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Étale descent for Hochschild and cyclic homology

Charles A. Weibel1 and Susan C. Geller2

Abstract If B îs an étale extension of a &amp;-algebra A, we prove for Hochschild homology that

HH^(B) s HH^(A) ®A B For Galois descent with group G there îs a similar resuit for cyclic homology
HC (A) HC^(B)G if Q ç A In the process of proving thèse results we give a locahzation resuit for
Hochschild homology without any flatness assumption We then extend the définition of Hochschild
homology to ail schemes and show that Hochschild homology satisfies cohomological descent for the

Zanski, Nisnevich and étale topologies We extend the définition of cyclic homology to finite-dimensional
noethenan schemes and show that cyclic homology satisfies cohomological descent for the Zanski and
Nisnevich topologies, as well as for the étale topology over Q Finally, we apply thèse results to complète
the computation of the algebraic A^-theory of seminormal curves m charactenstic zéro

This paper studies three related topics: étale descent for Hochschild homology
and cyclic homology, and the algebraic Â&apos;-theory of seminormal curves. Our results

are simplest for Hochschild homology. Let k be a commutative ring with identity,
A a A&gt;algebra, M an ,4-bimodule, and R=A ®kAop. Then the Hochschild
homology of A and M is HH+(A;M) Tor£//r (A, M) as in [Mac, IX.8]. We write

HH^(A) for the Hochschild homology HH+(A;A). If A is commutative, it is

well-known that HH+{A) is a graded ,4-module.

ÉTALE DESCENT THEOREM (0.1). Let A a B be an étale extension of
commutative k-algebras. Then

For example, any localization B S~lA is étale over A, so (0.1) yields the

formula HH^(S-lA) s SlHH^(A) without the extra hypothesis of [Bl], [Bry],
and [GRW] that A be flat over k. This formula also holds when A is noncommuta-
tive; see §1. Another immédiate conséquence of (0.1), which breaks up the long
exact séquences in loc. cit. as well as removing the spurious hypothèses (i) A flat
over k and (ii) Bx S~lA, is the following.

&apos;Partially supported by National Science Foundation grant DMS-8803497
2Partially supported by National Secunty Agency grant MDA904-90-H-4019
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COROLLARY 0.2. Suppose that X Spec (A) is covered by affine open subsets

Ux Spec (Bx) and U2 Spec (B2). Then there is a short exact séquence

0-+HHn(A) ^HHn{Bx) x HHn(B2) ^HHn(Bx ®A B2)-+0.

Indeed, Bx, B2, and BX®B2 are étale over A, so this arises from (0.1) upon
tensoring HHn(A) with the exact séquence 0-+A -+BX x B2-+B{ ®A B2-&gt;0.

The other typical étale extension is the Galois extension ([KO]). In this case we

can also say something about cyclic homology. (See 2.2 and 3.2 below.)

GALOIS DESCENT THEOREM (0.3). Let A c B be a Galois extension of
commutative k-algebras with Galois group G, Then G acts on HH+(B) and

In addition, if A contains a field of characteristic zéro, then the action of G on the

cyclic homology HC^(B) is such that

Let us explain why we call (0.1) a &quot;descent theorem.&quot; There are two relevant
notions of descent in the literature. One is the notion of faithfully flat descent

([TDTE], [KO]). Let F be any functor from fc-algebras to abelian groups, and

A £ B be a faithfully flat extension. We say that F satisfies naïve descent for A £ B
if the augmented Amitsur complex

0^F(A) ^ F(B) ^F(B ®A B)^F(B ®AB®AB)-+--

is exact. The HHn satisfy naïve descent for ail faithfully flat étale extensions by
(0.1), and the HCn satisfy naïve descent for ail Galois extensions by (0.3).

Our original proof of (0.1) used the theory of faithfully flat descent; after

hearing it, Brylinski ([Brylet]) sent a simpler argument to us, and we give a

modification of his argument in Section 2. Another proof of (0.1) has been found
independently by C. Kassel and A. SletsJ0e [KS] using Harrison homology, at least

when Q ç k and A is flat over k.
In Section 3 we show that the individual HCn do not satisfy naïve descent for

ail faithfully flat étale extensions, but that instead there is a fourth quadrant descent

spectral séquence

E? H&apos;(BIA, HC_q)
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converging in the usual good cases. (See 3.4 below.) The E^q terms are the Amitsur
cohomology groups of F HC_q, i.e., the cohomology of the Amitsur complex.

The second notion of descent in the literature is cohomological descent (for
presheaves of chain complexes) in the sensé of Grothendieck ([Hart]), Thomason

([AKTEC]), et al. In Section 4, we extend the définition of Hochschild homology to
schemes over k9 and show that HH\ satisfies cohomological descent for the Zariski,
Nisnevich, and étale topologies. We also extend the définition of cyclic homology to
finite-dimensional noetherian schemes over k. (This restriction arises from our
insistence that HC+(Spec(A)) be the same as HC+(A).) Then we show that HC+
satisfies cohomological descent for the Zariski and Nisnevich topologies, and for
the étale topology over Q. The main resuit needed for this is the following
description of the Hochschild homology sheaves.

