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Deforming representations of knot groups in SU(2)

CHARLES D. FROHMAN!Y AND ERIC P. KLASSEN®®

1. Introduction

In this paper we address the following question: When is an abelian representa-
tion of a knot group in SU(2) a limit point of non-abelian representations? We
provide a sufficient condition involving the Alexander polynomial of the knot.

Suppose K = S* is a smooth knot, and let I' = n,(S* — K). For 0 <y < &, define
an element g, € SU(2) by

_ e” 0
& = 0 e 7

The set {g,}o<,<. contains a unique representative of each conjugacy class in
SU(2). Let p eI represent a meridian of K. Define a family {p,} of abelian
homomorphisms from I' - SU(2) by p,(u) = g,. This family contains exactly one
representative of each conjugacy class of abelian homomorphisms from I' - SU(2).
A linearization argument (see [K], theorem 19) shows that if p, is a limit of
non-abelian homomorphisms, then P, (g2) = 0, where Py is the Alexander polyno-
mial of K. The main result in this paper is a partial converse to this fact.

THEOREM 1.1. If g2 is a simple root of Py, then p, is an endpoint of an arc of
non-abelian representations I' - SU(2). Furthermore g, is conjugate in SU(2) to the
matrix

. cosy siny
= SL(2, R).
& (—siny cos y)e (2. R)

Still under the hypothesis that g2 is a simple root of Py, the abelian representation

(WPartially supported by NSF-Grant DMS 9002923
@Partially supported by NSF-Grant DMS 9007354



Deforming representations of knot groups in SU(2) 341

p: I —»SL(2,R) defined by p(u) =g, is the endpoint of an arc of non-abelian
representations I’ —» SL(2, R).

We outline here the strategy of our proof. First, using the double covers
SU(2) - SO(3,R) and SL(2,R) - PSL(2,R), we reduce the problem to finding
arcs of representations in the isometries of the 2-sphere or hyperbolic plane,
respectively. We then recall an observation of de Rham (see [D]) that the hypo-
thesis of our theorem implies that there is a non-abelian representation of the knot
group in the isometries of the Euclidean plane, sending meridians to rotations of
angle 2y. Next, we put a family of metrics of constant curvature ranging from
negative to positive on the Euclidean plane and show that the non-abelian represen-
tation of I' in Euclidean isometries can be smoothly deformed to give an arc of
representations in the isometries of our deformed metrics; this gives rise to our
representations in SO(3, R) and PSL(2, R).

The idea of “smashing” a knot, or fusing it at a crossing, is introduced in
Section 5, and may at first appear to the reader to be unmotivated. Smashing is
simply an adaptation of a key idea in Thurston’s proof that the space of irreducible
characters of a knot group in SL(2, C) has dimension at least one (see [T] or [C-S)).
Thurston describes this idea in terms of boring out an additional tunnel in the knot
complement, thereby increasing the genus of its boundary to 2.

From our point of view, the smashed knot group is simply a group extension of
the knot group, whose representation space is less singular than that of the knot
group in a neighborhood of the relevant abelian representation. This larger, less
singular representation space provides a convenient ambient space from which to
carve out the representation space of the knot group which we are studying.

Finally, it is natural to ask (and the referee did so!) what are the prospects of
proving an analogous result at an abelian representation which corresponds to a
multiple root of the Alexander polynomial. As yet the authors have been unable to
prove such a theorem; however we have studied some relevant examples.

First, suppose K is a knot and p, : n,(S* — K) = SU(2) is an abelian representa-
tion with py(u)? a simple root of the Alexander polynomial Px. Then p,(u)? is a
double root of Py, x = P%. In this case it is not hard to see that there is a
2-dimensional set of conjugacy classes of irreducible representations of
n,(S? — K # K) whose closure contains the abelian representation pg* defined by
po (u*) = po(n).

Secondly, in an unpublished analysis of “Riley’s favorite knot” (which is a
Montesinos knot with eleven crossings; see [R]), the second author has ascertained
that a small neighborhood of an abelian representation corresponding to a double
root of the Alexander polynomial is made up of two arcs of non-abelian represen-
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tations intersecting each other transversely and intersecting the arc of abelian
representations transversely in the given abelian representation.

It is interesting to note that in both of these examples there does not exist a
basis of the Zariski tangent space (at the abelian representations) consisting entirely
of integrable tangent vectors. In other words, the linear span of the tangent cone is
not the entire Zariski tangent space at these points. This remark will be elaborated
on in a future paper.

2. Lifting paths of projective representations

Our main objective in this paper is to construct certain arcs of representations
of a group G in SL(2, C). In this section we prove a lemma enabling us to lift arcs
of representations in PSL(2, C) to arcs of representations in SL(2, C). This will
reduce our problem to constructing arcs of representations in PSL(2, C). Let
q : SL(2, C) - PSL(2, C) be the canonical double cover.

LEMMA 2.1. Let p,:G—>PSL(2,C) be an arc of representations. Let
p :G—>SL(2,C) be a representation satisfying p,=¢q o p. Then there is a unique
(continuous) arc of representations p, : G — SL(2, C) satisfying the two conditions

Po=p and p, =q o p, for all t.

