(x) = 0. (3)

X — a0

The simplest example of the case ¥ =0 is R", n 2 1, in which case we have

A=0, p(x,y, 1) =(4nt)""2 e -2
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So

e}.tp(‘x, s t) =p(x9 Y, t) -0

as t T +o0.

When M is noncompact with compact closure and smooth boundary, we denote
its minimal positive ( =Dirichlet) heat kernel by ¢(x, y, t). Then one always has &
strictly positive, and (2) follows from the Sturm-Liouville expansion of g:

glx, y, ) = Y e ¥'d;(x)d;(y), (4)
Jj=1

where {4,,4,,...,1+ o0} denotes the spectrum of M (with eigenvalues repeated

according to their multiplicity), and {¢,, ¢, ...} is a complete orthonormal basis

of L*M) for which each ¢, is an eigenfunction of A,.
We also have the following easy consequences of our theroem.

COROLLARY 1. (P. Li [9])) We always have

limlié’("’_J”’):_l (5)

tT 4o t
locally uniformly on M x M; and when M has finite volume V we have

lim p(x,y,6) =1V (6)

tT+

locally uniormly on M x M.

Indeed, we wish to show

lim ln e}Jp('x’ y5 t) —
1+ t

0.

If the limit function & is positive, then the result is obvious. So we are only
concerned with the situation where % is identically equal to 0.

For any domain D in M, let g, denote the Dirichlet heat kernel of D and 4, the
lowest Dirichlet eigenvalue of D. Then, of course, we have

Ine*gp(x, y, 1) In e*p(x, y, 1)
t t )
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We let ¢+ 00. Then

l At
A— 2, <liminf PEPEY D
M+ t

Now let D T M. We conclude that

0 < lim inf
tT+ o0

In e*p(x, y, 1)
t .

But since # =0, we have In e*p(x, y, ) <0 for large ¢, which implies

1 At
lim sup nefpln b 0,
1+ 00 t
which implies (5).
When M has finite volume then A =0 with normalized L2-eigenfunction
¢(x) = 1/3/V (for all x), which implies (6). O

COROLLARY 2. For any M we have

lim p(x,y,1) =0 (7
tt+ oo
if and only if M has infinite volume.

Indeed, if M has finite volume then (6) implies that limp, as ¢ T 400, is
nonzero. If, on the other hand, M has infinite volume, then (i) for 4 >0 simply
use (1); and for (ii) 4 = 0, then if & were positive, we would have the existence of
an L? harmonic function on M, which is impossible by a theorem of Yau [14].

O

COROLLARY 3. Suppose M noncompact is a covering of a compact Rieman-
nian manifold. Then F is identically equal to zero. Consequently, if the covering is
nonamenable — by [1], A >0 — then p tends to 0 faster than e ~*.

Indeed, if A =0, one uses the above corollary, since M has infinite volume. If
A >0 and & > 0 then the L? eigenspace of A, which is nontrivial, is 1-dimensional
by Theorem 2.8 of [12]. But this is impossible, by the invariance of the eigenspace
under the action of the deck transformation group. O
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REMARK 1. We note that there are very few results valid, with any sharpness,
for large time diffusion. The only cases we know, of sharp estimates from above
and below, are those of [10] when the Ricci curvature of M is nonnegative. The
only case of a precise limit (the result of sharp estimates from above and below), of
which we are aware, is that of nonnegative Ricci curvature with maximal volume
growth [9].

REMARK 2. Our theorem gives no discussion of the rate of convergence to &
as t T +o0. For some general results, see [4], [13]. In [4] it is shown that when M
is A-transient, then

erp(x,y,0) =o(t™")

as ¢t T +oo; and in [13] is it shown that if M is complete noncompact with bounded
geometry, then

p(x, y, ) =0(@~"**9

for every € >0, as ¢t T + oo. This last result was improved in [3] to

p(x’ s t) =0(t~ l/2)

under the explicit bounded geometry hypothesis of Ricci curvature bounded from
below, and positive injectivity radius. For a sampling of results under more explicit
geometric hypotheses, we refer the reader to [9], [2], [3], and the references therein.