COROLLARY 0.4 (HOCHSCHILD SHEAF). Let X be a scheme over k, and

$e#en be the Zariski sheafification of the presheaf U \-+ HHn(r(U, Ox)) on the big
Zariski site of X. Then

(i) 3tif3tfn is a quasicoherent sheaf on X\
(ii) 3tf3tfn is also a sheaffor the étale topology on X\
(iii) H&apos;et(X; J^3en) s H&apos;Zdr(X; Jf^n)for ail i; and,

(iv) if X is affine, Le., X Spec(A), then H°(X, œjfn) s HHn(A) and

i#0.

Proof Our étale descent theorem (0.1) implies that 3tf2/?n is an étale sheaf and

that it is quasicoherent. Parts (iii) and (iv) follow from [M, III.3.8].

In §5 we complète the calculation of the algebraic A&apos;-theory of an arbitrary
seminormal curve over a field / of characteristic zéro. This calculation was begun in

[GRW], and our désire to finish the calculation was the original motivation for this

paper. In [GRW, §6, 8] the problem was reduced to the computation of the

Â^-theory of the affine &quot;linear&quot; seminormal curves Spec (A), A / © t(nit )[/], where

nit is a finite product of finite field extensions of /. This réduction follows from the

fact that every seminormal curve singularity has this analytic type ([D]). Therefore
the following calculation complètes our program.

THEOREM 0.5. Let /,,/2,...,/r be finite extension fields of a field l of
characteristic zéro. Let A =/©/(/7/,)[/]. Then:

Kn(A)=Kn(l)®Vn,

and
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Hère Vn=0ifn&lt;2 and, for n

c(b,n) c(b,n-\) c(b,2)

where b — 1 + Z dim, (/, and the combinatorial numbers c(b, i) are given in

[GRW, 3.13]; c(b, 2) (b2 + b)/2 and c(A, n) is approximately bn/n for large n.

§1. Localization without flatness

The goal of this section is to prove two localization results without the

customary hypothesis that A be flat over k. Proposition 1.1 was proven with the

additional hypothesis that A be flat over k in [GRW, A.3], [Bl] and [Bry]. We shall
write HH+(A; M) for the Hochschild homology of an y4-bimodule M.

PROPOSITION 1.1 (LOCALIZATION FOR HOCHSCHILD HOMOLOGY).

Let C be the center of a k-algebra A. Then for every multiplicatively closed

set S in C,

Sx HH^{A; A) ^ HH^{A\ S1A) ^ HH^(SxA\ S~{ A).

In order to prove this resuit, we need to recall the notion of relative torsion
products, TorJ7* (M, N), from [Mac, IX.8]. Hère R is a Â&gt;algebra, M is a right
/^-module, and N is a left i?-module. The reason for our interest in Tor£;* is the

fact [Mac, X.1.4, p. 280] that if we take R A ®kAop and consider an ^-bimodule
iVasa left R -module, then

HH+(A\N) s Tor^ (A, N).

DEFINITION 1.2. [Mac, IX.8, p. 273] An R -module P is called a relatively
projective R/k-module if it has the projective lifting property relative to the class of
&quot;fc-split épis&quot;, i.e., the i?-module epimorphisms L-+M which hâve fc-module

splittings.

For example, if K is a k -module, then P R ®k V is easily seen to be relatively
projective. In fact, it follows from the standard proof of [Mac, IX.8.4] that every
relatively projective R/k -module P is a direct summand of some R ®kV (take
V P, for example).
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By [Mac, IX.8.5] we may compute Tor£/A: (M, N) by forming any Ar-split
resolution P, of M by relatively projective R/k -modules and taking the homology
of the complex P,®RN. Equivalently, we may compute Tor*;* (M, N) by forming
any A&gt;split resolution P. of N by relatively projective R /k -modules and taking the

homology of the complex M ®RP..

DEFINITION 1.3. Call M a relatively flat R/k-module if Tor£//r (M, N) 0 for
t* 0 and for ail left R -modules N.

The usual homological yoga (see [Mac, p. 276]) shows that we can compute
relative torsion products using a &amp;-split resolution of M (or N) by relatively flat
R /k -modules.

LEMMA 1.4. Let V be a right R-module and S a flat R-algebra. Then

p V ®kS is a relatively flat R/k-module.

Proof (Cf. [Mac, IX.8.3].) We hâve to see that P ®R sends a fc-split exact

séquence N9 of left jR -modules to an exact séquence. Since k is commutative, by
À&gt;linearity we hâve:

P®RN=V®kS®RN9^S®RN,®k V.

Now N9 ®k V is exact because Nm is split exact as a séquence of k -modules.

Applying S ®R after that retains exactness because S is flat in the usual sensé. D

COROLLARY 1.5 (cf. [BX, 6.6]). Let B be a flat A-algebra. Then

T B ®kBop is flat over R=A ®kAop. For every right T-module M and left
R-module N,

Tor?* (M, T®RN)^Tor£//r (M, N).

