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Minimal surfaces bounded by convex curves in parallel planes

WILLIAM H. MEEKS, III* AND BRIAN WHITE**

1. Introduction

In 1956 M. Shiffman [17] proved several beautiful theorems concerning the
geometry of a minimal annulus 4 whose boundary consists of two closed convex
curves in parallel planes P,, P,. The first theorem stated that the intersection of 4
with any plane P, between P, and P,, is a convex Jordan curve. In particular it
follows that A4 is embedded. He then used this convexity theorem to prove that
every symmetry of the boundary of A extended to a symmetry of 4. In the case that
0A consists of two circles Shiffman proved that 4 was foliated by circles in parallel
planes. Earlier B. Riemann [15] described, in terms of elliptic functions, all minimal
annuli in R* that can be expressed as the union of circles in parallel planes (also see
[3] for a description of these surfaces as well as a computer graphics image of one
of them). Together these results yield a classification of all minimal annuli with
boundary consisting of circles in parallel planes.

We shall call a compact minimal surface M stable if, with respect to any
nontrivial normal variation fixing the boundary, the second derivative of area is
positive. If the second derivative of area is negative for some variation, then M is
called unstable. If M is neither stable nor unstable, we will call it almost-stable.

Our main theorem, given below, augments Shiffman’s theorems.

THEOREM 1.1. If T is a pair of smooth convex Jordan curves in distinct parallel
planes, then exactly one of the following holds:
1. T is not the boundary of any connected compact minimal surface, with or
without branch points.
2. T is the boundary of exactly one minimal annulus and this annulus is almost -stable.
In this case, I' bounds no other connected compact branched minimal surfaces.

*The research described in this paper was supported by research grant DE-FG02-86ER250125 of the
Applied Mathematical Science subprogram of Office of Energy Research, U.S. Department of Energy,
and National Science Foundation grant DMS-8900285.

**Funded by National Science Foundation grants DMS-8553231 (PYI) and DMS-8703537.
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3. I is the boundary of exactly two minimal annuli; one stable and one unstable.
(Perhaps M is the boundary of a connected minimal surface of positive genus.)

In certain cases it is known that every connected branched minimal surface with
boundary I' described in Theorem 1.1 is actually an annulus. For example, R.
Schoen [16] proved that when I' is contained in parallel horizontal planes and is
invariant under reflection in two vertical planes, then every branched minimal
surface with boundary I' is actually an annulus. Thus, in certain cases, Theorem 1.1
shows that I' is the boundary of 0, 1, or 2 minimal annuli and no other branched
minimal surfaces. In general, Meeks conjectured that every branched minimal
surface with boundary consisting of a pair of convex Jordan curves in parallel
planes is an annulus (see Conjecture 16 in [10]).

The proof of the main theorem is based on an analysis of the Gauss map of a
minimal annulus with boundary I' and a geometric approach to calculating the
index of a minimal annulus with boundary I'. In the proof of Theorem 1.1 we rely
on the description of the space of smooth embedded minimal annuli in R® as
developed in [22] and techniques from global analysis.

Theorem 1.1 has some interesting applications. Perhaps the most important
application occurs in the proof of uniqueness of a natural free boundary value
problem, which we now describe. Suppose « is a Jordan curve in a plane P, and 2
is a compact branched minimal surface such that 0X consists of a together with a
nonempty collection of immersed curves on a parallel plane P,. If X is orthogonal
to P, along 0X N P,, then X is called a solution of the free boundary value problem
for o and P,. If, with respect to any nontrivial normal variation of X that vanishes
on a, the second derivative of the area functional is positive, then X is called a stable
solution to the free boundary value problem. Similarly, we can define when 2 1s
unstable or almost-stable.

THEOREM 1.2. Suppose X is a solution of the free boundary value problem for
a smooth convex plane curve o and a plane P, parallel to the plane containing a. Then:
1. 2 is embedded;
2. There exists a unique stable or almost-stable solution £ to the free boundary
value problem for a and P,. Furthermore, £ is an annulus that is foliated by
convex curves in parallel planes.

The proof of part 1 of Theorem 1.2 follows immediately from the results of Schoen
in [16]. Part 2 of Theorem 1.2 is a simple consequence of the slightly stronger
Theorem 3.1 that appears in Section 3 (see Corollary 3.1). In Section 3 we also
show that if 2 is a connected compact stable minimal surface with convex boundary
curves I' in parallel horizontal planes and I' is invariant under reflection in a
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vertical plane, then X is an annulus. In particular, a compact connected stable
minimal surface with boundary two circles in parallel planes is unique and is
topologically an annulus.

