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Sur la géométrie des variétés sphériques

MICHEL BRION

Introduction

Une variété algébrique normale X, dans laquelle opére un groupe réductif
connexe G, est dite sphérique si un sous-groupe de Borel de G a une orbite ouverte
dans X (le corps de base k est algébriquement clos, de caractéristique nulle). Cette
notion englobe les variétés toriques, dont beaucoup de propriétés s’étendent aux
variétés sphériques. En particulier, G n’a qu’un nombre fini d’orbites dans X, et
celles-ci sont des espaces homogenes sphériques (voir [LV], [Kn]). Lorsqu’on choisit
un point de l'orbite ouverte, et qu'on note H son groupe d’isotropie, on peut
considérer X comme un plongement de I’espace homogéne G/H. De tels plonge-
ments sont classés par des objets combinatoires, qui généralisent 1’éventail associé a
une variété torique, et qui font intervenir I’ensemble ¥~ des valuations discrétes,
invariantes par G, du corps des fonctions rationnelles sur G/H. Renvoyons a [LV]
pour la classification des plongements, et a [ BP], [ B3], [Kn] pour la structure de ¥;
c’est un cone convexe polyédral.

Dans ce travail, nous étudions les faisceaux cohérents d’idéaux fractionnaires
stables par G dans une variété sphérique X; appelons-les idéaux invariants. Nous
classons les idéaux invariants intégralement clos, en termes de certaines fonctions
(baptisées coques) sur un sous-cone de ¥". Nous en déduisons une description de
Iéclatement normalisé d’un idéal invariant, ainsi qu’un critére de lissité pour une
varieté sphérique. Dans le cas torique, ces résultats sont dus a B. Saint-Donat et G.
Kempf (voir [KKMS, Chapter I)).

Voici un résumé plus détaillé du contenu de cet article. Dans la premiére partie,
nous décrivons les idéaux invariants intégralement clos dans une variété sphérique
affine. A la suite de [DEP], de nombreux travaux concernent I'arithmétique des
idéaux stables par G dans I’algébre 4 des fonctions polynomiales sur un G-module
V, dans des exemples ou A est sans multiplicité, c’est-a-dire ou V est sphérique (voir
[R] et ses références). On associe a un tel idéal I, son D-idéal, formé des plus grands
poids des sous-G-modules simples de I. Dans chaque exemple, on a constaté que les
idéaux invariants intégralement clos sont caractérisés par une propriété de convexité
de leur D-idéal. Nous donnons une explication de ce phénoméne, en décrivant
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I'idéal invariant intégralement clos engendré par une partie de 4 pour toute
G-algébre A, sans multiplicité. Cette partie nécessite trés peu de connaissances sur
les variétés sphériques; cela se paye par des répétitions au cours de Particle.

La seconde partie est consacrée aux variétés sphériques simples, c’est-a-dire qui
ne contiennent qu’une orbite fermée de G. A tout idéal invariant .# dans une telle
variét¢ X, nous associons son ordre (c’est une fonction convexe, linéaire par
morceaux, sur un sous-cone de ¥”) et son D-idéal (c’est un idéal d’un monoide formé
de I'intersection d’un cone et d’un réseau). Nous montrons que les données de ’ordre,
du D-idéal, et de la cloture intégrale de .# sont équivalentes, et nous caractérisons
les ordres des idéaux inversibles. Les démonstrations reposent sur la structure locale
des variétés sphériques (voir [B1, 1.1] et [Kn]) et sur la classification des plongements,
rappelée en 2.1. L’extension de nos résultats aux variétés sphériques quelconques ne
présente aucune difficulté, et est laissée au lecteur.

Dans la troisiéme partie, nous appliquons ce qui précéde aux morphismes
birationnels €quivariants entre G-variétés sphériques. Apres avoir rappelé les liens
entre morphismes birationnels et idéaux intégralement clos (voir par exemple [Li]),
nous décrivons I’éclatement normalisé d’un idéal invariant, en termes de son ordre,
et nous généralisons un théoréme d’annulation di a Kempf (voir [KKMS] et aussi
[B2]). Nous introduisons et étudions la décoloration d’une variété sphérique; dans
le cas des variétés déterminantielles, nous retrouvons ainsi la construction classique
des “collinéations complétes’ par éclatements successifs (voir [ TK] et ses références).

Enfin, dans la quatrieme partie, nous calculons la multiplicité d’un idéal invariant
£ < Oy, lorsque le support de O, /# est une orbite de G. Cette multiplicité est
donnée, comme dans le résultat principal de [B1], par 'intégrale d’'une fonction
polynomiale sur un polyédre. Nous en déduisons une caractérisation (assez com-
pliquée) des variétés sphériques lisses. Comme application de notre critére, nous
étudions la lissité de certaines compactifications des groupes adjoints, qui ne sont pas
des “‘variétés symétriques complétes” au sens de DeConcini et Procesi (voir [DP1]).

Les résultats de la seconde partie sont certainement valables en caractéristique
non nulle, grace aux méthodes de [Kn]. Par contre, dans la quatriéme partie, les re-
présentations des groupes réductifs en caractéristique nulle jouent un role essentiel.

L’auteur remercie Peter Littelmann pour des discussions utiles, et le rapporteur
pour son travail ingrat.

1. Idéaux invariants dans les variétés sphériques affines
1.1. Idéaux et D-idéaux

Dans tout ce qui suit, G désigne un groupe algébrique réductif connexe, B un
sous-groupe de Borel de G, et U le radical unipotent de B.
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Soit X une G-variété affine irréductible. On note A :=k[X] I'algébre des fonc-
tions réguliéres sur X, et K:=k(X') son corps des fractions, i.e. le corps des fonctions
rationnelles sur X. Le groupe G opére dans A (qui est un G-module rationnel), et
dans K.

Definition. Un idéal (fractionnaire) invariant est un A4-sous-module de type fini
de K, stable par G.

LEMME. Tout idéal invariant est un G-module rationnel.

Démonstration. Soit I un tel idéal. Choississons f e A tel que f#0 et fT < A.
Pour tout ¢ € K, notons <G - ¢ ) le G-sous-module de K engendré par ¢. Posons
(G -f>=M; alors MI c A. Soit ¢ € I: alors f(G @)= {(G-Mgp) et Mp est un
sous-espace vectoriel de dimension finie de 4, donc il en est de méme de (G - Mo ).
Par suite, la dimension de {G - ¢ ) est finie.

Nous allons étudier les idéaux invariants lorsque X est sphérique; cela revient a
dire que le G-module A4 est sans multiplicité (voir [Kr; I11.3.6]).

Pour tout G-module M, on note M® I’ensemble des vecteurs propres de B dans
M, et D(M) I’ensemble de leurs poids. Puisque A4 est une algebre de type fini, D(A4)
est un monoide de type fini [Kr; II1.3.1]. Le G-module rationnel A4 est isomorphe a
@;cpuy Vi ou V, désigne un G-module simple de plus grand poids 4. On pose
A:=D(K); c’est un groupe abélien libre, engendré par D(A). Tout fe K® est
déterminé par son poids, a un multiple scalaire pres.

PROPOSITION. Tout idéal invariant I est uniquement déterminé par D(I).
Celui-ci est de la forme \J!_ | A; + D(A) pour une partie {4,,...,4,} de A.

