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On embedding numbers into quaternion orders

J. Brzezinski

Abstract A generahzation of the Chevalley-Hasse-Noether theorem from maximal orders to arbitrary
Eichler orders in quaternion algebras îs given A stabihty property for the numbers of orbits for unit
groups in quaternion orders acting on optimal embeddings of quadratic orders îs proved The results are
applied to Siegel&apos;s meanvalue of intégral représentations by gênera of intégral definite ternary quadratic
forais

Introduction

Let R be a Dedekind ring with quotient field K9 and let A be a ^-algebra. An
i£-order in A is a subring of A containing R and a Â&apos;-basis of A over K, which is

finitely generated and projective as an 7£-module. If S and A are R -orders in
J^-algebras, then an injective iÊ-homomorphism cp : S -+ A is called an optimal
embedding if A/(p(S) is i£-projective. The unit group A* acts by conjugation on
optimal embeddings (ç f-&gt; k o &lt;p, where (k o &lt;p)(x) k&lt;p(x)k~x for k e A*). We shall

assume that there is only a finite number £*(£, A) of orbits for this action of A*.
The embedding numbers e*(S, A) play a very essential roll in différent contexts

and were computed by many authors in spécial cases. If A is a quaternion algebra
(that is, A is central, simple and dim^ A 4) and S is an /Ê-order in an algebra of
dimension 2 over a global field K, then e\(S9 A) were computed in [4] for hereditary
orders, in [5] for Eichler orders with particular choice of S, and in [2] and [6] for
other types of Bass orders.

The first purpose of the présent paper is to compute the numbers e%(S, A) for
arbitrary orders S in algebras of dimension 2 over K, when A is an Eichler order.
The method foliows an idea of E. Noether [ 10] in connection with her version of the

proof of the Chevalley-Hasse-Noether theorem, and the results of Section 1 can
be considered as a generalization of this theorem to the case of arbitrary Eichler
orders in quaternion algebras (see (1.14)). The final resuit of the computations are

explicit formulas for e%(S, A) similar to those in [2] for the case of primary Bass

orders. This is the content of Section 1.

The second purpose of the paper is to establish a stability property of the

embedding numbers. The results of Section 1 together with the results of [2] show
that if A and a quadratic iT-algebra L are fixed, then the values of e*(S, A) do not
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dépend on S, when the conductor of S in the maximal order of L
is sufficiently small as an R-idéal (for exact meaning see Section 1). Unfortunately,
this resuit is only proved for quaternion orders whose Gorenstein closure is a Bass

order. It would be désirable to hâve a proof covering arbitrary quaternion orders.

In the last section, we give some applications of the stability property of the

embedding numbers to représentations of integers by gênera of definite intégral
ternary quadratic forais and to Eisenstein séries defined by such gênera. If
f(xl9 x2, x3) is a definite intégral ternary quadratic form, Aut+ (/) the group of its

intégral automorphisms with déterminant 1, and for an integer N, rf(N) the number
of intégral solutions to f(xl9x2, x3) N such that GCD(xux2, x3) 1, then

where fx =/,...,/, represent ail classes in the genus of /, S Z[yJ—cfN] for an
integer cf &gt; 0, h(S) is the class number of S, and y(N) is a constant depending on
the embedding number of S into a suitable quaternion order As (see [1]). If/is the

sum of 3 squares, then S Z[N/—N\ and y(N) is periodic modulo 8 according to
Gauss&apos; Three-Square-Theorem. A rather unexpected resuit of the analysis of the

embedding numbers is the fact that, in gênerai, y(N) dépends on two periods: if
cfN NqNi # 1, where N09 Nx are integers and Nx is square-free, then there are

integers Mo and Mx such that y(N) y(N09 Nx) only dépends on the residues of No
modulo MQ and Nx modulo Mx. Moreover, one can choose Mo d(Af and

Mj 4dx (Af where d(Af is the discriminant of Af, and dx (Af is the product of
différent primes dividing it. This property has a natural interprétation as a state-

ment about coefficients of Eisenstein séries defined by gênera of intégral definite

ternary quadratic forms (see (3.10)).

1. Bouquets of Eichler orders

Let R be a complète discrète valuation ring of characteristic #2 with quotient
field K. Let n be a generator of the maximal idéal m of R9 and let v be the valuation
of K corresponding to R and such that v{n) 1. Recall that an Ifc-lattice on a vector

space over K is a finitely generated free R-module containing a basis of the space.
Let L be an «-dimensional separable commutative AT-algebra, and let / be an

iMattice on L. It is well-known that EndR (I) {(p eEndK (L): (p(I) ^1} is a

maximal R -order in the central simple ÀT-algebra A End* (L). We dénote this
maximal order by F(I). It is also well-known that every maximal R -order in A can
be repretented in that way for a suitable i*-lattice / on L. Moreover, r(Ix) T(/2)
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if and only if there is a e K* such that I2 alx. There is a natural embedding
i : L -* EndA (L) mapping / e L onto x h-&gt; £x9 x g L. The image of &lt;îf will be denoted
by / as well (so L will be identified with its image). Let S be an i?-order in L. If
SI ç /, then the embedding i restricts to an embedding S -» F(I)9 and conversely, if
the restriction of i to S gives such an embedding, then / is an 5-ideal. This
embedding is optimal if and only if S 0(1); where 0(1) {oc e L.olI £ /}. Notice
that r(Ioc) (xr(I)oc -1 when a 6 L*. (For thèse facts see [8], pp. 26-27 and p. 107).

