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Representations of orbifold groups and parabolic bundles

HaNs U. BODEN

1. Introduction

Let X be a compact holomorphic orbifold of dimension 2. Such orbifolds are
topologically classified by their genus and a finite collection of integers giving the
cone angles at the cone points in X. By a smoothing process which replaces singular
neighborhoods of the cone points with holomorphic disks, we obtain a Riemann
surface X, with a collection of distinguished points (called parabolic points). Let
E — X be a holomorphic orbifold bundle. By the push forward construction (a
smoothing process on the level of bundles), we obtain a holomorphic bundle & — X
with parabolic structure, i.e. a weighted (partial) flag in the fiber &, over each
parabolic point p. In this paper, we establish that the bundle & is parabolic stable
if and only if there is a unitary connection 4 on E with constant central curvature
(Theorem 5.1). In particular, E is projectively flat. Thus, we get a description of the
space of projective unitary representations of the orbifold group as stable parabolic
bundles and use it to compute the cohomology of the SU(2)-representation space
of any Seifert-fibered homology sphere.

In order to put this result into context, let us consider for a moment the case of
holomorphic bundles (without parabolic structure) over a Riemann surface X. The
big picture includes the three moduli:

® Y& =the moduli of semistable holomorphic structures on E,
® % = certain' PU(n)-representations of n, X,
® ./ =the moduli of Yang—Mills? connections on E.

Each of these spaces is a quotient space; in order to avaoid singularities and
non-Hausdorff behavior, we consider the subspaces:

@ ¥ = ¥ of stable holomorphic structures,
® #* < Z irreducible representations,
® #/* < # of Yang—Mills minima.

! or equivalently, representations of n, of the once-punctured surface with prescribed holonomy.
2 These are connections which are critical points for the Yang—Mills functional.
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In [15], Narasimhan and Seshadri prove that ¥ ~ %, with & ~#*. In [4],
Donaldson gives a gauge theoretic proof of the result of Narasimhan and Seshadri
by showing ./ * ~ &. Atiyah and Bott, in [1], give an inductive procedure based on
the stratification of €, the space of all holomorphic structures, to compute H*(%)
in the case where & = %.

The three moduli have counterparts in the world of orbifolds and parbolic
bundles. Namely, given a holomorphic orbifold bundle £ — X with push forward
& - X,, we have

® Y& =the moduli of semistable holomorphic parabolic structures on &,
® 2 = certain PU(n)representations of n¢™X,
® ./ =the moduli of Yang—Mills orbifold connections on E.

with analogous subspaces & < S, #* < A, and #* < .#. Mehta and Seshadri
[14] prove & =R (with & =~ R*) for genus g =2 and one parabolic point.
Moreover, the Atiyah—Bott program is extended in [17] to parabolic bundles. In
this paper we give another proof of the result of Mehta and Seshadri, i.e. we show
that & ~ .# * for arbitrary genus. The approach used is essentially Donaldson’s [4],
adapted to orbifolds. Consequently, we have & ~ #* for an appropriately defined®
representation space. This, along with the Atiyah—Bott program for parabolic
bundles, allows for the cohomology of the representation space of certain Fuchsian
groups (orbifold fundamental groups).

Lately, the work of Casson and Floer has stimulated interest in the theory of
SU(2)-representation space of n,(Z?), where Z* is a homology 3-sphere. Let #(ZX)
denote the representations modulo conjugation. If, in addition, X is Seifert-fibered,
then there is a canonical orbifold X so that #(2) ~ (X ). Thus, the above program
gives a method for computing the cohomology of (). In carrying this out, we
find that H'(%#(2)) = 0 for i odd. This is not surprising in light of the conjecture of
Fintushel and Stern [6], proved by Kirk and Klassen [11] (see also [3] and [7]). In
both [3] and [7], it is proved that %(ZX) is a rational variety and therefore simply
connected. We have tried to find a simple topological proof of the fact n, #(Z) =0,
but the usual techniques (i.e. Newstead’s [16]) fail.

Having completed this work, we learned of the work of Furuta and Steer [7]
giving the same results by similar methods. In this paper, we extend the results to
compute the cohomology of representation spaces of Seifert fibrations which are
torsion-free (arbitrary genus). In particular, we have complete results for genus 1
and partial results for genus > 2. This includes simple connectivity of all but one
component of #(X). This one component is diffeomorphic to the SU(2)-representa-
tion space of a surface of genus g and is singular for g > 2. Andrew Nicas pointed
out to me that one can use Kirwan’s explicit formulas (Sections 4 and 5 of [12]) to

3 i.e. representations of n{™ of the once-punctured orbifold with prescribed holonomy.
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find the intersection Betti numbers of this component (up to 2-torsion). In a future
article, we hope to address the problem of higher rank bundles (i.e. U(n) and SU(n)
representations). The presence of reducibles, reflected by the fact that & # &, is
the main obstacle to this program. Kirwan’s theory appears to be the best hope for
dealing with these issues.

We introduce the notion of orbifolds and orbifold bundles in Section 2. The
category of parabolic bundles is introduced in Section 3, where we also define
stability (Definition 3.9) and obtain a result (Proposition 3.8) which we will need in
Section 5. In Section 4, we establish an equivalence between the categories of
holomorphic orbifold bundles and parabolic bundles (Propositions 4.1 and 4.4). We
also prove the technical result (Proposition 4.5) which is needed for Theorem 5.1,
our main result. Section 5 contains the proof of this result and establishes the
relationship between representations and semistable parabolic bundles. In Section 6,
we give, as an application, the computation of the cohomology of & in the rank 2
case and describe its relationship to #(2) for Seifert-fibered spaces X. We close this
section with some explicit calculations where & (a component of #) is of dimen-
sions four and six.

Words alone cannot express the thanks I owe to the many people whose support
and encouragement were essential. I am especially indebted to A. R. Jacoby, who
long ago freely gave his time to teach me, and Daniel Ruberman, who suggested
this problem and whose patience and insight at the crucial moments resulted in the
completion of this work.

2. Orbifolds

In this section, we briefly define holomorphic orbifolds, classifying (topologi-
cally) those of dimension 2. We also describe the orbifold fundamental group ™.
We give a presentation for this group in case the orbifold has dimension 2. We
then turn attention to orbifold bundles and develop the complex differential
geometry which we shall use throughout this paper. We end with a description of
the second fundamental form for a short exact sequence of holomorphic orbifold
bundles.

We now define orbifolds (also called V-manifolds), using the notion of a local
uniformizing system, which we abbreviate l.u.s. Before we get into the formalities,
intuititively, an orbifold is locally modelled on an open set in C” modulo a finite
group. Of course, saying what happens on the overlaps is the tricky part.

DEFINITION 2.1. A connected metric space X is a holomorphic orbifold if

(a) For a base of open sets U < X, we have a local uniformizing system, i.e.
triples {U, I', ¢} where

1. U is a connected open subset of C”,

2. T is a finite set of biholomorphic bijections of T,
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3. ¢ : U—- U is I'-invariant and induces a homeomorphism U/I' ; U.
(b) If U < U’, then we have an injection, which is a pair {4, ¢} so that
1. A: T - TI’ is a monomorphism,

2. ¢ : U - U’ is a holomorphic embedding such that the diagram

commutes for all y e I', where y” = A(y).

We call the collection of l.u.s. and corresponding injections a defining family &,
and, as usual, consider two families # and & ' equivalent if & U % ' is a defining
family (i.e. satisfies (b)). We shall be mainly concerned with holomorphic orbifolds
of dimension 2, which are (topologically) classified by a finite list (see [19] for a list
of all 2-dimensional orbifolds). This follows because any finite subgroup of U(1) is
a cyclic group Z,. So, any singular point ¢ € X has an Lu.s. of the form D?Z,
where Z, is the standard action on D? (i.e. multiplication by an ath root of unity).
In this case, the cone point ¢ has cone angle 2n/a. So compact holomorphic
orbifolds X are topologically classified by their genus g and a finite collection of
integers (a,, . . ., a,) giving the cone angles at the cone points (c,,...,c,). We use
X(g;a,,...,a,) to denote this orbifold. For example, Figure 1 is a picture of an
orbifold of genus 3 with three cone points of orders 2, 5, and 7.

The fundamental group of an orbifold is, by definition, the group of deck
transformations of the universal covering orbifold. That such an orbifold exists is
a theorem which we will not prove, because in our case, the orbifolds are good,
namely, they have a manifold as a (branched) orbifold cover. In fact, almost all our
examples are hyperbolic, namely their universal covering is H? and =™ is a discrete
subgroup of PSL (2, R). Thus, we take as n{™®(X) the group of deck transforma-

e S —

Figure 1. X(3;2,5,7).
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Figure 2. Generators for n¢™.
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Figure 3. The curve x lifted to *.

tions of the universal branched cover. The orbifold fundamental group can be
computed in terms of curves on X. For consider a closed curve x going once around
a cone point ¢ € X of order a. Because ¢ has order a, a neighborhood of ¢ has an
Lus. {D? Z,, ¢}. Lifting x to the path % in D2, we see that x? lifts to a closed path
in D2, which is contractible (see Figure 3).
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Thus we have generators x; of order g, for each cone point ¢; € X. We also have
the standard generators A;, B, coming from the g handles of X (see Figure 2).

Then the product of the x;’s is homotopic to n which itself is homotopic to the
product of the [A4;, B,]’s, i.e.

o

[[ xi=n= [4;, B;].
i=1

i=1

]

Thus, setting X = X(g;a,, ..., a,), we get the group presentation

n

g
(X)) =<A1,B,,...,Ag,Bg,x,,...,x,, |x¢=1 and []x;=]] [A,-,B,-]>.
i=1

i=1

We shall often use the following smoothing procedure, which replaces an
orbifold X with its underlying Riemann surface X;. To do this, choose a collection
of non-intersecting neighborhoods D? of the cone points c; € X. Dropping the
subscripts, for c € D2’c X we have an lus. of the form {D? Z,,¢}. Let
¢ = ¢ ~'(c). We see that the action of Z, is free on the punctured disk D?\{¢}.
Thus, we can glue in a deleted holomorphic disk D2=(D\{¢})/Z , giving a

holomorphic structure on X, = X\{c,, ..., c,}. We compactify this by adding in
the points {p,,...,p,} to obtain a smooth Riemann surface which we denote by
X,.

In Section 4 we introduce a process of smoothing on the level of bundles. This
replaces an orbifold bundle over X with a bundle over X, with some additional
data. Briefly, an orbifold bundle is locally a I'-equivariant bundle.

DEFINITION 2.2. A complex orbifold bundle is a continuous map F iX
between orbifolds such that for any x € X, there is an open set U containing x with
an Lus. {U, T, ¢} and a compatible L.u.s. for E, = 8~ '(U) of the form {£,, I', ¢’}
where

1. EU =U x C",

2. the I' action on £, is given by a representation p : I' = GL(n, C).

3. 6 is covered by § : £, » U which is projection onto the first factor.

Remark. The action of I on E, = U x C" is the diagonal action. One does not
need to assume, as we have done, that the bundle is proper, i.e. that the finite
groups for the Lu.s. of U and £, coincide, a surjection would suffice.

For us, an orbifold bundle E — X consists of an honest bundle E,— X, along
with “equivariant trivializations” over each cone point c € C. That is, for
c e D?, we have E,,~ D?x C" with an action of Z, given by a representation
p:Z,—GL(n, C). Such representations are determined by their characters.
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In what follows, we use freely the many results of differential geometry for
orbifolds. Namely, a version of the Atiyah—Singer index theorem holds (see [10]),
and the Hodge decomposition theorem holds (see [2]). Of course, to make any sense
of this, we need definitions of the following differential geometric gadgets.