Proof. Since (B ®k Bop) ®A ®k Aop M s B ®A M ®A B, flatness of T over R is

immédiate. To prove the second statement, find a fc-split resolution P. of M with
pt Vt ®k T for some k -modules Vr For example, P. could be the bar resolution

p(M) M ®TP(T) of [Mac, IX.8.2]. Then Tor^ (M, T ®R N) is the homology of
the complex P.®T(T ®RN). But P. ® T (T ®R N) s P. ®R N, whose homology
is Tor£;* (M, N) since P. is a fc-split resolution of the R-module M by relatively flat

R/k -modules.
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Proof of 11 (cf proof of [GRW, A3]) Let R A®kAop and

S-lA®kS-]Aolp Then by Corollary 1 5 with M S~lA and N A,

S Torf* (A9 S~lA)^ HH^A, S~lA)

Finally, let P. be a fc-spht, relatively projective resolution of the left i*-module A

Since locahzation îs exact, we hâve

S ]H*(A,A)=S lTor$/k (A, A) ^S-lH+(A ®/?P)

-lA,A) D

Another locahzation resuit that we need in order to prove étale descent for
Hochschild homology concerns locahzations of relative Tors, and îs similar to
Proposition 1 1 (cf [BX, 6 5 and 6 6])

PROPOSITION 16 Let C be the center of a k-algebra A Let M be a nght A
module and N be a left A -module Then for every multiphcatwely closed set S in C,

S~l Tor^* (M, N) s TorJ* (M, S~XN) s Tor^ÏA/k (S~lM9 S~lN)

Proof Let P. be a relatively flat S~lA/k resolution of S~lN Then P. îs a

relatively flat A/k resolution of S~~lN Thus

^ (M, S~lN) s tf,(M ®^ P.) S ^(Af ®^ S&quot;U ®s_1/4 P.)

Now let P. be a relatively flat fc-spht resolution of M Then

S&quot;1 Tor^* (M, N) i/*(P. ®^ N) ®A S~lA ff^(P. ®a S~lN)

^Torî/k(M,S-lN)

§2. Étale descent for Hochschild homology

The foliowing proof of the Étale Descent Theorem (0 1) îs an adaptation of a

proof by J -L Brylmski ([Brylet]) under the assumption that A îs flat over k. We are

using his élégant approach rather than our original descent-theoretic proof which
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was straightforward but unenlightening. We are most grateful to him for communi-
cating it to us.

Recall that if A -+B is a map of commutative A&gt;algebras, then there is a natural

map HH+(A) ®AB-^HH^(B). Our descent resuit will be that this map is an

isomorphism when B is étale over A. We first give a related resuit for flat
extensions.

THEOREM 2.1. Let A ç= B be a flat extension of commutative k-algebras. Then,

HH^A) ®AB^ HH+(B; B ®A B).

Proof. Let R A ® Aop and T B® Bop. Let P. be a A&gt;split, relatively projec-
tive resolution of the left R -module A. Then

HH+(A) ®AB^ Tor^ (A, A)®AB^B®A H+(A ®R PJ

S H+{B ®A A ®R P.) since B is flat over A

S H+(B ®R PJ s Tor^* (B, A)

^TorTJk{B,T®RA) by 1.5

S Tor^* (5, B®AB)^ HH+(B; B ®A B).

Proof of Étale Descent (0.1). Since 2? is an étale extension of &gt;4, it is unramified
over A. Thus B ®AB ^B x C for some étale extension C of 5, and

B; B ®AB)^ HH^{B)®HH^B\ C).

By Theorem 2.1 we need only show that HH+(B; C) 0.

Let T B ®kB9 and let m be a maximal idéal of r. Since 71 surjects onto the

ring B ®A B ^B x C, either 2?m or Cm is zéro. Hence

HH+(B; C) ®T Tm s Tor?* (5, C) ® r Tm

^Torl»&gt;*(Bm,Cm) by 1.6

0

Since HH+(B; C) localized at every maximal idéal of T is zéro,

C)=0.
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EXAMPLE 2.2 (GALOIS DESCENT). Galois extensions are a spécial class of
étale extensions. Recall ([KO, p. 46]) that if G is a fînite group of A -automorphisms
ot a faithfully flat ^-algebra B, then B/A is a Galois extension with group G if and

only if B ®A B ^ TlgeG B by the map whose gth coordinate is b ® c h-+ h • g(c). Note
that A ^ BG follows from this définition and faithfully flat descent. G also acts on

HH^(B), and the isomorphism HH^B) £ HH^(A) ®A B is G-equivariant. There-
fore,

i4) ®^ BG s ////„(/().

EXAMPLE 2.3 (FAITHFULLY FLAT ÉTALE DESCENT). If B/A is not
only étale but also faithfully flat, then (0.1) implies that the augmented Amitsur
complex

0-&gt;HH+(A) A HH^B)^HH*(B ®A B)-+HH+(B ®A B ®A B) - • • •

is exact ([A], [TDTE, I, p. 18], [KO, p. 30], [M, p. 16]). This is called &quot;naïve

descent&quot; in the introduction and &quot;faithfully flat étale descent&quot; in the literature.