We say that i?-lattices al9 a e K*9 form a #-class. We shall write Ix~ I2, when

Ix and I2 are in the same AT-class. Recall that the distance between the classes of Ix

and I2, denoted by d(Il9I2)9 may be defined as v(Ann(Ix/(IxnI2))+v(Ann(I2/
(Ixnl2))9 where Ann(Z) dénotes the annihilator idéal of an i?-module X9 and

v(a) r if a mr(m° jR). (It is not difficult to prove that d really is a distance in
usual sensé.)

Assume now that n 2 and recall that an R -order A in A is called an Eichler
order if A is an intersection of two maximal orders, that is, A T(IX) nf(I2) for
suitable iÊ-lattices Ix and 72. Recall also that the maximal orders f(Ij)9j 1, 2, are

uniquely determined by A (see [3], (26.28)). Choosing a basis el9e2 such that

/, Rex -f Re2 and I2 i?7ra e, + ita* e2, where a £ b (see [3], (4.13)), it is easy to
see that A is isomorphic to the order Ad consisting of matrices:

r *
[ndR

where d b —a. The idéal d(A) =(71^) will be called the discriminant of A. Only in
this section, we also call d the discriminant of A. d(A) characterizes the isomor-
phism class of A (see [3], (26.28)). Thus, we hâve:

(1.1) PROPOSITION. // A r(Ix)nT(I2)9 then d(A) (tu*), where

Recall that if So is the maximal i?-order in L, then every other i?-order in L is

equal to S, R -H nlSQ9 i ^ 0. Notice that d(Sl9 So) 1. Let x 1-* Je be the non-trivial
automorphism of £ over K9 and let iV(x) xx. The following Lemma will be very
useful in many computations:

(1.2) LEMMA. If A=r(S)nT(S&apos;oc)9 where S&lt;^S&apos; are R-orders in L and

a e L* is such that S&apos;oc £ 5&quot; but S&apos;ocn~} £ 5&quot;, then

(a) d(S&apos;9S*oc)~v(N(oc))9

(b)d(A)~d(S9S&apos;)+v(N(a)).

Proof (a) See [3], (4.20a).
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(b) Let S R + n&apos;S\ so d(S, S&apos;) i. Since 5&apos;âçS&apos; and S&apos;ân&quot;1 ^S\ there

are m,,w2gL such that S&apos;a&quot;1 Rux + Ru2 and S&apos; Ru{ + RnJu2J ^ 0 (see [3],
(4.14)). The case y 0 is trivial, so assume that j &gt; 0. Then l =aux + bnJu2, gives

a 6 R*. Thus, 5&apos;a&quot;~x R + i*«2, S&apos; R + RnJu2 and 5 R + Rnl+Ju2, which
shows that &lt;/(S, S&apos;ôT *) &lt;/(S, S&apos;) + &lt;/(S&apos;, S&apos;a&quot;1). But S&apos;ôT1 - S&apos;a, so the required
equality follows from (a) and (1.1).

Let S be an i£-order in L. By an S-bouquet in A we mean the set &amp;(S, A) of ail
Eichler orders in A isomorphic to A, which optimally contain S. The group L* acts

on @(S, ^1) by conjugation: If A&apos; e ^(S, /t) and a e L*, then a/Ta ~! e ^(S, /l). Let

^^(5, yl) be the number of L*-orbits on ^(5, yl). Our objective is to compute thèse

numbers for arbitrary quadratic R -orders S and arbitrary Eichler orders A, when

Rjxxx is fini te. The first step in this direction is the following useful resuit:

(1.3) LEMMA. (a) Each L*-orbit on @(S, A) contains an order r(S)nf(5&apos;a),

where S&apos; 3 S.

(b) Two différent orders r(S)nr(S&apos;(x) and r(S)nr(S&quot;P) are in the same

L*-orbit if and only if S&quot; S&apos; S and Sp - Sa.

Proof (a) Since dim^L =2, each iî-lattice / on L is principal over its order
0(1), that is, I O(I)(x for a suitable &lt;x e L* (see [3], (35.14)). Let
A r(/,) nF(I2). Since the R -orders in L are linearly ordered by inclusion, S must
be optimally embedded in at least one of the orders F(Ij)J 1,2. Thus, we may
choose Ix Sa! and I2 S&apos;a2, where S&apos; 2 S. Hence af xA&lt;xx F(S) nr(S&apos;a), where

a =a2afl g L*.
(b) Let A&apos; r(S)nr(S&apos;a) and A&quot; T(S) nr(S&quot;P). lfyA&apos;y-l=A\ yeL*,

then r(Sy) T(S) and T(S&apos;ay) r(S&quot;Py\ or T(Sy) r(S&quot;P) and r(S&apos;ay) T(S),
since the maximal orders containing an Eichler order are unique. In the first case,
Sy ~ S and S&apos;cty ~ S&quot;Py, so S&apos; S&quot;, and consequently, A&apos; A&quot;. In the second case,

we get Sy - S&quot;P and S&apos;ay - S, so S S&apos; S&quot; and Sa/? ~ S, which is équivalent to
SP ~ Sa. Conversely, if SP ~ Sa, then clearly T(S) nT(Sa) and T(S) nT(Sj5) are in
the same L*-orbit.