Suppose E — X is an orbifold bundle with compatible Lus.’s {U, T, ¢} for
UcXand {E,, I, ¢’} for E, c E. Then a section s : X — E is an orbifold section
if s descends from an I'-equivariant C*® section § : U — E,,. Since an orbifold X has
natural tangent bundle 7X and cotangent bundle T*X, we can construct the
associated tensor bundles. Let TX, =TX ®xC and T*X, =T*X ®;C be the
complexified tangent and cotangent bundles. We use /\* T*X, to denote the bundle
of complex alternating k-tensors and Q*(X) the orbifold sections of A* T*X,.
Notice that Q°(X) is just the smooth maps from X into C, namely C*(X). Then the
exterior derivative extends by complex linearity to give

d: QKX) - Q*+(X).

For the orbifold bundle E — X, we denote by Q*(E) the orbifold sections of the
bundle E® /\* T*X,. Then a connection on E is a C linear map

V:Q%E)->QYE)

satisfying V( f5) = (df )s + f(V's) for f € Q%X) and s € Q%(E). Thus, V has a descrip-
tion locally as a I'-invariant connection V¥ in the I'-bundle E, - U. With a
connection V, we get the induced covariant derivative

d, : QX(E) » Q%+ \(E).

A hermitian metric h is a I'-invariant hermitian metric 4 in £, - U. We call a
bundle £ — X with a hermitian metric a hermitian bundle. Given a hermitian
bundle E — X, the connection V is hermitian if it satisfies

d(sy, 85) = (Vsy, 5) + (51, Vs,),

for s5; € Q°(E), where we have written (-, -) for the metric.
Using the complex structure on X, we decompose the k-forms into

Q4(X) = @ QriYx).

p+a=k

The holomorphic structure on X gives the Dolbeault operator

J: QPIX) — QP4+ 1(X)
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and the exterior derivative decomposes into d = d + d. Likewise, we decompose the
bundle-valued forms into (p, ¢) components by

QYE)= @ Q"YE).

pra=k

Then a holomorphic structure for E is a map
d": Q°%E) - Q%(E)

satisfying d”( fs) = (9f )s + f(d"s) for fe Q%X) and s € Q°E). Given the connec-
tion ¥V, we can decompose it

dy = dy + d,

where dj, is the (1, 0)-component and di the (0, 1)-component of d,. We say a
connection is compatible with the holomorphic structure d” provided

v =d.

Because X has dimension 2, any connection determines a holomorphic structure
(the integrability condition is just dy; o dy = 0). Likewise, given a hermitian bundle
E with holomorphic structure, then there exists a unique hermitian connection
compatible with the holomorphic structure.

The argument in Section 5 minimizes the trace norm of a connection in a
holomorphic bundle. We shall need the following description of the induced
connections on sub- and quotient bundles. The underlying principle is that while
exact sequences of C* bundles always split, the same is not true of holomorphic
bundles. The obstruction to their splitting is measured by an extension class, with
representative the second fundamental form which we describe now.

Suppose 0 - P - E - Q —0 is a short exact sequence of holomorphic orbifold
bundles. Then a hermitian metric on E determmes a C* splitting E=P @ Q. Let
np and m, be the projections ESP and E—+Q The metric defines hermitian
metrics on P and Q by restriction. This, together with the holomorphic structures,
determine the connections 4, 4,, and 4, on the bundles E, P, and Q respectively.
For s e Q%P), we have Ap(s) =np(A(s)). Likewise, for se Q°%Q), we have
Ay (s) = np(A(s)). This follows by uniqueness of the metric connections, because
one can check that n, - A4 and =n, - A4 satisfy the requirements for being metric
connections on P and Q. For s € Q°P), consider the difference

a(s) = A(s) — Ap(s) € Q).
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If f € Q°%X), then a( f5) = fa(s), thus « is linear over 2°%X) and can be represented
by a 1-form a € Q'(P*® Q). In fact, if 5 is a holomorphic section of P, as € 2"°(Q),
thus a € Q"%(P*® Q). Similarly, if s € 2%Q), then fs = A(s) — Ay(s) € Q'(P) for
B e Q%(Q*® P). In fact, B is the adjoint of —a. To see this, take s, € Q°%P) and
s, € 2°%Q), then in terms of the metric, we have

0 =(sy,8) =d(s1, 5,) = (A(5,), 5;) + (51, A(s,))
= (Ap(sy) + a5y, 53) + (51, Ap(sy) + Bsy)

= (asy, 55) + (51, Bs,).

Because the curvature of a metric connection is a (1, 1)-form, we see that
0B = 0. Thus, B represents a homology class in H*!(Q* ® P). The connection A4 has
matrix description

a=( 4 B
—B* 4,
Furthermore, f =0 <> A preserves the splitting, i.e. the splitting is actually a
splitting of holomorphic bundles. We call f the second fundamental form and its

homology class [ ff] the extension class. If [ f] = 0, then for some choice of metric,
the splitting E = P @ Q is holomorphic.

3. Parabolic bundles

In this section, we define the notion of a parabolic bundle over a Riemann surface
X. A parabolic bundle & is just a holomorphic bundle over X with the additional
structure of weighted flags (not necessarily full) in the fibers &, over a (finite) set of
points p € X. We shall see in Section 4 that holomorphic orbifold bundles really are
parabolic bundles in an explicit way. Before we proceed, we point out that already
at least two excellent references exist for this material (see [14] or [18]).

DEFINITION 3.1. Given a compact Riemann surface X with a finite set of
points {p;}; < X (called parabolic points), a parabolic bundle over (X, {p;}) is a
holomorphic bundle & over X with parabolic structure, i.e. for each parabolic point
p € {p;}7, we have

1. §,=F, »F,,> - ->F,, adescending flag and

2.0<a, <a,; <" -<a,, <1 associated weights.

The multiplicity of the weight a,; is m,; =dim (F,,) —dim (F,, ).
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For the purpose of clarity, we shall write “# is a parabolic bundle over X”’, when
the parabolic points in X and the parabolic structure on & are understood.

DEFINITION 3.2. We define the parabolic degree of a parabolic bundle & by
the formula

pardeg (&) =deg (&) + Y Y m,.a,,
pe(p}i=1

and the parabolic slope by

__pardeg (&)
ME) ="k @)

DEFINITION 3.3. Given two parabolic bundles &, and &, over X, a parabolic
morphism is a map Y : &, = &, of holomorphic bundles which respects the parabolic
structures. L.e. for each parabolic point p with the parabolic structures on &, at p
for k =1, 2 given by

&, =Fi>5> - >FF,
0<ai<di<- -<a; <1,
we require that y, satisfies
al >a} =y, (Fl)<sF?, . @)

We use the notation ParHom (&,, &,) for the set of parabolic morphisms of two
bundles. A bundle isomorphism y is a parabolic isomorphism if both y and  ~! are
parabolic maps. We use ParAut (&) to denote the set of parabolic automorphisms
of a bundle.

Remark. We can replace condition (1) by the following equivalent condition on
¥,. Given the weight a/, let a? be the smallest weight such that a} < a?, then we
require

y,(F}) < F. %)

If there is no such a?, then we demand that y,(F}) = 0. Because a; >a}_,, we see
that conditions (1) and (2) are equivalent.
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Remark. Given the parabolic bundle &, consider the group of parabolic bundle
automorphisms ¥ : & — & lying over the identity map of X, denoted by ParAut (&£).
Then since  is a parabolic map, we must have y,(F,;) = F,;. Thus ParAut (&) is
independent of the weights (i.e. it depends only on the quasi-parabolic structure of
&, namely the unweighted flag structure).

v
LEMMA 34. If &, agziég is a sequence of parabolic morphisms, then ¢ o
is a parabolic map.

Proof. Suppose p € X is a parabolic point. We use the notation {F}, a}} for the
weighted flag in &, at p for 1 =1, 2, 3. Given the weight a], let a? be the smallest
weight with a} < a?. Then by condition (2), y,(F}) < F?. Also, if a} is the smallest
weight with a? < a3, then (again by condition (2)) ¢,(F;) < F;. Thus we see that
(¢ o ¥),(F}) < Fi. On the other hand, let a} be the smallest weight with a} < a}..
Since a] < aj, we see that ap <aj. Thus F} S F} = (¢ o ¥),(F}) = Fi. A final
application of condition (2) shows ¢ o ¢ is parabolic. O

Given a short exact sequence of holomorphic bundles over X

0 >(gl ;gz )53 >0,

then a parabolic structure on &, determines a unique parabolic structure on &, and
&, as we shall explain in short order. We first remark that the converse is true
(namely that parabolic structures on &, and &; determine a parabolic structure on
&,). The interested reader is referred to page 68 of [18].

Suppose we have a parabolic structure on &,. Then at each parabolic point
p € X, we have the weighted flag

g2p=F%DF%D.“3F32a

0<ai<ai<---<al <l

We define the parabolic structure on &, first. Let H; =1~ '(F?) (think of this as
&,n F?). We get a flag from the non-increasing sequences of subspaces

H2H,2-- 2H

r2

by removing those terms for which the inclusion is not proper. The easiest way to
do this is to choose a subsequence {i,...,# }={l,...,r;} so that

H1="'=Hi,3H',+1="'=Hi23Hi2+1="'H

1 ir,'
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Set Fj = H, and a} =aj for j=1,...,r,. This gives the following flag for &,

&,=F>Fy>---5F},

0<aj<ay<--<a) <1

To define a parabolic structure on &;, set H; = n(F?) and use the same technique
to get a flag from H,2 H,2---2 H,, i.e. choose a subsequence {i, ..., i,}} c

{1,...,r}, and set F; = H, and a; =aj for j=1,...,ry. This gives the weighted
flag for &;,.

Remark. Notice that the weights are assigned to the &, and &5 by forcing

1. a} = a} where j = greatest integer with 1(F) < F;.

2. aj = a} where j = greatest integer with n(F?) < F3}.
If we give &, and &, these canonical parabolic structures, : and n are parabolic
morphisms.

We call &, with this canonical parabolic structure, a parabolic subbundle of &,.
Likewise, we call &, a parabolic quotient.

Warning. The following (seemingly innocent) statements are false.
(1) A parabolic isomorphism is an isomorphism that is a parabolic map.

(2) A parabolic subbundle is given by an injection that is a parabolic map.
(3) A parabolic quotient is given by a surjection that is a parabolic map.
The trivial flag &, > 0 with weight a, = 0 provides an easy counterexample to (1).
For (2) and (3), notice that the canonical procedure specifies exactly what the
weights of the flags in a subbundle and quotient must be. With this in mind, we

define

DEFINITION 3.5. A short exact sequence of parabolic bundles is a short exact
sequence of bundles

04(51462‘*53—"0,
where &, is a parabolic subbundle of &, and &, is a parabolic quotient.
LEMMA 3.6. Suppose & is a parabolic bundle over X and

0"’51"’52"’53"’0,
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is a short eact sequence of parabolic bundles over X. Then
1. Y : P > &, parabolic <> 1o : P — &, parabolic.
2. ¢ : 63> P parabolic <> ¢ o : &, P parabolic.
3. pardeg (£,) + pardeg (&,) = pardeg (&,).

Proof. Lemma 3.4 and the observation that : and = are parabolic proves (=)
for both (1) and (2). Choose p parabolic. We will use the following notation for the
flags of these bundles at p. Let { F7, a7 } be the weighted flag of 2 at p and {F}, a} }
be the weighted flag of &, for 1 =1, 2, 3.

(1) We must show that if a7 >a}, then Y(F7) = F},,. But since &, is a
parabolic subbundle, we have F%, a; with F} =17'(F7) and a} = a?. Moreover k is
the largest integer with this property, i.e. F; # 17 '(F;,,), infact F}, , =1~ (F7, ).
Since 1 oy is parabolic, (1 - ¥),(F7) € F;,,. Thus y,(F?) <1~ '(Fi, ).

(2) For this we must show that if a} > a7, then ¢(F}) = F7,,. Because &,
is a parabolic quotient, F} =n(F?) and a} =a?. Since ¢ om is parabolic,
(¢ o m),(F}) = FZ,,. The result (2) now follows.