As a spécial case, suppose that ^ll — {Spec (Z?,),. Spec (Bn)} is a cover of
Spec (A) by affine open subsets. Then B TJBt is faithfully flat and étale over A,
and the Amitsur complex computes Cech cohomology of the cover &lt;% ([TDTE, I, p.
14], [M, p. 97]):

HHAA) ifm=0
0 otherwise

When B 2?, x B2, this yields the short exact séquence of (0.2).

§3. Naïve descent for cyclic homology

The purpose of this section is to analyze naïve descent for the functors F HCn.
Because the cyclic homology groups HCn(A) are not ,4-modules in gênerai, we

cannot apply faithfully flat descent theory to the HCn. Indeed, the following
example shows that naïve descent fails for HCn, even for faithfully flat étale

extensions.

EXAMPLE 3.1. Let A k[x9 y]/(y(y - x2 + x)) be the coordinate ring of a line
and a parabola in the plane. The éléments x and t x — l are relatively prime; so
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B A[l/x] xA[l/t] is faithfully flat and étale over A. Furthermore,
B ®AB B x A[\/xt]. Using the calculations of [GRW] we can show that if n &gt; 0,
then

HCn(B) s HCn(k xk)®HCn_x{kxkxkxk)®Vn®Vn

HCh(a\ — M HCn(k x k)®HCn_x(k x k x k x k\

where Frt is A: if n is odd (w &gt; 0) and 0 otherwise. The long exact séquence of [GRW,
A.2] yields the (split) exact séquence for n &gt; 0

¦m-0^HCn+i (k) - HCn(A) - HCn(B) - //Cn ^ I - M - ffC,(t) - 0.

Since HCn(A) does not inject into HCn(B) for « odd, naïve descent fails for B/A.
We remark that

HCM) HCn(k)®HCn+](k) 0 Kn © Fn.

Galois extensions provide one case in which the HCn satisfy naïve descent.

Recall ([KO, p. 121]) that if A ^ B is a finite Galois extension and if F is any
functor, then the Galois group G acts on F(B), and the Amitsur cohomology
H*(B/A;F) is the same as the group cohomology H*(G;F(B)). Clearly naïve
descent implies that F(A) s F{B)G. If F(B) is a Q-module (or more generally if \G\

acts invertibly on F(B)9 so that Hl(G; F(B)) 0 for i # 0), then naïve descent is

équivalent to the isomorphism F(A) ^F(B)G. Therefore the cyclic homology part
of our Galois Descent Theorem (0.3) is équivalent to the following resuit.

PROPOSITION 3.2. Every cyclic homology group HCn satisfies naïve descent for
finite Galois extensions A ç B, assuming that Q^A or more generally that the order

of the Galois group G is a unit in B. Moreover,

Proof Consider the commutative diagram

HCn_x(A) - HHn{A) - HCn{A) - HCn_2{A) -&gt; HHn_x{A)

HCn_x(B)G-&gt;HHn{B)G-»HCn{B)G^HCn_2{B)G^HHn_x{B)G
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The top row is the SBI séquence, which is exact. If |G| is a unit in 2?, then \G\ acts

invertibly on HH^(B) and HC^(B), so the bottom row is exact. The theorem
follows from induction on n and the 5-lemma.

The following is another example in which naïve descent holds for a pièce of
cyclic homology. Let A AO®AX ®A2® • • be a graded fc-algebra containing Q,
and write F+(A) for the kernel of F(A)-&gt;F(A0) so that F(A) ^F(A0)®F+(A).
The usual SBI séquence of cyclic homology breaks up into short exact séquences
([G])

0 -* //C+_,(A) i HH + (A) ^ HCZ (A) -&gt;0.

PROPOSITION 3.3. If A^B is an étale extension of graded k-algebras such

that Q ç= Ao and Ao ç= Bo is also étale, then the relative cyclic homology functors HC*
satisfy naïve descent for A Ç B.

Proof The following is a short exact séquence of chain complexes. Note that
B ®A - - • ®A B is graded with Bo &lt;g&gt;Ao • • • ®y4o Bo in degree zéro.

0 0 0

ï ï I

ï i l
HH+(A) ^ HH+{B) - HH+{B®AB)

ï l i

ï 1 1

0 0 0

Since the middle row is exact by (2.3) and HCm(A) =0 for m &lt;0, the resuit
follows by induction on m and a diagram chase.

APPLICATIONS 3.3.1. (i) If A=A0[t], then F+(A) is usually written as

NF(A0); (ii) if A =A0[t]/(tp+l), then F+(A) is usually written as CPF(AO). Proposition

3.3 state that the functors NHCm and CpHCm satisfy naïve descent for
faithfully flat étale extensions, assuming that Q s k.