Let S be an i?-order in L. The last proposition and (1.1) show that in order to
compute the numbers e*(S, A), we hâve to describe ail ^-classes of S-ideals Sa and

compute d(S, Sa) for them. Let Ct(S/R) dénote the multiplicative group of ail
principal S-ideals in L modulo the S-ideals generated by the éléments of K*. We
hâve to distinguish between 3 cases: L is an unramified field extension of K
(unramified case), L is a ramified field extension of K (ramified case), and
L K x K (split case). Recall that the i?-orders in L are S,=R + tz&apos;Sq, i 0,
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where So is the maximal i?-order. Let e v(2), and let k \R/m\ be the number of
éléments in the residue field of R. In order to simplify formulations, we assume that
kn 0, when n &lt; 0.

(1.4) PROPOSITION, (a) Let LzdK be unramified, that is, L K(co) and
S0 R[co]9 where co2-co+e=Q, s e R* and \-48eR*\R*2. Then Gf(SJR)
consists of K-classes of S,(a + /?) and S,(l + bco) where n\b and i g; 1, for a and b

representing différent residue classes in R/(nl). We hâve d(Sn St(a + co)) 2i for kl
éléments of Gf(S, /R), and d(Sn St 1 -h bco)) 2i - 2r for kl ~r - kl ~r ~l éléments of
CS(SJR) corresponding to b enrR* and r e {1,...,/}.

(b) Let L 3 K be ramified, that is, L K(co) and So R[co], where
co2 - npœ -\-en=09 eeR* and p e {1,..., e -h 1}. Then C^(SJR) consists of K-
classes of St(a +co), where n\a, and St(l + bco) for a/n and b representing différent
residue classes in Rl(nl). We hâve d{Sn St(a + œ)) =2/ + 1 for k1 éléments of
C/(S, /R), and d(Sn St 1 + bco)) 2i - 2r for k1 ~r - k1 ~r &quot; 1 éléments of Ct{St /R)
corresponding to b e nrR* and r e {0,. /}.

(c) Let LzdK be split, that is, L K x K and S0 Rx R. Then Cf(SJR)
consists ofK-classes ofSt(l, a)(nr, 1), r ^ 0 and St 1, a)( 1, nr), r ^ 1 /or a representing

différent residue classes in {Rl(n1))*. We hâve d(St, St(h à)(nr, 1)) d(S{,

5,(1, a)(l, nr)) =2i + r if r * 0 or a*\,for k&apos;-k1&apos;1-! éléments of C^(SJR)
when r 0, and for 2(kl — kl~l) such éléments when r ^ 1.

Proof (a) Without changing the class of a principal S,-idéal /, one can choose

a e So such that / St(x. Since Cf(S0/R) is trivial, one can assume that a e 5J, that
is, a a -h ftco, where n\a or Tr^fc. Therefore, one can further reduce assuming that
each class of S^-ideals contains either an idéal St (a + co) or St 1 4- bco) with n \b. Now
it is easy to check that the classes of St (a -h co) and S, 1 -h èco) are différent if i ^ 1,

while SUa + co^S^a&apos; + c») (or S,(l+6û&gt;) ~ S, 0+*&apos;&lt;*&gt;)) if and only \î a=a&apos;

(mod 7c&apos;) (or 6 è^mod rc&apos;)). The last statement in (a) now follows from (1.2)(a).
(b) It is well-known that C£(S0/R) has two éléments represented by So and S0co.

The same arguments as in (a) show that the éléments of CS(SJR) are represented

by St(x with S0ot, So or Soa Soco. In the first case, one can assume that a 1 + bco,

and in the second, that a 1 + bco)co a -h co for a suitable a € (rc). The remaining

arguments are the same as in (a), with the only différence that St(a + co) ~ St(a&apos; + co)

if and only if a a&apos;(mod nl+l).
(c) The group Cf(S0/R) is infinité and its éléments are represented by the ideals

S0(k\ 1), r i&gt; 0, and S0(l, nr), r ^ 1. The proof is similar to that of (a) and (b).

The last proposition together with (1.2) give an easy possibility to compute the

number of intersections T(S) n F(S&apos; S) (not necessarily différent) equal to an
Eichler order with fixed discriminant.
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(1.5) PROPOSITION. Let the notations be the same as in (1.4). AU Eichler
orders F{St) nF(Sjô) with discriminant d and O^j^i cire given in the following
way:

(a) Let L^K be unramified. Then 0^d^2i. For O^dS 2i - 2, and for each

je[\i — d\, i] such that j i — d(mod2) and y&apos;^2 when d^.i, there are
jçj - v(b) _kj- v(b) -1 orders with s \^bœ and v(b) (j + i - d)/2. For i^d&lt;&gt; 2i

and j d — i there are kJ orders with ô a + co.

(b) Let LzdK be ramified. Fhen 0 ^ d ^ 2\&gt; + 1. For O^d^li, and for each

j e[\i- d\, i] such that j i- d(mod 2), there are kJ~v{b) -kJ~v{b)~l orders with
S l + bœ and v(b) (j + i - d)/2. For i+l^d^2i+\ and j d-i - 1 there

are kJ orders with ô =a +œ.
(c) Let L =&gt; K be split. For Q^d ^ / and j i — d there is one order with ô 1.

For d &gt; i and for each j e [0, min (d — i, i)] there are 2(kJ — kJ~l) orders with the

exception of j d — i, when the number of orders is kJ — kJ~x — 1, with
ô =(\,a)(nr, 1), r ^0 or (1, a)(l, nr), r ^ 1 and r d-i-j.