In Section 4 we make some further applications of Theorem 1.1. There,
using Riemann’s classification result, we give a simple proof of Shiffman’s geo-
metric characterization of minimal annuli having circle boundaries in parallel
planes. In Section 5 we give an analytic characterization of the space of smooth
minimal annuli whose boundary curves are strictly convex smooth curve in parallel
planes.

In [12] we prove some related theorems for the case of minimal annuli bounded
by a pair of convex planar curves whose union lies on the boundary of the convex
hull of the union.

2. Proof of the main theorem

In this section we shall prove Theorem 1.1, which is stated in the Introduction.
Without loss of generality we may assume that I' = {y,,7,} is a pair of convex
Jordan curves where y,< Py={x;=0} and y, = P, = {x;=1}. In the proof of
the Theorem 1.1 we shall apply some techniques of global analysis that are useful
in describing spaces of curves and spaces of minimal surfaces. Let ¥ be the space
of pairs {a,, a, } of smooth simple closed curves where o, = Py and o, = P,. Let A
be the space of embedded minimal annuli with boundary curves in €. It follows
from the work of White [22] that the natural projection p: .# - % is a proper
smooth Fredholm map of index 0. (See also earlier work in [20]). In the proof of
Theorem 1.1 we shall use these properties of p in conjunction with the Smale
Transversality Theorem [18], which holds in this setting. We begin the proof of
the theorem with an existence result that is a simple consequence of the results in
[14].

LEMMA 2.1. Suppose A = {a, B} is a pair of continuous Jordan curves, o < P,
and B < P,. Let D, and Dy be the compact planar disks with 0D, = o and 0Dy = p.
Suppose there exists a connected nonplanar compact branched minimal surface X
whose boundary is contained in 9 = D, U Dg. Then there exists a unique embedded
minimal annulus o/ with 04 = A and such that the following hold:
1. Let B be the compact region of R* with boundary o/ v 2. Then every compact
branched minimal surface M with OM < @ is contained in B.

2. If M is a nonplanar compact branched minimal surface with 0M < 9 and
Int (M)nOB # &, then M = o .

3. &/ is stable or almost-stable.
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Proof. We first show that 4 is the boundary of some minimal annulus that is
stable or almost-stable. Let M be the image of some connected branched minimal
surface with M < 2. The surface M disconnects the slab with boundary P,u P,
into several components, exactly one whose closure W is noncompact.

Approximate « and B by smooth curves o, = (P, —D,) and B; = (P, — Dp)
converging to a and f, respectively. Note that a ua;, and fuUp; are each the
boundary of annuli whose areas go to zero as i goes to infinity. The curves «; and
B: are homotopic in W but are not homotopically trivial in W. The boundary of W,
although not smooth, is a good barrier for solving least-area problems in W (see
Theorem 1 in [14]). Hence the pair of curves «, U f; is the boundary of a least-area
annulus in W, stable or almost-stable in R>?, and these least-area annuli are
embedded by Geometric Dehn’s Lemma in [14]. After choosing a subsequence,
these least-area embedded annuli converge to a least-area (hence, stable or almost-
stable) embedded minimal annulus 4 with boundary a U § (see [13] for this type of
compactness argument). Furthermore, by the maximum principle, either this an-
nulus is equal to M or M N4 = 4.

Now choose an embedded stable (or almost-stable) minimal annulus o/ with the
property that the volume of B, is the greatest. The choice of o is always possible
by the compactness of set of embedded stable minimal annuli with boundary I
(See for example [1, 21]). If M is a branched minimal surface with boundary 4 and
M is not contained in B_,, then using M U ./ as a barrier we produce from the
above procedure a least-area embedded minimal annulus &/’ that lies outside
M o /. Hence, B, < B_,., which contradicts the largest volume property for B,,.
Thus, M < B, and, by the maximum principle, Int(M)n/ # & implies
o =M. O

Remark 2.1. Notice that Lemma 2.1 gives some partial information on results
claimed in Theorem 1.1. Namely, if the convex curves I" are the boundary of some
compact branched minimal surface, then I' is the boundary of an embedded
minimal annulus that is stable or almost-stable. It remains to prove that if I' is
smooth and it is the boundary of a stable or almost-stable minimal annulus A, then
exactly one of the following holds:

1. A is almost-stable and I' bounds no other connected minimal surface.

2. A is stable and I' bounds exactly one other minimal annulus, which is

unstable.

