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Etale descent for Hochschild and cyclic homology

CHARLES A. WEIBEL' AND SUSAN C. GELLER?

Abstract. If B is an étale extension of a k-algebra A, we prove for Hochschild homology that
HH (B) = HH (4) ® , B. For Galois descent with group G there is a similar result for cyclic homology:
HC _(4) = HC l'(B)G if Q < A. In the process of proving these results we give a localization result for
Hochschild homology without any flatness assumption. We then extend the definition of Hochschild
homology to all schemes and show that Hochschild homology satisfies cohomological descent for the
Zariski, Nisnevich and étale topologies. We extend the definition of cyclic homology to finite-dimensional
noetherian schemes and show that cyclic homology satisfies cohomological descent for the Zariski and
Nisnevich topologies, as well as for the étale topology over Q. Finally, we apply these results to complete
the computation of the algebraic K-theory of seminormal curves in characteristic zero.

This paper studies three related topics: étale descent for Hochschild homology
and cyclic homology, and the algebraic K-theory of seminormal curves. Our results
are simplest for Hochschild homology. Let £ be a commutative ring with identity,
A a k-algebra, M an A-bimodule, and R=A4 ®, A°®. Then the Hochschild
homology of 4 and M is HH (A; M) = Tor%* (4, M) as in [Mac, IX.8]. We write
HH ,(A) for the Hochschild homology HH ,(A4; A). If A is commutative, it is
well-known that HH ,(A) is a graded A-module.

ETALE DESCENT THEOREM (0.1). Let A = B be an étale extension of
commutative k-algebras. Then

HH,(B) =~ HH ,(A) ® 4 B.

For example, any localization B=S"'4 is étale over 4, so (0.1) yields the
formula HH , (S~ '4) =~ S~ 'HH (A) without the extra hypothesis of [BI], [Bry],
and [GRW] that A4 be flat over k. This formula also holds when A4 is noncommuta-
tive; see §1. Another immediate consequence of (0.1), which breaks up the long
exact sequences in loc. cit. as well as removing the spurious hypotheses (i) 4 flat
over k and (ii) B, = S~ '4, is the following.
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COROLLARY 0.2. Suppose that X = Spec (A) is covered by affine open subsets
U, = Spec (B,) and U, = Spec (B,). Then there is a short exact sequence

0—-HH,(A) > HH,(B,) x HH,(B,) » HH,(B, ® 4 B,) 0.

Indeed, B,, B,, and B, ® B, are étale over A, so this arises from (0.1) upon
tensoring HH,(A) with the exact sequence 0 -4 —» B, x B,—» B, ® , B,—0.

The other typical étale extension is the Galois extension ([KO]). In this case we
can also say something about cyclic homology. (See 2.2 and 3.2 below.)

GALOIS DESCENT THEOREM (0.3). Let A = B be a Galois extension of
commutative k-algebras with Galois group G. Then G acts on HH ,(B) and

HH (A) = HH ,(B)°.

In addition, if A contains a field of characteristic zero, then the action of G on the
cyclic homology HC ,(B) is such that

HC,(A) = HC,(B)°.

Let us explain why we call (0.1) a “descent theorem.” There are two relevant
notions of descent in the literature. One is the notion of faithfully flat descent
((TDTE], [KO]). Let F be any functor from k-algebras to abelian groups, and
A < B be a faithfully flat extension. We say that F satisfies naive descent for A < B
if the augmented Amitsur complex

0 F(A) > F(B) > F(B® B)>F(B®,B®,B) -~

is exact. The HH, satisfy naive descent for all faithfully flat étale extensions by
(0.1), and the HC, satisfy naive descent for all Galois extensions by (0.3).

Our original proof of (0.1) used the theory of faithfully flat descent; after
hearing it, Brylinski ([Brylet]) sent a simpler argument to us, and we give a
modification of his argument in Section 2. Another proof of (0.1) has been found
independently by C. Kassel and A. Sletsjoe [KS] using Harrison homology, at least
when Q =k and A4 is flat over k.

In Section 3 we show that the individual HC, do not satisfy naive descent for
all faithfully flat étale extensions, but that instead there is a fourth quadrant descent
spectral sequence

Ef8 = H?(B/A, HC_,) = HC_,_ (A)
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converging in the usual good cases. (See 3.4 below.) The E%¢ terms are the Amitsur
cohomology groups of F = HC_, i.e., the cohomology of the Amitsur complex.

The second notion of descent in the literature is cohomological descent (for
presheaves of chain complexes) in the sense of Grothendieck ([Hart]), Thomason
(IAKTEC])), et al. In Section 4, we extend the definition of Hochschild homology to
schemes over k, and show that HH , satisfies cohomological descent for the Zariski,
Nisnevich, and étale topologies. We also extend the definition of cyclic homology to
finite-dimensional noetherian schemes over k. (This restriction arises from our
insistence that HC ,(Spec (4)) be the same as HC,(A4).) Then we show that HC
satisfies cohomological descent for the Zariski and Nisnevich topologies, and for
the étale topology over Q. The main result needed for this is the following
description of the Hochschild homology sheaves.