Proof According to (1.2), d =j — i + d(SJ9 Sjô), and it suffices to use

the results of 1.4) in order to obtain ail possible intersections when d and i are
fixed.

Using (1.5), it is very easy to compute the total number of intersections

F(S) n T(5&apos; ô), S&apos; ^ S, which give an Eichler order with fixed discriminant d. This
number is very close to the number of L*-orbits on the corresponding 5-bouquet.
Unfortunately, the spécial case S&quot; S (see (1.3)(b)) introduces a correcting term,
which needs some additional computations. Let us start with a définition:

«x, y, 0 |{(*, y) e R/(nl) x R/(n&apos;) : *2 &gt;&gt;2(mod n1)}] (1.6)

and

k(x9 y, i, r) \{(x, y) e R/(ti1) x R/(n&apos;) : x2 y2(mod nl) and v(x - y) r }|.

(1.7)

v is the valuation on R/(nl) induced by v on R. We assume that v(0) / for
0 e R/(nl). [x] will dénote the integer part of the number x. We are now ready to

compute the numbers e+(S, A):

(1.8) THEOREM. Let S St be an R-order in L, and let A be an Eichler
R-order&apos;in A with discriminant d.
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(a) If L 3 K is unramified, then

where

0 if d &gt; 2i,

(jc,jc + 1,0) if rf 2/,

if 0 &lt; d &lt; 2i, d odd,
±(kl/2d + kl/2d- l + *(*, 1, i, / -^f)) if 0 ^ d &lt; 2i, rf even,

fl if e=0or j 0,
1,0 &lt;.

(0 otherwise,
(1.9)

i,/,ï-W)
- i if o g&lt;/^ 2e &lt; / or 0 g &lt;/ g / ^ 2e,

if fZle + l and d 2i-2k, (1.10)
otherwise.

If L=&gt; K is ramified, then

- D

where

1)) if d 2i + 1,

if 0 &lt; &lt;/ &lt; 2i, rf odd,
if 0 S d ^ 2i, ^/ even,

1 if i ^ p - 1

x + ttp, i + p + 1) ^ ke if i &gt; p - 1 e

0 otherwise
(1.11)

and k(x, 1, / + p, i H- p — \d) is given by (1.10) (vv/*A ï replaced by i + p).
(c) If L^K is split, then

3A:1/2*-! -h k(
^-1-1- 1

if &lt;/&gt;2i,

v,l,i))-l if rf 2i,

if / &lt; rf &lt; 2ï,
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where

r l0.^; (..12)

Proof. (a) According to (1.5)(a), e#(S, A)=0 when d&gt;2i. It easily follows
from (1.5)(a) that the total number of intersections F(S) nr(5&apos;a) with discriminant
d is equal to k[l/2d]. This number is equal to e^(S, A) if in ail intersections S&apos; / S,

which holds when 0 ^ d ^ 2/ and */ is odd. If d — 2i9 then we hâve to consider the
number of L*-orbits on kl intersections r{Sl)nr{Sl(x), where a a + a&gt;. According
to (1.3)(b), we need the number of a such that S.â S,a, that is, the number of a
satisfying 2a + 1 =0 (mod tc1)- This number is given by (1.9). If d is even and

0^t/^2/, then we hâve the intersections r(St)nr(Sta) with a l+Z&gt;a&gt; and

v(b) i — \d. In this case, 5fâ S,a if and only if £2 + 26=0 (mod rc&apos;). The
number of solutions, which is equal to k(x, 1, /, / — \d), can be obtained from the

following easy to prove resuit: if R is a discrète valuation ring, then k(x9 1, /) is

given by (1.12) and the solutions to x2 1 (mod nl) are

fl+wn/*+i&gt;]r forOgUM^] ifO£i£2e, (] ,3)

where 2 7Cee.

(b) (1.5)(b) says that e+(S, A) 0 when d&gt;2i + l. The total number of
intersections F(S) nr(S&apos;(x) with discriminant d is also equal to k[l/2d]. The intersections

r(St) nf(5,a) only appear for odd d ^ 2/ + 1. If d 2/ + 1, then a a + co,

where tc|û, give kl intersections, and Stâ Sta if and only if 2a + np 0

(mod tc&apos; +1). The number of solutions, which is equal to k(x, x H- np, i H- p + 1), can
be obtained by elementary considérations. If 0 &lt; d &lt; 2/, then a 1 -I- aco, where

y(tf) i - i&lt;/(fc1/:w - A:1/2&lt;/-
&apos;

intersections), and 5,0c Sta if and only if
npa2 + 2a 0 (mod tc1). The number of solutions is k(x, 1, i -h p, / -f p — |rf) and

can be computed using (1.13).
(c) The total number of intersections r(S)n(S&apos;oC) is 1 when

O^d^i, kd~l + kd~l~l - 1 when i &lt; d ^ 2i, and 2*&apos; when d &gt; 2i. The intersections

FiSJnriS,^) only appear if d 2i with a=(l,û), aeR*, a^\ for
d &gt; 0(fc&apos; — kl ~l possibilités) or d &gt; 2i with a 1, a)( 1, nr) or 1, a)(7ir, 1), where

r=d-2i (2(kl-ki~i) possibilités). In the first case, Stâ St&lt;x if and only if
a2= 1 (mod 71&apos;), which contributes with k(x, 1,/), while in the second case, the

equality 5, à S, a is not possible.