The next step in the proof of Theorem 1.1, Lemma 2.2, shows that the interior
of a minimal annulus A4 with continuous convex boundary I' can be conformally
parametrized by the image of its Gauss maps. In order to obtain this result it is
convenient to define two Gauss maps for a smooth orientable minimal surface; the
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first G : M — S? given by translating the unit normal to the origin and the second
g: M ->Cu{o} where g is the map G composed with stereographic projection. It
follows directly from the definition of a minimal surface that the map g is
conformal wherever the derivative of g is nonzero.

LEMMA 2.2. Let I’ = {y,, 7,} be a pair of continuous convex curves in the planes
Py, P,, respectively. If A is a minimal annulus with 0A =T, then
g :Int (4) > Cu {0} gives rise to a conformal diffeomorphism between Int (A) and
g(Int (4)).

Proof. We shall prove the lemma by showing that for every ¢ > 0, the confor-
mal map g restricted to A, = x5 '[¢, | —¢] is one-to-one with nonzero derivative.
For 1, 0 <t < 1, consider the plane P, of height ¢. By Shiffman’s first theorem [17],
C, = P,n A is a uniformly convex curve. Since the curve C, is uniformly convex and
smooth, C, can naturally be parametrized by 6 € S' by considering C, to be
parametrized by its outward planar normal. Orient 4 by the outward pointing
normal to the bounded component of R* — (P, u P,u A4). With this orientation of
A, g has the property that arg (g(C,(0)) =0 where arg(z) is the argument of the
complex number z. Hence the derivative of g on Int (A4) is never zero. Since
g : Int (4) > Cu{oo} is holomorphic and the derivative of g is never zero, g is a
local conformal diffeomorphism.

Suppose that g(C, (0,)) =g(C,,(6,)). Then by the above formula 6, =6,. If
1, # t,, then let Q be the plane that is tangent to both C,, and C,, at 6,. Let ¥, be
the vector, parallel to Q, obtained by orthogonal projection of (0,0, 1) onto Q.
Clearly the dot products of ¥V, with the normals to 4 at the two points in
Q n(C,,(8,)uC,,(8,)) are of opposite signs. It follows that 7, =1, and hence g is
one-to-one. O

We will use Lemma 2.2 in our analysis of the index of a minimal annulus 4 with
boundary I'. To do this we will use a theorem of Schwarz that states that an
eigenfunction (with zero boundary values) of the stability (or Jacobi) operator S of
a compact orientable minimal surface M can be identified with an eigenfunction of
the Laplacian 4 + 2 on S? for G(Int (M)) when G is one-to-one on Int (M) (see [2]
for a generalized version of Schwarz’s theorem). The second eigenvalue of 4 + 2 on
S? is 0. Thus the second eigenvalue of 4 +2 on any proper subdomain of S? is
positive (see corollary 1, page 18 of [5]), so (equivalently) the second eigenvalue of
the stability operator on S is positive. These remarks together with Lemma 2.2 prove

LEMMA 2.3. A minimal annulus whose boundary consists of two continuous
convex Jordan curves in parallel planes has index 0 or 1. Furthermore, if the annulus
has index 1, then it does not have a nonzero Jacobi vector field.
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Remark 2.2. If a compact orientable minimal surface has index + nullity = 2,
then the zero set of the second eigenfunction of S separates the surface into two
components, each of which is unstable or almost-stable. Each of these components
must have total curvature at least 2z [2]. By the Gauss-Bonnet formula any
minimal annulus bounded by convex planar curves has total curvature less than
4n. Thus, such an annulus satisfies the conclusions of Lemma 2.3, even if the
planes are not parallel.

LEMMA 2.4. Suppose I' satisfies the hypotheses of Theorem 1.1. If I' is the
boundary of a stable or almost-stable minimal annulus A, then every minimal
annulus A’ with 0A’ =T that is contained outside of the ball B, with boundary
D, v Dgu A, must be stable.

Proof. To see this first note that if 4’ lies outside A4, then the Hopf boundary
maximum principle implies that the boundary curve of G(4’) must be contained
in the interior of the annulus G(4). Hence, G(A’) < Int (G(4)). For compact
domains E,, E, with E, ¢ Int (E;) = S?, the first nonzero eigenvalue of 4 +2 on
E, is strictly larger than the first eigenvalue on E,, Hence, the first eigenvalue of
the stability operator of A’ is greater than 0, which proves A’ is stable. O

PROPOSITION 2.1. Let W be the slab with boundary Pyu P,. Suppose M is a
smooth embedded stable compact minimal surface with two smooth boundary curves
I' = {a, B}, not necessarily convex, contained in the boundary planes of W and such
that M is not the annulus o/ defined in Lemma 2.1. Let C be the closure of bounded
component W — M and let R be the closure of the unbounded component. Then there
exist embedded minimal surfaces M- < C and My < R, diffeomorphic to M, with
OM=0Mg =0M, such that M. and M are not stable.