THEOREM 3.4 (ÉTALE DESCENT FOR CYCLIC HOMOLOGY). Let A be

a commutative, finite-dimensional noetherian k-algebra, and B an étale, faithfully flat
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extension of A. Then there is a fourth quadrant spectral séquence approaching

HC+(A), beginning with Amitsur cohomology:

E? H&quot;(B/A; HC_q) *

It converges if any of the following conditions are met:
(a) Q^A;
(b) B Bx x • • x Bn, and each B, is a localization of A;
(c) B is a Nisnevich cover of A ([Nis]). That is,for every prime idéal p ofA, there

is a prime idéal q of B lying over p such that k(p) k(q)\
(d) A F[xl9..., xm]/I for some algebraically closedfield F;
(c) A is finitely gênerated over one of the finite rings Z[Q/n or Z[i]/n.

Proof Thèse are ail versions of the descent spectral séquence (A.5) obtained
from the double complex Cpq HC_q(B®*p+1). In case (a) we cite (4.9). In case

(b) we cite (4.6.1) and (4.7). In case (c) we cite 4.8. In cases (d) and (e) we cite (4.9)
and the remarks preceding it.

Remark. If B/A is a finite Galois extension, the Ep2q term is HP(G; HC_q{E)).
This provides a more high-powered proof of Galois descent (3.2), for the spectral

séquence will then collapse when Q^A.

APPLICATION 3.5 (CECH COHOMOLOGY). If % {Ul9..., UN) is a
finite covering of X Spec (A) by affine opens, Ut Spec (Bt then B T1B1 is

faithfully flat and étale over A. In this case the Amitsur cohomology HP(B/A;F) is
the usual Cech cohomology #*(#; F), which vanishes forp&gt;N ([TDTE], [M]). In
this case we hâve a convergent spectral séquence

E2pq #-&apos;(*; HC_q) =* HCp + q(A).

In the spécial case N 2, UxnU2 is Spec(B{ ®AB2), and the spectral séquence
dégénérâtes into the long exact Mayer-Vietoris séquence (cf. [Bl], [Bry], [GRW])

HCn + (B, ®AB2) -&gt; HCM) -&gt; HC^B, 0 HCn(B2)

Example 3.1 shows that this séquence need not break up, as the Hochschild

séquence did in (0.2). In fact, Hl(B/A; HCn) HCn(k) for this example.
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§4. HH and HC for schemes

As motivation for the ideas of this section, let X be a scheme over k, and
consider the (reindexed) cocham complex JffJf&apos;x/k of Hochschild homology sheaves

on X (see 0 4)

d d d

The de Rham cohomology of X îs the hypercohomology H%(X) H*(X, J^J^&apos;x/k)

When X\s smooth over k, this recovers the définition of [GdR] because in that case

n Qnx/k As in op cit, the hypercohomology spectral séquence

converges for ail X Usmg Corollary 0 4, we see that if X Spec (A) then the

spectral séquence dégénérâtes, showing that H%(Spec (A)) îs the cohomology of
the complex

which îs H^R(A), as one might naively think
AH this works well because the cochain complex JfJf&apos;x/k îs bounded below

Now consider the problem of defining the Hochschild homology of any scheme X
Let C^(A) be a functonal chain complex whose homology îs the Hochschild

homology HH^(A) of a A&gt;algebra A, and let C+ be the chain complex of sheaves

on X associated to the presheaf C+(U) C^(T(?U, Gx)) Note that the C+ are not
in gênerai quasicoherent sheaves, and that the corresponding cochain complex C ~ *

îs not bounded below We define the Hochschild homology of the k -scheme X to be

the Zanski hypercohomology

HHn(X) H^nr(X9 Cj s Hza&quot;r(X &lt;?-*)

The définition of hypercohomology we hâve given in the appendix differs shghtly
from the usual hypercohomology of [EGA, 0m] If X were also noethenan of fini te
Krull dimension, H*^, C~*) would agrée with the hypercohomology [EGA, 0ni]
by the device of [M, pp 311-312] or [Hart, I 5 38] Although HHn îs a contravan-
ant functor of X, we hâve indexed ît with subscnpts in order to hâve the following

THEOREM 4 1 If X Spec (,4) is an affine scheme over k, then

HHn(X) s HHn(A) for ail n In particular, HHn(X) 0 for n &lt; 0
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Proof. This is a conséquence of (0.4) and the following more gênerai resuit.

THEOREM 4.2. There is afourth quadrant (cohomology) spectral séquence with

s //£(*; jeje _q)

which approaches HH__p_q(X), and converges if the spectral séquence is bounded, i.e.,

for each n there are only finitely many nonzero groups HP(X; Jejeq) with

-p+q=n.
Proof This is the hypercohomology spectral séquence (A.2), once we observe

that the homology sheaf Hn(C+) is the sheaf JfJfn. This observation follows from
the exactness of the sheafification functor ([M, p. 63]). The alternate characteriza-
tions of the E%* term corne from (0.4).

COROLLARY 4.2.1. HHn{X) s H^(X; Cj s Hët&quot;(X; Cj.
Proof This follows from 4.2 and the Comparison Theorem A.3.