(1.14) REMARK. It follows from (1.8) that e+(S, A) 1 when A is maximal,
that is, d 0. This is a spécial case of the Chevalley-Hasse-Noether theorem (see
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[10], p. 13 or [4], Satz 6). The same is true when A is hereditary, that is, d 1. This
case was proved by M. Eichler (see [4], Satz 6).

Our main interest in Section 2 will be in the numbers of orbits of A * acting by
conjugation on the optimal embeddings of S into A. More exactly, if ç : S -+A is

an optimal embedding and g g Ant(A) (the automorphism group of A), then a o q&gt;

is also optimal. For simplicity of notations, we write a to dénote the inner
automorphism x \-+ axa~l induced by a e A*. Let eAut(A)(S, A) be the number of
orbits for the action of A\xt(A) on the optimal embeddings S-+A. It follows from
a gênerai theory that eAut(A)(S9 A) eL*(S, A) (see [1], (1.1) and (2.1)). Let us recall
that any optimal embedding q&gt; : S -+A is given by (p(x) axa~\ where a e A*.
Hence &lt;p extends to an automorphism of A, and &lt;p~l(A) e $(S, A). Conversely, if
A&apos; g $(S9 A), when A&apos; cp(A) for a suitable automorphism of A, so cp~l restricted
to S gives an optimal embedding of S into A. In this way, we get a bijection
between optimal embeddings in any Aut(yl)-orbit and the orders in the correspond-
ing L*-orbit.

We hâve A*^Aut(A)9 and we want to compute the numbers e%(S, A) of
yl*-orbits on the optimal embeddings S -*A. For simplicity, we shall write e(S, A)
instead of e%(S, A). Recall that for non-maximal Eichler order, Aut(yl) A*vA*a,
where a is a generator of the Jacobson radical J(A) (see [2], (2.2)).

(1.15) LEMMA. Let A be a non-maximal Eichler order in A. Then

where k is the term k(x, y, i) or k(x, y, i, r) in the formulas (1.8) for e+(S, A) when it
appears there and 0 otherwise.

Proof Let cp:S-+A be an optimal embedding, and let A r(S)nF(S/&lt;x).
According to the comments concerning the equality eAut(A)(S, A) =eL*(S,A)9 we

can suppose that q&gt; is the identity. Since L KS is a maximal commutative subring
of v4, the stabilizer of q&gt; in Aut(yl) A*uA*a is Aut(A) nL*. The optimality of (p

implies that A * n L* 5*, and A *a n L* # &lt;t&gt; if and only if there is P g Aut(yl) and

P g L*\S*. Thus Aut(A)nL* S* or Aut(^l) nL* S*kjS*0. In the first case,
there are two yl*-orbits in the Aut(yl)-orbit of cp9 while in the second, the A*-OTbit
coincides with the Aut(/l)-orbit of q&gt;. Assume now that such a /? exists. Then we
hâve A /L4/?&quot;1 F(Sp) nr(S&apos;ajS), which, as we already know (see the proof of
(1.3)(b)), is valid if and only if 5&quot; S and SP ~ Sa ~ Sa. Conversely, if
A F(S) n r(Scc) and 5a ~ Sa, then P a is the desired élément. Therefore, the

number of A *-orbits on the optimal embeddings (p : S -*A which coïncide with the

corresponding A\xt(A) -orbits is equal to the number of L*-orbits on ^(S, A), which
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are représentée! by F(S) n r(S&lt;x) with Sa ~ Sa Thèse numbers, which were com-
puted m the course of the proof of 1 8) as suitable values of the functions k defined

m (1 b) and (1 7), should be subtracted from the double of the number of ail
L*-orbits on @(S, A)

Because of the importance of the embedding numbers e(S, A) and for the

convenience of références, we record the values of e(S, A) in a form suitable for
applications in the next section

(1 6) COROLLARY Let S S, be an R-order in L, and let A be an Eichler
R-order in A with discriminant d&gt;0 Then

if 0 ^ i &lt; \d,

II l ^^ 5 *

when L =&gt; K is unramified,

0 if 0&lt;i &lt;kd- 1),

e(S, A)

when L =&gt; K is ramified, and

e(sM)=^2^--3+k&quot;—&apos;-D lïf\did;«i,
2 if z ^ d,

when L 3 K is spht

2. Stability of embedding numbers

As m Section 1, let R be a complète discrète valuation ring of charactenstic #2
with quotient field K Let A be an arbitrary quatermon AT-algebra (that is, a central

simple algebra of dimension 4 over K)9 and let A be an JÇ-order in A In this

Section, usmg the fact that e(S, A) only dépends on A when the conductor of S is

sufficiently small, we show how to décide whether e(S, A) e(S\ A) where S&apos;is an
i£-order m another quadratic extension U=&gt; K
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Let us start with some définitions. If X dénotes an i£-order in L or in A and

J(X) its Jacobson radical, define e(X) 1 if X/J(X) s R/m x R/m, e(X) 0 if
X/J(X) s i*/m, and e(X) -1 if X/J(X) is a quadratic field extension of R/m. Let
L c AT be a quadratic separable extension. Define e(L/K) eCSo), where 50 is the

maximal i?-order in L (that is, e(L/K) 1, 0 or — 1 depending on whether L =&gt; K
is split, ramified or unramified). Let A(L/K) be the discriminant of L ^&gt; K9 that is,

the discriminant of any basis of the maximal i£-order in L (computed with respect
to the trace form T : L x L-+K, (jc, y) \-? jT(x, j&gt;), where 7 is the trace fonction
from L to Â^). A(L/K) is defined up to a square of a unit in R.