REMARK 3. When 1 possesses an L? eigenfunction, then (2) has potential
application to the “movement of hot spots” [5]. Simply put, for any ¥ =0 in
L (M),

M

(Py)(x) = J p(x, y, Y(y) dV(y)

is the minimal positive solution of the heat equation on M satisfying

lim Py =y

t}o

at all points of continuity of . For nonnegative y in L (M), under not-so-restric-
tive hypotheses on the geometry of M (see [15], [7], [8]), the locus

H() = H(t; y) = {x : (PY)(x) = miax (PY)»)}
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of “hot spots” is compact for all ¢ > 0. If M possesses a compact set K such that
H(t) is contained in X for all ¢t > 0, and if # > 0, then (2) implies that the limiting
locus of H(t), as t 7 + oo, is contained within the locus of maxima of ¢ — indepen-
dent of the location of the support of the initial data . (Of course, which maxima
of ¢ are realized might very well depend on ). This contrasts to the examples of
Euclidean and hyperbolic spaces. See [5] for background on the general question of
“movement of hot spots”.

REMARK 4. In an addendum, we prove the C* locally uniform convergence
of e*p(x, y, 1) to F(x,y) on M x M, that is, that space derivatives on M x M of
e*p(x, y, t) of all orders converge, as ¢t T + o0, locally uniformly to the correspond-
ing derivatives of Z(x, y).

Proof of the theorem.

Step 1. We start the proof by noting that the existence of a limit of e*p(x, y, 1)
as t T + oo is rather easy. The argument goes as follows:
First, for each x € M the function

e*p(x, x, )
is a decreasing function of ¢. Indeed, let D be a relatively compact domain in M
with smooth boundary, and Dirichlet heat kernel ¢g. Then one has e*q(x, x, ¢) is a
decreasing function of ¢ from the Sturm-Liouville expansion (4) of g. Now pick an
exhaustion of M, D, 1 M as j 1 + oo, by domains which are relatively compact in M

and which possess smooth boundary. Let g; denote the Dirichlet heat kernel of D;.
It is standard that

q; 1 p.

The claim follows immediately.
So e*p(x, x, t) is strictly decreasing with respect to ¢. Next, note that the
semigroup property of the heat kernel p implies

p(x, y,t +5) = f p(x, z, Op(z, y, 5) dV(2). (8)
M

Set

'fx,z(z) =:e,:,p(x, Z, t)'
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Then (8) implies

”ﬁct _"fx,T ”2 = ”f:w ”% - z(fx,nfx,r)z + ”f;cT “%
=e?'p(x, x,2t) =2+ Dp(x, x, t + T) + e*p(x, x, T)
-0

as t,T1 +oo (where (, ), and | |, refer to inner product and norm in L*(M),
respectively). We therefore have the L*(M)-limit F, of f,, as ¢t 1 +oo. Since
e*'p(x, x, t) decreases with respect to ¢, we also have the local uniform boundedness,
with respect to x, of the convergence of f,, in L*(M) as ¢t 1 +o0. (By locally
uniformly bounded convergence of the functions f, , to F, we mean that f,, —» F, as
t T 4+ o0, and to each x there exists a neighborhood U of x, T > 0, and a positive
constant ¢, such that |f, |, <c, for all ze U and ¢t > T.)
But (8) implies

e*p(x, y, 1) = (Lewzs Soup)2—= (Fo, E))y,s 9

with the convergence locally uniformly bounded with respect to x and y. (Here the
local uniform boundedness of the convergence is with respect to the sup norm.)
Therefore, the work lies in the careful study of the limit function

flx; )= }’f!o e*p(x, y, 1),

which we carry out below. Of course, f(x; y) is symmetric with respect to x and y.
(The function f(x; y) is our & (x, y) in the statement of the theorem, but, since in
what follows we wish to view y as a parameter, we temporarily stay with the
notation f(x; y).)

If for any

u:Mx(0,+x)-R
we define the operator

0
L.u=Au+ Au ———E,
ot

then direct calculation verifies that

(£):(e*p(x, p, 1) = (£,),(e¥p(x, y, 1)) =0. (10)
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Set
u(x, 1) = u(x, t; y) = p(x, y, 1)

—so we are considering y as a parameter. Our first goal (in Steps 2 through 4
below) is to show that f is a solution of

Af +Af =0. (11)
Step 2. Fix 0o € M, and R > 0 sufficiently large so that y € B(o; R/2), set
B = B(o; R), B*=B\B(o; R/2),

and consider u(x, ) on B x (0, + o). Let g denote the Dirichlet heat kernel of B,
and pick ¢ € CZ(B), such that

@ | B(o; R/2) = 1.