COROLLARY 0.4 (HOCHSCHILD SHEAF). Let X be a scheme over k, and
HH, be the Zariski sheafification of the presheaf U — HH,(I'(U, O)) on the big
Zariski site of X. Then

(i) H#H#, is a quasicoherent sheaf on X;

(i1) K, is also a sheaf for the étale topology on X;

(iil) HL(X; H#H,) = Hy, (X; HH,) for all i; and,

(iv) if X is affine, ie., X =Spec(A), then HX, #H,) =~ HH,A) and
H(X; ##,)=0 for i #0.

Proof. Our étale descent theorem (0.1) implies that J# 5, is an étale sheaf and
that it is quasicoherent. Parts (iii) and (iv) follow from [M, II1.3.8]. [

In §5 we complete the calculation of the algebraic K-theory of an arbitrary
seminormal curve over a field / of characteristic zero. This calculation was begun in
[GRW], and our desire to finish the calculation was the original motivation for this
paper. In [GRW, §6, 8] the problem was reduced to the computation of the
K-theory of the affine “linear”” seminormal curves Spec (4), 4 =1 ® t(I1l;)[t], where
I1l; is a finite product of finite field extensions of /. This reduction follows from the
fact that every seminormal curve singularity has this analytic type ([D]). Therefore
the following calculation completes our program.

THEOREM 0.5. Let [,,1,,...,1 be finite extension fields of a field | of
characteristic zero. Let A =1@® t(I1l;)[1). Then:

K, (4) =K,()®V,,

and
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HCRA)=HCYDH BV, @4/l ®, Q7).
Here V, =0 if n <2 and, for n = 2:

v.=111e 11 2@ --ollae>
c(b,n) c(bn—1) c(b,2)

where b = — 1+ X dim, (/;), and the combinatorial numbers c(b,i) are given in
[GRW, 3.13]; c(b, 2) = (b + b)/2 and c(b, n) is approximately b"/n for large n.

§1. Localization without flatness

The goal of this section is to prove two localization results without the
customary hypothesis that 4 be flat over k. Proposition 1.1 was proven with the
additional hypothesis that 4 be flat over k in [GRW, A.3], [B]] and [Bry]. We shall
write HH (A; M) for the Hochschild homology of an 4-bimodule M.

PROPOSITION 1.1 (LOCALIZATION FOR HOCHSCHILD HOMOL-
OGY). Let C be the center of a k-algebra A. Then for every multiplicatively closed
set S in C,

S~'HH,(A; A) ~ HH (A;S~'A) ~ HH (S~ '4; S~'4).

In order to prove this result, we need to recall the notion of relative torsion
products, Tor®* (M, N), from [Mac, IX.8]. Here R is a k-algebra, M is a right
R-module, and N is a left R-module. The reason for our interest in Tor®* is the
fact [Mac, X.1.4, p. 280] that if we take R = 4 ®, A°P and consider an 4-bimodule
N as a left R-module, then

HH (4; N) = Tor®* (4, N).

DEFINITION 1.2. [Mac, IX.8, p. 273] An R-module P is called a relatively
projective R/k-module if it has the projective lifting property relative to the class of
“k-split epis”, i.e., the R-module epimorphisms L — M which have k-module
splittings.

For example, if V is a k-module, then P = R ®, V is easily seen to be relatively
projective. In fact, it follows from the standard proof of [Mac, 1X.8.4] that every
relatively projective R/k-module P is a direct summand of some R ®, V (take
V = P, for example).
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By [Mac, 1X.8.5] we may compute TorX* (M, N) by forming any k-split
resolution P, of M by relatively projective R/k-modules and taking the homology
of the complex P, ® x N. Equivalently, we may compute TorX* (M, N) by forming
any k-split resolution P, of N by relatively projective R/k-modules and taking the
homology of the complex M ®, P..

DEFINITION 1.3. Call M a relatively flat R /k-module if Tor®* (M, N) =0 for
* # 0 and for all left R-modules N.

The usual homological yoga (see [Mac, p. 276]) shows that we can compute
relative torsion products using a k-split resolution of M (or N) by relatively flat
R/k-modules.

LEMMA 1.4. Let V be a right R-module and S a flat R-algebra. Then
P=V ®,S is a relatively flat R/k-module.

Proof. (Cf. [Mac, 1X.8.3].) We have to see that P ®, sends a k-split exact
sequence N, of left R-modules to an exact sequence. Since k is commutative, by
k-linearity we have:

P®RN=V®kS®RN.gS®RN.®k V.

Now N, ®, V is exact because N, is split exact as a sequence of k-modules.
Applying S ® . after that retains exactness because S is flat in the usual sense. [

COROLLARY 1.5 (cf. [BX, 6.6]). Let B be a flat A-algebra. Then
T=B®,B° is flat over R=A ®, A°®. For every right T-module M and left
R-module N,

Torl* (M, T ® g N) = Tork/* (M, N).