Démonstration. D’aprés le lemme, le G-module I est engendré par I®; la
premiére assertion résulte du fait que le poids d’un élément f de K® détermine f a
un multiple scalaire prés. Puisque 7 est un A-module de type fini, 7Y est un
AY-module de type fini [Kr; II1.3.2]. On peut donc en choisir des générateurs
fis ..., f, dans I'®; la deuxiéme assertion est vérifiée en prenant pour 4, le poids de

S

Définition. Une partie 4 de A est un D-idéal si 4 est réunion d’un nombre fini
de translatés de D(A) par des éléments de A.

Cela revient a dire que 4 est stable par translations par D(4), et est contenu
dans un translaté de D(A4) par un élément de A. Grace a la proposition, on attache
a tout idéal invariant 7, un D-idéal D(I). Un probléme ouvert est de reconnaitre
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parmi les D-idéaux, ceux qui proviennent d’idéaux invariants (voir [R] pour
des résultats partiels). Dans les sections 1.2 et 1.3, nous allons caractériser les D-
idéaux associés aux idéaux invariants intégralement clos, par des propriétés de
convexité.

1.2. Cléture intégrale et valuations invariantes

Rappelons d’abord la notion de cloture intégrale d’un idéal (voir [ZS; Appendix
4]). Soient 4 un anneau commutatif unitaire et intégre, K son corps des fractions,
et I un idéal (fractionnaire) de K. Un élément f de K est entier sur I s’il existe une
relation f"+a,f" "'+ - +a,=0 ol a, € [” pour 1 <p < n. Les éléments entiers
sur / forment un idéal, noté I, et appelé la cloture intégrale de I. On dit que 7 est
intégralement clos si I =1T.

Pour tout idéal I, on a: I = nI0, ou O, décrit les anneaux de valuation de K.
Lorsque A est noethérien et intégralement clos, on peut se limiter aux anneaux de
valuation discréte qui contiennent A4 [loc. cit, Theorem 3].

Revenons au cas ou A4 est I’algebre des fonctions réguliéres sur une G-variété
sphérique affine X. Choisissons x € X tel que 'orbite B - x soit ouverte dans X, et
notons H = G, son groupe d’isotropie dans G. On identifie G - x et G/H, d’ou
K = k(G/H). On note ¥ ’ensemble des valuations discrétes G-invariantes de K, a
valeurs dans Q; on note ¥'(X) I’ensemble des v € ¥ telles que 4 < 0),,.

LEMME. Soit I un idéal invariant.
(1) La restriction de I a G - x est le faisceau structural de G - x.
(ii)) La cléture intégrale de I est

kK[G/HI~n () 10,.

ve ¥(X)

Démonstration. (i) Puisque les translatés de B - x forment un recouvrement
affine de G - x, et que I est stable par G, il suffit de montrer que la restriction
de I a B - x est triviale. Posons Ay:=k[B - x] et Jy:={f € Ao |fI, = A,}. Alors J,
est un idéal B-stable de 4,, et J,#0 donc J,= A,. Par suite, I, = 4,, d’ou
I, = A,.

(ii) Soit ¢ une indéterminée; considérons 4 := @_, I"t” = K(1). Puisque A4 est la
normalisation de @°_, I"t" dans K(¢), c’est une k-algebre de type fini. Le groupe
G:=G x k* opére dans A4, et X¥:=Spec 4 est une G-variété sphérique. Notons
n : X - X le morphisme associé a I'inclusion de A dans 4. Choisissons % € X tel que
G - % soit ouvert dans X, et que n(%X) = x. Soient #,, . . ., 7, les valuations associées
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aux composantes iréductibles de codimension 1 de X\G - %; elles sont invariantes
par G. Puisque X est normale, on a:

A=KG -7 () 0,

i=1

En outre, puisque la restriction de tout I” a G/H est triviale, on a: G; = H x {1}.
D’ou k[G - X] = k[G/H][t, t "']. On en déduit que

I={fek[G/H]|0;(fH) 20 pour 1 <i<n}.

De I'invariance de #; par G, il résulte qu’il existe v, € ¥ et g, € Q tels que ;(¢?") =
v;(@) + a;n pour tout ¢ € I". Par suite, on a:

I=KG/HIn ) {feK|v,(f) = a;}

i=1

d’ou

KG/HIn () I0,<T

ve ¥(X)
L’inclusion opposée est évidente.

Nous sommes amenés a décrire les ensembles ¥~ et ¥"(X). Par restriction a K®,
tout ¢lément de ¥  définit un morphisme p, de A vers Q. On pose
2:=Homy (4, Q). Dans I’espace vectoriel Ag:=A4 ®, Q dual de 2, définissons un
cone convexe X~ comme suit: X est engendré par les différences v—41 —pu ou
A, 1, v € D(A) et le produit de V; et ¥, dans A contient V. L’énoncé suivant est un
cas particulier de résultats de Luna-Vust et Pauer (voir [LV, 7.4}, [P, Proposition
2.1] et [Kn, Lemma 5.1]), qu’on reverra en 2.1. Nous en donnons une démonstra-
tion pour mémoire.

PROPOSITION
(1) L’application p : v — p, est une injection de ¥~ dans 2.
(i1) L’image p(¥") est le céne dual de Z.

Rappelons que pour toute partie ¢ de Aq, le cone dual de o est

6={fe,@|VXeo<ﬁx>20}.
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Démonstration. (1) Soit v € ¥". 1l suffit de prouver que pour tout G-sous-
module simple M de A, la restriction de v & M est constante. Mais cela résulte du
fait que M, :={m € M |v(m) 2 n} est un sous-G-module de M, quel que soit n € Q.

(i1) Soit v € ¥"; montrons que v est non négative sur X. Soient A, u, v € D(A) tels
que V,cV,-V,. Alors {v,v) 2 v, A) + <v, u) ou on note {v, ) la valeur de p,
sur V.

Réciproquement, soit » € 2. Etendons v en une application & : 4 —Qu {o0}
comme suit: on pose #(0) =o0. Si fe A\{0}, on pose #(f)=min<{v,w), le
minimum portant sur les poids @ de (G - f)®. 1l est clair que & est invariante par
G; montrons que ¥ est la restriction & 4 d’une valuation de K.

Soient f,,f>€ A. Choisissons un poids A de (G :(f,+/,)>® tel que
o(f, +f2) =<v, A)>. Alors f, + f, a une projection non nulle sur V;, donc on peut
supposer qu’il en est de méme de f;. Par suite, 4 est un poids de <G - f; >®, d’ou
o(f1) <<v, 4. On conclut que o( f, + f5) = min (0( f,), 7( 13))-

De Vlinclusion de <G :-f,f,> dans <(G-f,>-{G-f,>, il suit que
o(fi.fs) 2 0(f)) +8(f,) avec égalité si f,,f, sont vecteurs propres de B, et plus
généralement, s’ils sont invariants par U. Pour tout entier n = 0, posons

A,,==< g-l? V,=1{fed|if)=n}.

Alors (A,) est une filtration décroissante de A. Notons gr A le gradué associé.
D’aprés ce qui précéde, I’algébre (gr A)Y est isomorphe a 4 Y. Grace a [Kr; I11.3.3],
on en déduit que gr A est intégre, d’ou o( f, 1) = 0(f;) + 0(f>) quels que soient
ﬁ afZ €A

COROLLAIRE. L’image p(¥ (X)) est le cone dual de X + D(A).

Démonstration. D’aprés la preuve de (i) ci-dessus, on a: v e ¥ (X) v e ¥ et
v = 0 sur D(A).