Then for x € B(o; R/4) we have

u(x, 1) = q(x, v, 1) + J ds j u(z, ){2 div, (4(x, 2, 1 — )V 9)())
0 B*
— (49)@)(x, 2, t —5)} AV ().

Indeed, Green’s theorem implies, for x € B(o; R/4),
0= Jt ds j {(u)(z, s)(4.9)(x, z, t —5) — (4.(u))(z, 5)q(x, z, t — 5)} dV(2)
= — J , ds J‘ L {(up)z, 8)q(x, z, t —s)} dV(2)
0 5 0s

— J‘l ds J {2(V,u, Vo) + u A9 }(z, 5)q(x, z, t — 5) dV(2)
0 B
= —"u(xs t) + q(x’ b2 t)

+ jt ds f u(z, 5){2 div, (q(x, z, t — 5)(Vo)(2)) — (4o)(2)q(x, z, 1 — 5)} dV(2),
0 B*

which implies (12) as claimed.
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We therefore have

e*{u(x, 1) — q(x, y, )} = e* L ds L‘ u(z, 5){2 div, (q(x, z, t — s)(V9)(2))
—(49)(2)g(x, z, t —5)} dV(2)
- L ds L e*u(z, s) e~ {2 div, (q(x, z, t — )V 9)(2))
—(49)(2)q(x, z, t —9)} dV(2)
- L ds L X = Iy(z, t — ) e*{2 div, (q(x, z, )V 9)(2))
— (do)(2)q(x, z, 5)} dV(2)

- j Iio.q(5) ds f e* = y(z, t —5) e*Q(x, z, 5) dV(2),
0 B*

that is,
e*u(x, 1) = e*q(x, y, )

+ Jw Lo 4 (s) ds J‘ e’ y(z, t —5) e*Q(x, z, 5) AV(2), (13)
0 B*

where

Q(x9 2z, S) =:2 din (Q(x, z, S)(V(D)(Z)) - (A(p)(z)q(x, Z, S).

_ Step 3. Restrict x and y to B(o; R/4), and consider e*u(x, t). Let 4 denote the
lowest Dirichlet eigenvalue of B. Since A <A; we have by (4), e*q(x,y, ) >0
uniformly in x on B(o; R/4) as t T + c0.

Forany N=0,1,2,..., we have
4.V e*u(x, t) = AN e*'q(x, y, 1)

+ f I o (s) ds J e =z, t —s)e** A NQ(x, z,5) dV(z), (14)
0 B*
with

Jm e’ ds j |4,V O(x, z, )| dV(2)
0 B*
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locally bounded with respect to x, since
AN e*Q(x, z, ) = Op(e?~72%)

locally uniformly in x and z.
Let 1 T +00. Then (13) becomes

fxsy) = fo ds f 1@59) €40, 2.9) dV(@) (15)

since

e u(z, t —5) > f(z;y)

locally uniformly boundedly, which shows fis smooth with respect to x for fixed y.
Consequently,

4. f(x; ) = Jw ds f f(z; ) e 4,7 Q(x, 2, 5) dV(2). (16)
0 B*

Now there exist positive constants c,, ¢, such that for any function w € C* we
have, by the Sobolev lemma and interior L? estimates (see [11, pp. 197, 207)),

— x
IWlet. =, 300 17|

s ¢ ”W” Whka

<af|a™|ez + Wizt (17)

for
n
k+‘2—<lS2N.

(The subscripts R/2, 3R/4, and R, indicate the radius of the disk centered at o on
which the respective function spaces are defined.)
Apply the above estimate to w(x) = e*u(x, f); then

le*u — flek, < {47 € u =)z + le*u =13}

for-k and N as above. Now let 1 1 + co; the representation (14) converges locally
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uniformly boundedly to the representation (16), which implies the local uniform
convergence (with respect to x) of the x-derivatives of e*u, of all orders, to the
corresponding x-derivatives of f.

Step 4. We now wish to show that f is a solution of the eigenvalue equation
(11). From (10) we know that the time derivatives of e*u converge locally
uniformly (with respect to x) as ¢ T + c0. The question is: to what? Well, since e*u
itself converges, and the time derivative converges, the time derivative must
converge to 0. Thus f satisfies (11) with respect to x. Also, with respect to y.