EXAMPLE 4.3. If X is noetherian of dimension d, then HHn(X) 0 for
n &lt; -d\ HH_d(X) Hd(X; Ox), and there is a short exact séquence

lHd&apos; \X, Ox) -0.

In gênerai, there will be infinitely many n &gt; 0 with HHn(X) # 0.

EXAMPLE 4.3.1. If X is a smooth projective curve of genus g over a field h,

then Jejen Qnx/k9 which is zéro for n ^ 2. Hence HH_X(X) s H\X\ (9X) s Jfc*,

HH0(X) ^k2 via an extension

0-+H\X; Qx/k)-&gt;HHo(X)-+H°(X; &amp;x)-+09

and HHX(X) s H°(JT, «w) s **. HHn(X) 0 for w # 0, 1, -1.

DENNIS TRACE MAP (4.4). The Dennis trace map D : Kn(A) -&gt; HHn(A)
induces a map for every scheme X:

Kn{X) i H-W(Z; AT) ^H-w(^; CJ HHn(X).

Hère i| is the augmentation map of [AKTEC, 1.33]. The Dennis trace map induces
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a map of spectral séquences from the Brown-Gersten spectral séquence of algebraic
À&gt;theory to the spectral séquence of 4 2

DEFINITION 4 5 (LODAY [L, 3 4]) Let B^A) be any functonal chain
complex whose homology is the cyclic homology, HC+(A), of a A&gt;algebra A, and
let B^ be the cham complex of sheaves on X associated to the presheaf

B+(U) B+(r(U, (9X)) The homology sheaf Hn(B+) is the sheaf Jf#n associated

to the presheaf U h-* HCn(r(U,d)x)) We define the cyclic homology of the k-
scheme X to be the Zanski hypercohomology

r/y* / y\ XJ — « / V S \ &lt;¦** XJL — n/y S— *\

Our first job is to show that if X is affine then we recover the usual définition of
cyclic homology A proof of the formula HC+(Spec(A)) HC+{A) for arbitrary
A&gt;algebras A is beyond the scope of this paper In this paper we shall only prove
this if A is noethenan and finite-dimensional For this we need

SBI SEQUENCE (4 5 1) There is a long exact séquence

:n+l(X) ^ HCn X{X) i HHn(X) ^ HCn(X) ^

Proof This is the hypercohomology exact séquence (see A 4) of the exact

séquence 0-+C+ -&gt; B^ -+ B^[— 2] -&gt;0 of chain complexes in [LQ, 1 6]

LEMMA 4 6 IfX is a noethenan k-scheme of dimension d, then HCn(X) Ofor
n&lt;-dand HC d(X) s HH_d(X) S Hd(X, 0X)

Proof The hypercohomology spectral séquence of (A 2),

E? H^(X9 *&lt;«_,) =&gt; HC_p_q(X\

converges, showing that HCn(X) =0 for n &lt; — d

COROLLARY 4 6 1 IfX Spec (A) is affine, noethenan andfimte dimenswnal,
then HCn(X) S HCn(A) for ail n In particular, HCn(X) =0for n&lt;0

Proof Using Theorem 4 1, the SBI séquence (4 5 1), and induction on w, we see

that ît suffices to show for some d :&gt; 0 that HCn(X) 0 for n &lt; -d

QUESTION 4 6 2 If X Spec (A), is HP(X, JtVg) 0 for p * q (p ± 0)? The
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proof of (4.6) and (A.2.1) show that an affirmative answer to this question would
yield the formula HC*(Spec (A)) =HC+(A) for arbitrary /t-algebras A.1

Remark 4.6.3. If A is smooth over a field k of charaeteristic zéro, we know by
[LQ] that HCn(A) Q%k \dQnAJk l 0 Hnd* 2 0 H&quot;d;

4 0 • • •. Let X Spec (A). By
Bloch-Ogus ([BO, 2.2]), we know that //&apos;(JJT; Jf%R) 0 for /? &gt; q. It follows that
HP(X; 3Wg) 0 for p £ except for //°(Jif; «#%,) ,4, so the question has an
affirmative answer in this case.

PROPOSITION 4.7. Let X be afinite dimensional noetherian k-scheme and % a
Zariski cover of X by open subsets. Then the descent spectral séquence for Cech

cohomology converges:

Eç H»(&lt;%; HC_q) =&gt; HC_p_q(X).

Proof See (A.5) or [AKTEC, 1.47].

There are other topologies to use other than the Zariski topology, such as the
étale topology ([M]) or the Nisnevich topology ([Nis]). If X is a noetherian scheme

of dimension d, then H^^X; — 0 for n &gt; d, so the argument in (4.5)-(4.7) goes

through Verbatim for the Nisnevich site. There is a map from the Zariski SBI

séquence to the Nisnevich SBI séquence. As in 4.6, UnZar(X; B+) W^ls(X; BJ=0
for n &gt; dim (X). Since H£ar(Z; Cj H£IS(X; Cj by (4.2.1), we may apply induction

on n and the 5-lemma to prove the following resuit.