(3) Clearly deg (&,) + deg (&) = deg (&,). But in our description of the canon-
ical procedure it is evident that the sets of weights of &, and of &, form a partition
of the set of weights of &, (taken with multiplicity). Thus

Y nfal +Y niap =) nla?,
i k J
where n; is the multiplicity of the weight a} in F; for 1 =1, 2, 3. O

By Section 4 of [15], any non-zero map « : & - % of holomorphic bundles has
a canonical factorization

0 > P > & > 9 » 0

0 « N« F « M < 0

where a =1 o f o m and f has maximal rank. In particular, rank (2) = rank (.#) = n.
Maximal rank means that A" (B) : /\" (2) - /\" (#) is not the zero map. If \" (B)
is nowhere zero, f§ is said to be of full rank and then f is seen to be isomorphism.
In any case, it follows that deg (2) < deg (.#) with equality <> f§ is an isomorphism.

We are interested in the analogous statement for parabolic bundles. Suppose &
and & are parabolic bundles and that « is a parabolic map. Then .#, being a
subbundle of #, and 2, a quotient of &, inherit canonical parabolic structures. By
Lemma 3.6, f is a parabolic map. The next lemma shows that pardeg(2) <
pardeg (#).
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LEMMA 3.7. If B : &, - &, is a maximal rank, parabolic map between parabolic
bundles. Then pardeg (£,) = pardeg (&£,).

Proof. We first show how the result follows if B has full rank, and then we
address the more general case.

Consider a parabolic point p € X. Since § has full rank, f is an isomorphism. In
particular, deg (&£,) = deg (£,). Writing out the two weighted flags

&,=F >F)>---oF],
0<a,<a,<' - <a, <1 with multiplicities m,, ..., m,,
gzp'-—_F%DF%D"‘DFz,

0<b,<b,<: - <b, <1 with multiplicities n,, ..., n,,

we see that the result will follow if we show that, for each parabolic point, we have
the inequality

5

Y nb, 2y ma,.

i=1 i=1

In order to prove this, we write out each sum and claim

m,

b,+'-l-+b,+-~-+bs+--s-+b32a,+--l-+a,+---+a,+---+a,.

There are N =dim (&,,) =dim (£,,) terms in each expression, so we prove the
claim by simply showing that the ith term on the left (b, ) is greater than or
equal to the ith term on the right (g;), where j: {1,...,N}>{l,...,r} and
k:{1,...,N}->{l,...,s} are the choice functions.

Suppose not, namely that a; > b, for some i. Since f is parabolic, it follows that
B(F}) < F%, .. Further, since §, is an isomorphism, rank B(F;) = rank (F;). But
rank (Fj) 2 N —i+1 and rank (F} . ,) <N —i+ 1, which gives the desired con-
tradiction.

Now we prove the proposition in the general case (f is maximal rank). This
means that for generic points g € X, B, is an isomorphism. The problem: there is no
reason parabolic points must be generic. Call nongeneric points singular. Because X
is a compact Riemann surface, there is a finite number of singular points {g;}.
Further, we have an exact sequence of sheaves

B
0——-)(51 :&2 :5" >0,
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where & is a sum of skyscraper sheaves with support on {q;}. We are tempted to
call & a skyline sheaf! In any case, deg (¥) =deg (£,) —deg (&£,) by the short
exact sequence. For each g;, let y; be the amount which g drops rank at ¢g,. More
precisely, v, = ' codim (B(&,,)) in &,,. Since & is a skyline sheaf, deg(¥) =Z,y,.
Since the previous argument will apply to the generic parabolic points, it suffices to
show that, for any singular parabolic point p with y =the amount that § drops
rank at p, then

s

Y mbi+y2 ) ma, (3)

i=1 i=1

where we use the same notation for the multiplicities and weights as before.
To prove (3), we note that because each a; < 1, we have

Yy >a; +-+a

N —y +1) IN®

Here, as before, a; means the ith term in the expanded sum ( is a choice function).
Writing out the remaining terms in each sum, we claim

byt byt b b e a, (4)
There are N terms on the left of (4) and N — y terms on the right. Comparing the
(y + i)th term on the left (b, ) with the ith term on the right (g, ), we claim that

ke, +1y = @;- For otherwise a; > bk( vo = B,(F}) € F}, , .+ because § is parabolic.
But this forces g to drop rank more than y at p, a contradiction. O

In summary,

PROPOSITION 3.8. Any nonzero parabolic map o : & - % has the following
canonical factorization

0Pl —92—0

where
1. the two rows are short exact sequences of parabolic bundles,
2. B is a parabolic map and satisfies a =10 f o m,
3. rank (2) = rank (#),
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4. deg (2) < deg (#) with equality <> B is a bundle isomorphism.
5. pardeg (2) < pardeg (#) with equality here and in (4) B is a parabolic iso-
morphism.

We close this section with the following

DEFINITION 3.9. Suppose & is a parabolic bundle. Then
1. & is parabolic stable if u(#) < u(&) for all proper subbundles #.
2. & is parabolic semistable if u(#) < u(&#) for all proper subbundles #.

4. Push forward construction

Suppose X is a holomorphic 2-dimensional orbifold and E is a C” holomorphic
orbifold bundle over X. As in Section 2, we construct X, the smoothing of X, with
holomorphic structure. Further if {c¢,, ¢,,..., cy} is the set of cone points of X,
their image under our topological identification X ~ X, is a set of distinguished
points {p,, p,, ..., px} Which we call parabolic points. We will show how to use
the holomorphic structure of E to obtain a holomorphic bundle over X, with the
additional data of partial flags over each parabolic point p,.

PROPOSITION 4.1. Given a holomorphic orbifold bundle E over X, there is a
natural parabolic bundle & over X,. Here, by natural, we mean that given a
holomorphic map of orbifold bundles ¢ : E, > E,, there is an associated parabolic
morphism of the parabolic bundles § : &, - &, (see Proposition 4.5).

Proof. We construct the sheaf of sections of &. It will follow from our
description that this sheaf is actually locally free and hence describes a vector
bundle. First consider the situation over a non-singular neighborhood U of X. Then
E, is a (regular) holomorphic bundle over U. Thus, sections of E, are in an
obvious way sections of &,. Of course we are using the fact that U is simulta-
neously a smooth neighborhood for both X and X,.

Next, consider the situation over a cone point ¢; of X. Choose a neighborhood
U~ U/I'y of ¢; not containing any other cone points. We may assume that E has
the trivialization E, = E,, /', where E, ~ U x C". Sections of E, over U are just
I',-invariant sections of E, over U. Taking holomorphic coordinates U ~ D? ~
{ze Clz| <1} and E, ~ D? x C", then local sections of E are holomorphic, I'y -
invariant maps

s:D*-D?*x C",
z - (z, f(2)).
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Because the action of I'j, is necessarily holomorphic, we know Iy, is cyclic. We can
choose a generator ¢ for I';, = Z,, so that

:D*-D?

zZ - wz,

where w = e¢?™/™_Since the action of Z,, on the bundle is the diagonal action, o acts

on C" by a matrix p(¢). By choosing a basis {e,, ..., e,} of eigenvectors for p(s),
we see
wk 0
g) = T .
Because s is I’ -invariant, s satisfies o(s) :=0s0 ! =s. But

a(s0 ~'(2)) = 0(s(@2)) = o(@z, f(®2)) = (2, p(0) f(D2)).
So we that since s is I', -invariant
p(o) f(@z) = f(2). (3)

Writing f(z) = fi(2)e, + - - - + f,(2)e, in terms of the basis {e,, ..., e,}, we see that

p(0) f(@2) = p(o)( fi(@2)e,, . . ., f.(D2)e,)

= w*if,(@2)e, + - * - + w*f,(D2)e,,.
In these coordinates for £, equation (5) becomes
o*f(dz) =f,(z), fori=1,...,n. (6)

Now we use the holomorphicity of s. This implies that each f; is a holomorphic
map, i.e.

fi(@ = _i) a;z”.
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Taking jth derivatives of both sides in Equation (6) and evaluating at z =0, it
follows that a; = 0 unless j = k;(mod m). Thus

fim2 3 b= )

where f,-(z’") is a holomorphic function on U = U/ , ~ D?*Z,. Thus

@) = 24f,(z™e, + - - - + 25, (e,

and
fz™ = fi@™e + -+ + fo(z™e,

are local holomorphic sections. The sheaf of sections is, by construction, locally
free, and we call the associated bundle & the push forward bundle and f the push
forward section.

This bundle has additional structure of a descending (partial) flag at the
parabolic point p € U. Order the basis {e,,...,e,} so that

ky

p(o‘) =<C00 te, wok,,) satisfies Oskl Skzs e Skn <m.

By reindexing, we can write

wki 0
wk
p(o) = where 0 < k| <k)<---<k,<m
k;
w
k;
. 0 )
and are repeated according to their multiplicities n,,...,n,. Let W, be the

w*i-eigenspace of p(c) and define
F,,=W,®--@®W, with associated weigﬁt a,=k;/m fori=1,...,r.
Then

&,=F\oF,>---2F,
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is a flag with weights
0<ag,<a,< - '<a, <.

We will see from Proposition 4.5 that this correspondence is natural and from its
corollary (Corollary 4.6) that the parabolic bundle is canonical. This ends the proof
of the proposition. a

Remark. Although there is no canonical choice for the basis {e,,...,e,}, the
eigenspaces W, are canonical. And so the flag F, o F, >--- > F, is canonical.

DEFINITION 4.2. Given a flag F;, o F, > - - - © F,, whose successive quotients
F;|F;,, are of dimension n;, then a basis {e,,...,e,} for F, is a flag basis if

{€n 415584} is a basis for F,,

{en +nyt100--26n} is a basis for Fj,

{Cnyteiitm _41r-vvr€n} is a basis for F,.

Remark. Occasionally it will be convenient to list the weights repeated accord-
ing to their multiplicities. Then we will write

0<oy, <o, <--<a, <1,

where the o, are the a; repeated dim (F;/F;, ,) times. For example, in the construc-
tion above, it is clear that a; = k;/m.

From a parabolic bundle & over X, we construct the pull back bundle E over
X, an orbifold bundle which pushes forward to &. Roughly, we use the flag data to
construct local representations of cyclic groups on C”. Notice that any parabolic
bundle which is a push forward has rational weights of the form k/m where m is the
order of the cone point in X. Thus, not every parabolic bundle can be pulled back
to an orbifold bundle. We begin with a definition. Suppose X; — X is our topolog-
ical identification, with parabolic points p; € X, corresponding to cone points ¢, € X,

Le. ¥(p;) =c.

DEFINITION 4.3. Given a parabolic bundle & over X,. We say a parabolic
bundle & over X, is commensurate with X if the weights of the flag over each
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parabolic point p; are rational numbers of the form k/m, where m; is the order of
the cone point ¢; € X.

PROPOSITION 4.4. If & is commensurate with X, then there exists a holomor-
phic orbifold bundle E over X so that & is the push forward of E.

Proof. For each parabolic point p;, choose small 2-disk neighborhoods D, of p;
so that D,nD; = . Let X=X\ J;D;. Let U;=y(D;) be the corresponding
nelghborhoods for each cone point c; € X We have U, =~ D? |Z,,,. Setting

= X\J: U;, we have a diffeomorphism X S0~X0 We define the bundle over the
nonsmgular part of X by E, = (Yo) *(8,).

Now we need to define E over each U;. We chose a particular U, and drop the
i-subscripts in what follows. Let {e,,...,e,} be a flag basis for the flag

évszlDFZD..'DFN

0<a <a<-"<a<l
and 0<a, <a,<---<a, <1 be the weights repeated according to their multiplic-
ities. We may assume & ~ D? x C" where {e,, ..., e,} is our basis for C". Since we

assumed & is commensurate with X, there exists k; € Z with 0 <k, <m so that
o, =k;/m for all i. We define a function

zk 0
4:C*->GL(n,C) by A(z)=(0 an).