So for each fixed y in M, we have the locally uniform convergence (with respect
to x)

e*p(x, y, 1) > f(x;¥) 20

as t T 4+ oo, with fa solution of (11) — symmetric with respect to x and y. This was
our first task. We now continue our study f, using the methods of [12].

Step 5. Fix y e M. If f is a nonnegative solution of (11) on M, then for any
relatively compact 2 in M with smooth boundary, x € Q, f(x) is given by the
4-Poisson integral formula:

+ oo
£ = j e di f ~ % (x, w, 0f(w) dA(w),
0 e OV
where g is (now) the Dirichlet heat kernel of Q. Then Green’s theorem implies, for
any T >0,

+

S(x) ZJ

T

e’ dt J _% (x, w, )f(w) dA(w),
g OV

= e”JJ q(x, z, T)f(z) dV(z2).
Q

By taking an exhaustion of M by relatively compact domains Q with smooth
boundary, we obtain

fx) 2 e"j p(x, z, T)f(2) dV(2). (18)

Since p is always positive, we conclude that either £ > 0 on all of M, or f =0 on all
of M.
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Since f is symmetric with respect to x and y, we have either f positive on all
M x M or f identically equal to 0 on all of M x M.

Step 6. We now assume f'is positive on all of M x M. Then for any compact K
in M we have by (18)

f(x;y) 2 L e*p(x, z, f(z; y) dV(2)
> f e’'p(x, z, )f(z; y) dV(2)

for all + = 0, which implies

f(x;p) 2 Lf(x; 2)f(z; y) dV(z).

Now set x = y and use the fact that f(x; y) is symmetric in x and y. Then

f(y;y) 2 Lﬁ(z;y) dv(z) (19)

for all compact K in M. So for each y e M, f(_; y) € LA(M).

This implies, by Theorem 2.8 of [12], that 4 has precisely a 1-dimensional
eigenspace, each of whose nontrivial elements never vanish on M. So there exists a
positive normalized L? eigenfunction ¢ of A so that

f(x; ) = c(y)p(x).

But the symmetry of f with respect to x and y implies

x5 p) = c(P)P(x) = c(x)$(),

which implies

c(x) = ad(x)

for some constant « > 0. Thus

S(x; p) = ad(x)d( ). (20)
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Step 7. We note that (20) implies, whether f is identically equal to 0 or always
positive, that f: M x M — R is continuous.

Let x =y. Then e*p(x, x, t) decreases to the continuous function a¢p?(x) as
t T +00; so Dini’s theorem implies the convergence is locally uniform. Said
differently, (see Step 1 for the notation) f,, —» F, as t T + o0, locally uniformly with
respect to x. But (9) then implies that e*p(x, y, ) converges as t T + oo, locally
uniformly with respect to (x, y) e M x M.

Step 8. Since ¢ is a positive L? eigenfunction of A, we have, by Theorem 2.10
of [12], for all £ > 0,

P(x) = L e'p(x, y, ¢(y) dV(y), (21
which implies

P(x) 2 L ep(x, y, () dV(y)
for all compact K in M and ¢ >0, which implies

$(x) 2 L ap(x)$*(y) dV(y)

for all compact K in M. Since ¢ has L? norm equal to 1, we conclude a < 1.
To show that a =1, note that by the Cauchy-Schwarz inequality and the
semigroup property we have

d(x) = J'M e*p(x, y, DP(y) dV(y) (22)
12 1/2
s {L {e*p(x, y, N} dV(y)} {L ¢%(y) dV(y)} (23)
= {e**'p(x, x, 20)}"/2.

Let ¢t T + oc0; we obtain

d(x) < \/ad(x),

which implies o = 1. Therefore « = 1, and we have (4) on all of M.
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Step 9. We now wish to prove (3) under the hypothesis of “bounded geometry”.
Our “bounded geometry” will be a uniform lower bound on the Ricci curvature of
M, and the uniform positivity of the injectivity radius on all of M. For any compact
K in M we have

»

¢(x) = | e*p(x, y, D(y) dV(y)

JM

»

= | e*p(x,y, Np(p) dV(y)

JK

+J e*p(x, , D$(») V()
M\K

stwn%omwdww

+ ey /p(x, x, 20) | | o.an k-

Then the fact that the Ricci curvature is bounded uniformly below implies

L e*p(x, y, Dp(y) dV(y) -0

as x » o0 ([15], [7], [8]); from the bounded geometry hypotheses on the Ricci
curvature and the injectivity radius of M we have

p(x, x, t) < const.,

uniformly on all of M (by an easy argument from [6] and [10]). This then implies
(3).