Proof. Since (B ®, B°®?) ® 45, 40 M =B ® , M ® , B, flatness of T over R is
immediate. To prove the second statement, find a k-split resolution P, of M with
P, =V, ®, T for some k-modules V,. For example, P, could be the bar resolution
B(M) = M ® B(T) of [Mac, IX.8.2]. Then Torl* (M, T ®x N) is the homology of
the complex P, ® (T ®x N). But P, ®, (T ®x N) = P, ® x N, whose homology
is Tor¥* (M, N) since P, is a k-split resolution of the R-module M by relatively flat
R/k-modules. [
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Proof of 1.1. (cf. proof of [GRW, A3]) Let R=A4 ®,A4°° and
T=S"'4®, S '4°. Then by Corollary 1.5 with M =S~'4 and N = 4,

HH (S~'A; S~ 'A) =~ TorT* (S—'4, S~'4) = Tor®* (S~'4, A)
=~ Torf* (A4, S~ '4) > HH (4; S~ ' A).

Finally, let P, be a k-split, relatively projective resolution of the left R-module A.
Since localization is exact, we have

S~'H,(A; A) =S~ Tork* (4, A) = S~'H (A @, P.)
~H, (S7'A @z P) =Torkk(S~'4, 4). O

Another localization result that we need in order to prove étale descent for
Hochschild homology concerns localizations of relative Tors, and is similar to
Proposition 1.1 (cf. [BX, 6.5 and 6.6]).

PROPOSITION 1.6. Let C be the center of a k-algebra A. Let M be a right A
module and N be a left A-module. Then for every multiplicatively closed set S in C,

S~ Torf* (M, N) = Tor{’* (M, S~'N) = Torj '4*(S~'M, S~ 'N),

Proof. Let P, be a relatively flat S~'4/k resolution of S™!N. Then P, is a
relatively flat 4 /k resolution of S ~'N. Thus

Torf*(M,S"'N)=H M ®,P)=H,(M ®,S '4 ®s-1,P.)
~H_ (S 'M ®g-1, P)=Tord 'Y (S~'M, S~'N).

Now let P, be a relatively flat k-split resolution of M. Then

S-! Torﬁ/"(M, N)=H, (P, ®,4N) ®,4 S—'4 ~H, (P,®,S'N)
~Tor*(M,S~'N). O

§2. Etale descent for Hochschild homology

The following proof of the Etale Descent Theorem (0.1) is an adaptation of a
proof by J.-L. Brylinski ([ Brylet]) under the assumption that A is flat over k. We are
using his elegant approach rather than our original descent-theoretic proof which
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was straightforward but unenlightening. We are most grateful to him for communi-
cating it to us.

Recall that if 4 — B is a map of commutative k-algebras, then there is a natural
map HH,(A) ® 4 B— HH (B). Our descent result will be that this map is an
isomorphism when B is étale over 4. We first give a related result for flat
extensions.

THEOREM 2.1. Let A < B be a flat extension of commutative k-algebras. Then,

HH,(4A) ® ,B=HH _(B; B ®,4B).
Proof. Let R=A® A°® and T = B® B°P. Let P, be a k-split, relatively projec-
tive resolution of the left R-module 4. Then
HH, (A) ® ,B=Tor*(4,A) ® , BB ®,H, (4 ®P))
=H, (B®,4Q@rP) since B is flat over 4
~ H, (B ®xP,) =Tork* (B, A)
~ TorI* (B, T ®z A) by 1.5
~ Tor?*(B,B ®,B)~HH (B;B®,B). O

Proof of Etale Descent (0.1). Since B is an étale extension of A, it is unramified
over A. Thus B ® , B~ B x C for some étale extension C of B, and

HH, (B; B ®,B)=HH, (B)® HH _(B; C).
By Theorem 2.1 we need only show that HH ,(B; C) = 0.

Let T =B ®, B, and let m be a maximal ideal of T. Since T surjects onto the
ring B ® , B~ B x C, either B,, or C,, is zero. Hence
HH _(B;C) ®;T,, =Torl*(B,C) @, T,
~ TorI~'* (B, C,) by 1.6
=0

Since HH,(B;C) localized at every maximal ideal of T is zero,
HH,(B;C)=0. O
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EXAMPLE 2.2 (GALOIS DESCENT). Galois extensions are a special class of
¢tale extensions. Recall ([KO, p. 46]) that if G is a finite group of 4-automorphisms
ot a faithfully flat 4-algebra B, then B/A is a Galois extension with group G if and
only if B ® , B ~1l,.; B by the map whose g'" coordinate is b ® ¢ — b - g(c). Note
that 4 = B¢ follows from this definition and faithfully flat descent. G also acts on
HH ,(B), and the isomorphism HH (B) =~ HH ,(A) ® 4 B is G-equivariant. There-
fore,

HH,(B)° ~[HH ,(A) ® , BI°~ HH (4) ® , B® =~ HH ,(A).