Notice that 4 is independent of choice of flag basis. Let w = e?™/™ and choose a
generator ¢ € Z,, so that

o:D*- D2,

zZ - wz.
Define the action of Z,, on D? x C” by a(z, v) = (wz, 4(w)v) and set

E,~D?*x C".
Now check that on the intersection U;n X, = S, there is an equivariant patching
map. Clearly, since §' = D2 is the Z,,-cover of S, the action is free. We have to

patch together the two Z,, actions on the bundle §! x C”, one which is trivial on the
second factor, the other nontrivial (twist by 4(w)). Let 6, denote the first action and
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o, the second. We need to construct a map F so that

Sixcn-2 8 % cn

[’ ”

S'xcn L8 x cn
commutes. Defining F by

F:8'"xCr>8"'x Cn,
(z,v) = (z, 4(2)v),

we check that it i1s our required equivariant patching map. O

Suppose E; and E, are holomorphic orbifold bundles over X. Given a holomor-
phic orbifold bundle morphism

¢
El——‘)Ez

NS
X,

we show how to construct the push forward morphism of parabolic bundles

é
(g’l.._,(g’z

NS
X,.

s

We outline the idea informally. Suppose s, is a local holomorphic section of E,,
and let s, = ¢(s,) be the local section of E,;,. Then we have the push forward
sections §, and §, of &, and &,. We define §(3,) = §,. Of course, to see that this is
well-defined, we need to know that every local section §, of &, is the push forward
of a canonical section s, of E,. This is the content of Proposition 4.4. We are
interested in proving a stronger result, namely that ¢ is a parabolic morphism
(recall Definition 3.3).

We formulate this statement in terms of unitary connections. Suppose E,, E, are
unitary orbifold bundles over X, and A4,, 4, are unitary orbifold connections in E,,
E, respectively. We push forward the holomorphic structures 4’ , d’,, to obtain
parabolic bundles &,, &, over X,. Let d}, be the (0, 1)-component of the connection

A¥®1+1®A4,0n E¥Y®E,. So

12 QUET®E,) » Q" (EYQ L),
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and d7,(¢) = 0 <> ¢ is a holomorphic orbifold morphism. Then,

PROPOSITION 4.5. Given ¢ : E,»E,, then d|,(¢) =0<¢ :& - &, is a
parabolic morphism.

Proof. Let p € X, be a parabolic point and

— Fl ... !
glp"‘Fl:FZD DF,.‘,
0<aj<;<---<a; <1,

= F25 F25...o F2
6yp=Fi2F;>---2F,,

0<a?<?<---<air<l1
be the weighted flags for &, and &,. We must show that $p satisfies condition
é,(F)) = F2,, whenever a; > a}.

Equivalently, writing ¢, = §,,(p) in terms of flag bases

{el,...,en, for &, and {ef,..., e}, for &,,,
this requires
$(p) =0  whenever a} > a2, @)

where
0<aj<a;<---<a, <l and 0<aj<ai<---<al <1
are the weights repeated according to their multiplicities.

Let ¢ € X be the cone point associated to p, and suppose ¢ € U = U/I', over
which the bundles E, and E, have trivializations

Ew=~E, I, where E,,~UxCn
and

E,y~E,, /I, where E,, U x C™.
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Further, we may assume U ~ D? and I', = Z,,, where ¢ a generator for Z,, gives
the standard elliptic action, which is just multiplication by @ = ™™

o :D*-D?,

Z — @z,

Let p, and p, be the representations of the Z,, actions on E,, ~ U x C™ and
E,, ~ U x C™. Then

o:UxCn-UxCnH,
(z,vy) — (wz, p,(0)v))
and
6:0xCmoU x Cn,
(2, v3) = (wz, pa(0),).

Choose bases

{el, ..., e, for C™m
and

{et,... e for C™
so that

ky

p,(a)=< 0 w"nl) where 0 <k, <k,<---<k, <m

and
wh 0
pz(a)=<0 a)”nz) where 0<h <h,<---<h, <m.

As can be seen from Definition 4.2,

{el,...,es} and {e},...,eZ,
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give flag bases for &, and &,. A local section s' of E,, is a I',-equivariant map
U - E,,, which is given by a Z,, -equivariant map D?— C™ in these coordinates. As
in the proof of 4.1, write 5'(z) = Z 5} (z)e;] in terms of the basis {e},..., e} }. Then
each s) (z) satisfies

si (2) =248, (z™),

where §} (z™) is the push forward section on &,. Applying the same considerations
to the local section s? of E,, gives s%(z) = X s?(z)e? where

s} (2) = 2782 (z™).

§2(z™) is the push forward section on &,. Now we write ¢, : E,, = E,, as a matrix
(¢;)- Since d7,(¢) = 0, we know that ¢ is holomorphic, i.e. that ¢(s') is holomorphic.
Thus we can apply the above considerations to s?= ¢(s!). Further, we define
$ : &, — &, by sending the section §' to §2. Writing ¢ also as a matrix (6,-].), then

Y 6,2} (2) = 53 (2) = 2983 (2™,

2: ¢,(2)z"81 (z™) = Z 24 (z™3} (z™).

It follows that

24,,(2) = 2b,,(2™). (8)
But since ¢,;(z) is bounded as z -0, we see that

(5,-1-(0) =0 whenever k; > h;. 9)

But since a} = k;/m and a} = h; /m, clearly condition (9) is equivalent to condition
(7). This proves (=) of the claim. To see (<=), notice that if ¢ is parabolic, then we
can define ¢ via Equation (8). Thus ¢ will be well-defined precisely when ¢ is parabolic.
By its definition, ¢ is holomorphic, thus, d},(¢) = 0. This completes the proof. O

An easy consequence of Proposition 4.5 is

COROLLARY 4.6. If g € 95, (E), then § € ParAut ().

Proof. Let d, . be the orbifold connection on E*® E induced by A* and A4%.
Then g € o, (E) = d45(g) =0, and g € 95 (E) = d’4.(g) =0. -
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5. Main theorem

At this point we have developed the tools for orbifold and parabolic bundles
necessary for the following generalization of [4]. As the argument in this case is very
similar, we pay particular attention to those steps of the argument which are not
found in [4]. We remind the reader of the definition of parabolic slope for a
parabolic bundle &

__ pardeg (&)
ME) =k @)

Recall further that & is parabolic stable if, for every proper subbundle & < &, we
have

MF) < w(é).

THEOREM 5.1. Given an indecomposable holomorphic orbifold bundle E over X,
let & be the parabolic bundle over X, obtained by pushing forward E, then & is
parabolic stable <> 3 unitary orbifold connection A compatible with E with constant
central curvature, i.e. *F,= —2mniu - I, where u = (&) and I denotes the identity
matrix. This connection is unique up to isomorphism.

In order to prove this, we define a functional J(4) on connections A as follows.
For any n x n hermitian matrix M, let

(M) = /tr(M*M) = ‘Z |4:],

i=1

where A; are the eigenvalues of M. We can define 7 equivalently by,

(M) =max ) |(Me,e;)|,  where {¢;} is an orthonormal basis for C”,

5 i=1
since this max will be obtained by a basis of eigenvectors for M. It is easy to check
that t is a norm from this characterization. Also, we see that if M is written in
A B . .
the block form M ={", D)’ then (M) 2 |tr(4)| + |tr(B)|. This follows since
X |(Me,, e;)| = |tr(4)| + |¢r(D)| for the standard basis. We can extend this to smooth
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self-adjoint sections s € Q°%End E) by

NGs) =< f r(s)Z)”z,

where orbifold integration is understood, i.e. over a neighborhood of the form
U~ U0/I',, we integrate by

1
Tyl L "

Since N is norm equivalent to the usual L2 norm, it extends to L? sections. If
{s; € LAQ°%End E)} is a sequence and 7, = lim inf ©(s;) then by Fatou’s lemma, we
observe that ||t ||, < lim inf N(s;). Define J(4) for an L} connection 4 by

*FA
A)=N[ZZA+u-1).
J(A) N(zm,+u 1)

By the previous observation J is upper-semicontinuous, i.e. if 4, — B weakly in L?,
then J(B) < lim inf J(4,).

Also J(A) =0<> A is of the type required by the theorem. We will minimize
J(A) along a gauge orbit to obtain a connection 4 with J(A4) =0. The pertinent
gauge group here is the complexified gauge group %S, of orbifold gauge transfor-
mations which are general linear in each fiber. These are precisely the bundle
automorphisms of E preserving its holomorphic structure. Consider a connection 4,

and decompose d, into the (1, 0) and (0, 1) components
d,=d,+d}.
If g € 94S,, then it acts on a connection d, by

Goy=8cdyog '=d,+gld g™ "),
dyay=g* "o dyog*=diy +g*\(dig*).

Thus, g(A4) = 4 + a, where

a=gd,g" ' +g*"'d, g*.
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The curvature tranforms by F,, ,=F, +d,a + a A a. This gives

Foo=F,+d(gd g™ ") +d,(g* 'dg*) +g(d,g Ng* '(d,g*)
+g* '(dyg*)gd g ).

Using F, =d’,d", +d’";d;, we can write this more conveniently as
A A% A AN A4

g—ng(A)g =F,+dy(h~'d,h)
=F,+h Y d\d';h —d'hh='dh),

where h = g*g.
First, we need the following theorem of Uhlenbeck (adapted to orbifolds, see

[5D.

PROPOSITION 5.2. Suppose A; is a sequence of L} connections with | F, ||,
bounded. Then 3 a subsequence {i’} and L} gauge transformations g, so that g,(A;)
converges weakly in L3.

Suppose E is a holomorphic orbifold bundle and 4 any connection compatible
with E. Let 4&,,(A) be the gauge orbit of 4 in /. For any orbifold connection 4’
on E (not necessarily compatible with the holomorphic structure), let &, be the
parabolic bundle obtained by pushing forward E with holomorphic structure
induced by 4’, namely d’;. With this notation, we are ready to prove the following
consequence of Proposition 5.2.

LEMMA 5.3. Either inf {J(A4") | A’ € 9§,,(A)} is obtained in 4§, (A), or 3 a
unitary connection B on E so that &, and & gz are not isomorphic, but have the same
rank, degree, and parabolic degree, and satisfy

1. J(B) <inf {J(A") | A" € 45.,(4)},

2. ParHom (&, &) #0.

Proof. Choose A; € 45,,(A) a minimizing sequence for J. Because N is norm-
equivalent to the L? norm, it follows that | F, ||.2 is bounded. Applying Proposi-
tion 5.2 (with a mild abuse of notation), we obtain a subsequence of connections A,
and gauge transformations g; so that g;(4;,) - B weakly in L?. Since J is upper-
semicontinuous, we have

J(B) < lim inf J(4;) = inf {J(4") | A’ € ¥5(4)}.
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To complete the proof, we need to show that ParHom (&, &5) # 0, the conclusion
of the theorem being established if &, ~ &5 or not. Using A* on E* and B on E
we construct the connection A*® 1+ 1® Bon E* ® E = Hom (E, E). Consider the
(0, 1)-component of this, namely

d’p : Q°%Hom (E, E)) - Q%(Hom (E, E)).

Then by Proposition 4.5, s € ker (d%5) <> § € ParHom (&4, &), so we need to
show:

CLAIM. ker (d%3) #0.

Suppose otherwise. Since d’ is first order elliptic, we have
|d%s(s) |22 ¢|s]|,2  for some ¢ >0, and all s.
By the Sobolev inequalities L} ¢, L*, we have [s.+<¢;|s].2 =

lda(s) | L2 2 ez ||s] Ls-

Now 4;— B converges weakly in L}, and so by the Sobolev inequalities, it
converges in L% Thus

ld%s() |22 = |44, |2 < |dus(s) — doa ()] L2 < €3[| B — Ai| a5 e,

where the first estimate is just the triangle inequality, and the second is seen by
noticing that d’y5 — d’, 4 is the (0, 1)-component of B — 4,. It follows that

”dﬂA,-(s) |22 |d%s(s) ”LZ —C ”B —4; "u”s"u
2 (c; = ¢5]|B — A; | La) 5] e

2c|s|.s  for some ¢ >0,

where the last inequality follows by choosing i large. This holds for all s, contradict-
ing the fact that ker (d%,,) #0. O

We now need two estimates (Lemmas 5.4 and 5.5) to show that if & is parabolic
stable, then the second case of Lemma 5.3 cannot hold. To this end, recall from
Section 2 that, given any short exact sequence of holomorphic orbifold bundles

0-P-E-Q-0, (10)
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then a hermitian structure on E determines a C* splitting of (10), and the second
fundamental form B € Q%'(Q* ® P) is the obstruction to this splitting being holo-
morphic. In terms of a unitary connection 4 on E and the induced connections on
P, Q denoted by A,, Ay, we see that in this splitting, 4 has the form

(4, B
A'(——ﬂ* AQ)’

and the curvature F, has the form

F=<Fp—ﬁ/\ﬁ* dp )
4 —dp* Fo—B*AB)

where d: Q'(P*® Q) - Q*(P*® Q) is the covariant derivative of the connection
A} ®1+1®A,. Of course we can push forward the entire sequence in (10) to
obtain a short exact sequence of parabolic bundles

02 ->8->2-0. (11)
It follows that B is the obstruction to this sequence admitting a parabolic splitting.