1.3. Structure des idéaux invariants intégralement clos
THEOREME. Pour tout idéal invariant I, le D-idéal de T est Iintersection de
D(k[G/H]) avec I’enveloppe convexe de D(I) + X.

Démonstration. Soit A € D(k[G/H]). Si A est dans I’enveloppe convexe de
2 + D(I), alors on a, pour tout v € ¥ (X):

v,A>= min <(v,ud>= min v, u) =min v(f).
pe X+ D) pe D) fel
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Cela signifie que 10, contient tout élément de K® de poids 4. On conclut grice au
lemme 1.2, que A € D).

Supposons maintenant que A n’est pas dans I’enveloppe convexe de X + D(J).
D’apres le théoréme de Hahn-Banach, il existe ¢ € 2 telle que:

{p,A)< min <o, pu).

pe X+ D)

Soit v € 2 + D(I): montrons que {¢,v) = 0. En effet, choisissons u € D(I); alors
pu +nv € 2 + D(I) pour tout entier n = 0, donc (@, 1) < {@, u + nv) et 'assertion.
D’apres le corollaire ci-dessus, on peut écrire ¢ = p, avec v € ¥'(X); alors

{v,A)< min (v, u)= rfnnll v( f).

peZ+ D)

Comme précédemment, on en déduit que A ¢ D(J).

Pour tous 4, u € A, on note 4 < usi A —u € Z. Cela définit un ordre partiel sur
A; en effet, £ n(—2) = {0} puisque X est engendré par des racines négatives.

Lorsque I est inclus dans A, on peut remplacer D(k[G/H]) par D(A4) dans le
théoréme ci-dessus. On obtient un énoncé qui unifie plusieurs résultats antérieurs
([DEP, Theorem 8.2], [AD, Theorem 6.2], [R, Proposition 4.7]).

COROLLAIRE. Quels que soient A,,...,A, € D(A), la cloture intégrale de
idéal invariant engendré par V; ,...,V, a pour D-idéal I’ensemble des ). € D(A)
tels qu’il existe u dans I’enveloppe convexe de 4,, ..., A, avec A < pu.

1.4. Exemples

(a) Les variétés déterminantielles

Soient m, n deux entiers tels que 1 < m < n. Considérons I’opération naturelle du
groupe G:=GL,, (k) x GL, (k) dans X:=Hom, (k™ k™). Les adhérences des G-
orbites dans X sont les “variétés déterminantielles” (voir [Kr, 111.3.7)).

Soit B le sous-groupe de Borel de G formé des couples (u, v) ou u est triangulaire
inférieure, et v triangulaire supérieure. Posons x:=(1,0) ou 1, est la matrice unité
n x n. Le groupe d’isotropie de x dans G est:

m={((5 2)e)

Par suite, B n H est isomorphe au produit direct d’un tore de dimension n, par un
sous-groupe de Borel de GL,, _, (k). Un calcul de dimensions montre que B - x est
ouvert dans X.

a e GL, (k),b e Hom, (k" ", k"),ceGL,, _, (k)}.
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Nous allons rappeler la décomposition de A4 =k[X] en somme directe de
sous-G-modules simples, et décrire le cone X introduit en 1.2. Pour 1 <i <n,
notons @; (resp. ¥;) le poids dominant du G-module simple A‘k™ (resp. ( A‘k"™)*).

D’aprés [loc. cit.], le monoide D(A) est engendré par ¢, +V,,..., 0, +V,,
qui forment une base du réseau A. Soit T le tore maximal de B formé des couples
de matrices diagonales. On note «,,...,a,_,; (resp. B,,...,B,_,) les racines

simples de GL,,(k), T (resp. de Gl, (k), T), ordonnées de fagon que <{¢,, &> =
Wy, B> =1

PROPOSITION. Le céne X est engendré par —a, —f,, ..., —0, — fB._:-

Démonstration. Remarquons que 2 est contenu dans l'intersection X’ du cone
engendré par les racines négatives, et de I’espace vectoriel engendré par
Qi +Y,,...,0,+ ¥, On vérifie sans peine que le cone X’ est engendré par
—a;—B4,..., —a,_, — B,_,. Pour conclure, il suffit de prouver que

(») —a,—B,€eZ pour 1<p<n-—1.

Pour 1<ij<---<i,<net 1<j,<---<j,<n, notons (i, i, |j--j,) Pélé-
ment de 4 défini par

G- ip IJI e 'jp)(aij) = det (ai,ja)l <a<p-

Pour p fixé, les fonctions (i, - - - i, | j, - - - j,) engendrent un sous-G-module simple
V, de A, isomorphe a Hom, ( A?k™, APk”)*. Un vecteur propre de B dans V, est
(1---p|1---p), de poids ¢, +¥,. On vérifie aisément que I’élément

(1---pll"'p)(l-“p—lp-i-l|1"-p——1p+1)
—(1-p=1p+t|l---p+lp-DA---p+lp—1|1---p=1p+])

est un vecteur propre non nul de B, de poids 2(¢, +¥,) —a, — f,. Puisqu’il
appartient au carré de V, dans 4, ’assertion () en résulte.

D’aprés la proposition, 'ordre partiel < sur A est induit par I’ordre usuel sur
les poids. En traduisant le langage des poids et racines dans celui des tableaux, on
peut déduire du corollaire 1.3 les résultats de [DEP, §8].

(b) Un exemple isolé
Soit m=4 un entier. Dans X:=Hom, (k™ k*), faisons opérer
G :=GL,, (k) x Sp, (k) ou Sp, (k) désigne le groupe symplectique associé¢ a la forme
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e; A (e, +e3+ e;) + e, A e; dans la base canonique de k*. Définissons B, T, H, x de
fagon analogue a I'exemple ci-dessus. Alors

H - a b
{6 o))
On en déduit que B n H est isomorphe au produit direct du centre de Sp, (k) par un
sous-groupe de Borel de GL,, _, (k), et que B - x est ouvert dans X.

Pour 1 £i <4, soit ¢, le plus grand poids du GL,, (k)-module simple A‘k™;
soient ¥,,y, les poids fondamentaux de Sp, (k). On peut vérifier que le monoide
D(A) est engendré librement par ¢, + Y, @5, @3+ ¥, @4, @, + @3 + Y5, €t que 2
est engendré par —o,, —0,, —0a3, —f;, =B, ou o,...,%, 1, B, B, sont les

racines simples de G. Par suite, 'ordre partiel sur A coincide encore avec ’ordre
usuel sur les poids.

a € Sp, (k), b e Hom, (k™ ~* k%), ceGL,,_, (k)}.

2. Idéaux invariants dans les variétés sphériques simples
2.1. Rappels

Nous allons étendre les résultats de la premiére partie aux G-variétés sphériques
simples, i.e. qui ne contiennent qu’une orbite fermée de G. Voici d’abord quelques
rappels sur la classification et la structure de ces variétés; pour les démonstrations
et plus de détails, voir [LV, §8], [BP, §2], [B1, 1.1] et [Kn]. Dans tout ce qui suit, et
sauf mention expresse du contraire, X désigne une variété sphérique simple, et Y
'orbite fermée de G dans X.