Proof. First assume that I' = Pyu P, is a regular value of the related projec-
tion p : M, — € where € is the space of smooth pairs of curves in Pyu P, and 4,
is the space of genus-g embedded minimal surfaces with boundary in ¥ and where
g is the genus of M. Consider a path «:[0,2] »% satisfying the following
properties:

1. a is transverse to p;

a(l) =T

a(0) consists of a two large concentric circles that enclose I';

a[0, 2] is a union of pairwise disjoint, simple closed curves in P,uU P,.

a(2) is a pair of circles “inside” I' that are so small that they do not bound
a connected minimal surface.

6. The variational vector field associated to a is nowhere zero.

Ll o
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Figure 1.

By the results in [1, 22], we know that 4 =p ~'(a[0, 2]) is a smooth compact
one-manifold. By property 5, the boundary of A4 is contained entirely in p ~'(«(0)).
By a theorem of Schoen [16], (0) is the boundary of exactly two minimal surfaces,
one corresponding to a stable catenoid & and the other # corresponding to an
unstable catenoid. Let I be the component of p~'(af1, 2]) that contains M in its
boundary. (See Figure la and 1b for the case M has genus 0; Figure la, with the
interval component of p~'(af0, 2]) with boundary & U% removed, provides a
representative picture of the case when M has positive genus.) Note that the other
end point of I corresponds to a minimal surface M. with M =T. Since M is
transverse to P,u P, along I" and also the variational vector field ¥ for the family
M(t), t € I, is nowhere zero along dM, the normal projection V' restricted to M is
a Jacobi vector field for M that is never zero along dM. Since M is stable, this
Jacobi vector field is in fact never zero on M. This implies that the M(¢) in I, close
to M, lie in C. By the maximum principle, the entire family of surfaces correspond-
ing to / must also be contained in C, since their boundary curves are. In particular
M, < C. Since the sum of the indices of M. and M is odd by the work of White
[22], the index of M must be odd, which means M is unstable. (In Figure 1, each
time 4 turns the index changes by 1.)

Let J denote the component of p ~'(a[0, 1]) that contains M and let M, denote
the surface corresponding to the other end point of J. If the boundary of M, is I',
then the argument in the previously considered case shows that M is unstable and
M, c R. Thus we may assume that dM, = «(0) and consists of two large round
concentric circles. A theorem of Schoen [16] states that M, is a catenoid and since
the index along A changes by 1 at each turn of 4 in Figure 1, My has even index
and hence is stable (the unstable catenoid has index 1). Since M # ./, observe that
M) no # for M(¢) in J close to M. However, using &/ as a barrier, the
Geometric Dehn Lemma in [13, 14] shows that a(0) = dM, is the boundary of an
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embedded least-area annulus outside of /. By uniqueness of the stable catenoid, we
conclude that M, is disjoint from /. Since the boundary of the surfaces in the
interior of the family J lie outside of o/ and M lies outside of .o, the maximum
principle implies that M(7) must be disjoint from &/ for M(t) # M. This contradicts
our earlier observation that M()no/ # & for M(t) in J close to M. This
contradiction implies M = /. This completes the proof of the proposition when I
is a regular value of p : A4, > .

Suppose now that I' is not a regular value of p. It is still the case that M is a
regular point of p since it is stable. Since M is a regular point of p, there exists a
small neighborhood W of M in #,, such that p: W — p(W) is a diffeomorphism.
By the Smale—Sard Theorem [18], we can approximate M by a sequence M, e W
of stable minimal surfaces with dM; € € that converge smoothly to M as i —» o
and such that I', = 0M, is a regular value of p for all integers i. If M # o/, then
I'; will bound, by our previous arguments, two unstable minimal surfaces
M (i) and M.(i). By well-known compactness theorems [1], there are subsequences
of these surfaces that converge to surfaces M. and M, that are unstable or
almost-stable. Clearly M. < C and My = R, which completes the proof of the
proposition. O

Remark 2.3. The proof of Proposition 2.1 and Figure 1 show that when I' is a
regular value for p : #, —% and M has genus g, g > 0, and satisfies the hypotheses
of Proposition 2.1, then I' is the boundary of at least 4 embedded minimal surfaces
of genus g.