Proof. Suppose G has a presentation with generators {x;} and relators {w;},
where each w; is a word in the x;. Then since ¢ is a covering map, we define p,(x;)
to be the unique lift of the path p,(x;) starting at the point p(x;) in SL(2, C). To
see that this choice of p,(x;) does indeed define an arc of representations of G, we
need to check that p,(w;) =1 for all ¢ and j. This follows from the facts that p,(w;)
is a continuous path in the set {1, —1} and po(w;) = p(w;) = 1.

3. Fox differentiation
Let F, be the free group generated by the set {x,,...,x,}. For/=1,...,n, we

define a map d,: F,>Z[t,t~"] as follows. Let w=II_, x; be a word in
{x/,...,x,}, where ¢, = +1 and j; € {1, ..., n} for all i. Then define

d,(w) = Z Uy,
k=1
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where
0 if ji, #1
v, =< t“ whereu, =3¢, ifjiy=1Iland¢ =1
—t“ where y, =Xf_ ¢, ifj,=1and ¢ = —1.

We call d, the Fox derivative with respect to x;.

Note that in the literature the Fox derivative is often defined to take its value in
the ring Z[F,]. The Fox derivative as we define it is the image of the other definition
under the map taking x; to ¢ for all i.

We define the Fox gradient of w to be the vector (d\w,...,d,w) e Z[t, t~']".

4. Euclidean representations of knot groups and the Fox Jacobian

Let K = S? be a knot (which we will confuse with its projection). Orient K and
label the bridges x,, . .., x,. Note that each bridge of K corresponds to a Wirtinger
generator x; of I'.

We will number the bridges of K ““in order,” i.e., as we walk along K in the
direction of its orientation we follow the bridge corresponding to x,, then x,, etc.
on up to x,, after which we arrive back at x,. We will number the crossings, which
correspond to relators w,, in the same way, so that for 1 <k <n — 1, we have

b

— il —¢ -1
Wi = XkXp X ) %X gy
and

W, = XX, %, rx i
We will refer to the crossing corresponding to w, as the *“k-th crossing.”

Label with integers the regions into which the projection of the knot separates
the plane as follows. Label the outside region 0. To label a region R, draw an
oriented arc which starts in the outside region, ends in R, and is transverse to the
projection of K. Using the orientation of K, compute the algebraic intersection
number of this arc with the knot projection in the plane, and label the region R
with that intersection number. In figure 1, we indicate the result of this process for
the trefoil knot.

Draw a small circle around each crossing and put a dot in one of the regions at
the crossing. Read off the Wirtinger relator in the clockwise direction starting at the
dot. In figure 1, we show the result of doing this for the trefoil. The relators are
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Figure 1

Wy =X3X7 x5 %, wo = x1x5 'x 7' x5, wy = x,x5 x5 'x,. We now define the normal-
ized Fox Jacobian matrix J,(¢), an n x n matrix over the ring Z[t, ¢t ~']. Let the i-th
row of J.(#), which we denote by R;(?), be the Fox gradient of w, with respect to
X1, ..., X, multiplied by t"®, where n(i) is the label assigned to the region where the
dot was placed to read off the i-th relator. The normalization was chosen so that

— ! 2 (—l 2
Je@ =[t7 ' =172 —t! =2
t=? t7'—t72 -

To form the Alexander polynomial of the knot K, which we denote by P (?),
erase one row and one column of J.(f) and then take the determinant. In the case
of the trefoil, after eliminating excess powers of t we obtain Py (f) =12 —1t + 1.

Though what follows is entirely self-contained, we will pause here to give a few
brief remarks about the relevance of the Fox Jacobian to representation spaces. The
space of representations of a finitely presented group into an algebraic group can be
given the structure of an algebraic set using the images of the generators as
coordinates and the relations as the defining polynomials. (See, for example,
[L-M].) When one differentiates the relation map at a particular representation, one
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obtains essentially the Fox Jacobian. Thus, it is natural to identify the kernel of the
Fox Jacobian with the Zariski tangent space of the representation variety. The
reason why we substitute a single variable ¢ for all of the x; is that we are working
at an abelian representation, which must take all the x; to a single group element.

We now review some material due to de Rham [D]. Define Isom, (E?) to be the
group of orientation preserving isometries of the Euclidean plane. In complex
coordinates, these are the maps of the form z — wz + b, where w € S' and b e C.
Fix w € S'. Denote by B, the set of all n-tuples (b,,...,b,) € C" such that the
assignment

o:{xy,...,x,}—Isom, (E?

defined by o(x;)(z) = wz + b; determines a group homomorphism I' - Isom, (E?).
PROPOSITION 4.1. (de Rham, [D))
B, = kernel {Jx(w) : C"—C"}.

Proof. Each relation for I' can be written in the form x,x; = x,x;. Clearly
(by,...,b,) € B, if and only if all relations hold among the a(x;). We compute

a(x;)a(x;) = o(x;)a(x;)
if and only if

w(wz + b;) + b; = w(wz + b;) + by for all ze C
if and only if

wb; + (1 —w)b; + (—1)b, = 0.