EXAMPLE 2.3 (FAITHFULLY FLAT ETALE DESCENT). If B/A is not
only étale but also faithfully flat, then (0.1) implies that the augmented Amitsur
complex

0— HH (A) > HH (B) > HH (B ® ,B) > HH (B®,B ®,B) > -

is exact ([A], [TDTE, I, p. 18], [KO, p. 30], [M, p. 16]). This is called ‘‘naive
descent” in the introduction and “faithfully flat étale descent’ in the literature.

As a special case, suppose that % = {Spec (B,), ..., Spec(B,)} is a cover of
Spec (A4) by affine open subsets. Then B = I1B,; is faithfully flat and étale over A,
and the Amitsur complex computes Cech cohomology of the cover  ((TDTE, I, p.
14], [M, p. 97)):

_ _ (HH, (4) ifm=0
H™U, A H )= {0 otherwise’

When B = B, x B,, this yields the short exact sequence of (0.2).

§3. Naive descent for cyclic homology

The purpose of this section is to analyze naive descent for the functors F = HC,,.
Because the cyclic homology groups HC,(A) are not A-modules in general, we
cannot apply faithfully flat descent theory to the HC,. Indeed, the following
example shows that naive descent fails for HC,, even for faithfully flat étale
extensions.

EXAMPLE 3.1. Let 4 = k[x, y]/(»(y — x* + x)) be the coordinate ring of a line
and a parabola in the plane. The elements x and t = x — 1 are relatively prime; so
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B = A[1/x] x A[1/tf] is faithfully flat and étale over A. Furthermore,
B ® , B = B x A[1/xt]. Using the calculations of [GRW] we can show that if n > 0,
then

HC,(B) = HC,(k x k) ®HC, _(k xk xk xk)®V,®V,

HC,,(A[;:—IDQHC,,(k x k) @® HC,_,(k x k x k x k),

where V, is k if nis odd (n > 0) and 0 otherwise. The long exact sequence of [GRW,
A.2] yields the (split) exact sequence for n > 0

0-HC,, ,(k)>HC,(A)->HC,(B)-HC, (A [;1;]) - HC, (k) - 0.

Since HC,(A) does not inject into HC,(B) for n odd, naive descent fails for B/A.
We remark that

HC,(4) = HC,(k) @HC, . ,() @V, ®V,.

Galois extensions provide one case in which the HC, satisfy naive descent.
Recall (KO, p. 121]) that if 4 < B is a finite Galois extension and if F is any
functor, then the Galois group G acts on F(B), and the Amitsur cohomology
H*(B/A; F) is the same as the group cohomology H*(G; F(B)). Clearly naive
descent implies that F(4) = F(B)®. If F(B) is a Q-module (or more generally if |G|
acts invertibly on F(B), so that H'(G; F(B)) =0 for i #0), then naive descent is
equivalent to the isomorphism F(A) = F(B)®. Therefore the cyclic homology part
of our Galois Descent Theorem (0.3) is equivalent to the following result.

PROPOSITION 3.2. Every cyclic homology group HC, satisfies naive descent for
finite Galois extensions A < B, assuming that Q < A or more generally that the order
of the Galois group G is a unit in B. Moreover,

HC,(A4) = HC (B)°.
Proof. Consider the commutative diagram
HC,_ ,(4) - HH,(A4) - HC,(A) - HC,_ ,(4) -» HH,_,(4)

1 = ! l 1=
HC, _(B)° » HH,(B)° ~ HC,(B)° » HC, _3(B)°— HH,_,(B)°
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The top row is the SBI sequence, which is exact. If |G| is a unit in B, then |G| acts
invertibly on HH (B) and HC_(B), so the bottom row is exact. The theorem
follows from induction on » and the 5-lemma. O

The following is another example in which naive descent holds for a piece of
cyclic homology. Let A = A, @A, ® A, ® - - - be a graded k-algebra containing Q,
and write F*(A4) for the kernel of F(A) - F(A,) so that F(A4) = F(A4,) ® F*(A).
The usual SBI sequence of cyclic homology breaks up into short exact sequences

(G)
0— HC_ (A) > HHZ(4) > HC*(4) —0.

PROPOSITION 3.3. If A = B is an étale extension of graded k-algebras such
that Q < Ay and Ay < B, is also étale, then the relative cyclic homology functors HC
satisfy naive descent for A < B.

Proof. The following is a short exact sequence of chain complexes. Note that
B®,  ®,Bis graded with B, ® 4, - ® 4, B, in degree zero.

0 0 0
l l l

0- HC}_(A)-»HC} (B)-»HC} (B®,B)----
l l l

0- HH}(A) - HH,;(B) - HH;(B®,B) - -
l l l

0—- HC,(4A) - HC)(B) - HC;(B®,B) -
l l l
0 0 0

Since the middle row is exact by (2.3) and HC,,(4) =0 for m <0, the result
follows by induction on m and a diagram chase. [

APPLICATIONS 3.3.1. (i) If A = A,[t], then F*(A) is usually written as
NF(A,); (ii) if A = Ay[1]/(t?* "), then F*(A) is usually written as C,F(4,). Propo-
sition 3.3 state that the functors NHC,, and C,HC,, satisfy naive descent for
faithfully flat étale extensions, assuming that Q < k.