COROLLARY 2.1. Let I be as in Theorem 1.1. If T is the boundary of a stable
minimal annulus, then this annulus is the annulus </ given in Lemma 2.1.

Proof. Suppose A’ is a stable minimal annulus with boundary I' and that
A’ # of. By Proposition 2.1, I' is the boundary of a minimal annulus A that is
outside 4" and that is unstable or is almost-stable. This is impossible by Lemma
24. O

LEMMA 2.5. Theorem 1.1 is true if I is a regular value for p . # — 6.

Proof. Assume that I' is a regular value for the projection p : # —» €. In this
case White [22] proved that the number of odd index minimal annuli in p ~'(I')
equals the number of even index annuli. (This is clear from Figure 1. Since for
convex planar curves I', there is exactly one pair of minimal disks spanning I, this
result also follows from Morse theory [19].) By Lemma 2.3, the even index annuli
are all stable. By Corollary 2.1, I' is the boundary of only one stable minimal
annulus and this annulus is /. Hence I is the boundary of one stable minimal
annulus and one unstable minimal annulus. O
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LEMMA 2.6. Let D, and Dg be smooth parallel convex planar disks with
0D, =0a, 0Dy =f and let I ={a, f}. Suppose there exists a compact connected
branched nonplanar minimal surface X with 0X < Int(D, U Dg). Then every minimal
annulus with boundary I' that is disjoint from X is stable.

Proof. Suppose A is a minimal annulus with 04 =TI and 4 nX = 0. Consider
the convex curves I'(¢) of distance ¢ from I’ inside D,u D, where ¢ is chosen
sufficiently small so that I'(¢) lies outside X and every point of I'(¢) has a unique
closest point on I'. Using X U A as a barrier, one produces, as in Lemma 2.1, a
least-area minimal annulus A(g) with 0A4(¢) =I'(¢) and A(e) is contained in the
region between 4 and 2.

We claim that g(Int (4)) < g(Int (4(g))); this will prove the strict stability of A
since A(¢) is stable or almost-stable. For every p € I'(¢), let p € I' denote the closest
point to p. Translate A(¢) continuously in the direction v = p — p until the trans-
lated annulus F = A(g) + v is obtained. By the maximum principle, F lies inside A.
In particular at p, F lies on the inside of 4. By the Hopf boundary maximum
principle there is a positive angle between the conormals of F and A at p. It follows
that the norm of g ,( p) is never equal to norm of g.( p). Since the boundary curves
of A and F are tangent at p, arg (g,( p)) = arg (g-( p)). Since the Gauss map of 4
and F are one-to-one when I is strictly convex, the comparison of norms implies
g(0A4) < g(A(¢)) and g(0A) # g(0A(e)). A moments reflection in the weakly convex
case also shows g(Int (4)) < g(Int (A(g)). As we observed earlier, this completes the
proof of the lemma. O

COROLLARY 2.2. Suppose I is as in Theorem 1.1. If the minimal annulus </
given in Lemma 2.1 is almost-stable, then </ is the unique minimal annulus with
boundary T .

Proof. Suppose o is almost-stable. If &/ is another minimal annulus with
boundary I', then A is inside o/ and so g(«/) < g(A4). It follows the first eigenvalue
of the stability operator of A is negative and hence A is unstable. Note that 4 is a
regular point of p : .# — ¥, since 4 has no Jacobi vector fields by Lemma 2.3. Since
A is a regular point for p : # — %, one can deform I slightly to a pair of convex
curves I'(¢) inside the convex planar disks with boundary I', so as to obtain a
minimal annulus 4(g) with dA4(¢) = I'(c). By Lemma 2.1, &/ lies outside A(¢) and by
Lemma 2.6, we conclude that &/ is stable. This contradiction proves the corollary.