(1) Classification des plongements simples

Choisissons x € X tel que B - x soit ouvert dans X, et posons H:=G,; alors
(X, x) est un plongement de I’espace homogéne G/H. On note 2 I'ensemble des
diviseurs irréductibles B-stables de G/H, et ¥" I’ensemble des valuations discrétes
G-invariantes de K:=k(G/H). Notons # (X) I’ensemble des D € 2 dont ’adhérence
contient Y, et soit #(X) I’ensemble des valuations associées aux diviseurs irré-
ductibles G-stables de X; alors #(X) < ¥ . D’aprés [LV, Proposition 8.3] ou [Kn,
Theorem 2.3], le plongement (X, x) est uniquement déterminé par le couple
(B(X), (X)). Les éléments de F(X) s’appellent les couleurs de X.

(i) Description des valuations invariantes
On note A I'ensemble des poids de K®, et 2:=Homy (A4, Q). Tout v e ¥ se
restreint en un élément p, de 2. D’aprés [LV, Proposition 7.4] ou [Kn, Corollary
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1.8], I'application ¥ - 2 : v — p, est injective, et son image est un cone convexe
polyédral dans 2. De méme, tout D € 2 définit une valuation v, de K, d’ou p, € 2;
mais ’application D — p,, peut ne pas étre injective. On note €(X) le cone de 2
engendré par p(F(X) U #(X)), et on note ¥ (X) I'intersection de €(X) et de p(¥");
ce sont deux cones convexes polyédraux.

(iii) Une carte affine
Avec les notations précédentes, on pose

Xp=X\ | D

D e 2\F(X)

C’est un ouvert de X, stable par le sous-groupe parabolique
P={seG|s-D=DVD e F(X)}

qui contient B. En fait, X|, est affine, et recontre Y suivant une unique orbite de P
et de B. Plus précisément d’aprés [B1, 1.1], il existe un sous-groupe de Levi L de P,
et une sous-variété Z de X, tels que:

(a) Z est affine, stable par L, et contient x.

(b) L’application P* x Z — X, : (s, z) = s - z est un isomorphisme.

(¢) Le sous-groupe dérivé (L, L) de L opére trivialement dans Y nZ, qui est
Porbite fermée de L dans Z.

Posons A4 :=k[X,], et notons D(A) I’ensemble des poids de 4®. Alors D(A) est
I'intersection de A et du cone dual de €(X).

Nous allons décrire les idéaux invariants de X, en termes de A, €(X) et ¥ (X).
Griace a la structure de la carte X,, nous nous rameénerons a des problémes
concernant la L-variété sphérique affine Z.

2.2. Idéaux invariants
On conserve les notations de la section précédente.

Définition. Un idéal (fractionnaire) invariant ¥ de X est un sous-faisceau,
cohérent et stable par G, du faisceau constant des fonctions rationnelles sur X. Le
D-idéal de # est ’ensemble des poids de I'(X,, #)®.

En particulier, le D-idéal de Oy est D(4) = A NE€(X)".
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PROPOSITION. Soit # un idéal invariant.

(1) La restriction de 5 a G|H est égale a O,y .

(i1) Le D-idéal de # est réunion d’un nombre fini de translatés de D(Oy); il
détermine uniquement ¥,

Démonstration. La preuve de (i) est analogue a celle du lemme 1.2(i). Pour (ii),
posons [ :=1I'(X,, #). Cest un idéal P-invariant de 4, donc I'isomorphisme de 4 sur
k[Pl ® k[Z] (voir 2.1(ii1)) envoie I sur k[P“] ® J, ou J est un idéal L-invariant de
k[Z]. Puisque X, rencontre toutes les orbites de G dans X, et que .# est G-invariant,
il est déterminé par I, donc par J. Comme D(0O,)=D(Kk[Z]) et que
D(#) = D(I) = D(J), on est ramené au cas ou X est affine. L’énconcé résulte alors
de la proposition 1.1.

Pour tout v e ¥7, il existe un plongement simple (X,, x,) de G/H tel que
F(X,) = et B(X,) ={v}; on I'appelle le plongement élémentaire associé a v (voir
[LV, 3.3]). La complémentaire de G - x, dans X, est une seule orbite de G, de
codimension 1; notons-la Y,. Le lemme suivant est évident.

LEMME. Avec les notations précédentes, tout idéal invariant de X, est de la
forme Oy (—nY,) pour un unique entier n.

D’aprés [LV, Proposition 4.8], il existe un morphisme de plongements
m, : (X,, x,) = (X, x) si et seulement si v € ¥ (X) (notations de 2.1(ii)). Sous cette
hypothése, pour tout idéal invariant # de X, son image inverse £0 est égale a
Ox (—n()Y,) avec n(v) € Z.

Définition. L’ordre de .# est 'application ord .# de ¥"(X) vers Q définie par:
(ord £)(v) = n(v)a(v)

ou a(v) est le générateur positif du groupe des valeurs de v.
L’ordre de .# se lit sur son D-idéal; plus précisément, on a le

THEOREME. Pour tout idéal invariant #, et tout v € ¥ (X), on a les égalités:

(ord £)(v) = min o(f) = min o(f).
e(Xq,.5) fe D)

Démonstration. On peut supposer la valuation v normalisée. Alors (ord £)(v)
est le minimum des v( f) pour f € ¥, ou J, est I'idéal de 0, = Oy y, associé 4 5.
Puisque v € ¥'(X), on a: k[X,] < 0,. Comme X, est affine et .# cohérent, le
¢,-module .#, est engendré par I'(X,, #) d’ou la premiére égalité. Pour la seconde,
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on remarque que I'(X,, #) =k[P“] ®J ou J est un idéal L-invariant de Z. Puisque
v est invariante par P, on a: ming. rx,, » 0(f) = min,. ;v(f). De plus, J est un
L-module rationnel d’aprés 1.1, et la restriction de v a k(Z) est constante sur tout
sous-L-module rationnel simple de k(Z) (voir la preuve de la proposition 1.2(i)).
On en déduit que

minv(f) = min v(f) = min v(f).
fed fe D) S € D(S)

COROLLAIRE. La fonction ord .# est positivement homogéne, linéaire par
morceaux, continue, convexe sur ¥ (X). Elle prend des valeurs entiéres sur ’intersec-
tion de ¥ (X) et de Homy (A, Z), et s’étend en une fonction non négative sur F(X).

Définition. Une telle fonction est appelée un coque.

Démonstration du corollaire. D’aprés la proposition ci-dessus, il existe
Sis-. S €A tels que D(F) = J'_f; + D(Oy). Puisque tout v € ¥ (X) est non
négative sur D(0, ), il résulte du théoréme que ord .# est la restriction a ¥"(X) de
la fonction min, .;., f; sur €(X). Les assertions du corollaire s’en déduisent
aussitot; la non-négativité sur £ (X) suit du fait que I'(X,,.#) est formé de
fonctions réguliéres sur XN G - x, donc sur B - x U Up e #(x) D.

2.3. Ordre et cloture intégrale

Rappelons d’abord la notion de cloture intégrale d’un idéal .£: il s’agit du
sous-faisceau .# du faisceau constant K, tel que pour tout ouvert affine V de X, et
toute s € K, on ait: s € I'(V, #) si et seulement s’il existe un recouvrement ouvert
(V,) de V tel que pour tout a, s | ¥, est entier sur I'(V,, #) (voir [Li, §5]). Pour un
idéal invariant, il se trouve que les données de ’ordre et de la cloture intégrale sont
équivalents; plus précisément, on a le

THEOREME. Soit @ : ¥'(X) — Q une coque (voir 2.2 Définition).