THEOREM 3.4 (ETALE DESCENT FOR CYCLIC HOMOLOGY). Let A be
a commutative, finite-dimensional noetherian k-algebra, and B an étale, faithfully flat
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extension of A. Then there is a jourth quadrant spectral sequence approaching
HC (A), beginning with Amitsur cohomology:

E% = H’(B/4; HC_,) = HC,, ,(A).

It converges if any of the following conditions are met:
(a) Q= 4;
(b) B=B, x---x B,, and each B, is a localization of A,
(¢) B is a Nisnevich cover of A ([Nis)). That is, for every prime ideal p of A, there
is a prime ideal q of B lying over p such that k(p) = k(q);
(d) 4 =Flx,,...,x,]/I for some algebraically closed field F,
(e) A is finitely generated over one of the finite rings Z[3]/n or Z[i]/n.

Proof. These are all versions of the descent spectral sequence (A.S) obtained
from the double complex C?* = HC_ (B®+47*"). In case (a) we cite (4.9). In case
(b) we cite (4.6.1) and (4.7). In case (c) we cite 4.8. In cases (d) and (e) we cite (4.9)
and the remarks preceding it. [J

Remark. 1If B/A is a finite Galois extension, the E5? term is H?(G; HC_ (B)).
This provides a more high-powered proof of Galois descent (3.2), for the spectral
sequence will then collapse when Q < A4.

APPLICATION 3.5 (CECH COHOMOLOGY). If % ={U,,..., Uy} is a
finite covering of X = Spec (4) by affine opens, U, = Spec (B;), then B = IIB; is
faithfully flat and étale over A. In this case the Amitsur cohomology H?(B/A; F) is
the usual Cech cohomology H?(#; F), which vanishes for p > N ((TDTE], [M]). In
this case we have a convergent spectral sequence

EX, =H-?;HC_,)) = HC,, (A).

In the special case N =2, U,n U, is Spec (B, ® , B,), and the spectral sequence
degenerates into the long exact Mayer-Vietoris sequence (cf. [BI], [Bry], [GRW])

~-+—>HC, (B, ®,B,) > HC,(4) - HC,(B,) ® HC,(B,)
—-HC,(B, ®,4B,)—>

Example 3.1 shows that this sequence need not break up, as the Hochschild
sequence did in (0.2). In fact, H'(B/A; HC,) = HC,(k) for this example.
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§4. HH and HC for schemes

As motivation for the ideas of this section, let X be a scheme over k, and
consider the (reindexed) cochain complex 5 #, of Hochschild homology sheaves
on X (see 0.4):

d d d
0->HHy > HH, > HH,—> .

The de Rham cohomology of X is the hypercohomology H3z(X) = H*(X; K H ).
When X is smooth over k, this recovers the definition of [GdR] because in that case
HH, =Q%:. As in op. cit., the hypercohomology spectral sequence

E1= HY(X, X #,) = HiZ /(X)

converges for all X. Using Corollary 0.4, we see that if X = Spec (4) then the
spectral sequence degenerates, showing that H%;(Spec (4)) is the cohomology of
the complex

d d d
054 - HH,(A) » HH,(A) - - - -,

which is H*,(A), as one might naively think.

All this works well because the cochain complex # 3, is bounded below.
Now consider the problem of defining the Hochschild homology of any scheme X.
Let C,(4) be a functorial chain complex whose homology is the Hochschild
homology HH,(A) of a k-algebra 4, and let €, be the chain complex of sheaves
on X associated to the presheaf C,(U) = C, (I'(%, Oy)). Note that the ¢ , are not
in general quasicoherent sheaves, and that the corresponding cochain complex € —*
is not bounded below. We define the Hochschild homology of the k-scheme X to be
the Zariski hypercohomology

HH,(X) =Hz:(X, C,) = Hz1(X,C~%).

The definition of hypercohomology we have given in the appendix differs slightly
from the usual hypercohomology of [EGA, 0,;,]. If X were also noetherian of finite
Krull dimension, H*(X; C —*) would agree with the hypercohomology [EGA, 0,;]
by the device of [M, pp. 311-312] or [Hart, 1.5.38]. Although HH,, is a contravari-
ant functor of X, we have indexed it with subscripts in order to have the following.