Remark. This notation for the second fundamental form is the adjoint of that
in [8]. The important point here is that f* A f and —f A f* are positive semi-
definite (1, 1)-forms. Since *(dZ A dz) = 2i = —*(dz A dZ) we can normalize so that

str(B A B*) = —*tr(B* A B) = 2nilB2.

LEMMA 5.4. Suppose E is a holomorphic orbifold bundle with parabolic push
forward ¥. Then if 0> M -F - A -0 is any short exact sequence with
wAM) 2 W(F) (=u(F) 2 v(AN)), then for any unitary connection B compatible with
E, we have

def
J(B) 2 rank (A)u(A) — W(F)) + rank (N )u(F) — w(AN)) = J,
with equality <> the sequence splits.

Remark. Note that by hypothesis, J, = 0. We first show how this lemma proves
(=) of Theorem 5.1. For suppose E is an indecomposable holomorphic orbifold
bundle with unitary connection 4 and J(4) =0. Then if .# is a proper parabolic
subbundle of & we have u(.#) < u(&). Otherwise, by the lemma, J,=0=J(4) = &
decomposes, which is a contradiction. Thus & is stable.
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Proof. Set u = w(¥). Following the notation introduced above, for any B, we
have

o _(Fa—BnB*  ap
P\ -dpr Fu—prnB)

where F, =Fp  and F, = Fp . Note that B, and B, are the induced connec-
tions on the pullbacks of .# and A" respectively. From the properties of T on block
matrices, it follows that

r<-*—F—B+u-1f)z tr("(F“”*ﬂ.Aﬂ*)erl,«)l

2ni 2mi

tr(*(m —BnBY p ,Iﬂ)}.

-+

3

2mi

Thus, by Cauchy—Schwarz we see

*FB 2\ 1/2
([ {50 )
X

= i tr(*(F‘l‘—B.AB*)ﬁ'“ 'I-/l)|+

2mi

*F,
| =L +pu-1 2
Lr(zni+u ,V>+|ﬂl
F
= tr(L4+u-I,)'+

*F.A/‘ . 2
) "\ 2ni L "( i TH I”>l+2”ﬂn

= rank (M) (u(H) — W(F)) + rank (V)Y (F) — () + 2| B

2mi

J ”<*(F,V —g A B*) o 'I”)I

dX
r»

_ i P
_ tr(zm_+u 1,) 18

JX

r*

2
’

where the last two steps hold because

L fr(% +u- I,«) = rank (M) (u(F) — u(A)) <0,

j‘ tr(f-z% +u -IJV> = rank (A)(W(F) — w(AN)) 20

by hypothesis. Furthermore, equality above impies f = 0, which is equivalent to a
holomorphic splitting of the sequence. O
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For the second estimate, we again look at short exact sequences of holomorphic
orbifold bundles, except that now we assume the middle term E has parabolic stable
push forward &.

LEMMA 5.5. Suppose E is a holomorphic orbifold bundle of rank n, and that its
push forward bundle & is parabolic stable. Assuming (by induction) that theorem 5.1
is true for bundles with rank < n, then given any short exact sequence

0-22>56-2-0

of parabolic bundles, then 3 an orbifold connection A compatible with E (i.e. § ~&,)
so that

J(4) < rank 2(u(&) — u(P)) + rank 2(u(2) — W&)) = J,.

Note: since & is parabolic stable, W(P) < (&) and wW(&) < w(2), thus J, is positive.

Proof. To any parabolic bundle, we have a canonical (Harder—Narasimhan-
parabolic) filtration (see [18]). Applying this to 2, we get

0c? cPyc- - cP,=2,

so that each quotient 4, = 2, /P, _, is semistable with decreasing slopes u; = u(.#;).
Note that u, < u, = u(2,) < w(€) by stability. Now ., is semistable, thus has a
filtration of the form

Oc(M)c( M)y (M), = (M),

each of whose quotients €, = (#;);/(#;);,_, is stable with slope u(€;) = u,.
Although this filtration is not canonical, the isomorphism class of

def i
j=1

depends only on that of ., (see p. 71 of [18] for details). Since rank (%) < rank (&),
we can apply the inductive hypothesis to each €,;. To facilitate our discussion, we
will adopt the following breach of ethics, namely we will say “A4 is a connection on
&> when we really man that A4 is an orbifold connection on E whose push forward
is &, i.e. £, ~ &. With the aforementioned amoralities, we apply Theorem 5.1 to get
a connection 4,; on €,, whose curvature F; satisfies *F;; = — 2nip,. Since €;, = (A,),,
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this gives a connection A ., = A; on (#;), for each i. Furthermore, given
connections A #p, on (A;); and 4;,, on €, , along with a choice of second
fundamental form B, € Q*'(¢%, ,®(A#,),) for the exact sequence

0"(«”:‘);’ ""(-/”i)j+ 1 —)(gij+ 1 —0,
these determine a connection on (#,);,, by the formula

Al =(A‘“"f)f tﬁ")
et —By Ay,

Proceeding inductively, we get connections 4/ on each .#,. Since 2, = .#,, this
gives a connection on £,. The same argument applied to the short exact sequences

02, >P, > M—0

gives, at long last, a connection 4% on 2. Then A% — A% as t -0, where A% is a
connection on @; Gr (#;) whose curvature satisfies *F, = —2niA,. Here A, is
the diagonal matrix

- a
Hi 0
14

U

S

where y, is repeated dim (.#;) times. Notice that by construction

t"(:i% + u(é) - 19) = tr(W(&) - Iy — Ap)
2mi

= rank (P)u(6) — ) pardeg (#;)

= rank (?)u(&) — pardeg (%)

= rank (Z)(u(&) — w(?)). (12)
The same considerations applied to 2 to yield the filtration

0c2c2hc---c2,=2,

q
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with semistable quotients A", = 2,/2,_, whose slopes A, = u(A";) are decreasing.
Note that 4; 2 4, > u(&) by stability. A construction similar to that given above
builds connections 4% on 2 so that 4% —9 as t -0, where 4% is a connection on

@, Gr(A';) whose curvature satisfies *F% = —2niA, where
s A’l 0 N
Ay
AQ -
;{"i
. 0 AqJ

Again notice that

*Fy
tr(};{ + u(é) - 1.@) = rank (2)(u(8) — u(2)). (13)

Using the connections A% and A constructed above, we get an operator d, on
2* ® 2. (Actually, the breach of ethics is rather severe here, since d, is really the
covariant derivative on the orbifold bundle corresponding to the pullback of
2*R® 2.) For each t, we choose a harmonic (with respect to d,) representative f, of
the extension class of &. By changing the scale, we may assume | B, .. =1. Also,

1Bz, < eCldBi]e + || Bill2)-

The ¢, can be uniformly bounded, since d, = d,. Thus there is a uniform bound for
| B: ||co- This gives the connection 4, on &

Ay sP
Ast =(— N A:),
S.BI 2

with curvature

o _(F> =B ABE 0
" 0 Fy—st nB,)

Now —A, + u(8) - I, has all positive eigenvalues, and so do sufficiently close
operators. For these operators 7( - ) = tr( - ). Furthermore, *tr(f, A B¥) = —2ni | B. I
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Using this and formula (12) we see for small s and ¢,

»F, — 2 ? r it ‘
‘t( 2 ;75 AB )+“(é”)-Ig)=tr<—§;§+ﬂ(5)'19)—52”?1'2

= tr(*—z% + w(&) - Ig) —sY B+ 6,(0)
= rank (P)((&) — w(P)) —5°| B, > + 6,(1)
where
8,()—=0 ast—0.

Similarly, — A, + u(&) - I, has all negative eigenvalues. And so for sufficiently
close operators, 7(-) = —tr(-). Also *tr(B* A B,) = 2mi| B, >, and so by formula (13)

T(m; — B¢ A B)

27i

+ w(é) - Ig) = —tr(*Flg + (&) - 12) — 5B,

2mi

*F)

= -tr(z—nf + u(&) - Ig) — 82| B, P + 6:()

= rank (2)(u(2) — (&) — s?| B> + 3,(0).
Putting this all together, we see that for small s and ¢,

*xF

t(ﬁ + u(®) - IJ) =J, — 25%| B,[* + 8().

It follows that
J(4,)*= J:Y (J1 — 253 B, + o(2))?
=Ji+4 L s B, ]+ 8°(0).
Since we have a uniform bound on || B, ||co, we can choose s small enough so that

J,s2=J,szj‘ |ﬂ,2|>s4f | B, |*
X X

Then by choosing ¢ so that 4(¢) is negligible, then J(A4,,) < J, as required. O
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We are now ready to prove (<=) of Theorem 5.1. Suppose that & is stable and
that the theorem has been proved for bundles of lower rank. Let 4" be a unitary
connection in E. Then,

CLAIM: inf {J(4) | A € 95(A")} is attained in §§,,(A4").

For if ,ﬁ?t’ then, by Lemma 5.3, we have a connection B and parabolic
bundle & =& with same rank, degree parabolic structure as & so that
J(B) <inf{J(4) | A € 45, (4")} and ParHom (&, #) #0. Choosing a#0e€
ParHom (&, #), by Proposition 3.8 we have the canonical factorization of «

0P — 92— 0

0 « N < F « M < 0,

where a =1 o f o m, rank (#) = rank (2) and pardeg (.#) = pardeg (2). Notice that
u(AM) 2 W(2) > W) = w(F).

From Lemma 5.4 applied to the bottom row we get that
J(B) = J,.

Moreover, applying Lemma 5.5 to the top row we get a connection A on & with
J(A) < J,.

But since u(2) < w(A), w(&) = W(¥) and w(P) = u(A), we see J, =2 J, and so
J(B) 2 Jy, 2 J, > J(A),

a contradiction. This proves the claim.
Now we must show that J(4) = 0 for this minimizing connection 4 € 4S,(4").

Suppose not. Then, because E is indecomposable, ker d%d, = constant scalars, for

if s € ker d*%d, is a self-adjoint section of End (E), then the eigenspaces of s give a

holomorphic splitting of E. Projecting *F, /2ni onto ker d%d,, we get

*F

Proj(————) = —u&) L

A
2ni
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Using the Inverse Function Theorem (working 1 ker d%d,) we get a self-adjoint

section of & € Q% End (E)) with id%d (h) = *F, + 2niu - I. Set g, = 1 — th. Then for
t small, g, € 45,. If A, =g,(A), then

A1=A + & ;gr-l +gt_]d2gn
and

FA =F,+dy(gdg ") +d (g dyg)+g(dg er 1(dAgz)
+g.7(dygleld g ")
=F, +u(ddy —dd)h +q(t, h),

where

lq(t B)| ., < cot?||n].

Using the fact that »(d’,d), — d,d"y) = —id%d, we see

— jtd*
LT S Rl ) LI St g
2mi 2mi

(21:,: +u- 1)(1 — 1) + q(t, h)[2ni.

And it follows that
J(4,) = J(A(1 — 1) + 0@?).

So in order for J(A) to be a minimum, we must have J(4) = 0.