The resulting linear transformation is just Jx(w), up to multiplication of each row
by some power of w, which doesn’t affect its kernel. |

NOTE. Define 6(x;) € Isom_, (E?) to be the rotation of angle @ about the point
b;. It is easy to verify that ¢ defines a homomorphism I' — Isom, (E?) if and only
if o does.

From the above proof, it is clear that the sum of the columns of J.(¢) is 0, and
it follows that B, contains the diagonal of C". Clearly this subset of B, corresponds
exactly, to the abelian representations of I' in Isom, (E?). Since the first n — 1
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relations imply the last, deleting the last row of J.(7) will not affect its kernel. Let
Jx(2) denote J(¢) with its last row and last column removed. The kernel of Jx(w)
corresponds to those representations taking x,, to a rotation about the origin of E2.
Clearly every representation is conjugate to one of this form. It is now clear that
there exists a non-abelian representation of I' in Isom_, (E?) taking each meridian
to a rotation of angle w if and only if Py (w) = det (Jx(w)) =0, i.e. if and only if @
1s a root of P (¢). Furthermore, if we assume that w is a simple root of Px(¢), then
it follows (by putting J,(¢) in rational canonical form) that the dimension of
kernel (Jx(w)) is one. Choose j between 1 and n — 1 so that the projection of
kernel (J4(2)) onto the j-th coordinate is non-trivial. It follows that if we fix the
centers of rotation of x; and x,, then we fix a unique non-abelian representation of
I' in Isom, (E?) taking meridians to rotations of angle w.

5. Smashed knot groups and the Fox Jacobian

We introduce an operation on knots which we call smashing. This operation
has its origin in Thurston’s proof that the variety of irreducible characters of a
knot group in SL(2, C) has dimension at least one (see [T] or [C-S] for an
exposition of this proof). Consider a crossing whose corresponding Wirtinger
relator is x%x,x,,%“x, ), = 1. (This is just the k-th crossing, with m = j,.) At this
crossing we bore out a vertical tube running from the overcrosser x,, to the
undercrosser. We call the union of the knot with this tube the smashed knot, and
the fundamental group of its complement the smashed knot group, which we
denote by A. To calculate a presentation for A, we must relabel the portion of x,,
lying on one side of the smashed crossing; we will call it x,, ,. A presentation for
A may be obtained from a presentation for I' by making the following two
changes: (1) Add to the original set of generators the new generator x,_.,. (2)
Any appearance of x,, in a relator that corresponds to the portion of x,, that was
relabelled must be changed to x,, ,. All the new relators will have the same form
as the old (x;x,x;' =x,) except for the relator corresponding to the smashed
crossing, which will now involve four different generators. As before, any one
relation is a consequence of the other n — 1. Also, note that if we adjoin the
relation x,, = x,,, to our presentation for A, we obtain a presentation for the
original knot group I'. In figure 2, we show the result of smashing the trefoil at its
first crossing.

We define the normalized Fox Jacobian of the smashed knot group, J%(?), by
the same algorithm introduced for the original knot group: let the i-th row of J%(?),
which we denote by R;(?), be the Fox gradient of the i-th relation multiplied by the
same power of ¢ used in the corresponding relation of I'. Below we give the smashed
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smashed
crossing

Figure 2

Jacobian of the trefoil:

@ =[t7"—¢2 —t! 0 t~?2
=2 =l =2 gl 0

Define L to be the set of all / € {1, ..., n} such that / # k and the /-th crossing
of K involves that portion of x,, which was relabelled x,, ;. We now describe how
J%(t), which is an n x (n + 1) matrix over Z[z, t ~'], may be obtained by modifying
Jx(2). Suppose i € L. To obtain R;(t), we move the m-th entry of R,;(f) into the
newly created (n + 1)-st spot, leaving behind a 0 as the m-th entry of R (7). In all
other entries, R} (?) is identical to R;(z). In the k-th row, which corresponds to the
smashed crossing, the m-th entry of R, (¢) is of the form (—1)<%**!'—(—=1)%". In
forming R;(?), one of these two summands will be moved to the (n + 1)-st spot, and
the other will remain in column m. In its other entries, R;(¢) is identical to R, (¢).
If i #k and i ¢ L, then R (¢) is obtained from R;(f) simply by adjoining a zero in
the (n + 1)-st entry.

Assume that a« € S! is a simple root of Pk(¢). It follows that the space of
relations that hold between the R;(«) is precisely 2-dimensional with basis consisting
of the relations

i R;(x) =0 and i ¢iRi(@) =0

i=1 i=1

where the ¢; are complex numbers and not all of them are equal. We will also
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assume, by subtracting off a multiple of the first relation if necessary, that ¢, =0.
Of course the dimension of the space of relations holding among the columns is also
two; this space has as a basis

i S;(0) =0 and i b;S; (@) =0

i=1 i=1

where S; is the i-th column and the b, € C are not all equal.
Define

C= Z clﬁm

le L

where f,,, denotes the (/, m)-th entry of J(a).