If L and L&apos; are two separable quadratic À^algebras, define:

S(L, L&apos;)=2e + \ + mm(v(A(L/K))9 v(A(L&apos;/K))\ (2.1)

where v is the valuation corresponding to R and e t?(2). Recall that e(L/K) ± 1

if and only if A(L/K)eR*, and e(L/K) l if and only if A(L/K) e R*2. If
£&gt;(£/#) 0, then A(L/K) e /rpi**, where pe{l e + lj. The following well-
known resuit is a direct conséquence of the remarks above and the local square
theorem (see [11], 63:1a):

(2.2) PROPOSITION, (a) Ifô(L9 U) 2e + \, then A(L/K) (Z//iQ(mod 4tt)

implies e(L/K) e{LfjK). If Ô(L, U) &gt; 2e + 1, then e(L/K) e(L&apos;/K).

(b) L^L&apos; if and only if A(L/K) J(Z//A:)(mod nS(LM)).

It is clear from (1.16) that the numbers e(S, A) dépend on e(L/K). In gênerai,
when Eichler orders are replaced by arbitrary quaternion orders, it is easy to

construct examples showing the dependence of e(S, A) on the isomorphism class of
L =&gt; K (see (13.9)(b)). Of course, they also dépend on the conductor of S with
respect to the maximal iî-order So in L. Recall that if S R -h nlS0, then the

conductor f(S/R) is the idéal (nl) (that is, f(S/R) (nd{S^) Ann (So/S)).
The most important property of the embedding numbers e(S, A) from the point

of view of applications, which we hâve in mind, is that they stabilize when f(S/R)
is sufficiently small with respect to the discriminant of A. Unfortunately, we cannot

prove this for arbitrary quaternion orders, since our proof is based on the explicit
computations of e(S, A) for Eichler orders in Section 1, and in [2] for other classes

of Bass orders. We slightly extend thèse results to orders whose Gorenstein closure
is a Bass order (see (2.3)), but the embedding numbers e(S9 A) still hâve to be

computed for Gorenstein non-Bass orders. Recall that A is a Gorenstein order if
Hoiri/j (A, R) is /l-projective as left (or right) A -module (see [3], p. 776). A is a Bass

order if each R -order A&apos; in A containing A is Gorenstein. If A is an arbitrary
R -order in A, then A R + nrG(A)9 where G(A) is a Gorenstein R -order contain-
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ing A and r &gt; 0. Both G(A) and r are uniquely determined by the above présentation

of A (see [2], Section 1).

(2.3) PROPOSITION. Ut St R + nlS0 be an R-order in L, and let
A R + nrG(A) be an R-order in A with Gorenstein closure G(A). Then

where we put e(G(A)) \jk when G(A) is a maximal order in a split K-algebra A.

Proof. It is easy to see that any optimal embedding S&apos; -+ G(A) restricts to an
optimal embedding S R + nrS&apos;-+A, and conversely, any optimal embedding
S-+A can be uniquely extended to an optimal embedding S&apos;-+G(A)y where
S R + nrS&apos;. In particular, if St-*A is an embedding, then i^.r. Since A* is

normal in G(A)*9 the last group acts on optimal embeddings St -+A. The number
of yl*-orbits in one G(,4)*-orbit for this action is equal to (G(A)* : A*)/(Sf_r : Sf
since the optimality of the embeddings St-+A and St_r-+G(A) implies that the
stabilizer of S, -+ A in G(A)* is S*_r. Now it is an easy task to compute the indices:

(G(A)* : A*)=k&gt;&apos;(l-e(G(A))k-1) and (S*_r : Sf) =*&apos;- &apos;(* ~e(^-,)).

Let d(A) dénote the discriminant idéal of A (see [2], p. 167). We can now prove
that e(Sn A) stabilize when i is sufficiently large.

(2.4) PROPOSITION. Let St be an R-order in L, and let A R + nrG(A) be an
R-order in A whose Gorenstein closure is a Bass order. Then e(St, A) hâve the same
value for i ^ v(d(A)) - 2r when e(A) e(L/K) 1, and for i &gt; &amp;(d(A)) - r) in ail
other cases.

Proof Let r 0 and let v(d(A)) d. It follows from (1.16) that e(ShA)
£[1/2*3 +fc[i/2«*-i)] for t&gt;^d and e(L/K)*h while e(ShA)=2 for i^d, when

e(L/K) 1. Similarly, from [2], (3.3) and (3.10), we get e(St9 A) 0 for i &gt; \d when
A is ramified. If A is split, the same références give e(St9 A) c(k[ï/2d] -k[l/2d]-l),
where c 0 or 2 if e(A) 0 or e(A) e(L/K) -1, and c 1 if e(A) -1 and

If r &gt; 0, then the estimâtes for i now follow from the equality
v(d(A)) v(d(G(A))) 4- 3r and (2.3).

Let A be an R -order in A. Dénote by i(A, L/K) the least non-negative integer
such that e(Sn A) hâve the same value for i ^ i(A9 L/K). The existence of i(A, LjK)
follow from (2.4) for quaternion orders whose Gorenstein closure is a Bass order
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(and it remains to be proved for Gorenstein non-Bass orders). The following resuit
is a direct conséquence of (2.2) and the définition of i(A9 L/K):

(2.5) PROPOSITION. Let S be an R-order in L, S&apos; an R-order in U and A an

Rorder in A. If (a) A(L/K) s â(L&apos;/K){moà n*^) and (b) f(S/R)=f{S&apos;/

R)(mod nl(A&gt;L/K)), then e(S9 A) e(S\ A).