Step 10. The last thing we must prove is that if 1 possesses an L? eigenfunction
¢, then e*p(x, y, t) is bounded away from 0 as ¢ T + 0.

This simply follows from (23), and fact that & either vanishes identically or is
everywhere positive.

An alternative argument goes as follows: Let P, denote the heat semigroup, and
E, the spectral family, associated to the Laplacian on L. Then the spectral theorem
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implies, for any positive u in L2,

+ oo
(e*P,u, u) = j e*~"(dE u, u)
A

-+ 00

= (1, ¢)2+ j e~ (dE,u, u)

A

2 (u, 9)?,
where
E,=E,—E,
This implies e*p(x, y, f) is bounded away from 0 as ¢ T + 0. a

Addendum. We give here an alternative proof of the continuity of #(x, y) on
M x M. 1t will also have the added feature that the argument also proves the C*
smoothness of # on M x M, and the locally uniform convergence on M x M of
derivatives of e*p(x, y, f) to the corresponding derivatives of & on M x M.

Consider the natural Riemannian product structure on M x M. The associated
Laplace—Beltrami operator acting on functions on M x M is given by

AMxM=Al+A29

where 4; is the Laplacian on the j-th variable, j =1, 2. Then p(x, y, ) satisfies the
“heat equation” on M x M:

op
Y| =2,
M x MP ot

We have (see Steps 2 and 3)
e*p(x, y, t) = e*q(x, y, )

+ J. I[O,t}(s) ds J ex(’_S)p(Za s ! — S) elsQ(x: z, S) dV(Z)y (24)
0 B*

where

Q(x, z, 5) =2 div, (q(x, z, )V ¢)(2)) — (4¢)2)q(x, z, ),
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and, using the symmetry of p(x, y, ) with respect to x and y,

AM x MN e)‘lp(xa y9 t) = AM x MN eitq(xa y: t)
+ J Iy 4(s) ds J‘ {ei(t “Ip(z, p, t —5) e* 4,V 0(x, z, 5)
0 B*

+ e Ip(z, x, t —5) e* AN Q(y, 2, 9)} dV(2), (25)
forany N=0,1,2,..., with

joo e’ ds j‘ |4, O(L, z, 5)| dV(2)

locally bounded with respect to {, since
4, e#Q(L, z,5) = Oy (e~ %8%)

locally uniformly in { and z.
Let ¢ T +o00. Then (25) becomes, for N =0,

2F(x,p) = jw ds j {Z(z,y) e*Q(x, z, 5) + F(z, x) e*0O(y, z, 5)} dV(2).

Each integrand is smooth in (x, y), since & is smooth as a function of each variable
separately (as already shown), which implies % is smooth on M x M. Conse-
quently,

AMxMN‘g—(xay)=J< dsJ. {g(zsy)e;'SAlNQ(x, Z,S)
0 B*

+ F(z, x)e* 4,V Q(y, 2, 8)} dV(2). (26)

There exists a positive constant such that for any function #" € C*(M x M) we
have

1# || cx,, < const. {[ Ay s s # |z + |# ]2}
for

k +n <2N.
(The subscripts R/2, 3R/4, and R, now refer to radii of disks, centered at (o, 0), in

M x M)
Apply the above estimate to #7(x) = e*'p(x, y, 1); then

e¥p — F |k, < A%« m(e¥p = )|z + le*p — F |3}
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for k and N as above. Now let 7 T + c0; the representation (25) converges locally
uniformly boundedly to the representation (26), which implies the local uniform
convergence of e*p and its spatial derivatives, of all orders, to &% and its
corresponding derivatives. O

Added in proof: We refer the reader to the recent preprint of Y. Pinchover,
Large time behavior of the heat kernel and the behavior of the Green function near
criticality for nonsymmetric elliptic operators, where the author generalizes our result
to nonsymmetric operators on domains in Euclidean space.
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