LEMMA 5.1. If C #0, then Ji(a) has rank n — 1.

Proof. Note that since £7_, R (a) =0, it follows that rank J5%(x) <n — 1. Sup-
pose rank Ji(«) #n — 1. Then there exists another relation among the rows,
independent of the first, of the form X7_, AR} («), where the h;, € C are not all
equal, and we may assume (by subtracting off a multiple of the first relation) that
h, =0. Because S,,=S;,+S,.:, and S;=S] for 1 <i<n and i # m, it follows
that

$ bR, (@) = 0.

i=1

Hence {A;} is a constant non-zero multiple of {c;}. It follows that

C=chf1k=0,

le L

which is a contradiction, and proves the lemma. Ol
Fix w € S'. Define
t:{x;,...,%,,,}—Isom, (E?

by t(x;)(z) = wz + b;, where (b,,...,b,,,) € C"*'. The following proposition is
analogous to proposition 4.1:
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PROPOSITION 5.2. Denote by B, the set of all (n + 1)-tuples (b,,...,b,, )
such that t determines a homomorphism from A to Isom . (E?). Then

B, =ker (J% (o) : C"*' - C").

We omit the proof because it is identical to the proof of proposition 4.1.

6. Good smashes

In this section we prove that given a simple root of the Alexander polynomial,
we can find a projection of the knot and a crossing in that projection such that the
knot group smashed at that crossing, and its Jacobian, satisfy certain technical
conditions. Such a smash will be called a good smash.

As usual, let K = S° be a knot, I its fundamental group, and assume that « € S’
is a simple root of P. Recall that the space of relations holding among the rows
R; of the normalized Fox Jacobian J(«) is precisely 2-dimensional with basis

Z R,(®) =0 and Z ¢;Ri (@) =0

where the c¢; are complex numbers and not all of them are equal. Hence the
Jacobian evaluated at a has rank n — 2. Of course the dimension of the space of
relations holding among the columns is also two; this space has a basis

YS@=0 and Y 5S,(x)=0

where S; is the i-th column and the b, € C are not all equal.

DEFINITION 6.1. A crossing in a projection of K, and the smash at that
crossing, will be called good if they satisfy the following two properties:

G1: The three b,’s corresponding to the bridges which meet at the crossing are
not all equal.

G2: The Fox Jacobian of the smashed knot group resulting from smashing at
this crossing has rank n — 1.

NOTE. The verification of G1 is independent of which second basis element we
chose for the relation space of the columns.
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THEOREM 6.2. If K< S? is a knot and o. € S' is a simple root of its Alexander
polynomial, then there exists a projection of K containing a good crossing.

Proof. 1t will suffice to produce a projection of K with a crossing satisfying G 1
and the hypothesis of lemma 5.1. Our main technique is an operation on knot
projections which we call threading, and which the reader may recognize as the
second Reidemeister move. The strategy of the proof is to show that if the original
projection contains no good crossings, it may be altered by a finite number of
threadings such that the resulting projection contains a good crossing. The thread-
ing operation is pictured in figure 3. Assume that the bridge that is broken into
three pieces was originally labelled x, and that the other bridge was labelled x,. The
three portions of x, resulting from the threading must be renumbered. Continue to
denote one of its ends by x, and label its other two pieces x,, ., , and x,, , ,, with x,, . ,
being the new bridge both of whose endpoints lie near the bridge x, that crossed
over. The Fox Jacobian of the threaded projection, which we will call J%(7), is an
(n + 2) x (n + 2) matrix. We will denote the i-th row and column of J (¢) by R;(?)
and S;(¢), respectively. Let ¥V = {1,...,n} be the set of integers indexing relators
that come from crossings (in the original projection) involving that part of the
bridge x, which has been relabelled x,,,. If i¢ V and 1 <i <n, then R}(¢) is
obtained from R;(¢) by adjoining two zeroes in the (n + 1)-st and (n + 2)-nd entries.
If i e V then R;(¢) is obtained from R,;(f) by moving the /-th entry over to the
(n + 2)-nd entry, leaving behind a zero in the /-th entry, and putting a 0 in the
(n + 1)-st entry.

To obtain R, ,(¢) and R, , ,(1), first write the relators corresponding to the two
new crossings:

— y— 1 -1 —_ -1, -1
Wpi1 = Xp xn+lxpxl and Wpi2=X442Xp xn+lxp

X1 €|~ *pe|-
XI Xp

€)—*n+1

l

n+2

Figure 3
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The Fox gradients of these words are:

column index: other [ p n+1 n+2
aw, . : 0 -1 1=t t~! 0
aw, , ,: 0 0 -1+ —¢! 1

The corresponding rows of Ji(¢) are obtained by multiplying each of these
gradients by ¢*, where v is the intersection number referred to in the original
definition of the Fox Jacobian.