(2.6) REMARK. It follows from (2.4) that for an order A R + nrG(A) whose

Gorenstein closure G(A) is a Bass order, we hâve i(A9 L/K) S v(d(A)) - 2r, when

e(A) e(L/K) 1 and i(A, L/K) ^ [{{v(d(A)) - r)] + 1 in ail other cases. It follows
from (1.16) and from [2], (3.3), (3.10) that the second estimate can be improved. In
fact, i(A,L/K)^[{{d{A)-r + \)] if A is a division algebra and (e(A)9 e(L/
K)) * (0, -1), or A is a split algebra and {e{A\ e(L/K)) (0, 0), (0, -1) or 1, 0).

3. Représentations of integers

We are now ready to discuss some applications of the embedding numbers to
représentations of integers by ternary quadratic forms.

Let/(xl5 x2, x3) Il^JalJxlxJ be a definite intégral primitive ternary quadratic
form, Aut+(/) the group of its intégral automorphisms with déterminant 1, and

rf(N) the number of primitive représentations of N by /, that is, the number of
(xj, x29 x3) g I? such that N =/(jc, x2, x3) and GCD(xx, x2, x3) 1. The following
resuit was proved in [1], (3.8):

(3.1) THEOREM. Let f be a definite intégral ternary quadratic form and let

fx=f ...,/, represent ail classes in the genus off Then there exist a quaternion
Z-order A and an integer cf &gt; 0 such that

where pA is a rational number which only dépends on A, S Z[yJ—cfN], h(S) is the

class number of S, and e(Sp, Ap) are the embedding numbers for p-adic complétions

of S and A at ail prime numbers p.
Let us recall how to find A Af and cf. Let

aX2 2a22 a23

al3 a23 2a33
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be the matrix of the quadratic form /, and let c0 be the least positive integer such

that c0M(f)~l is a matrix whose ail éléments are even integers. It is easy to show

that c0 4d(f)/Q(f), where d(f) \ det M(f) is the discriminant of/, and Q(f)
is the GCD of the éléments of the adjoint matrix M(f)d (notice that c0 is closely
related to the &quot;level&quot; of/). Let/^ be the quadratic form whose matrix is c0M(f).
Then Af= O(ft), where O(f^) is the even Clifford algebra corresponding to the

quadratic form/,,, (see [1], Section 3) and cf 4d(f)/Q(f)2. It is not difficult to
show that d{Af) is generated by \6d(f)2/Q(f)3. Notice that /„, need not be

primitive, since the GCD of its coefficients may be equal to 2. In such a case,

O(f*) % + 2G(O(f*)). (In gênerai, if/is an intégral ternary quadratic form and

f=afQ, then O(f)=Z + aO(f0), and O(f0) is Gorenstein if and only if/0 is

primitive.)
Our objective is to analyse the right hand side in (3.2) using the information

about the embedding numbers e(Sp, Ap). Unfortunately, we only know thèse

numbers for A such that G(A) is a Bass order. Therefore, we hâve to restrict the
class of quadratic forms / to those satisfying the following condition:

G(Af) is a Bass order. (3.3)

Notice that it is very easy to recognize / satisfying (3.3): G(Af) is the ofder
corresponding to /# divided by the GCD of its coefficients. If, in gênerai,
A O(g), where g is an intégral primitive quadratic form, then A is a Bass order
at p if and only if p&lt;\Q{g) or p\Q{g) and a non-zero élément of (p)/(p)2 is

represented over Zp (the p-adic integers) by g reduced modulo p2 (see [2], (3.21)).
A is a Bass order if and only if it is a Bass order at each p (see [3], p. 778). We
hâve e{Ap) 1, 0 or — 1 depending on whether the réduction of g modulo p is a

product of two différent linear factors, two equal linear factors or is irreducible

over Z/(/&gt;) (see [2], (3.21)).
Before we can formulate the main resuit of this section, we neéd some

notations. We write vp to dénote the valuation on Q or Qp corresponding to p and
such that vp{p) 1. We let d(A) dénote the positive generator of the discriminant
idéal of A (denoted by d(A) as well).

(3.4) THEOREM. Keeping the notations 6/(3.1) assume that f satisfies (3.3),
and let

where S ±= Z[J-cfN\ and y(N) p^ (1/|S*|) n, e(Sp, Ap).
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There exists a positive integer Mo such that y has the following property. Let
cfN N2ONX * 1, cfN&apos; N?N\, where No, Nx, N&apos;o, N\ are integers and Nx, N\ are
square-free, and let for ail p\d(Af):

vP(N0) vp(N&apos;o) or min (vp(N0), vp(N&apos;o)) è min vp(M0), (3.5)

and

W ^\2Jhl), (3.6)

where e v(2). Then y(N) y(N&apos;). Moreover, one can choose Mo d(Af).

Proof. If -cfN * 1, then |S*| 2, so the factor pA(l/\S*\) in y(N) is indepen-
dent of N. The factor following it dépends on the discriminant of Q{\J—cfN) (that
is, 4JV, or Nx when Nx 3(mod 4)) and the conductor of S (that is, No or 2N0 when

N{ 3(mod 4)). Thus the property of y directly follows from (2.5). The (not always
optimal) choice of Mo follows from (2.4) (see (3.8)).