(i) 1l existe un unique idéal invariant £ 4 de X, dont le D-idéal est I’ensemble des
feA telles que f20 sur F(X) et que f=2® sur ¥ (X). De plus, #4 est
intégralement clos.

(i1) On a: ord S, = .

(iii) Pour tout idéal invariant #, on a: S oy 5 = 5.

Démonstration. (i) L’unicité de £, résulte du fait que tout idéal invariant est
uniquement déterminé par son D-idéal (voir 2.2. Proposition). Pour I’existence,
considérons I’espace homogene sphérique G/H ou G:=G x k* et H:=H x {1}.
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Avec des notations évidentes, ona: A=A xZ; I=2xQ; ¥ =¥ xQet D =D.
D’apres [LV, Proposition 8.10] ou [Kn, Theorem 3.1], il existe un plongement
simple (X, X) de G/H tel que #(X) = #(X) et que

¥ (X) ={(v,u) e ¥(X) x Q| (v) + u = 0}.

De plus, on a un G-morphisme ¢ : (X, ¥) » (X, x) qui prolonge la projection
G/H =G/H x k*->G/H [loc. cit, Theorem 4.1]. On vérifie sans mal que
¢ '(X,) =X,. Daprés 2.2(iii), on a avec des notations évidentes, pour
(f,n)eA:(f,n) e D(A) si et seulement si v,(f) =0 pour tout D e F(X) et
o(f) +un =0 pour tout (v, u) € ¥'(X), ie. si: f=0 sur F(X), I'entier n est non
négatif, et £ > nd sur ¥°(X). Donc I’action de k* dans X, induit une graduation de
A, avec A, = A; de plus, D(A4,) est formé des f € A tels que f > 0 sur F(X) et que
f = ® sur ¥ (X). D’ou isomorphisme de (,-modules gradués: Op = ®7_, £, avec
Fo=0y. De plus, les £, sont des idéaux invariants de X, intégralement clos (car X
est normale), et on peut prendre £, = .#,.

(i1) D’apres la proposition 2.2, on a: ord £, = min (f) ou on prend le mini-
mum sur les f € A telles que f =0 sur F(X) et que f = & sur ¥ (X). L’assertion
résulte donc du fait que @ s’étend en une fonction convexe sur ¥(X), non négative
sur #(X).

(iii) Considérons la @, -algebre graduée cohérente @ _, 4" notons X son
spectre. Puisque la restriction de chaque .#" 4 G/H est triviale, X est un plongement
de l'espace homogéne sphérique G/H. On a un morphisme de plongements
¢ : (X, x) - (X, x), dual de 0, = O%. Du fait que ¢ est le quotient par 'action de
k*, résulte que X est simple et que #(X) = Z(X). Par suite, on a: ¢ ~'(X,) = X,.
Soit (v, u) € 2: alors

(v, u) e V' (X)<uv(f)+un 20 Y(f,n) e D(Ox)
< o(f) +un 20 Vf e D(FPY)
< o(f) +u =0 Vfe D(F)
<> (ord £)(v) + u = 0.

Par suite, on a: ¥'(X) = ¥'(X) ou X est la variété construite en (i) avec @ = ord .#.
Donc X = X d’aprés la classification des plongements, et £ =%, = 4,.
2.4. Classification des idéaux invariants intégralement clos

L’énoncé suivant généralise une partie de [KKMS, Theorem 9].
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THEOREME
(1) Les applications ¥ —ord # et ® — F, définissent des bijections décroissantes
réciproques entre idéaux invariants, intégralement clos, et coques.
(i1) On a: ord (£ #) = ord # + ord # quels que soient les idéaux invariants ¥ et §.
(ii1) Un idéal invariant intégralement clos ¥ est inversible si et seulement si ord .# est
la restriction a ¥ (X) d’une application linéaire, nulle sur #(X).

Démonstration. (i) est conséquence immédiate du théoréme 2.3, et (ii) résulte
du fait que (ord £)(v) = ming. rx, ) v(f) pout tout v € ¥'(X).

(iif) Soit # un idéal invariant inversible. D’aprés [Bl, Proposition 2.1], la
restriction de # a X, est triviale. Par suite, il existe @ e K® telle que
I'(X,, #) = ®A. Puisque la restriction de # a G - x est aussi triviale, on a: v,(®) 20
pour tout D € #(X). En remplagant .# par son inverse, on en déduit que @ est nulle
sur #(X). De plus, D(#) est égal & @ + D(0Oy), d’ou ord #F =@ d’aprés la
proposition 2.2.

Réciproquement, soit ¢ un élément de A, nul sur #(X). Alors D(F,) est égal
ad+D,), douTl(X,, £5)P =DAP puis I'(X,, F4) = PA. Par suite, la restric-
tion de £, a X, est inversible, d’ou I’assertion.

Remarque. On munit ’ensemble des idéaux intégralement clos, du produit défini
par £ x ¢ =_f3‘7. Si de plus £, # sont invariants, alors ord (# * ¢) =ord £ +
ord #. Dans cette définition du produit, il est nécessaire de prendre la cloture
intégrale; en effet, il arrive que le carré d’un idéal invariant intégralement clos, ne
soit pas intégralement clos (voir [DEP, §8, Example 2]).

Question. Soient X une variété sphérique affine, et I I'idéal de I’orbite fermée de
G dans X. Est-ce que I” est intégralement clos pour tout entier n = 1?

3. Morphismes birationnels entre variétés sphériques
3.1. Eclatement normalisé

Il y a des liens étroits entre idéaux intégralement clos, et morphismes bira-
tionnels. En effet, soient Z une variété normale, et # < k(Z) un faisceau cohérent
d’idéaux. Alors les conditions suivantes sont équivalentes [Li, §5 et 6]:

(i) # est intégralement clos.
(i1) Pour toute variété Z’, et tout morphisme birationnel propre n : Z’—> Z, on
a: g =n,(F0,).
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(1) Il existe une variété normale Z’, et un morphisme birationnel propre
n:Z' —Z, tels que £0, soit inversible, et que £ =n,(F£0,).

Sous ces hypotheses, il y a une variété minimale vérifiant (iii): C’est I’éclatement
normalisé de # dans Z, défini par Z’ = Proj (®>_, #"). Tout morphisme bira-
tionnel projectif n: Z"—>Z, ou Z et Z’ sont normales, est ’éclatement normalisé
d’un faisceau cohérent d’idéaux # < k(Z). Lorsqu'un groupe algébrique affine
I' opere dans Z et Z’, et que m est I'-équivariant, on peut prendre .# stable par
r.

Revenons au cas d’une variété sphérique simple X; nous allons décrire I’éclate-
ment normalisé n : X’ — X d’un ideéal invariant .#, en termes de ord .#. Posons
x":==n"Y(x); alors (X, x’) est un plongement de G/H, donc il est recouvert par la
famille (X,, x,) de ses sous-plongements simples (voir [Kn, Corollary 2.2]). Pour
chaque «, on note #(X,), ¥ (X,) comme en 2.1(i). Puisque 7 est propre, la famille
des ¥"(X,) est une subdivision du cone ¥"(X), d’apres [loc. cit, Theorem 4.2]. De la
définition de I’éclatement normalisé, et du théoréme 2.4(ii), suit la

PROPOSITION. Avec les notations précédentes, la famille (¥ (X,)) est la plus
grande subdivision de v (X) telle que ord # soit linéaire sur chaque ¥ (X,). Si f, est
une application linéaire telle que f, |7 (X,)=ord # |¥(X,), alors F(X,) est
I’ensemble des D € F(X) telles que vp(f,) =0.