Because of the normalization built into the Jacobian, the sum of the rows of the
new Jacobian is zero. Suppose that the rows of the original Jacobian, with «
plugged in, satisfy a relation of the form

n

Y. ¢;Ri(a) =0.

i=1

Let f; denote the entry in the i-th row and j-th column of Ji(#). Let

C = Z ij}l.
jev
Then, using the above description of the R;(?), it is easy to see that for some
¢ = +1 the following relation holds betwen the rows of the threaded Jacobian:

(%) {Zl ciRE(a)} + (= Da”"C(R;, (@) + R, 2(2)) =0.
If not all the ¢, in the original relation are equal, then not all coefficients occurring
in the new relation are equal.

Let Q be the oriented planar 4-valent graph obtained be ‘“‘smashing together” all
the crossings of our original projection of K. Denote by E the set of edges of Q.
Define two functions b : E—C and C : E —C as follows. Let e € E, and let x; be
the bridge of K containing e. Let b(e) be the b; associated to x; in the non-trivial
relation on the S;(a). To define C(e), begin by letting ¢ be a point on the interior
of e. Let Y be the set of indices of all crossings of K which involve the bridge x; at
a point on x; “ahead” of g with respect to the orientation of x;. Define

C(e) = Zy c_wfyi'

Note that the functions b and C depend on our particular choices of relations
between the rows and columns of J ().
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LEMMA 6.3. There exist two edges e and f of Q, and a relation Xc;,R;(x) =0
with not all c; equal, such that (1) b(e) # b(f), (2) C(e) =0, and (3) C(f) #0.

Proof. Let e, be an edge which is at the end of a bridge x;. Let j be the index
of the crossing at that end of the bridge. By subtracting off a multiple of
2R;(a) =0, we obtain a relation Z¢; R, () such that ¢; = 0 but there exists an i with
c; #0. Define C : E —» C using this relation. Then C(e;) =0. Suppose ¢; #0. Then
for one of the two edges, which we call e,, adjacent to the i-th crossing and
contained in the undercrosser, C(e,) # 0. If b(e,) # b(e,), we are done. So assume
that b(e,) = b(e,). Let e; be an edge such that b(e;) # b(e,). If C(e;) =0, then
(e3, ey) 1s our desired pair, while if C(e;) # 0, then (e,, e;) is our desired pair. [

Define a distance function d : E x E—Z . as follows. Suppose ¢,, e, € E. Let 4
be the set of all arcs in the plane which connect a point in ¢, to a point in e,, which
are transverse to all edges of Q, and which miss all vertices of Q. Define the length
of such an arc to be the number of complementary regions the arc passes through.
Define d(e,, e,) to be the infinum of the lengths of all arcs a € 4. Note that arcs e
and f occur in the boundary of the same complementary component of Q if and
only if d(e, f) = 1. We will now prove theorem 6.2 by induction on the minimum
value taken by d(e, f), where (e, f) ranges over all pairs of edges satisfying the
conclusion of lemma 6.3.

First, assume that e and f satisfy the conclusions of lemma 6.3 and d(e, ) =1,
so e and f occur in the boundary of the same complementary component of Q.
Then simply thread e under f. Both of the crossings created by the threading are
good crossings, for the following two reasons:

(1) Still using the same Euclidean representation of I', the b,’s corresponding to
the bridges meeting at one of these crossings are b(e), b(f), and the image of b(e)
under a rotation of C by angle a about the point b( f). These are distinct points, so
G1 is satisfied.

(2) In the relation on the rows of J%(«) given by () earlier in this section, the
coefficients corresponding to the new crossings are multiples of C(e) and hence they
are 0. It follows that this relation can be used to compute the C, corresponding to
one of these smashes, which occurs in the hypothesis of lemma 5.1. But this C is
+a*C(f), which is non-zero. It follows that G2 is satisfied, by lemma 5.1.

For the inductive step, assume the theorem has been proven for minimal value
of d(e,f)=n—1. Now assume that d(e,f) =n for the “closest” pair (e,f)
satisfying the conclusion of lemma 6.3. Let a be an arc from e to f] transverse to Q,
which realizes this distance. Let e’ be the first edge that a intersects on its way from
e to f. We now consider four possibilities for C(e”) and b(e").

(1) If C(e’) =0 and b(e’) = b(e), then the pair (e, f) contradicts the minimality
of d(e, f).
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(2) If C(e’) 20 and b(e’) # b(e) then the pair (e, e”) contradicts the same
minimality.

(3) If C(e’) =0 and b(e’) # b(e), then alter the projection of K by threading e
over ¢’. Denote by é the (short) new edge of the graph created by the threading. In
the relation (*) which holds among the rows of the threaded Fox Jacobian, the
coefficients of the rows corresponding to the new crossings are multiples of
C(e’) =0. Using this new relation C(e) =0 and b(e) =b(e) # b(f). Also,
de,f)=n--1. It follows from the induction hypothesis that K has a projection
with a good crossing.