Proof of Theorem 1.1. We now complete the proof of Theorem 1.1. By Lemma
2.5 we may assume that I' is not a regular value of p : # — €. By the statement and
proof of Lemma 2.2, I’ must be the boundary of an almost-stable minimal annulus
A. Tt remains to prove that 4 is the unique compact branched minimal surface with
boundary I
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We first prove I is the boundary of a unique minimal annulus. If 4 = o/, then
uniqueness follows from Corollary 2.2. Hence, we may assume that .o/ # 4. By
Lemma 2.4, o/ is stable. Move I' to the pair of convex curves I'(¢) of distance ¢
inside the convex planar disks with boundary I'. Since &/ is stable, for ¢ sufficiently
small, I'(¢) is the boundary of a stable outermost minimal annulus .%/(¢) and part of
o/ (¢) lies outside A (since ./ lies outside of 4). Recall that 4 is foliated by convex
curves in parallel planes. Since 0.9/(¢) lies inside 4, we can choose planes K, and K|,
parallel and close to the planes P, and P, containing I', such that (K,u K,) N4
bounds an annulus A" = 4 with Anf(e) = A’ and 04’ N (e) = . Since A4 is
almost-stable and 4° ¢ 4, A’ is stable. If 4 denotes the slab between K, and K|,
then 4 n/(¢) is a minimal surface whose boundary is contained in the two planar
disks with boundary curves d4’. Hence, by Lemma 2.1, there is a annulus </’
associated to 4’ with /" =04’ and &/’ lies outside of 4 N A(¢). Hence, /" # A’.
Since &/’ lies outside A’, it is stable. But 4’ cannot be the boundary of two stable
minimal annuli by Corollary 2.1. This contradiction proves that I is the boundary
of a unique minimal annulus that is &/ and &/ is almost-stable.

Suppose now that M is a compact branched minimal surface with boundary I
and M is not an annulus. Let .2/(7) denote the subannulus of &/ between the planes
at heights 1 — r and 5 + ¢ for ¢ € (0, 1). Since ./ is almost-stable the proper subannuli
&(t) are stable. Let #Z(f) denote the unstable minimal annulus with 8.(f) = 6.4(?)
whose existence is given by part 3 of Theorem 1.1. Since the minimal annulus < is
unique, the /(f) converge smoothly to &/ as t —»1. Since M is inside o/ (by Lemma
2.1) and M is never tangent to </ along 0.« (by the boundary maximum principle),
the smooth convergence of #(f) to & implies that there is a small compact
neighborhood N(0M) = M of M such that for ¢ close to 3, Z() nN(OM) = . On
the other hand, since #(f) is unstable and 0.#(¢) lies outside of M, Lemma 2.6
implies (1) "M #@. It follows that there exists a sequence ¢, =1 and a sequence
of points p, € #(1;) (M — N(0M)) such that p, > p e o " M. Since & "M = 0.4,
p must be contained in P, or P,. However, the maximum principle applied to the
third coordinate function of M — N(0M) shows that X;(p,) stays a bounded
distance from 0 to 1 and hence X;(p) #0, 1. This contradiction shows M cannot
exist, which completes the proof of Theorem 1.1. O

CONJECTURE 2.1. Theorem 1.1 holds for continuous convex I.

Remark 2.4. In [12] we continue our study of minimal annuli with boundary
curves that are planar but not necessarily convex or in parallel planes. We
generalize Shiffman’s first theorem by showing if I' is a pair of smooth convex
extremal planar curves whose union is an extremal set, then every minimal annulus
with boundary I' is embedded. With this result in hand we then prove Theorem 1.1
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in the case where I' is a pair of extremal convex planar curves, not necessarily in
parallel planes.

Motivated by these results we go on to prove that the space .# of embedded
minimal annuli with boundary curves in parallel planes is a path connected space
(in fact, we prove .# is contractible). In contrast to this result we prove that the
space .4 of immersed minimal annuli with the same boundary curves is not path
connected (by showing .# contains a nonembedded example). Similar connected-
ness theorems hold for the space of minimal annuli with extremal boundary.

3. Uniqueness of the free boundary value problem

THEOREM 3.1. Let o be a smooth convex plane curve in R?, P, be a plane
parallel to the plane containing a, and R : R* — R? be a reflection in the plane P,. If
2 is a connected stable or almost-stable compact minimal surface with boundary
a U R(x), then X is an embedded annulus.

Proof. We will assume that ¥ is not an annulus and prove that it is unstable.
We may assume that P, is the (x, y)-plane. By Theorem 2 of [16], there is a
nonnegative function u defined on the closure Q of an open subset © of R? such that

T ={(x,y, Tulx,y) |(x,y) € Q}.

Since 2 is connected, © must be the region inside a convex curve C (the projection
of « on P,) and outside several disjoint curves C,, C,, ..., C,. Note that k > 1
since 2 is connected. Indeed, k > 1 since X is not an annulus.

Note that u | C = h where h is the height of a above P,. Also, u |C, =0 and
|Vu || C; = o0. Since X has mean curvature 0 along C;, C; is a plane line of
curvature and the top half of X is a graph, then each C; must be uniformly convex.