As for uniqueness, suppose 4 and B =g(A4) are two connections so that
F,=Fg=u-1I Writing g =u-g’ where ue %, and g’ is self-adjoint, by unitary
invariance of J(A4), we can assume g = g’. We see that

Fy=Fyy=8 '"Fyug =>dd,g*g=d'g*gg " 'g*"'d, g*g.
Now, using the fact that g = g*, we get

dyd,g*=d"g’g*d, g’ = —{(d"g*)g ~'H(d"gHg ~'}*.
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Taking the trace t = tr(g?), it follows that At <0. Now by the maximum princi-
ple, we get that At =0 and so d%g>=0=d/, g% Thus, since the bundle is
indecomposable, it follows that g is a constant scalar, and so 4 = B. O

6. Applications

Using the inductive procedure of Atiyah and Bott, adapted to parabolic
bundles as in [17], we compute H*(¥), where % is the moduli of stable parabolic
bundles. For simplicity, we assume the bundles are rank 2 and parabolically
flat. In applications, we often restrict further to the cases where the under-
lying Riemann surface X is either the Riemann sphere or the torus. This
is because by computing H*(¥), we can deduce the cohomology of the
SU(2) representation space of any torsion-free Seifert fibration over S? or T2
(see Theorem 6.4 and formula (21)). This includes all the Seifert fibered hom-
ology spheres, for example. As a consequence of this and [6], we get information
about Casson’s invariant and so also the Floer homology of these homology
spheres.

For starters observe that as a consequence of Grothendieck’s theorem [9], the
assumption genus =0 gives a rather dull moduli space in the case of non-
parabolic bundles (this is because only line bundles are stable). In fact, the case of
parabolic bundles over S? is only interesting when there are many (ie. >2)
parabolic points. In the rank 2 case, & is a smooth complex manifold of complex
dimension n — 3, where n = the number of parabolic points. Because the authors
of [14] concentrate on the n =1 case, they assume genus 2 2, which is necessary
for a nontrivial moduli space. We developed Theorem 5.1, the natural generaliza-
tion of [4] and [14], because we wanted a representation theoretic interpretation
for & for all genus (compare Theorem 4.1 of [14]).

This section is divided into eight parts. The first section gives a brief account
of equivariant cohomology. The second decribes the stratification on the space ¥
of holomorphic structures arising from the Harder—Narasimhan parabolic filtra-
tion. The third introduces the gauge groups ¥ and 2. In the fourth, using a fact
(due to Nitsure) that the filtration is equivariantly perfect, we derive a formula for
the equivariant homology of the semistable bundles. The fifth section shows how
to deduce the singular homology of the moduli space & of stable bundles in the
case when semistable = stable. The main issue is that H*(%) is torsion-free. In the
sixth section, we interpret these formulas in the case where X has genus 0 and 1.
The seventh section shows how this relates to the cohomology of the SU(2)
representation space of certain Seifert-fibered spaces. And in the last section, we
perform explicit computations of H*(¥).
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6.1. Equivariant cohomology

For a topological group G and any G-space Y, consider the universal bundle
G - EG - BG. Let

Yo =EG xgY=EG x Y/~, where (eg, y) ~ (e, gy).
Then we have the fibration Y — Y, — BG, and the equivariant cohomology of Y is
defined by H&(Y) = H*(Y;). If the G-action on Y is free, then Y; ~ Y/G. It
follows that
HY(Y) = H*Y/G).
On the other hand, if the action is trivial, then Y; ~ BG x Y and so
H((Y)=H*(BG x Y).
Also, if Y is contractible, then Y; ~ BG and so
HY¥(Y) = H*(BG).
In the course of the argument, we will need the following:
PROPOSITION 6.1. Suppose H is a normal subgroup of G which acts trivially on
Y so that the quotient G = G/H acts freely. Suppose further that the fibration

BH — BG — BG is trivial. Then, Y; = BH x Y/G. If, in addition, BH and Y, are
torsion-free, then Y |G is torsion-free and H%(Y) = H*(BH) ® H/(Y/G).

Proof. Since BG = BH x BG, we see that EG = EH x EG. So
Yo =EG x Y =(EH x EG) x ;Y = BH x (EG x5 Y)
because the action of H is trivial on both Y and EG. So, Y; = BH x Y. Now since
G acts freely, Y; = Y/G = Y/G. The rest now follows from the Kunneth theorem.
O
6.2. The filtration on €

Fix E a rank 2, C* bundle over a Riemann surface X of genus g. Suppose that
E has a topological parabolic structure, i.e., over the finite set {p,}]< X of
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parabolic points, we have weighted flags

E, =Fi> Fi,

0<ai<ab<l.
Further assume that E is parabolically flat, i.e.

def " , .
pardeg (E) =deg (E) + ) (a}+a}) =0.

i=1

Remark. Temporarily ignore the possibility of trivial flags, which are ones of the
form E, = F, with one weight of multiplicity 2 because trivial flags impose no
restrictions on parabolic automorphisms of E, and in fact, their sole effect is that
they contribute to the parabolic degree when the weight is nontrivial.

Consider all holomorphic structures d” on E, namely C-linear operators
d":Q%E) - Q*(E)

satisfying d”( fs) = (0f)s +f(d"s) for fe C®(X) and s € Q°E). Because X is a
complex curve, the integrability condition d” - d” = 0 is automatically satisfied, thus
by the Newlander—Nirenberg theorem, each d” determines a holomorphic bundle
(with parabolic structure) which is denoted by &. Let € be the space of all
holomorphic structures. Then € is an oo-dimensional affine space modeled on
Q%'(End E). To see this, consider two operators d|, d5 € €. Then the difference
dy —dj : Q%UE) » Q% (E) is linear over C*(X), thus d| — d5 € Q*'(End E).

Recalling Definition 3.9, let €, and €, be the subspaces of & of parabolic stable
and semistable structures. For any bundle & € €\% ,, there is a unique destabilizing
line subbundle L of &, where

0-L->86-0-0
is a short exact sequence of parabolic bundles and
pardeg (L) >0 (<> pardeg (Q) < 0).

Set 1 =deg(L) and ¢, =dim (L, nF3) for each parabolic point p;. Then the
parabolic degree is determined by A and e = (e, ..., e,) by the formula

pardeg (L) = 4 + ¥ [(1 - e)a} + ;5] (149
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We say that & is of type (4,¢). Bundles of type (4,e) form a locally closed,
connected submanifold €, , of finite codimension in €. Note further that each €,
is nonempty. This is because given (4, ¢), we can built a bundle of this type by
taking a direct sum. The argument given in [17] carries over to show that the
stratification

€ =€, U €;.e
Aie

is equivariantly perfect (in a sense we shall explain shortly).

Remark. Nitsure restricts attention to the case where the genus g > 2. The only
reason for this is that for higher rank and genus 0, it is not clear (in fact not true!)
that each strata is nonempty. Actually, we shall see that for certain parabolic
structures, there are no semistable rank 2 bundles. Keeping track of “empty” strata
is one of the difficulties in generalizing this procedure to rank 3 and higher.

6.3. The gauge groups 4 and P

We now define the two ‘‘gauge groups’ with natural actions on ¥. The
complexified gauge group

%< =AutE={g:E—E over X with g, e GL(2, C) for all x € X},
and the parabolic gauge group

P =ParAut E = {g € ¥ with g, (F5) = F; for 1 <i <n}.
These act on € by

gd)=g 'od og=d"+g 'd"g.

The %€ orbits are isomorphism classes of holomorphic structures on E, and the 2
orbits are parabolic isomorphism classes of parabolic holomorphic structures on E.
We use the Kuranishi method to identify the tangent and normal spaces to the gauge
orbits. Suppose g, is a curve in 4€ with g, = 1. Then g,(d") =d” + g, 'd"g,. Taking
the derivative and evaluating at 0, we get d”g’, where g’ € Q%End E) is the derivative
of g, at 0. Thus, the tangents to the gauge orbits at d” are elements of im d”, where

d": Q°%End E) - Q%' (End E).
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Also, the normal bundle at d” is just coker d” and we identify the tangent space
of €/%¢ at [d"] with H'(X, End E). Similarly, the tangent space to ¥/# at
[d"] is H'(X, ParEnd E) where ParEnd E is the sheaf of parabolic endomorphisms
of E.

Remark. This is actually quite tricky, requiring Sobolev completions and all. To
treat this right we must descend into the nether-world of sheaf theory. We refer the
adventuresome to [17].

Atiyah and Bott prove that the stratification on € induced by the Harder—
Narasimhan filtration is ¥ € perfect, and Nitsure proves that the stratification on ¢
induced by the parabolic filtration is & perfect. In either case, you can deduce the
equivariant cohomology of the top stratum (%,,) from that of the unstable strata
(€,.) along with the equivariant cohomology of the whole space.

6.4. The equivariant cohomology of €,

Because the stratification on € is perfect, we have the formula for the equivari-
ant Poincare polynomials (where we use P for equivariant H*)

P, (%) =P/(6.,) + ), 1*P/(¥,.), (15)

(4,e)

where d,;, = codim (¥,.). We calculate the various pieces of the above formula.
First, since € ~ «,

H% (%) = H*(BZ).
To calculate this, we use the fibration
P >G> F,

where # is the flag variety, which in this case is CP! x Cex CP! (n is the number
of nontrivial flags).

Remark. For rank 2, a (nontrivial) flag is just a point in CP'. Thus, a choice of
parabolic structure is an element of # = CP' x -*- x CP'. A partition of unity
argument shows that the action of ¥€ is transitive on parabolic structures, giving
a surjection ¥ —» F with fiber the subgroup £ of parabolic gauge transformations.
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On the level of classifying spaces, we get a fibration

F — B? - B4, (16)
This is a sequence of pull backs of the following fibration

F—- BP - BG,

where G = U(n), P is a parabolic subgroup, and F is the corresponding flag. Both
F and BP are torsion-free with cohomology in only even dimensions. It follows that
the Leray—-Serre spectral sequence collapses at the E, term (since d : even — odd),
and therefore this fibration is cohomologically trivial. Consequently, the fibration
(16) is also cohomologically trivial. Now, by Theorem 2.15 of [1], B%€ is torsion-
free with homology given by

(1+0%(1 + 1%
(1-)*(1—1% "

P.(BY) =

So BZ has no torsion and as in [17] we have

P,(B?) = P,(B%)® P.(¥)

_(+*0 + )1 + )"
- (117’ '

Having computed H% (%), we turn our attention to the other terms in formula
(15). We compute d,, in terms of A and e. This, with P(%,,), will yield the
equivariant cohomology of € _,.

Now each strata €, is a union of orbits, thus the normal to €, is a quotient
of H'(X, ParEnd E). Given & € ¢,,, let ParEnd’ E denote those endomorphisms
which preserve the filtration 0 c L < &. Then the tangent space to €,, contains
H'(X, ParEnd’ E). Letting ParEnd” E be the quotient

ParEnd’ E <, ParEnd E — ParEnd” E,
we can identify the normal to €, . with H'(X, ParEnd” E). From the exact sequence
0-L->&-0-0

and the fact that pardeg (L) > pardeg (Q) = ParHom (L, Q) =0, it follows that
H°(X, ParEnd” E) = 0.
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We may now calculate the precise value of d;, = —y(X, ParEnd” E) by
Riemann—Roch. Let End” F be the endomorphisms (not necessarily parabolic)
which preserve the filtration and End” E the quotient

End' E ¢ End E - End" E.
Then we have a short exact sequence of sheaves
0—ParEnd” E—>End"E—->S -0,

where S is a skyscraper sheaf with a one dimensional stalk over each parabolic
point p; with ¢; = 1. Thus
d;,, =h'(X, ParEnd" E)
= —y(ParEnd” E)
= —y(End” E) + x(S).
But we calculate y(End” E) =k — 24 + 1 — g by Riemann—Roch, where k = deg (E).
Since S is a skyscraper sheaf, y(S) = h%X, S) = X, ¢;. Thus,
dio=22—k+(g—-1)+)e. (17)

To complete the calculation, we find P,(¥ 1.c) for all the unstable strata. It is
shown in 3.4 of [17) (or see 7.12 of [1]) that

H3(%,.) = H3)(€,(L)) ® H3)(€,(Q)).