THEOREM 4.1. If X =Spec(A) is an affine scheme over k, then
HH (X) = HH,(A) for all n. In particular, HH,(X) =0 for n <0.
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Proof. This is a consequence of (0.4) and the following more general result.
THEOREM 4.2. There is a fourth quadrant (cohomology) spectral sequence with
EY¥=H%, (X;#H _ )= HY(X; HH _ ) = HL(X, HH _,)

which approaches HH _, _ (X), and converges if the spectral sequence is bounded, i.e.,

for each n there are only finitely many nonzero groups HP(X; #H,) with
—p+q=n

Proof. This is the hypercohomology spectral sequence (A.2), once we observe
that the homology sheaf H,,(C*) is the sheaf s ¢, . This observation follows from
the exactness of the sheafification functor ((M, p. 63]). The alternate characteriza-
tions of the E%¢ term come from (0.4). O

COROLLARY 4.2.1. HH,(X) 2 H5 (X; C,) =H;"(X; C),).
Proof. This follows from 4.2 and the Comparison Theorem A.3. [

EXAMPLE 4.3. If X is noetherian of dimension d, then HH,(X) =0 for
n<—d; HH_,X) = H%X; 0,), and there is a short exact sequence

Hd—z(X; Ox) - HYX; QX/k) - HH, _ (X) - H'" (X, Oyx)—0.
In general, there will be infinitely many » > 0 with HH,(X) # 0.

EXAMPLE 4.3.1. If X is a smooth projective curve of genus g over a field &,
then #H#, = Q%,, which is zero for n 2 2. Hence HH _|(X) > H'(X; Oy ) = k?,
HH,(X) = k? via an extension

0— H'(X; Qyy) > HHy(X) » H(X; Oy ) -0,

and HH,(X) =~ H(X, Q) = k8 HH,(X) =0 for n #0,1, —1.

DENNIS TRACE MAP (4.4). The Dennis trace map D : K,(4) - HH,(A4)
induces a map for every scheme X:

K,(X) > H"(X; K) > H"(X; C,) = HH,(X).

Here 7 is the augmentation map of [AKTEC, 1.33]. The Dennis trace map induces
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a map of spectral sequences from the Brown-Gersten spectral sequence of algebraic
K-theory to the spectral sequence of 4.2.

DEFINITION 4.5 (LODAY [L, 3.4]). Let B,(A4) be any functorial chain
complex whose homology is the cyclic homology, HC ,(A4), of a k-algebra 4, and
let B, be the chain complex of sheaves on X associated to the presheaf
B,(U) = B _(I'(U, Oy)). The homology sheaf H,(B,) is the sheaf s, associated
to the presheaf Uw— HC,(I'(U, O,)). We define the cyclic homology of the k-
scheme X to be the Zariski hypercohomology

HC,(X) =Hz}(X, B,) = Hz (X, B~*).

Our first job is to show that if X is affine then we recover the usual definition of
cyclic homology. A proof of the formula HC (Spec (4)) = HC,(A) for arbitrary
k-algebras A is beyond the scope of this paper. In this paper we shall only prove
this if 4 is noetherian and finite-dimensional. For this we need:

SBI SEQUENCE (4.5.1). There is a long exact sequence
S B 1 N
—=HC,  (X) » HC, _\(X) » HH (X) - HC,(X) - - -

Proof. This is the hypercohomology exact sequence (see A.4) of the exact
sequence 0 - C, 5 B, =t B,[—2] =0 of chain complexes in [LQ, 1.6]. [

LEMMA 4.6. If X is a noetherian k-scheme of dimension d, then HC,(X) = 0 for
n< —dand HC_,X) = HH_,X) = HYX; 0y).

Proof. The hypercohomology spectral sequence of (A.2),

quzH%ar(X; %(g_q) = HC (X),

—pP—49q
converges, showing that HC,(X) =0 forn < —d. 0O

COROLLARY 4.6.1. If X = Spec (A) is affine, noetherian and finite dimensional,
then HC,(X) =~ HC,(A) for all n. In particular, HC,(X) =0 for n <0.

Proof. Using Theorem 4.1, the SBI sequence (4.5.1), and induction on n, we see
that it suffices to show for some d = 0 that HC,(X) =0 forn< —d. O

QUESTION 4.6.2. If X = Spec (4), is H/(X; #%,) =0 for p 2 q (p #0)? The
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proof of (4.6) and (A.2.1) show that an affirmative answer to this question would
yield the formula HC ,(Spec (4)) = HC ,(A) for arbitrary k-algebras A.!

Remark 4.6.3. If A is smooth over a field k of characteristic zero, we know by
[LQ] that HC,(A) =Q%, /dQ%;' ®DHRz*®Hz*® . Let X =Spec(4). By
Bloch-Ogus ([BO, 2.2]), we know that H?(X; # %) =0 for p > q. It follows that
HY(X; #%,) =0 for p 2 q, except for H(X; #€,) = A, so the question has an
affirmative answer in this case.

PROPOSITION 4.7. Let X be a finite dimensional noetherian k-scheme and U a
Zariski cover of X by open subsets. Then the descent spectral sequence for Cech
cohomology converges:

E% = HP(U; HC_,) = HC_,_ (X).
Proof. See (A.5) or [AKTEC, 147]. O

There are other topologies to use other than the Zariski topology, such as the
¢tale topology ([M]) or the Nisnevich topology ([Nis]). If X is a noetherian scheme
of dimension d, then H};(X; —) =0 for n > d, so the argument in (4.5)—(4.7) goes
through verbatim for the Nisnevich site. There is a map from the Zariski SBI
sequence to the Nisnevich SBI sequence. As in 4.6, H, (X E*) = H{ (X; ﬁ*) =0
for n > dim (X). Since Hz,.(X; C,) = Hy;(X; C,) by (4.2.1), we may apply induc-
tion on n and the 5-lemma to prove the following result.