Remarque. Si le plongement (X, x) est sans couleur (i.e. #(X) est vide) et si &
n’est pas inversible, alors son éclatement normalisé n’est pas un plongement simple.
Par contre, lorsque % (X) n’est pas vide, choisissons @ € A telle que v(®) = 0 pour
tout v € ¥'(X), et que v, (@) > 0 pour tout D € F(X). Alors ’éclatement normalisé
de £, est le plongement simple (X”, x’) tel que F(X') = J et que ¥ (X') = ¥'(X).
On reviendra la-dessus en 3.3.

3.2. Un théoréme d’annulation

Soit 7 : (X’, x") = (X, x) un morphisme propre de plongements de G/H. Soit @
une coque sur ¥ (X) = ¥ (X’). Soit £, (resp. £ 3) I'idéal invariant de X (resp. X)
deéfini en 2.3; alors £, est la cloture intégrale de £,0,..

THEOREME. Avec les notations précédentes, on a: n,Ffo=F¢set Rn, Fp=0
pour tout i 2 1.

Démonstration. Comme dans la preuve du théoréme 2.3, considérons la @ -alge-
bre graduée @*_, F" = ®_, # .0, €t son spectre X avec le morphisme canonique
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¢ : X - X. Définissons de méme ¢’ : X’ — X’. On a un diagramme commutatif

£

X¥—Xx

JoL

n

X —X
ou le morphisme 7 est dual de I'inclusion
@ }IC @ jn@X'= @ j:"p.
n=0 n=0 n=20

Par suite, 7 se factorise en un morphisme fini X’ - X’ x , X, suivi du morphisme
canonique X’ x , X - X. Puisque 7 est propre, 7 I’est aussi. D’autre part, X et X
sont des plongements de (G x k*)/(H x {1}), et # est un morphisme de plonge-
ments (car les restrictions de £, et de F 3 a G/H sont triviales). En particulier, &
est birationnel. D’ou n,0p = O g d’apres le théoréme principal de Zariski. De plus,
R'ft,Op =0 pour tout i > 1 car les singularités de X et de X’ sont rationnelles (voir
[B1, 1.2 Corollaire 1] et ses références). D’ou

6_) fn(b = (p*(Ol? = (p*ﬁ*(p,\” = n*(P;(O,?’ = n*((-DO j:zdi)

n=0

et en particulier £, =n_f 5. Puisque ¢ et ¢’ sont affines, on obtient de méme:
R (®r-0F ) =0 pour tout i > 1.

Remarque. Dans le cas des variétés toriques, le résultat ci-dessus est di a G.
Kempf (voir [KKMS, 1.3 Corollary 1]), qui le déduit d’une description des groupes
de cohomologie des idéaux invariants, en termes combinatoires. Il en déduit aussi
que H(X, #) =0 pour tout i = 1 lorsque X est une variété torique compléte, et
est engendré par ses sections globales [loc. cit, Corollary 2]. Ce théoréme d’annula-
tion est encore vrai dans les variétés sphériques (voir [B2, Théoréme 2.3]); mais
c’est un probléme ouvert de déterminer la cohomologie des idéaux invariants d’une
variété sphérique compléte.

3.3. Factorisation de morphismes birationnels
Soient (X, x) et (X', x") deux plongements de ’espace homogéne sphérique G/H.

Nous allons étudier les morphismes de plongements 7 : (X”, x") — (X, x). Supposons
d’abord que X est sans couleur; alors il en est de méme de X”. Soit P le sous-groupe
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parabolique de G, formé des s € G tels que s - B - x = B - x. Rappelons qu’il existe
un sous-groupe de Levi L de P, et une sous-variété¢ Z de X, tels que: Z est stable
par L, et contient x; le sous-groupe dérivé (L, L) de L opére trivialement dans Z,
et I'application naturelle de P* x Z vers X est une immersion ouverte. De plus, Z
recontre toute orbite de G dans X, suivant une unique orbite de L (voir [BP,
Proposition 3.4]). Posons Z":=n~"(Z) et C:=L/(L, L). Alors (Z, x) et (Z’, x’) sont
des plongements du tore C/C nH; de plus, n est uniquement déterminé par sa
restriction a Z’, que est un morphisme birationnel équivariant entre variétés
toriques. Bien que de tels morphismes aient été beaucoup étudiés, nous n’en avons
qu’une connaissance incompléte (voir [O, 1.7] et ses références). Appelons dans ce
cas X, X’ des variétés toroidales, et © un morphisme toroidal.

Lorsque (X, x) est un plongement quelconque de G/H, il existe un unique
plongement toroidal (X, ) muni d’'un morphisme propre de plongements p vers X,
et minimal pour cette propriété. Si (X,, x,) es la famille des sous-plongements
simples de (X, x), alors (X, ) a comme sous-plongements simples les (X,, %,) tels
que F(X,) = et que ¥ (X,) = ¥(X,). Appelons X la décoloration de X.

PROPOSITION. Soit n : (X, x") = (X, X) un morphisme de plongements. 1l ex-
iste un unique morphisme toroidal 7t tel que le diagramme

~ i

¥—Xx

AL

n

X — X

commute, ou p, p’ sont les décolorations de X, X'. De plus, si n est propre, alors &t
I’est aussi.

Démonstration. On peut supposer X simple. Soit (X,) la famille des sous-
plongements simples de X”’. Alors la famille des ¥ (X) est une subdivision d’un
sous-cone de 7°(X), et & est propre si et seulement si (J, ¥ (X,) = ¥ (X). L’énoncé
en résulte aussitot.

Nous sommes conduits a étudier la décoloration d’un plongement (X, x), que
nous supposerons simple. Faisons de plus ’hypothése suivante:
(*) Tout diviseur de Weil de X est un diviseur de Cartier.

D’apres [B1, 2.2 Remarque (ii)], cela se traduit par:
(%) B(X)UZF(X) est une partie d’'une base de Hom, (A4, Z)
avec les notations de 2.1(i). Pour tout D € #(X), il existe alors f, € A tel que
vp(fp) =1 et que v(fp) =0 pour tout v € B(X) UF(X), v #v,. Soit S, I'idéal
invariant intégralement clos tel que ord £, = f,, (voir le théoréme 2.3).
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THEOREME. Sous I’hypothése (x), la décoloration de X est le composé (dans un
ordre arbitraire) des éclatements normalisés des ¥ , pour D € #(X). De plus, quel que
soit D € F(X), l'idéal #, est la cloture intégrale de X, . g - Ox(— D).

Autrement dit, pour supprimer les couleurs, on éclate I'intersection schématique
de leurs translatés.

Démonstration. La premiére assertion est conséquence immédiate de la proposi-
tion 3.1. D’aprés le théoréme 2.3, pour prouver la seconde assertion, il suffit de
montrer que ord £, =fp, ou on pose fp=X .58  Ox(—D). Soit v e ¥ (X);
alors (ord #,)(v) = min v( f), ou f décrit I'idéal J,, associ¢ a £, dans Oy ,. Mais
puisque v est G-invariante et que J, =X, p Oy y(—g - D), on a:

(ord #,)(v) =, min . vo(.f).