PROPOSITION 4.8. Let X be a finite dimensional noetherian k-scheme. Then

HCn{X) s H^ns(X; B+). Moreover, if 91 is a Nisnevich cover of X, then the descent

spectral séquence for Cech cohomology converges:

Ef q pq
We now compare our Zariski hypercohomology to an étale hypercohomology

construction. For simplicity, we shall assume that Q e k, noting that, as in[AKTEC,

1.48], our methods would also apply to

(a) schemes of finite type over an algebraically closed field, and

(b) schemes of finite type over Z[j]/n or Z[i]/n.

!Note added in proof. L. Barbiéri-Viale has shown that this question has a négative answer for q 1,

because Hp(X\3tfWx) is sometimes isomorphic to Hp + \X\ k\ which can be nonzero if X is not
irreducible. If A is of finite type over a field k then Remark 4.6.3 shows that HP(X, Jf&lt;$g) 0 ifp ^ max
(q, 2 + dim(SingJO).
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PROPOSITION 4.9. Let X be a finiîe dimensional noetherian k-scheme, and

assume thaï Qç^. Then the Zariski and étale hypercohomologies agrée :

HCn(X) s Hza&quot;r(*; BJ s H-&quot;(X; BJ.

Moreover, if % is an étale cover of X, then the descent spectral séquence for Cech

cohomology converges:

EÇ #(*; HC_q) =&gt; HC_p_q(X).

Proof. We replay the above tape for the étale site. There is an étale hypercoho-
mology SBI séquence as in (4.5.1) and a map from the Zariski SBI séquence to the

étale SBI séquence. By (4.2.1), H|ar(Jif; Cj and Hft(X; £+) agrée with HH+(X).
As in (4.6), H1t(X; B+) 0 for n&gt;d\m(X). We complète the proof by using
induction and the 5-lemma.

§5. A&apos;-theory of seminormal curves

In the proof of Theorem 0.5 we need the following spécial case of the &quot;KABI

conjecture&quot; of [GRW]:

PROPOSITION 5.1. Let l c /, befields of characteristic zéro, A =l®tlA[t\ and

I tlx [/]. Then the map

v:Kn(A9B9I)-*HC?-l(A,B9I)

is an isomorphism for ail n.

Proof Choose a Galois extension L of / containing lx, and note that, as on p.
74 of [GRW],

A ®, L £ L[x09.. xn]l(xtXj 0, i #;

and

where n [/, : /]. By Theorem A.2 of [WA], the natural map

vL : Kn(A ®,L, B ®7L, / ®tL)
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is an isomorphism. By naturality, vL is compatible with the action of the Galois

group G of L/l; so the (7-invariant subgroups are also isomorphic. By [vdK, 1.10]

it follows that

KH(A, B, I) s Kn{A ®, L, B®tLJ ®, L)G;

while by Galois descent for cyclic homology (0.3), it follows that

HCm(A, B, I) s HCm(A ®,L, B ®lLJ ®,L)G.

The resuit is now évident.

Proof of Theorem 0.5. Choose a Galois extension L of l with group G and

containing ail of the /,. Then B A ®7L is a Galois extension of A with Galois

group G, and B s L[x0,. ^]/{x,jc7 0 for i #y}. The calculation of HC+(B) in

[GRW, 3.12] and (0.3) gives the cyclic homology of A. We may now copy the proof
of [GRW, 8.4].

Appendix: Hypercohomology

If K* is a cochain complex of sheaves on a site X, the hypercohomology of K&apos;

is well-known as long as À? is bounded below or if X has finite cohomological
dimension ([Hart], [EGA, 0IH], [M, Appendix C]). Unfortunately, we need the

hypercohomology when K* is bounded above, as is the case with the Hochschild
complex, and we could find nothing in the literature more explicit than the sheaves

of spectra approach of Thomason [AKTEC]. This appendix is largely a translation
of [AKTEC] into the language of homological algebra, and is included for the

convenience of the reader.

Because there are enough injective sheaves, we can form an injective Cartan-

Eilenberg resolution /•• of K% i.e., a right half-plane cochain double complex of
injective sheaves Ipq together with an augmentation K&apos;-+Pq so that each K&apos;-+Pq is

an injective resolution and the conditions of [CE, p. 363], [Hart, p. 76] or [EGA,
0HI, 11.4.2] are met. If L&apos; is another complex, with injective Cartan-Eilenberg
resolution /•*, every morphism K&apos;-+L* lifts to a map I&quot;-&gt;J&quot; of double complexes,
which is unique up to chain homotopy [CE, XVII. 1.2].

The total complex Tot(/##), which is the product Hp + qmtHIpq in degree n, is a

cochain complex of sheaves. Since Tôt converts chain homotopy équivalent maps of
double complexes to chain homotopy équivalent maps of complexes, it follows that
Tôt (/••) is well-defined up to chain homotopy équivalence, and that the lift
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Tôt (/&quot;) -? Tôt (/&apos;•) of a map K* -&gt; L* is unique up to chain homotopy. Taking
global sections yields hypercohomology.

