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Leafwise hyperbolicity; a correction

John Cantwell* and Lawrence Conlon**

In [1], a proof of the following theorem was proposée

THEOREM 1 Let (M, &amp;) be a C2-fohated manifold of codimension 1, trans-
versely orientable and such that M is compact, every leaf is proper, and 3F is tangent
to dM If no leaf of

&apos;

!F is a torus or a sphère, then there is a Riemannian metnc on

M relative to which each leaf of &amp; has constant curvature — 1

This theorem is correct, but there was an erroneous step in the proof, namely [ 1,

Lemma (2 2)] We are grateful to S Matsumoto and N Tsuchiya for pointiilg this

out to us

We fix the hypothèses of Theorem 1 A metnc g with the property in that
theorem will be called leafwise hyperbohc

Let Mo£Mx ç çMfcçMH,ç dénote the level filtration [2] Each Mk
is a compact, nonempty, ^-saturated set, the leaves m Mk\Mk_x being the leaves

of !F at level k When ail leaves are proper, ît has become customary to use the

term &quot;depth&quot; rather than &quot;level&quot; Since ail leaves are proper and the foliation is of
class C2, every leaf of &amp; has finite depth, hence M (J?= o Mk

PROPOSITION 1 Let Mk dénote the union of leaves at dephts at most k Then

there is a nest WO^WX^ Ç^Ç^H1Ç sAf, where Wk is an open

neighborhood of Mk, and there is a Riemannian metnc gk on M such that gk \ Wk is

leafwise hyperbohc for &amp; \Wk,Vk&gt;0

Theorem 1 follows Indeed, {Wk }£°= 0 is an open, nested cover of the compact
manifold M, hence passmg to a finite subcover yields a value of k for which
Wk M It remains, then, to prove Proposition 1

We fix a smooth, 1-dimensional foliation ^-L, everywhere transverse to !F
Projections along the leaves of !FL can be used to define local diffeomorphisms
between leaves of &amp;
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If U £ M is an open, connectée, J*&quot;-saturated set, we use the notations
tf, : tf-&gt;M, # î~\&amp;\ and #x Î~\PL) from [1], [2], et al, for the comple-
tion of £/, its natural immersion into Af, and the induced foliations of 0,
respectively. Recall that U and Û are called foliated products if Û is diffeomorphic
to L x [0,1] in such a way that the leaves of #x are the [0, l]-fibers. Recall that,
if U is a foliated product, then î(dO) is either a single leaf or a pair of leaves of &amp;&apos;.

DEFINITION 1. A closed subset X c M that is a finite union of leaves of &amp;

will be called a skeleton if each component of M\X is a foliated product. If k is the

highest depth of the leaves in X, the skeleton has depth k. We will say that A&quot; (of
depth k) is a full skeleton if, for each component U of M\X, at least one of the

following holds.

(1) Every leaf L of &amp; has image î(L) at the same depth k0 ^ k.
(2) If L c 3(7 is a boundary leaf, then î(L) is a leaf at depth k.

If X is a skeleton, it was proven in [1, (1.2)] that there is an open neighborhood
W zd X and a Riemannian metric g on M such that g \ W is leafwise hyperbolic for
3F | W. Furthermore, projection along the leaves of 3F L defines local isometries
between the leaves of 3F | W. Finally, 0\î~l(W) is compact, for each component U
of M\X.

LEMMA 1. If there is a full skeleton X of depth N9 then there is a neighborhood
WN =&gt; MN and a Riemannian metric gN on M which is leafwise hyperbolic on WN.

Proof Let U be a component of M\X. There are two cases, corresponding to
possibilities (1) and (2) of Définition 1.

(1) In this case, the proof of [1, Lemma (2.1)] shows how to extend the metric
smoothly over ail of U so as to make the curvature of the leaves of 3F | U

constantly —1. Indeed, the metric was already appropriately defined on ail but a

compact submanifold A x [0, 1] &lt;=. 0 and &amp; induces the product foliation on this
submanifold. A déformation argument, using the Teichmûller space of A, created

the extension. (The error in [1] was to claim that, even in the second case, where the

foliation of A x [0,1] was not a product, the above metric on the product could be

&quot;tilted&quot; to give a hyperbolic metric along the leaves.)

(2) We assume that the situation in (1) does not also occur. In this case, the

argument is actually easier. Since MN is compact [2, (4.6)], î~l(MN) nO L xC,
where C c [0, 1] is a closed subset containing {0,1}. Since U\MN ï 0, [0,1]\C has

at least one component (a, b). Let a &lt;a&apos; &lt;b&apos; &lt;b. The metric g is already defined

on WnWJJ) in such a way that projections along ^x are local isometries between
leaves. Using the projections p+:Ix (b\ 1] -?£ x {1} and p~ : L x [0, a&apos;)-*
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L x {0}, one lifts this metric smoothly to L x[0,a&apos;)uLx (b\ 1], This metric

agrées with g wherever both are defined.
Finite répétition of this argument, as U ranges over the components of M\X9

complètes the proof.

LEMMA 2. For some integer N ^ 0, there exists afull skeleton of depth N.

Proof. As in [1, (1.1)], one constructs a skeleton X. Let N be the depth of X. If
X is not full, consider a component U of M\X with boundary component(s) at
depth k &lt; N. If every leaf of &amp; \ U is at depth k, there is nothing to do. Otherwise,
there is a leaf Lc[/at depth k + 1 ^ N. It is elementary that X&apos; X u L is again
a skeleton of depth N. If X&apos; is not full repeat the process for X&apos;. Finite répétition
will ultimately produce a full skeleton of depth N. D

For 0 &lt; k &lt; N, we set Wk WN and g* gN. We also set X J*V
Each component Ut of M\XN that has not been engulfed by H^ must contain

a leaf L, at depth N +\. Throwing thèse finitely many leaves in with XN provides
a full skeleton XN +, of depth N + 1. An application of Lemma 1 produces PFyv+

and gN+ j as desired. It is not hard to see that WN+l can be chosen to engulf WN.

Proceeding in this way, we construct the nest of open sets and the metrics as in

Proposition 1.

REMARK. Projection along the leaves of &amp;*^ does not always define local
isometries between the leaves of !F. In the pièces A x [0, 1], where the metric is

extended by a déformation in Teichmûller space, thèse projections will not be

isometric. If it were possible to avoid introducing thèse régions, it would follow that
the leafwise hyperbolic metric for &amp; is a bundlelike metric for &lt;FX, hence that the

leaves of !F are totally géodésie in this metric. But totally géodésie foliations of
compact 3-manifolds by surfaces are relatively rare.
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