PROPOSITION 4.8. Let X be a finite dimensional noetherian k-scheme. Then
HC,(X) = H(X; B,). Moreover, if U is a Nisnevich cover of X, then the descent
spectral sequence for Cech cohomology converges:

E¥=H@; HC_,) = HC_,_ (X).

We now compare our Zariski hypercohomology to an étale hypercohomology
construction. For simplicity, we shall assume that Q < k, noting that, as in[AK-
TEC, 1.48], our methods would also apply to

(a) schemes of finite type over an algebraically closed field, and
(b) schemes of finite type over Z[}]/n or Z[i]/n.

"Note added in proof. L. Barbiéri-Viale has shown that this question has a negative answer for ¢ = 1,
because H?(X; #€,) is sometimes isomorphic to H”*2(X; k), which can be nonzero if X is not
irreducible. If A4 is of finite type over a field k then Remark 4.6.3 shows that H?(X, #°€,) = 0 if p 2 max
(g, 2 + dim(Sing X)).



Etale descent for Hochschild and cyclic homology 383

PROPOSITION 4.9. Let X be a finite dimensional noetherian k-scheme, and
assume that Q S k. Then the Zariski and étale hypercohomologies agree:

HC,(X) =Hz(X; B,) =Hg"(X; B,).

Moreover, if U is an étale cover of X, then the descent spectral sequence for Cech
cohomology converges:

E%=H@; HC_,) = HC (X).

—P—4q

Proof. We replay the above tape for the étale site. There is an étale hypercoho-
mology SBI sequence as in (4.5.1) and a map from the Zariski SBI sequence to the
étale SBI sequence. By (4.2.1), H%,.(X; C,) and HE(X; C,) agree with HH ,(X).
As in (4.6), HA(X; B,) =0 for n>dim (X). We complete the proof by using
induction and the S-lemma. [

§5. K-theory of seminormal curves

In the proof of Theorem 0.5 we need the following special case of the “KABI
conjecture” of [GRW]:

PROPOSITION S5.1. Let [ < I, be fields of characteristic zero, A =1 @ tl,[t], and
I =1tl,[t]. Then the map

v:K, (A4, B,I)»HC2_ (4, B,])

is an isomorphism for all n.

Proof. Choose a Galois extension L of / containing /;, and note that, as on p.
74 of [GRW],

AQ®,L=Lxy,...,x,)/(x;x;=0,i%#j)
and
B ®,L =IIL[x;]
where n =/, : [}. By Theorem A.2 of [WA], the natural map

v,:K,(4 ®LB®LI®L—~>HC} (4®,LB® L, IQ®L)
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is an isomorphism. By naturality, v, is compatible with the action of the Galois
group G of L/I; so the G-invariant subgroups are also isomorphic. By [vdK, 1.10]
it follows that

Kn(As Ba I) = Kn(A ®I La B ®1 L9 I ®l L)G’
while by Galois descent for cyclic homology (0.3), it follows that
HC,(A,B,I)=HC,(A ®,L,B®,L,1®,L)°.

The result is now evident. O

Proof of Theorem 0.5. Choose a Galois extension L of / with group G and
containing all of the /.. Then B=A4 ®, L is a Galois extension of A with Galois
group G, and B = L[x,, . . ., x,]/{x,x; = 0 for i # j}. The calculation of HC ,(B) in
[GRW, 3.12] and (0.3) gives the cyclic homology of 4. We may now copy the proof
of [GRW, 84]. O

Appendix: Hypercohomology

If K* is a cochain complex of sheaves on a site X, the hypercohomology of K*
is well-known as long as K* is bounded below or if X has finite cohomological
dimension ([Hart], [EGA, 0,,], [M, Appendix C]). Unfortunately, we need the
hypercohomology when K* is bounded above, as is the case with the Hochschild
complex, and we could find nothing in the literature more explicit than the sheaves
of spectra approach of Thomason [AKTEC]. This appendix is largely a translation
of [AKTEC] into the language of homological algebra, and is included for the
convenience of the reader.

Because there are enough injective sheaves, we can form an injective Cartan-
Eilenberg resolution I'* of K, i.e., a right half-plane cochain double complex of
injective sheaves /77 together with an augmentation K* — I'? so that each K*— I'? is
an injective resolution and the conditions of [CE, p. 363], [Hart, p. 76] or [EGA,
Oy, 11.4.2] are met. If L' is another complex, with injective Cartan-Eilenberg
resolution J*, every morphism K*— L- lifts to a map I* - J** of double complexes,
which is unique up to chain homotopy [CE, XVII.1.2].