(4) If C(e’) #0 and b(e’) = b(e), then by threading ¢ under e’ we obtain a new
edge € with C(¢) = C(e) =0 and b(e) = b(e) # b(f) and with d(e, f) =n — 1. Thus
we again invoke the induction hypothesis, and the theorem is proved. O

7. A family of metrics on the unit disc

Let H denote the upper half plane in C, and denote by g =g_, the usual
hyperbolic metric on H. For ¢ € (0, 2), denote by H__. the manifold H equipped
with the metric g__ = 1g, of constant curvature —c. Note that H_, is equipped with
the usual hyperbolic metric. Recall that PSL(2, R) acts on the underlying space H
by Moebius transformations, and observe that these transformations are isometries
no matter which of the metrics g . we put on H. In other words,

Isom, (H_,) = PSL(2, R)

for all ¢. Define id. : H_,. -H_, to be the identity on the underlying space H.
Let A = C be the open unit disc in C. Define a family of metrics ds. on A by

42 = dx?+dy?
T+ (c/A(x2+ y?)?

where ¢ € [ —2, 2]. Denote A equipped with the metric ds. by A.. The curvature of
A, is —c (see, for example, Ahlfors [A], p. 12). Consider first the case ¢ > 0: Note
that for each such ¢, A. embeds isometrically in H__.. For each ¢ > 0, select an
orientation preserving isometry f,. : A. —» H__ by insisting that f.(0) =i and

(df,)o(1) = \/ci,

where we are thinking of 1 as a (unit) tangent vector to A, at 0, and i as a tangent
vector to H__ at i. Now define h, :A, - H_,=H by h, =id. o f,.
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LEMMA 7.1. Given € >0, there exists a co>0 such that if 0 <c <c,, then
h.(A,) is contained in an e-neighborhood of i in H (with the usual hyperbolic metric).

Proof. Since

s Jdx? + dy?

TIH(/HET+yY

the radius of A__, (with respect to ds,) is less than 1. Since f, preserves distance and
id. multiplies distance by \/E, it follows that the radius of A.(A_,) is less than \/E
So choosing ¢, < €? satisfies the conclusion of the lemma. d

In the case ¢ <0, we can mimic the preceding constructions using a family of
metrics of positive curvature on S? in place of metrics of negative curvature on H,
and a family of maps 4, : A, - S Also, as above, the maps A, for ¢ <0 have the
property that

lim A.(A,) =(0,0, 1) € S?,
c—0

i.e., as ¢ approaches 0, A shrinks A, to a single point in S2.

8. The proof of theorem 1.1

Using theorem 6.2, we assume that we are working with a projection of our
knot K in which there is a good crossing. Smash at this crossing, and denote by A
the smashed knot group. We will now study representations of A into Isom, (H),
Isom, (E?) and Isom, (S?). Let {x,,...,x,} be the Wirtinger generators of our
original knot group I' and {x,, ..., x,, X, ,} the corresponding generators of A.
We assume that « is a simple root of P,(t), the Alexander polynomial of our knot.
It follows from proposition 4.1 that there is a non-abelian representation p of I' in
Isom, (E?) which takes each x; to a rotation of E? by the angle a.

Since this representation is non-abelian, we may assume that two generators, say
x, and x,, are taken under p to rotations about different points in E2. Because « is
a simple root, we may specify a center of rotation for p(x,) and a different one for
p(x,), and this completely determines the representation p. Choose b € C small
enough that the unique p taking x, to a rotation of angle o about 0, and x, to a
rotation of angle a about b satisfies the condition that the center of rotation of p(x;)
is contained in A for all i. Later in the proof we will need the following:

LEMMA 8.1. Define R, to be the set of all p €e Hom (I', Isom, (E?) which
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satisfy (1) p(x,) is a rotation about 0 and (ii) p(x,) is a rotation about b. Suppose
po € Ry is a representation taking each meridian to a rotation of angle o. Then
T, ,Ry=0, where T, R, denotes the Zariski tangent space.

Proof. Denote by J.(f) the Fox Jacobian of K with the first row and first
column deleted. Define

R = {p e Hom (I', Isom, (E?) : p(x,) is a rotation about 0}.
Then it is an immediate consequence of proposition 4.1 that
R={(z,w)eC"'x S': J(w)z =0},
where z = (z,, ..., z,). Clearly
Ry={(z,w) e R :z,=b}.

We are assuming that a is a simple root of Px () = det Ji (7). Let y, = the center of
rotation of py(x;) for all i, so that y, =0 and y,=b. Clearly, an element of T, R
is given by a path (y(s), w(s)), where y(s) = (y,(5), . . . , y,(5)), with the property that

d -
7 Uk (@(9)y(9) i=0=0.
s

Since this path represents a tangent vector at p,, we know that w(0) =« and
yi(0)=y; for i=2,...,n. An element of T, R, must satisfy the additional
condition that dy,(s)/ds |;_,=0. Suppose (y(s). w(s)) satisfies these conditions
and, in addition, (y(s), w(s)) represents a non-zero tangent vector, i.e.
d|/ds(y(s), o(s)) |s— o # 0. Then there are two possibilities:

Case 1. Assume w’(0) =0. In this case, it follows from the product and chain
rules that

~ d
Jx(2) d_ y(s) !s=0 =0,
s
le.,

d a
ds y(s) Is=0 € ker Jy(a).