€0y y(—
On en déduit comme dans la preuve de la proposition 2.2, que
(ord #,)(v) = min v( f) ou f décrit I’ensemble des fonctions réguliéres sur X, nulles
sur D, et vecteurs propres de B. Mais d’apres (**), un tel f s’écrit sous la forme £, ¢,
avec v(¢) = 0; d’ou I’assertion.

Remarque. Dans certains cas, I'idéal X, . g - Ox(— D) est premier, pour tout
D € #(X); de plus, on peut ordonner #(X) = {D,, ..., D,} de fagon que I’éclate-
ment du produit S, - S D, soit normal pour 1 < p < n. Alors la décoloration de
X se factorise en éclatements successifs de sous-variétés irréductibles G-stables.
Nous allons voir un exemple classique d’une telle situation: la construction de
“collinéations complétes” (ou de “formes bilinéaires complétes’; voir [TK] et ses
références).

3.4. Exemple

Comme dans I'exemple 1.4(a), considérons G:=GL, (k) x GL, (k) opérant
dans X :=Hom, (k™, k™) ou m, n sont des entiers tels que 1 < n < m. Puisque X est
lisse, la condition (%) ci-dessus est bien vérifié¢e. Pour 0 <p <n, notons X, la
sous-variété de X formée des matrices de rang au plus p, et D, la couleur associée
au poids ¢, + ¥, (avec les notations de 1.4). Alors I'idéal

Ly=7Y g-0,(-D,)
geqC

est engendré par le sous-G-module simple de k[X], dual de Hom, ( APk™, APk");
par suite, /, est I'idéal de X, _,.
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Pour 1 < g < p <n, définissons des variétés X par:

XP=x,.
X@* "D est I'éclatement de X? dans X .
X+ D est la transformée stricte de X' dans cet éclatement.

Montrons, par récurrence sur g, que

(i) X@ est lisse pour 0 < g < n.
(ii) X? est normale pour 0 < g < p.
(iii) XP est lisse pour 0 < p < n, et c’est la décoloration de X,.

Pour ¢ =0, on a: X = X, et X{¥ = {0}. De plus, X* = X, est une sous-variété
irréductible G-stable de X; elle est donc normale d’aprés [BP, Proposition 3.5]. Si
les énoncés (i), (ii), (iii) sont vrais pour g éclatements, alors X¥*+ D est lisse, comme
éclatement de la sous-variété lisse X' dans la variété lisse X?. Comme ci-dessus,
on en déduit que X¥* " est normale pour p 2 ¢+ 1. On vérifie sans peine que
X s’obtient en éclatant les intersections des translatés des couleurs de X, ;
c’est donc la décoloration de X, ,. Il reste 4 montrer que pour 0<p <n, la
décoloration X, de X, est lisse.

Soit x,:= € X, ou 1, est la matrice unité p x p. Notons H, le groupe

P

0 0
d’isotropie de x, dans G. Avec des notations évidentes, on vérifie comme en 1.4 que
D(A,) (resp. X,) est engendré librement par @, +y,,...,¥,+y, (resp.
—ay—pfy,..., —a,_—B,_,). Par suite, le cone dual de ¥ (X,) est engendré par
¢+ ¥y, —o;— By, ..., —a,_ —B,_, qui forment une base de 4,. Donc ¥'(X,)
est engendré par une base de Hom, (A4,, Z). Grace a la structure locale de Yp
rappelée en 3.3 et au critére de lissité pour les plongements toriques, on conclut que
X, est lisse.

Remarques. (1) On peut montrer que ’éclatement de I, dans X, est lisse pour
1 < p < n; en fait, c’est la résolution des singularités de X, introduite par G. Kempf
(voir [K, Proposition 2]).

(2) On construit de fagon analogue les “formes bilinéaries symétriques (ou
antisymétriques) complétes”.

4. Caractérisation des variétés sphériques lisses

4.1. Multiplicité d’un idéal invariant

Soit 4 un anneau local noethérien excellent; notons d sa dimension et m son
idéal maximal. Soit I un idéal m-primaire de 4. Les fonctions H(n):=1g (4/I") et
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H(n):=1g (4 /7’7) sont des polyndémes pour n assez grand, avec le méme terme
dominant en“/d!. Le nombre e est un entier positif, appelé la multiplicite de I (voir
[M] et ses références).

Soient X une variété algébrique et # un faisceau cohérent d’idéaux de @,,
définissant un sous-schéma fermé S de X. Supposons pour simplifier que le support
Y de Oy /# est irréductible. On peut alors définir la multiplicité e de #, ou de X le
long de S, comme la multiplicité dans ’anneau local 0 , de I'idéal associé a .# (voir
[F, Example 4.3.4]).

Lorsque X est une G-variété sphérique, et # un idéal invariant, nous allons
exprimer la multiplicit¢ de .# en fonction de son ordre. On suppose pour simplifier
que X est simple et que 'orbite fermée Y de G dans X, est le support de Oy /#; on
utilise les notations de la seconde partie. Posons Ag:=A4 ®, R. Notons Dg(.#)
I’ensemble des f € Ay telles que £ =0 sur F(X) et que f = ord £ sur ¥ (X); alors
Dg(0y) est le cOne dual de €(X), et Dg(#) est un polytope convexe rationnel dans
Dgr(0y). Soit n : Ag — E le quotient par le sous-espace orthogonal a ¥(X). Notons
%(#) l'adhérence de n(Dg(0y)\Dgr(F)). Cest une réunion finie de polytopes
convexes, rationnels par rapport au réseau n(Ag).

Avec les notations de 2.1(iii), toute f € D(0O, ) s’identifiec & un vecteur propre de
BN L dans k[Z], donc f engendre un L-module simple (L - f) dont on note
dim (f) la dimension. D’apres la formaule de Weyl, 'application dim se prolonge en
une fonction polynomiale sur A, notée encore dim. Puisque tout élément de D(0 )
orthogonal a €(X) est vecteur propre de L, la fonction dim est invariante par
translations par I’orthogonal de %(X). Donc elle se factorise par une fonction
polynomiale, toujours notée dim, sur E.

On note I, , I'idéal de 0, , associé & £. Pour tout entier n = 0, on note H(n) la
longueur du Oy ,-module Oy ,/I% .

THEOREME. Avec les notations précédentes, on a: H(n) =X dim (f) ou la
somme porte sur les f € n€(F) nn(A).

Démonstration. On pose A = k[X,] et I =I'(X,, #). Puisque le support de A4/
est Xon Y, le A-module 4 /7; admet une filtration dont tous les sous-quotients sont
annulés par I'idéal de X, Y; le rang (sur k[X, N Y]) du gradué associé a une telle
filtration est égal a H(n). De plus, I'isomorphisme de A4 sur k[P“] ® k[Z] envoie |
sur k[P“] ® J, ou J est un idéal L-invariant de k[Z], et envoie I" sur k[Pl ® J". On
peut donc remplacer X par Z (cela ne change pas ord £, Dg(F), etc). Alors H(n)
est le rang (sur k[Z n Y]) du gradué associ¢ a toute filtration de k[Z]/I'(Z, #") avec
sous-quotients annulés par I'idéal de ZN Y. Or k[Z n Y] = @kf ou la somme porte
sur les f€ A qui sont nulles sur €(X). De plus

kKZ]= @ (L-f) et IZINV= @ <L-fH= @ <L-f.

Je D(Ox) fe D(sn) SenD(S)
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L’énoncé s’en déduit aussitot.