But, (L) =2(Q) =C*, and ¥,(L) =%,(Q) =J(X), the Jacobian. Since C*
acts trivially, H& (J(X)) = H*(BU(1)) ® H*(J(X)). Thus H%(¥,.) = H&(J(X)) ®
H¥.(J(X)) and so

o 1+ 1)%
AOURES s

Putting it all together, Equation (15) implies

(14 0)%

P(%,) = IEE

((1 —t+ )%+ )" —(1-1%) 3, tz""f). (18)
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6.5. The cohomology of & in the case €,, =%,

Now, because we are interested in H*(%), we assume that semistable bundles
are in fact stable. This assumption holds for our application (torsion-free Seifert
fibrations) and boils down to an arithmetic requirement on the weights (for
example, that the nontrivial denominators are relatively prime). In order to
compare the parabolic and the nonparabolic cases, we first give an outline for
(regular) stable bundles. In [1] it is proved that €., = ¢, whenever the rank and
degree of the bundle are coprime. Another consequence of (rank, deg) =1 is that
H*(%) is torsion-free. This follows by considering the sequence

1-2U(1) %591,
If (rank, deg) = 1, then the corresponding fibration
BU(1) - B% - B9

is trivial. Moreover, H*(BU(1)) and H%(%¥,,) are torsion-free. It now follows from
Proposition 6.1 that

H3(%,) = H*(BU(1)) ® H*(¥),

taken with Z coefficients.

For general parabolic bundles, it is observed in [17] that H*(%) is torsion-free
provided (rank, deg) =1. Now we prove the stronger result that for rank 2
parabolic bundles with at least one nontrivial flag, H*(¥) is torsion-free. From the
short exact sequence

15C*>P 5P -1,
we get the fibration of classifying spaces
BU(1) - B? — B#.

In order to prove H*(¥) is torsion-free, we need to show that this bundle is trivial.
Because the fiber is a K(Z, 2), this bundle is classified by an element of

[BP, K(Z, 3)] = H (B?, Z).
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We want to see that the bundle is trivial; it is enough to show that the map
H*(B?,Z) '—‘»HZ(BU(I), Z)

is onto. But since B2 and BU(1) are torsion-free,
H*(B?,Z) ~ Hy(B?, Z) é n,B? = n, 2,

and similarly, H*(BU(1), Z) ==, U(1). Thus, it suffices to show that the map
n, U(l) »n,? coming from the inclusion C* ¢, 2 induces a direct sum. The
fibration 2 - %< - # gives the long exact sequence in homotopy

0
: '-—)1'[2'97 "')nl.@"’nlgc_‘)o.

Both n,%# gZ®-7-®Z and nﬁf%l@Z are free abelian, and because 7,2
is abelian, we have ;2 >Z@® --- ®Z. Composing with the inclusion gives
the commutative triangle

C*
N
P 94€,

which, on the level of homotopy, gives

m, U(1)
L\
0->n,F -, P -»n,%9¢—0.

Atiyah and Bott prove that im(j,) is a direct summand of n,%€ in case
(rank, deg) = 1. But it is possible (in fact likely) that im (1,) is a direct summand
of m, 2 even though im (j,) is not. This is the content of

PROPOSITION 6.2. Suppose that & is a rank 2, parabolic bundle with at
least one nontrivial flag. Then the image of the map n,U(1) - n,? is a direct
summand.
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Proof. The general statement follows easily from the case where there is eactly
one nontrivial flag so that # = CP!. Let r be the map which restricts an automor-
phism to the nontrivial parabolic point p. Then on the level of homotopy, since we
may replace the groups with their maximal compact subgroups, r, maps the
sequence

0— n,CP' — 1, — %9 —0 (19)
P
0— 1,CP' — 7, U(1) ® 1, U(1) — 1, U(2) —» 0. (20)

Here ¢, is induced by the natural inclusion ¢ of the maximal torus of U(2), i.e.

0

23

¢(zl,zz)=(::)l ) for z,, z, € U(1).

In U(2), the curves ¢(e, 1) and ¢(1,e”®) are homotopic to the generator for
n, U(2), so ker ¢, is generated by (1, —1), where we have identified (20) with

0-Z-Z2DZ->7Z-0.

Now, a splitting ¢’ of (20) determines a splitting ¢ of (19) by o(x) =6’ o r(x) for
x € m;P. We check that the map ¢'(1,0) =1, ¢’(0, 1) =0 is a splitting. Further,
since r o 1(z) = (z, z) for z € U(1), we see that r o1, (1) =(1, 1) e 7, U(1) ® =, U(1).
It follows that o o1,(1) =1€ n,CP'. Thus im(:,) is indeed a direct sum. This
argument carries over to more parabolic points without difficulty. O

In the previous section, we saw that H% (% ,,) is torsion-free. Further, if €, = €.,
since C*c 2 acts trivially and & acts freely, we may apply Proposition 6.1
to conclude that H%(¥,,) = H*(BU(1)) ® H*(¥). It follows from P,(¥) =
(1-1t»P,(%,,) and formula (18) that

P(¥) = %i%é— ((1 —t+ )21+ —(1-1) Y zzm). (21)
- Ae

In the case of genus 0 and 1, this equation gives the cohomology of the SU(2)-rep-
resentation space of any torsion-free Seifert fibered three manifold over S? and T2,
which will follow from the next two sections.
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6.6. Results for genus 0 and 1

a: Genus 0
Assuming that X has genus 0 and rewriting Equation (21), we get

1 -1 _ 2d; .,
P,(S) =(—1—_—t2')—2((1 + tz) —(1 IZ)EI d ) (22)

It follows that H'(&) = 0 for i odd. In the next section we shall see how % is related
to #(2), the representation space of Seifert fibered homology spheres X. Thus, we
conclude that #(X) has only cohomology in the even dimensions, which we expect
based on a conjecture of Fintushel and Stern. This conjecture was proved by Kirk
and Klassen in [11] (see also [3] and [7]). With additional results about =,(%), we
would have an independent proof of that conjecture (based on the work of Smale).
Unfortunately, our method is homological in nature. For example, we could
conclude (as was done in [1]) that =,(&) =0 if we knew that all the codimensions
d,. 2 2. Unfortunately, this is not the case. Another way around this is to prove
that & is a rational variety as in [3] and [7]. Anyway, formula (22) is a useful and
fairly simple tool for computation. For example, one can calculate the possible
codimensions and their multiplicities to deduce the cohomology of . First,
consider the case when & is empty, so that (1 — %) Z,, t*%c=(1+*""". For a
given n, we can solve this to find X,, t*%. For example, if n =3, we get

Z t2d)“e - l +3t2+4t4+. . s :Pl(y) =0_
Ae

Since (1 —1?) X, t*% is the polynomial (1+ ¢?)"~!'—(1—*)P,(¥), the power
series must be of the form g(¢f) + £ , at* where ¢(f) is some polynomial. In fact,
for each n, there is a finite list of possibilities for this power series.

For n =3, then the only nontrivial case is

Y e =42+ 41* + - = P (&) = 1.
Ae

This reflects the fact that % is either empty or a point [6]. If n =4, then

Y t2e =412 4 814+ - = P(F) = 1 + 12
Ae

This reflects the fact that & is either empty or an S? [6]. If n = 5, then

Z 12 = (6 —b)t> + (10 + b)t* + 16t + - - - = P, (&) = 1 + bt? + t*.
Ae
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It follows immediately that 0 < b < 6. In fact, b # 0. This is observed by Kirk and
Klassen [11], where they prove that these four dimensional components are either
S? x §? or CP?# hCP? where 0 < h <5. We now list the possibilities for n =6
where we have

Y t%e = (T —b)t2 + 161 + (25 + b)t® + 3218 -+ - = P,(&) =1 + bt* + bt* + 12,
ie

Again, it is immediate that b < 7, but it is not clear (although true because % is
Kadhler) that b = 0 is not realized. In the last section, we will explicitly compute an
n =235 and n =6 example, showing that the bound on b, in these cases, is sharp.
These bounds on the second Betti number b? generalize as follows. Since & is a
2n — 6 manifold, set P,(¥) = X7 b%t* and solve for the power series X, t2%e,
For instance, if n = 7, then dim & =8, and so P,(¥) = 1 + 8 + b2(t* + %) + b*t*.
Solving (22), we get

Y, 12he = (8 = b)1? + (22 + b* — b*)r* + (42 + b* — b¥)t®
Ae
+ (56 + b%)® +64:° + - - -,

But of course, the coefficienits must all be nonnegative and we conclude that 52 < 8
and b* <22 + b? < 30. This process extends to the general case of n nontrivial flags
to give that b2 < n + 1. Moreover, we get the recursive relation

bzi__ b2i——2 < i (n)

r=0 r

among the Betti numbers b%. This, in turn, yields bounds on the Euler characteris-
tic x(&). For instance,

1. (&) <8 for n =5,

2. (&) <48 for n =6,

3. x(&) <48 forn=17.
These give bounds for Casson’s invariant of Seifert-fibered homology spheres,
which follows from the next section. Before we address the genus 1 case, we
comment that this information for genus 0 gives us much information for the higher

genus cases. In fact, fixing the weights and parabolic structure of the bundle, but
allowing the genus of the underlying surface to increase, we notice that by knowing
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the series X, , 1*%« for genus 0, we know the corresponding series for genus g; it is
obtained by simply multiplying the genus 0 series by #%€. This is because the same
unstable strata occur but their codimensions d;, have increased by g (see formula

(17)).

b: Genus 1
Assuming now that X has genus 1 we rewrite Equation (21) to get

P.(%) =8—+3—2((1 —t4+ A+ —-1-13) ) t2d"e>. (23)
- e

We introduce the notation & for the stable bundles of fixed determinant. While &
corresponds to U(n) representations, S° corresponds to SU(n) representations. It is
easy to show, using the fibration SU(n) —» U(n) —» U(1), that & = ¥° x J(X), where
J(X) denotes the Jacobian. Thus, in the genus 0 case, & and &° coincide. In
general, we have

P(#) =(1+0)*P(Z°).
Using (23), we get

1

PAS) =

((1 —t+ )1+t =1 —1?) ; tzdl,e). (24)

The series X, , 1%« differs from that of the previous (genus 0) case by a factor of
t?, coming from the fact that the codimensions d,, have increased by 1. So, for
example, the trivial case in genus 0 (when (1—1¢?) X,, 1% =(1+1»)""") now
gives

(1 _ t2) Z tZd*"‘ — t2(1 + t2)n— 1.
Ae

Using formula (24) we get
P(SO) =(1+ )"

In fact, %~ 2 x .". x §2. This follows by considering SU(2) representations of
the following group presentation:

(X)) =<a, b, xy,. .., %, | xf=1,[a,blx, - - x, = 1).
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We use capital letters for the images of the corresponding elements in SU(2). Thus,
in SU(2), X, is required to lie in the set of a’® roots of unity. The set of a* roots
of unity is a disjoint union of $?%s. Picking a connected component of the
representation space means choosing a specific copy of S? for each X,. Because the
corresponding component of the genus 0 representation space is trivial, it follows
that X, - - - X, # 1. Thus, applying Corollary 1 of [16], we see that 4 and B, the
images of the other two generators, are determined up to conjugation. We conclude
that this component of the genus 1 representation space is in fact $? x - -+ x S2.

Just as in the previous case, there is a finite list of possibilities for X, , 1%« for
each n. For example, if n =3, then the only other case besides that already
mentioned is

Y 12he =41+ 4154 - = P(F)=1+412+ 203 + 4% + 15,
Ae

Likewise, for n =4, the only other possibility is

Y 12he =41 + 818+ = P(F)=1+502+ 203 + 812 + 215 + 5¢5 + 12
Ae

We now show that #° is simply connected. In the genus zero case, & nonempty =
all d;, > 1. In this case, either %~ S?x ---x S or all d;, = 2. In the second
case we argue just as in Theorem 9.12 of [1] to show that #° is simply connected.
For higher genus, namely g > 2, this argument carries over immediately to give
simple connectivity of &°.