We claim that there must be at least one point in the interior of Z * (the portion
of ¥ above P,) at which the curvature vanishes. To see this, consider the Gauss
map from X* to the upper hemisphere H of the unit sphere. Suppose for the
moment that « is uniformly convex. By an argument in the proof of Lemma 2.2, the
Gauss map takes C diffeomorphically to a simple closed curve v(C). The Gauss
map takes each C; homeomorphically to the equator. It follows that the Gauss map
has degree k on the region R between v(C) and the equator and has degree k + 1
on the region H — R. In particular, the Gauss map covers the region H — R at least
once. If there were no zeroes of curvature in 2 *, then the covering would be
unbranched and so X * would contain a connected component diffeomorphic to a
disk. But X is connected, so that is impossible. If « is not uniformly convex, then
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v(C) need not be a simple closed curve. However, in this case S2 — v(C) still consists
of two disks, which is all we really needed to prove the existence of an interior point
of zero curvature.

Let g € Int (©2) be such that the curvature of X at (g, u(g)) vanishes. Let v, be a
unit vector parallel to P, and perpendicular to Fu(q). (In other words, v, is parallel
to P, and to the tangent plane to X at (g, u(g)).)

Let Z<=Q be the zero set of ¢ :(x,y) — v(x,y, u(x,y)) -v,, where v(p)
is the unit normal to X at p. Then Z = n(v ~'(I')) where I is a great circle in 0B
and 7 is orthogonal projection onto P,. Since v is a conformal map with branch
points, v~ !(I') consists of smooth embedded arcs together with isolated points
in 2 where an even number of such arcs meet at their end points. In particular,
at least four such arcs begin at the point (g, u(q)) (because it is a branch point of
the Gauss map). Since Z is homeomorphic to v ~'(I'), it has the same structure.
Note that Z meets each C, and also C exactly twice because those curves are
convex.

Now form a topological space € from @ by identifying each C, to a point. Then
Q is topologically a disk. Now the set Z in @ is a graph in which each vertex (except
for the two on C = 09) has an even number of edges. Furthermore, the vertex ¢ has
at least four edges. It follows that @ — Z contains at least one connected component
W that does not touch C = Q. Let W be the corresponding region in Q, and let
W’ ={(x,y,2) € Z |(x,y) € W}. Then the function p — v, - v( p) vanishes on dW".
Since that function is a solution of the Jacobi operator, it follows that zero is an
eigenvalue of the Jacobi operator on W’. But W’ is a proper subset of X, so X must
be unstable. d

COROLLARY 3.1. Let o be a smooth convex plane curve in R* and P, be a
plane parallel to the plane containing o. If X is a minimal surface with boundary C and
nonempty free boundary in P, and if X is stable or almost-stable solution for the free
boundary problem, then X is an embedded annulus.

Proof. If R is orthogonal reflection in the plane P,, then X u R(ZX) satisfies the
hypotheses of Theorem 3.1. O

4. A simple proof of Shiffman’s second theorem

Recall that Shiffman’s first theorem states that if I' is a pair of convex Jordan
curves in parallel planes, then any minimal annulus 4 with 4 =TI is foliated by
convex curves in parallel planes and, except for possibly the boundary curves,
this foliation is by uniformly convex analytic planar curves. The main geometric
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argument in the special case I' is smooth and convex is quite simple, and for
completeness we will give it here.

After a rigid motion and a homothety of R? we may standardize the minimal
annulus A so that it is parametrized conformally by a map X : A(r) - R® where
A(r)={zeC|1<|z|]<r} for some wunique r>1 and such that
X(0A(r)) € PyU Py, (), where P, ={x;=1t}. Since the third coordinate function
X; : A(r) — R is harmonic, we may assume that X;(z) = In |z|, since it is a harmonic
function with the correct boundary values. In this parametrization, the circle |z| =
in A(r) maps by X to an immersed curve y.(6) = X(c e®) in Py, ,. (Note that in this
parametrization each curve in X(0A) is oriented in a clockwise manner and the
oriented normal to X(A4) is inward pointing along X(0A4).) Let g : A(r) > Cu {0}
denote the Gauss map of A(r). Since g never obtains the value 0, oo, the angle
arg (g(z)) € S' = R/(2xr - Z) is well-defined. The convexity of the level set curve y,.(6)
corresponds to 0/00 arg(y.(0)) =0 where we consider y.(0) € C*. Note that
arg (y.(0)) = —n/2 + arg (g(c e®)). Since ¢/00 arg (L(z)) is a harmonic function for
any nonzero holomorphic function L(z), and (9/06) arg (g(z)) = 0 on X | 0A(r), we
conclude that 0/060 arg (g(z)) >0 for z € Int (A(r)) by the maximum principle.
Hence, 0/00 arg (y.(0)) > 0 for all ¢, which proves Shiffman’s first theorem in the
simplest case of smooth convex boundary. (Note that in the above discussion we
have implicitly used Hildebrandt’s boundary regularity theorem [7] that implies
X : A(r) - R? is smooth along dA(r).)