DEFINITION A.l. The hypercohomology group Un(X; K&apos;) is the nih cohomol-

ogy group of the complex Tôt (H°(X; /••)) £ H°(X; Tôt (/••)) of global sections of
Tôt (/&quot;). The above remarks show that, up to isomorphism, H&quot;(X; K&apos;) is indepen-
dent of the choice of /&quot;. Moreover, every map K* -+ L&apos; gives rise to a unique map
H&quot;(X; K&apos;) -&gt;Hll(Àr; L&apos;). If K&apos; is bounded below, this is the usual définition of [EGA,
0,,,] or [Hart].

VARIANT. If C. is a chain complex of sheaves on X, we form the usual

cochain complex K&apos; with Kn Cn and set W(X\ C.) W{X\ K&apos;).

Remark. The Godement double complex TPK« of [AKTEC, 1.31] is not a

Cartan-Eilenberg resolution, but there is a map PA?-&gt;/•*, unique up to chain

homotopy, which induces a quasi-isomorphism from Tôt {TpKq) to Tôt (/&quot;) and

isomorphisms from Thomason&apos;s n_nYi&apos;{X\ K&apos;) to our H^A&quot;; K&apos;). This may be seen

using the Eilenberg-Moore Comparison Theorem (see [EM] or A.3 below).

We could also define the hypercohomology complex H&apos;(X; K&apos;) to be the cochain

complex H°(X; Tôt (/••)), considered as an object in the derived category of cochain
complexes of abelian groups. The map from Thomason&apos;s H&apos;(X; K&apos;) to ours is a

quasi-isomorphism but probably not an isomorphism in gênerai. However, we will
hâve no use for this notion.

By choosing a fixed Cartan-Eilenberg resolution for every K&apos; in whichever small

category we hâve under considération, we see that the Hn(X; — may be made
functorial. Of course, Thomason&apos;s choices are already functorial ([AKTEC, 1.33]).

HYPERCOHOMOLOGY SPECTRAL SEQUENCE (A.2). There is a right
half-plane hypercohomology spectral séquence

Ep2« H&apos;(X; H«(K&apos;)) =&gt; W + \X\ K&apos;)

which converges strongly under any of the following conditions:

(a) K&apos; is cohomologically bounded below\

(b) X has finite cohomological dimension;
(c) The spectral séquence is bounded, i.e., each diagonal p -\-q n of E%*

contains only finitely many nonzero terms.

(d) For each p and q, lim1 Eprq 0.
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Proof. This is the usual hypercohomology spectral séquence of [EGA, 0HI, 12.4]
obtained by filtering the double complex H°(X; Tôt (/•*)) by columns. Boardman

([B, Theorem 8.1]) proved that the spectral séquence converges strongly if and only
if (d) holds. Since (a), (b), and (c) ail imply (d), we are done.

ADDENDUM A.2.1. More precisely, for each n, the spectral séquence
converges completely to Hn(X; À?) if lim1 EPq 0 for ail p and q with p +q =n or
p +q n — 1.

COMPARISON THEOREM (A.3). IfK&apos;-^D is a morphism ofchain complexes
such that HP(X; Hq(K&apos;)) -&gt; HP(X; Hq(L&apos;)) is an isomorphism for every p and q, then

for ail n :

Un(X; K-) S Hn(X; V).

Proof [EM, Theorem 7.4].

We conclude with two results of Thomason, phrased in the language of
homological algebra for ease of référence.

HYPERCOHOMOLOGY EXACT SEQUENCE (A.4). Hypercohomology is a

cohomological ô-functor. That is, ifQ-+Km-&gt;L&apos;-+M&apos;-+Oisa short exact séquence of
complexes of sheaves on X, then there is a long exact séquence

• • • -Hw+ \X\ M&apos;)
-1 W(X; K-) -&gt;W(X; L-)-*W(X; M&apos;)

-1
• • •.

Proof [AKTEC, 1.35]. Note that the usual resuit from [EGA, OIU. 11.5.2] does

not apply unless the complexes are bounded below, which is emphatically not our
case. D

CARTAN-LERAY DESCENT SPECTRAL SEQUENCE (A.5). Let K&apos; be a

presheaf of cochain complexes on X, and write W for the presheaf U h-&gt; Hq(U; K&apos;).

Then for every cover °U of X, there is a spectral séquence

Ep2q Hp(?U\ Hq) =&gt; Hp + q(X; fc)

which converges if there is a bound d such that ifp &gt; d then for ail q, HP(X; Jfq) 0

and Hp(U; Jffq) 0 for ail Ue%.

Proof [AKTEC, 1.46]. The following is a sketch of the proof. If K&apos; is bounded
below, we cite the classical resuit, say from [EGA, 0IH, 12.4.6]. Now let K&apos;(n)
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dénote the &quot;good&quot; bounded below truncations of K and observe that for q &lt; n — d,

the sheaves Jf«( - ; K&apos;) and Jf«( -; *?&lt;*» agrée, and W(X; K&apos;) s Jfq(X; K\n» as

well. A use of the Companson Theorem (A.3) complètes the proof.
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