It follows from (3.4) that the values of y(N) y(N0, N{) dépend on the residues

of iV0 modulo Mo and Nx modulo a positive integer Mx. According to (3.6), one can
choose Mx =4dx(Af)9 where dx(Ar) is the square-free part of d{Af) (notice that

d(Af is always divisible by 2). Thus, we hâve

(3.7) COROLLARY. There exist positive integers Mo and Mx such that the

values of the function y(N) y(NXi Nx)for cfN ^ 1 are determined by the residues of
No modulo MQ and Nx modulo Mx.

(3.8) REMARK, (a) A spécial case of the above resuit was proved in [7] for N
relatively prime to the discriminant of/. Probably, SiegePs formula for the weighted

average of the number of intégral représentations by genus in case of ternary
quadratic forms also can lead to a proof of (3.4).

(b) y{N) y(N0, Nx) can be computed using a fînite number of &quot;test values&quot; for
N. But the choice of Mo in (3.4) often can be improved. First of ail, if p — 2, and

Nx 3(mod 4), then d(Af) can be replaced by \d(Af\ since the conductor of S is

2N0. If Af is not a Gorenstein order, then one can take Mo \d(Af) (see (2.6)). If
e(G(Af)p) # 1, then one can choose Mo with vp(M0) [%vp(d(Af)) — r] -h 1 where

r 0 or 1 and r 1 if and only if p 2 and Af is not Gorenstein (see (2.6)).
Slightly better estimâtes can be obtained in particular cases mentioned at the end of
(2.6).



On embedding numbers into quaternion orders 317

(3.9) EXAMPLES, (a) Three-Square-Theorem. Let / X2 + Y2 + Z2. Then
t 1, | Aut+(/) | 24, d(Af) =4 and &lt;y

1 (see [1], (3.9)(a)). Since e((Af)2) 0,

we can choose Mo 2 using (3.8) (instead of Afo 4 in (3.4)). Since there are 8

quadratic extensions of Q2&gt; we hâve to compute y(N) for 16 values of N corre-
sponding to N such that v2(N0) 0 or 1 and N, giving non-isomorphic quadratic
extensions (and N ^ 1). If v2(N0) 1, we easily find that rf(N) 0, so y(N) 0. If
^2(^0)== 0, we choose AT, 3 (unramified case), A^, 7 (split case), and

iVj 1, 5, 2, 6, 10, 14 (ramified case). Choosing No 1 if JV, # 1, and No 3 for
iVj 1, we get y(A0 for ail integers N ^ 1. The final resuit is y(JV) 0 if N s 0,4, 7

(mod 8), y(JV) ^ if iV 3 (mod 8) and y(N) £ if tf ss 1, 2 (mod 4). It is, of
course, a coincidence that the congruence conditions on No and Nx can be replaced
by such a condition on N. It is also a coincidence that y(AT) only dépends on the

type of the quadratic extension of Qo corresponding to Nx.
(b) As a more typical example, let us consider / — X2 + Y2 -h 2Z2. In this case,

t 1, |Aut+(/)| 8, &lt;/(,!,) 16 and cf 2. (Notice that 4, Z + Z/ + ÏJ + ZA:,

where / i+y, J i—j, K — 2k and i,y, fc are the quaternion units.) We hâve

4(^)2) 0. Hence if ^Q2(VCÂ^)/Q2) # -1, then v2(M0) [^2(^/)) + 01
2, and if e(Q2(y/^N&quot;i)/Q2) -1, then the conductor of S is 2N0, so

v2(M0) [^2(rf(/l/))] 2. Thus, we can choose Mo 4 and we hâve to look at the
values ofy(N) corresponding to u2(No) 0, 1, 2 and Nx as in (a), where 2N iVoN, •

If v2(N0) 0, then N{ must be even, so we can choose No~\ and Nx 2, 6, 10, 14.

If ^(A^o) 2, then we easily get rf(N) 0, that is, y(N) 0. If t;2(AT0) 1, we take

No 2 and we compute y(N) for 8 possible Nx as in (a) obtaining two différent values

of y(N)9 when Q2(x/—^) is ramified. More exactly, we get:

0 if v2(N0) 1 and Nx 7(mod 8) or v2(N0) ^ 0

if »2(JV0) 1 and Nx 3(mod 8) (y(N) j),
if z;2(^o) =0 or 1 and Nx =0(mod 2) (y(iV) =^),
if v2(N0) 1 and iV, l(mod 4) (y(N) |).

(3.10) REMARK. Let

where
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be the thêta séries of the genus of/. This function îs an Eisenstein séries in the sensé

of [12], whose N-th coefficient for square-free N is M/ly(N)h(S). (Notice that the
iV-th coefficient of #(/, z) is equal to the number of ail intégral solutions to/= N,
while rf(N) in (3.4) only counts the primitive ones. If N is square-free, then rf(N)
is the coefficient.) Corollary (3.7) gives the penodicity of the factor following h(S}.
A similar property is well-known for the coefficients of Eisenstein séries of weight
k/2, k ^ 5, as defined in [9] (see Prop. 5, p. 188). One can expect that when the

group F0(4) (which is related to the sum of three squares by [12], Kor. 1, p. 289)
is feplaced by F0(N), then for ail coefficients the period 8 in [9], Prop. 5, p. 188, will
be replaced by two periods as in (3.6).
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