As remarked in the Introduction, Shiffman proved a second theorem (and the
most difficult one) in the case that the boundary of the annulus consists of circles
in parallel planes. In this case he proved that the minimal annulus is foliated by
circles in parallel planes. We shall now give a proof of this second theorem of
Shiffman; this proof will be a simple consequence of Theorem 1.1 and the
classification of minimal surfaces foliated by circles as given by Riemann [15]. Also
see [4, 8] for a discussion of Riemann’s classification.

THEOREM 4.1 (Shiffman’s Second Theorem). Suppose A is a minimal annulus
whose boundary consists of a circle in the plane P, and another circle in the plane P,.
Then A is foliated by circles in parallel planes.

Proof. Choose an analytic path « : [0, 1] = € satisfying:

1. a(1) =04;

2. {a(t) | t €10, 1]} induces a foliation of annuli in Py, P, with a(0) consisting of
two circles whose boundary disks contain 4 = a(1) and the circles «(0) are
concentric around the x;-axis.

By Lemmas 2.1 and 2.6 and Theorem 1.1, a(¢) is the boundary of a stable or
almost-stable minimal annulus </(¢) and for ¢ <1 this minimal annulus is stable.
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For t <1, let %(t) denote the unstable minimal annulus with boundary «(¢). Recall
that Riemann’s one-parameter family of periodic minimal surfaces is foliated by
circles and lines in horizontal planes and that the family converges smoothly on
compact subsets of R* to a catenoid. Since 27(0) and #(0) are catenoids, Riemann’s
classification theorem implies that both /() and %(t) are foliated by circles for ¢
close to 0. Since a(?) is analytic in #, &/(f) and %(¢) must be foliated by circles for
all ¢+ < 1. Theorem 1.1 implies that 4 must be the limit of the /(f) or of the %(r)
as t —» 1 (or of both if it is almost-stable). Hence, A4 is foliated by circles in parallel
planes, which proves Shiffman’s Second Theorem. O

Shiffman’s third theorem states that if the minimal annulus 4 has boundary
consisting of two convex curves in parallel planes, then every rigid motion of R?
that leaves 0A4 invariant leaves A invariant. When 04 is smooth, this symmetry
property for A follows immediately from Theorem 1.1 (since there is at most one
stable, one unstable and one almost-stable minimal annulus with boundary dA4). If
Theorem 1.1 can be shown to hold for the case where dA4 is continuous, Shiffman’s
general symmetry theorem can be proved using this alternative method.

5. Analytic parametrizations of minimal annuli bounding uniformly convex I'

In this section we will describe analytically the examples that arise in Theorem
1.1 in the case that I' is uniformly convex. Suppose A4 is such a minimal annulus.
Then A is conformally parametrized by A(r) ={z € C|1 < |z| <r}. After a rigid
motion and a homothety we may assume that f: A(r) » R? is the parametrization,
f(1) =0, and f,(z) = 2 In |z|. In particular, the boundary curves of 4 = f(A(r)) now
are contained in the planes P, and P, ). By the proof of Lemma 2.2,
g:A(r)>C*=C — {6} parametrizes an annular domain F such that each compo-
nent of JF is star shaped about the origin. From the Weierstrass Representation [9],
we have

f(z) =Re JZ [(:—7 — g), (:;: + g)i, 2] é dz. (5.1)
1

Consider the Laurant expansions for gand 1/g : g =X%°_a,z"and 1/g =X*_ b,z".
Since f is well-defined, the complex valued forms appearing in the integral (5.1)
have no real periods. Hence, Im (b,) = Im (a,) and Re (b,) = —Re (a,). Since these
equations are necessary and sufficient for f to be well defined for a given
parametrization g : A(r) — F, this process can be reversed. More precisely,
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THEOREM 5.1. Suppose F — C* is a smooth annulus whose boundary curves are
star shaped about the origin. Let g : A(r) = F be a conformal parametrization of F.
Then F is the image of the Gauss map of a minimal annulus with strictly smooth
boundary on horizontal planes if and only if the constant term in the Laurant
expansion for g is the negative of complex conjugate of the constant term in 1/g.
Suppose F is the image of such a minimal annulus, and it is parametrized by
g : A(r) = F. Then in this parametrization, the Gauss map can be identified with g and
the coordinates of the annulus, after a rigid motion and a homothety, are given by
formula (5.1).
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