6.7. Relationship between ¥ and R(X)

We explain what this all has to do with representation spaces of Seifert-fibered
spaces X2 following the ideas of [6] and [3]. First, we introduce the notation for the
SU(2)-representation space. In particular, recall that

A(2) = Hom* (&, 2, SU(2))/SO(3) for manifolds X,
and

A(2) = Hom* (n$(X), SU(2))/SO(3) for manifolds X.

Here, Hom* indicates the nontrivial representations. We prove that if X is
torsion-free Seifert fibration, then there is a two dimensional orbifold X so that
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R(2) 2 R(X). Although there is no well-defined homomorphism n, X — (X)),
n, 2 and n¢™(X) have a common quotient I

So suppose X is a torsion-free Seifert fibration over F,, the genus g surface.
Then X has the Seifert invariants {(b,, (@;, b,), . - ., (a,, b,)}, where the b, are not
unique, but, because H,(2) is torsion-free, must satisfy

a(—b0+ Z Z>=1, (25)

i=14;

where a =aqa, - -a,. We use 2(g;a,,...,a,) to denote this Seifert fibration. It
follows from (25) that the {a,,...,a,} are pairwise relatively prime, and so we
may order them so that the only possibly even g; is a,.

The following argument shows that we may assume that b, is even for i # 1 and
that b, is odd. Because we can change each b; by a multiple of a; at the expense of
changing b,, and because each g, is odd for i > 1, we have b, even for i > 1. Further,
we may assume b, is even by adding a, to b,, which, though it may not affect b,’s
parity, certainly affects b,’s. Finally, if b, is even, then each term in equation (25)
is even, which is a contradiction.

In the following group presentations, we adopt the convention that i=1,...,n
and j=1,...,g Then n ==n,;(2) has the presentation

n =<{A4,, B;, x;, h | h central, x% = h=% ] [4;, B;] [] x; = h*.

Now consider the orbifold X = X(g; 2a,, ..., a,) and the presentation of its
fundamental group n¢™ = n$™®(X) (see Section 2)

ns®=<{A4;, B,y |y¥=1yf=1fori>1 ][4, B][]y. =1
The groups n and n$™®, have the common quotient group I' defined by

I'={A,, B, z; |z central, z3" =1,z =1 for i > 1, [ [4;, B]] [[ z. = 1.

Jo =i

There is an obvious map ¢ : nS"™ —I'. Define the map y : n = I by making the
following assignments:

Y(4;)=A4; and yY(B;)=B
Y(x;) =z, and y(h) =z
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To check that ¢ is well-defined, use the fact that y(h)*" =1 and y(h)>"*+' =z%.
Then it follows that
Y(x;)% =z%=1=y(h) "%  for i > 1 since b, is even,

Y(x,) =z = yY(h) since b, is odd, and

Y([114,, B[ x:) =1=y(h)®  since b, is even.

Clearly both ¢ and ¥ are onto. Consider the maps
¢* : Hom (I, SU(2)) - Hom (=™, SU(2))

and
y*: Hom (I', SU(2)) - Hom (n, SU(2)),

defined by precomposition. Then ¢* and y* are one-to-one because ¢ and Y are
onto. In fact, both ¢* and Y * are onto. This is obvious for ¢*, the reason being
that if p € Hom (n$™®, SU(2)) then, since p(x,)*' =1, we must have p(x,)* = +1,
which is central in SU(2). As for  *, notice that for any element p € Hom (=, SU(2)),
we have p(h) = + 1. This follows by considering the two cases: p is either reducible
or irreducible. First, if p is irreducible, then A central = p(h) = +1. On the other
hand, if p is reducible, then since p factors through H,(IT) = Z*® which is generated
by A,,B;,j=1,...,g p(h) = +1. Now consider p € Hom (n, SU(2)). We can define
y € Hom (I", SU(2)) by setting y(4;) = p(4;), y(B;) = p(B;), and y(z;) = p(x;). Then
y is well-defined because p(h) = +1 and b, is even for i # 1. Clearly the assignment
p — 7y gives an inverse to Y *. We conclude

¢* y*
Hom (n$™, SU(2)) =~ Hom (I', SU(2)) = Hom (%, SU(2)).
Since conjugation commutates with the above isomorphisms, we see:
THEOREM 6.3. #(2(g;a,,...,a,)) = R(X(g; 2a,,...,a,)).

We now investigate the method for computing H*(#(X)). Suppose X =
X(g; 2a,,. .., a,). We decompose the representation space into its connected compo-
nents

R(X) = I&I #:(X),
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where & = (a;, ..., a,) are the rotation numbers. More precisely,

ezniaj O

peR(X) if p(x;) = M,-( 0 e,z,,,.aj>M;‘, for all j,

where x; refers to the generator in the presentation of #™(X). It is obvious that these
components are in fact disjoint. Each «; is a fraction with denominator q; (for
i =1, a, has denominator 2a,). Further we can assume that 0 < «; < 1/2 by conjugat-
ing, if necessary. The sequence & = (a,, . . ., a,) determines n pairs of weights by
setting the weight at p; equal to (a;, 1 — a;) if ; # 0 and (0, 0) if a; = 0. By abuse of
notation, we denote the weights again by a. Let %(2, k, 0, &@) denote the moduli of
stable parabolic bundles over the genus g surface X, of rank 2, degree k, parabolic
degree 0, and weights &@. The degree k is equal to the number of nontrivial weights,
i.e. the order of the set {; | o; # 0}. This justifies shortening ¥(2, k, 0, &) to ;. We
further introduce &2 as the corresponding moduli of stable bundles with fixed
determinant. A consequence of the main theorem is

COROLLARY 6.4
R;(X) = 7).

Remark. For & nontrivial, dim (¥2) =2n + 6(g — 1), where n is equal to the
number of nontrivial flags, i.e. the order of the set {j |« #0 and a; # 1/2}.

The idea is to use formula (21) to compute H*(%;) which computes H*(#(X))
one component at a time. In order to do this, we need to check that €, = €,,. This
is equivalent to requiring that there are no reducibles in #;(X). This holds provided
@ is nontrivial. Since the weights are fractions with denominators a; which are
relatively prime and at least one of them is nonzero, for any line subbundle L,
pardeg (L) is not an integer. In particular, pardeg (L) # 0. This verifies that €, = ¥4,
for & nontrivial. On the other hand, if & =0, then Sy = %#(F,), representations of the
surface of genus g. If g =0, then this component consists solely of the trivial
representation. If g = 1, then this component consists entirely of reducibles and is
diffeomorphic to the pillowcase S2. If g = 2, then the reducibles form a subvariety
of Z(F,), which need not be smooth. This component is the only one of
A(X) where our technique fails and is the only reason we restrict to the cases
where g =0 or 1. In fact, Kirwan explicitly computes the intersection Betti
numbers of this component for higher genus (see Proposition 5.9 of [12]),
giving a complete answer modulo 2-torsion. For genus 2, this component
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turns out (by accident) to be smooth with Poincare polynomial
P,(S5) = (1 4+ D% + 22+ 2t* + 19).

Our work, along with the results contained in [12], give a complete description of
the cohomology of the SU(2) representation space of any torsion-free Seifert
fibered 3-manifold.

A computer is helpful because there are potentially so many components.
For example, the easiest example of a cohomology sphere with five fibers is
2(2,3,5,7,11). To calculate #(X), we have to check over 150 components.
Luckily, computers are more patient than graduate students. We have a program
that performs this calculation for » < 7, and theoretically we could do it for any
number of fibers.

6.8. Explicit computations

Assuming g =0, consider the orbifold X = X(4, 3, 5,7, 11). We first compute
the cohomology of #;(X) = &; where & = (3, 3, 5, 5, 77)- Listing all possible destabi-
lizing line bundles L — FE with pardeg (L) >0, we compute the codimensions
d =d,, of their strata. Because there may be several different strata €, , with the
same codimension d, we introduce the multiplicitiy m, of d, which is the number of
times a strata with d;, = d occurs. In terms of the power series,

Z t2d,1,, = z mdt2".
Ae dz0

Each m, =X, m, , where m, , is the number of times a strata with deg (L) = 4 and
d,. = d occurs.

In order to keep track of all the fractions, we will use the notation f =
(B, ..., Bs) for the larger weights, i.e. f; =1—a,. So the flag at p, has the two
weights «;, B;. Notice that in this case, 1 <X a; <2 and 3 <X 8, <4. Setting
é=(e,...,es) equal to the intersection numbers of L, we can check the condi-
tion pardeg (L) > 0 with formula (14) and compute 4, with formula (17). Notice
that the different ways for L to intersect the flags are enumerated by the 2° = 32
ways of choosing a five bit word é. Since é contributes X e; to the codimension, we
partition the set of all five bit words W into the subsets W), ={é|Z e, =h} for
h=0,...,5.
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Because pardeg (E) =0, we must have deg(E) = —5. Now, E could have
destabilizing subbundles L only if A =deg (L) =2 —3. (If A < —4, then the parabolic
degree of L is at most —4 + X f; < 0 which is not destabilizing.) On the other hand,
if 4 2 —1, then the parabolic degree of L is at least —1 + X «; > 0, so no matter
what the intersection numbers é are, L is destabilizing. So we just check the two
cases A = —3, —2.

For A = —3, the following intersection numbers give pardeg (L) > 0:

® any ¢ € W,, giving d,, =2, and also
®c=(1,1,1,1,1), giving d,, = 3.

We can list this in the table

A=-=3
d m_sa
2 5
3 1
For A = —2, the following intersection numbers give pardeg (L) > 0:

® any ¢ e W,, giving d;, =2,
® any ¢ € W,, giving d;, =3,
® any ¢ € W,, giving d;,, =4, and
®c=(1,1,1,1,1), giving d,, = 5.

Summarizing this in the table

W AW
wh
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Likewise, for each A 2 — 1, we get a table of the form

d m;.a
2A+4 1
2A+5
2A4+6
2A+17
24 +8 5
2A+9 1

Computing m, =X, m, ,, we find that

Y myr*=16t*+ 1615+ - -

d=z0

and conclude
P(Fs) =1+61%+1%

Now consider the six-dimensional component where n=6 and & =
G, 3,23, 3, 55)- Here, there are 2° = 64 possible ways for a line bundle to intersect
the flags, and we keep track of them all with the six bit word e. Again, we partition
the set of all words W into the subsets W, ={¢|Z e, =h} for h=0,....,6.

Using the same notation, we see f = (3,3, 3, 2, &, ). We have deg (E) = —6,
and because X 8, <5, a destabilizing line bundle L must have deg(L) = —4.

Furthermore, since £ a; > 1, if deg (L) 2 — 1, then no matter what the intersection

numbers are, L is destabilizing. Thus, we need to check the cases deg (L) =41 = —2,
—3, and —4.
For A= —4,onlye=(1,1,1, 1,1, 1) is destabilizing, contributing one term
d m_gsq
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For A = —3, L is destabilizing for the following intersection numbers:

® 10 of the 20 ¢ € W,, giving d,, =2,
® any ¢ € W,, giving d;,, =3,

® any ¢ € W, giving d;, =4, and
®c¢=(1,1,1,1,1), giving d,, = 5.

Summarizing this in the table

A= -3
d m_sqg
2 10
3 15
4 6
5 1
For 4 = —2, L is destabilizing for the following intersection numbers:

any e € W,, giving d,, = 2,
any é € W,, giving d;, =3,
any ¢ € W, giving d,, =4,
any e € W,, giving d;, =5,
any ¢ € W, giving d,, =6, and
e=(1,1,1,1,1), giving d,, =7.

Summarizing this in the table

NN B W
[\
o
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For any 4 =2 —1 we have the table

d m;.a
2445 1
2A+6 6
2A+7 15
2A+8 20
2449 15
2A.+10 6
22+ 11 1

Computing m, =X, m; 4, we find that

Y, myt*=16t*+32t+4 - -

dz20

and conclude

P(F)=1+Tt>+Tt*+ 5.
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