Since ker Jx () is 1-dimensional and we are assuming that projection onto its first



356 CHARLES D. FROHMAN AND ERIC P. KLASSEN

coordinate (i.e., y,) is a non-zero linear map, it follows that dy,/ds |, _, = 0 implies
that d/ds y(s) ]szo = (, contradicting the fact that (y(s), w(s)) represents a non-zero
tangent vector.

Case 2. Assume w’(0) #0. Let Y(s) be an (n — 1) by (» — 1) matrix whose first
column is y(s), and whose other columns do not depend on s and, together with
y(0), form a basis for C"~'. Since determinant is a linear function of each row, it
follows that

d
7 det (Tx(@())Y($)) |;=0=0.

Because (y(s), w(s)) is a tangent vector and det Jx(w(0)) = det J(a) = 0, it follows
that

d
0= 2 det Jx (@)Y | o

d
= - det (Jx((s))) |5 = o det (¥(0))
- iw det (T (@) |~ , '(0) det (¥(0)).

The first of these three factors is non-zero because « is a simple root of P (#). Since
the other two factors are also non-zero, we have a contradiction, which proves the
lemma. O

As usual, we identify T, A with C; then using our metric ds., we have, for each
z € A, a well-defined exponential map exp,.. : C—A. This map is only defined for
those tangent vectors which don’t take us outside of A, but that will not be a
problem in the following. For each ¢, we now define a map v, : A x A— C by the
condition that

exp,.:, (v.(z2y, 23)) = 2.

Note that because exp, . is smooth and a diffeomorphism on the relevant domain,
v.(z,, z,) is well-defined and smooth in all of its arguments.
In the following, define a standard relator to be one of the form

XiXeX; = Xx.
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Note that we have a Wirtinger presentation of A consisting entirely of n — 1
standard relators, since the one non-standard relator is a consequence of the
standard ones. Number these standard relators 1 to n — 1, and assume that the i-th
one is of the form

4 = Cy s
X5 X, Xj =X .

where ¢, = +1.
We will now define a function

F:A""'xS'x[=2,2]-C""".
Let F; be the i-th component of F, and set z, =0 and z, = b. Define
Fi(ZS’ se s Zpy1s W, C) = w(ivc(zj}’ Zk,) - vc(zji’ Zli)'

It follows from the above that F is smooth. If we set w = a and ¢ = 0, the function
F is precisely the Jacobian matrix of the smashed knot (up to multiplication of each
row by a non-zero constant) with « substituted for ¢z, which has rank n — 1. (This
follows from the fact that v,y(x, y) =y — x.) It follows that F|A"~' x {a} x {0} is a
linear isomorphism. Hence F is a submersion at (p,, «, 0), where p,e A"~ ! is the
(n — 1)-tuple whose components are the centers of rotation of p(x;), ..., p(x,41)-
As a consequence, there exists an open set U = A"~ ! x S x R, with (p,, , 0) € U,
such that F~'(0) " U is a 2-dimensional submanifold of U. Let W be the compo-
nent of F~!(0) n U containing (p,, @, 0).

CLAIM 8.2. Projection onto the last two factors of A"~ ' x S' x R, which we
denote by (w, c), gives a smooth coordinate system on some neighborhood of (p,, o, 0)
in W.

Proof. This is an immediate consequence of the fact that F|A" ' x {a} x {0} is
a linear isomorphism. O

Denote by W the neighborhood produced in the claim. The following lemma
explains the meaning of the function F.

LEMMA 8.3. Denote by z the element (zs, . . .,z,,,) € A", and set z, =0 and
zy="b. Then F(z, w, ¢) =0 if and only if the map o taking x; to a rotation of {H if
¢ >0, 8%ifc <0, E? if c = 0} about the point h.(z;) by the angle w for each i defines
a representation of A into {Isom, (H) or Isom_ (S?) or Isom, (E?}.
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Proof. We need only verify that the a(x;) satisfy the n — 1 relations for 4. Note
that F;(z, , ¢) =0 if and only if a rotation about A(z;) by the angle w* takes h(z;)
to A(z;, ). This in turn is equivalent to the condition that

a(x;)0(x; )o(x;) ~“ = a(x,),

where o(x;) is defined as in the statement of the lemma. Thus, F(z, w, ¢) = 0 if and
only if the a(x;) satisfy all the relations for A, which proves the lemma. O

We now digress for a moment in order to establish some useful facts about
homogeneous geometry. Let X = H or S? or E2. Suppose x, y € X are distinct and,
in the case of S?, non-antipodal. Let RY and R be rotations of angle 6 about x and
y, respectively, where 0 < @ < n. Denote by 4 the unique shortest length geodesic
arc in X from x to y. Assuming x and y are sufficiently close, there is a (unique)
point z € X such that

0
Lzxy = [ Xxyz =—2-,

where all angles are oriented.

LEMMA 8.4. Given the situation in the last paragraph, it follows that
RORY =R:7, where y =2/ xzy.