The total complex Tot (I*), which is the product II,, ,_, I?? in degree n, is a
cochain complex of sheaves. Since Tot converts chain homotopy equivalent maps of
double complexes to chain homotopy equivalent maps of complexes, it follows that
Tot (I*) is well-defined up to chain homotopy equivalence, and that the lift
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Tot (I'*) > Tot (J**) of a map K*— L* is unique up to chain homotopy. Taking
global sections yields hypercohomology.

DEFINITION A.1. The hypercohomology group H*(X; K*) is the n'* cohomol-
ogy group of the complex Tot (HY(X; I'")) =~ H°(X; Tot (I'*)) of global sections of
Tot (I'*). The above remarks show that, up to isomorphism, H"(X; K*) is indepen-
dent of the choice of I''. Moreover, every map K*'— L* gives rise to a unique map
H"(X; K') > H"(X; L*). If K* is bounded below, this is the usual definition of [EGA,
0;;;] or [Hart].

VARIANT. If C, is a chain complex of sheaves on X, we form the usual
cochain complex K* with K" =C_, and set H'(X; C,) = H'(X; K*).

Remark. The Godement double complex 77K¢ of [AKTEC, 1.31] is not a
Cartan—Eilenberg resolution, but there is a map T°K*— I*, unique up to chain
homotopy, which induces a quasi-isomorphism from Tot (77K9) to Tot (I") and
isomorphisms from Thomason’s n_, H'(X; K*) to our H*(X'; K*). This may be seen
using the Eilenberg—Moore Comparison Theorem (see [EM] or A.3 below).

We could also define the hypercohomology complex H'(X'; K*) to be the cochain
complex H%(X; Tot (I'*)), considered as an object in the derived category of cochain
complexes of abelian groups. The map from Thomason’s H*(X; K*) to ours is a
quasi-isomorphism but probably not an isomorphism in general. However, we will
have no use for this notion.

By choosing a fixed Cartan-Eilenberg resolution for every K* in whichever small
category we have under consideration, we see that the H'(X; —) may be made
functorial. Of course, Thomason’s choices are already functorial ((AKTEC, 1.33)).

HYPERCOHOMOLOGY SPECTRAL SEQUENCE (A.2). There is a right
half-plane hypercohomology spectral sequence

E% = HY(X; HY(K")) = HP 7 9(X; K')

which converges strongly under any of the following conditions:
(a) K* is cohomologically bounded below;
(b) X has finite cohomological dimension;
(¢) The spectral sequence is bounded, i.e., each diagonal p+q=n of E**
contains only finitely many nonzero terms.
(d) For each p and q, lim' E?? = 0.
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Proof. This is the usual hypercohomology spectral sequence of [EGA, 0,;,, 12.4]
obtained by filtering the double complex H°(X; Tot (I"')) by columns. Boardman
([B, Theorem 8.1]) proved that the spectral sequence converges strongly if and only
if (d) holds. Since (a), (b), and (c) all imply (d), we are done. [

ADDENDUM A .2.1. More precisely, for each n, the spectral sequence con-
verges completely to H'(X; K*) if lim' E?? =0 for all p and g with p+¢g =n or
p+qg=n—1.

COMPARISON THEOREM (A.3). If K* — L' is a morphism of chain complexes
such that HP(X; HY(K")) - H?(X; HY(L")) is an isomorphism for every p and q, then
for all n:

H"(X; K*) @ H"(X; L).
Proof. [EM, Theorem 7.4]. O

We conclude with two results of Thomason, phrased in the language of
homological algebra for ease of reference.

HYPERCOHOMOLOGY EXACT SEQUENCE (A.4). Hypercohomology is a
cohomological é-functor. That is, if 0 » K* = L* — M* — 0 is a short exact sequence of
complexes of sheaves on X, then there is a long exact sequence

P o
.. '—’Hn+1(X; M') N H"(X; K')-PH"(X; L')—*H"(X; M’) - -,

Proof. [AKTEC, 1.35]. Note that the usual result from [EGA, 0,,.11.5.2] does
not apply unless the complexes are bounded below, which is emphatically not our
case. U

CARTAN-LERAY DESCENT SPECTRAL SEQUENCE (A.S). Let K* be a
presheaf of cochain complexes on X, and write H for the presheaf U — HY(U; K*).
Then for every cover U of X, there is a spectral sequence

E2 = HP(U; HY) = H?+4(X; k)

which converges if there is a bound d such that if p > d then for all q, H?(X; #9) =0
and H?(U; #9) =0 for all Ue U.

Proof. [AKTEC, 1.46]. The following is a sketch of the proof. If K* is bounded
below, we cite the classical result, say from [EGA, 0,,, 12.4.6]. Now let K*'(n)
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denote the “good” bounded below truncations of K and observe that for ¢ <n —d,
the sheaves # 9 —; K*) and o 9( —; K*'{(n)) agree, and H%(X; K*) = s# 9 X; K'{n)) as
well. A use of the Comparison Theorem (A.3) completes the proof. [
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