Proof. Let F,, denote reflection in the unique geodesic determined by x and y.
Then

RIR = (F,.Fo)(FF.)=F,.F.=R".

d
We now observe that in the cases X =S2 or H, as long as x and y are
sufficiently close, the angle of rotation of the product R%R? is a monotone function
of the distance between x and y and hence determines this distance. To see this, use
the classical fact that the sum of the angles in a triangle is a monotone function of
the triangle’s area.
The relation corresponding to the smashed crossing has the form
XmXx X0+ = X;, which we may rewrite x,,x, = x,x,, ;. We defined, : A, x A, >R,
to be the distance between the two arguments with respect to the metric ds..

LEMMA 8.5. As usual set z,=0 and z,=b and z=(z5,...,2,,1)- If
(z, w,c) € W, then d.(z,,, z;) =d.(z), 2,4 1)
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Proof. Define a function g : W >R by

g(l, w, C) = dc(zma Zk) - dc(zls Zn+ 1)°

Clearly, g is continuous. Since (w, c) is a coordinate system on W, it will suffice to
prove that g vanishes on the set {(z, w,c) € W: ¢ #0}.

Assume (z, w, c) € W and ¢ #0. Let ¢ be the corresponding representation of
A in Isom_, (H) or Isom, (S?), as defined in Lemma 2.3, depending on whether
¢ >0 or ¢ <0. Recall that o(x;) is a rotation of angle w for all i. Since ¢ is a
representation, we know that o(x,)o(x,) = o(x;)o(x, . ;). However, in non-flat
homogeneous geometry, whether hyperbolic or spherical, if we multiply two rota-
tions of the same angle, the angle of the resulting rotation depends on the distance
between the centers of rotation of the original two rotations. Since A, multiplies
distances by a constant factor (if we fix c), it follows that g(z, w, ¢) =0, proving
the lemma. 0

Next, we will define a function 6 : W — S'. Suppose we are at a fixed point
(z, w, ¢) € W. This point determines a homomorphism ¢ from A to a group of
isometries, as defined above. Let 7 be the image under A ' of the center of
rotation of o(x,,)a(x,) = a(x,)o(x,, ). Since our smash was done at a ‘“good”
crossing, and by shrinking the size of W if necessary, we may assume that z,, # z,
and z, #z, ., since this is true at the representation p. It follows that the angle
0=/(2,7z,,, is a well-defined, smooth function on W, where this angle is with
respect to geodesics in the metric ds.. Note that since we have defined 0 to take its
values in S!, the angle 0 corresponds to the value 6 = 1. Clearly 6(p,, «, 0) =1,
because at this point the corresponding representation factors through to give a
representation of I', so z,, =z,,,. Consider the smooth curve on W defined by
¢ =0. By claim 8.2, we see that w provides a local coordinate for this curve near
the point (p,, a, 0), so along this curve we may think of 8 as a function of w.

PROPOSITION 8.6. 80/dw #0 at the point (p,, o, 0).

Proof. Suppose (00/0w),,, .0y = 0. In a neighborhood of the point (p,, «, 0), 0
is defined by the equation v.(Z, z,, ;) = 0v.(Z, z,,). Thus, we may conclude that
o2, z,,,) /0w = 0v.(Z, z,) /0w at the point (p,, a, 0). Because the exponential is a
local diffeomorphism, it follows that 0z, . /0w = 0z,,/0w. Note that the arc in W
defined by ¢ = 0 corresponds to an arc of representations p,, : A —Isom , (E?). It
follows that the derivative (with respect to w) of each relator for A is 0 along the
arc p,,.. Since p,(x,,) and p,(x,, ) are rotations of angle w about the points z,
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and z, ., respectively, and since we have established that 0z, . /0w = 0z, /0w, it
follows that

d

d
?d—(; pw(xm) - % pw(xn+ l)

at the point w =a. Hence the derivative (with respect to w) of the relator
Po(X)Pu(x, 1) " is O at the point w = a. Since this relator together with the
relators for A give a complete set of relators for I', it follows that d/dw is a
non-zero Zariski tangent vector at the point p = p, to the set of representations of
I' in Isom, (E?) which fix the centers of rotation of x, and x, at 0 and b,
respectively. This contradicts lemma 8.1 and thereby proves the proposition. [J

It follows that 0 ~'(1) is a smooth arc in W and is transverse to the arc ¢ = 0.
Note that a point (z, w, ¢) € W corresponds to a representation of I' in Isom_ (H)
or Isom, (§?) or Isom, (E?) if and only if (z, w, ¢) € 6 ~'(1). Consider the half-
arc of 6 ~'(1) on which ¢ <0. This half arc gives us an arc of representations

p.: I —»Isom, (S?) = SO(3, R).

Furthermore, by lemma 7.1, as ¢ —0, the centers of rotation of p.(x;) all ap-
proach a common point in S?. In addition, the angle of rotation of p.(x;)
approaches « for all i. It follows that for ¢ <0, p, is a continuous ray of
representations, non-abelian for ¢ <0 (since p.(x,) # p.(x;)), with p, our original
abelian representation in SO(3, R) of angle a. By lemma 2.1, p, lifts to an arc of
representations in SU(2).

Similarly, using the half-arc of #~'(1) on which ¢ 20, we obtain an arc of
irreducible representations in SL(2, R) converging to our original abelian represen-
tation of I'. O
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