COROLLAIRE. L’ensemble €(F) est borné, et la multiplicité de ¥ est égale a

d! [ o(p) dp
JE(F)

ou d est la codimension de Y dans X, @ est le terme de plus haut degré de la fonction
polynomiale dim, et dp est la mesure de Lebesgue sur E, normalisée de fagon que la
maille du reseau n(A) soit de volume 1.

Démonstration. La premiére assertion résulte du fait que H(n) est finie pour tout
entier n = 0. Pour la seconde assertion, on remarque que

H(n) = Y dim ( f)

fen€(F)nn(A)

est équivalente quand n —» o0 a

o(f) =nde® Y o(f)

/€ n€(F)ynn(A) fe€(F)nn—1ln(A)

et que la derniére somme est le produit de n4™® par une “somme de Riemann”
pour j‘é’(.ﬁ) @(p) dp.

PROPOSITION. L’application H est la restriction aux entiers naturels d’une
fonction polynomiale.

Démonstration (analogue a [KKMS, 1.3 Corollary 3]; voir aussi [M]). Comme
dans la preuve du théoréme ci-dessus, on peut supposer que X est affine. Soient
T : X’ - X I’éclatement normalisé de £, et ¥ =40, . Notons Y’ le sous-schéma
fermé de X’ défini par &, et 1 : Y’ - X’ l'inclusion, avec ¥ ":=% | Y’. On a une
suite exacte

0L 5P, L">0.
De plus, n, £" =4" et R'n,%" =0 pour tout i 2 1 d’aprés [B2, Théoréme 1.1];
en effet, ¥”" est engendré par ses sections globales. On en déduit que

R'n, (1,%™) =0 pour tout i 2 1, et que la suite

01"t s "sn,1, L0
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est exacte. Puisque X est affine, on a une suite exacte
0T (X, F" ) >T(X, ") > T(Y', L) -0,

de plus, H(Y’, ") =0 pour tout i = 1. Puisque .#’ est un fibré en droites sur Y,
on déduit de [F, Example 18.3.6] que I’application n — y(Y’, £'") est la restriction
aux entiers naturels d’une fonction polynomiale; il en est donc de méme de
I’application n —dim I'(X, #")/I'(X, #"*") = H(n + 1) — H(n).

Exemple. Soient (X, x) un plongement projectif de G/H, et § un diviseur de
Cartier ample sur X. D’aprés [B1, Proposition 3.3], on peut associer 4 & un
caracteére x(6) de B, et un polyédre convexe rationnel (X, d) dans Ag, tels que
'ensemble des poids de I'(X, né)® s’identifie a ny(d) + (n€(X, 6) N A) pour tout
entier n > 0. Notons A l'algébre graduée @ 2., I'(X, nd). Le groupe G:=G x k*
opére dans A par automorphismes, et 4 est un G-module sans multiplicité. Par
suite, X := Spec (4) est une G-variété sphérique affine, avec un point fixe noté 0. Soit
I I'idéal de 0 dans X, i.e. Iidéal maximal homogeéne de A. La multiplicité de I n’est
autre que le degré deg () du diviseur 4. En outre, il est immédiat que

€(F) ={(4, 1) e Ag x R| 4 € t(x() + ¥(X, 9)),0 <1 <1} U{0, 0}.

Les données de €(#) et de €(X, d) sont donc équivalentes, et le corollaire ci-dessus
permet de retrouver ’expression intégrale de deg (8) (voir [B1, Théoréme 4.1]).

4.2. Un critére de lissité

On désigne toujours par X une variété sphérique simple, d’orbite fermée Y.
Nous allons donner des conditions nécessaires et suffisantes pour que Y soit formée
de points lisses de X. Soit .# le faisceau d’idéaux de Y dans X; déterminons d’abord
le D-idéal et 'ordre de £, introduits en 2.2.

Avec les notations de 2.1 et 2.2, le D-idéal de # est ’ensemble des f € A telles
que f € D(Oy) et que f ne soit pas inversible dans D(0, ); autrement dit, on a:

D(F)={feA|f=20sur GX) et | F(X) #0}.

Soit {f},...,f,} 'unique systéme générateur minimal du quotient du monoide
D(0y) par le groupe de ses éléments inversibles. Alors pour tout v € ¥ (X),
I'expression v( f;) a un sens, on I'on a:

(ord £)(v) = lrgig v( f;).
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Comme en 4.1, posons Ag:=A ®; R et notons Dg(#) I’ensemble des f € A, telles
que f = 0 sur Z(X) et que f = ord £ sur ¥'(X). Notons enfin 4(#) = € I'adhérence
de I'image de Dg(0, )\Dg(#) dans le quotient n : Ag — E par 'orthogonal de €(X).
Alors € est formé des f € E telles que f = 0 sur €(X) et qu’il existe v € ¥'(X) avec
o(f) <u(f;) por 1 <i<n. Soient ¢ la fonction polynomiale, et dp la mesure
de Lebesgue sur E, définies dans le corollaire 4.1; notons d la codimension de Y
dans X.

THEOREME. Avec les notations précédentes, les conditions suivantes sont
équivalentes:
(i) L’orbite Y est formée de points lisses de X.
(i1) Le cone €(X) est engendré par une partie d’une base de Hom, (A, Z). De
plus, € est un simplexe, de volume 1/d\ pour la forme @(p) dp.

Démonstration. (ii) = (i). D’apres le corollaire 4.1, la multiplicité de X le long
de Y est égale a 1. On conclut grace a [F, Example 4.3.5].

(i) = (ii). Grace a la structure de la carte X, (voir 2.1(iii)) et a [Lu, Corollaire
2], on se ramene au cas ou X est affine, et ou Y est réduite a un point noté 0. Puisque
G opere dans X avec une orbite ouverte et un point fixe lisse, X est G-isomorphe a
un G-module rationnel V' d’apres [loc. cit.]; le point 0 est I'origine de V.

Comme B opére dans V avec une orbite ouverte Q, le monoide D(k[V']) est en-
gendré librement par les équations des composantes irréductibles de ¥\ Q. Par suite,
le cone Dg(k[V]) est engendré par une base de A, d’ou la premiére assertion. De
plus, & est convexe; en effet, si § désigne la section hyperplane de I’espace projectif
P(V), ’ensemble ¥ s’identifie & un cone tronqué sur €(P(V), §) (avec les notations
de 'exemple 4.1). Puisque Dy (k[V])\% = Dg(F) est aussi convexe, on en déduit que
% est un simplexe. L’assertion sur le volume de % résulte du corollaire 4.1.

Remarques. (1) Renvoyons a [B1, 4.2] pour la détermination de la fonction ¢,
et le calcul de son intégrale sur un simplexe quelconque.

(2) L’énonce précédent généralise un critére de lissité classique pour les variétés
toriques (voir [O, Theorem 1.10] et ses références). En effet, prenons pour G un tore
T, et pour X un plongement affine de 7, avec un point fixe. Alors #(X) est vide,
et €(X) est le cone dual du monoide formé des poids de T dans k[X]. Soit
(fis...,f,) le systéme générateur minimal de ce monoide. Alors % est le complé-
mentaire dans €(X) de I'enveloppe convexe de I, f; + €(X); de plus, ¢ =1. Si
%(X) est engendré par une (partie d’une) base de Homy (A, Z), alors (f;,...,f,)
est une base de A. Donc n = d et € est le simplexe standard; il est bien connu que
son volume est 1/d!. On conclut que X est lisse si et seulement si le cone €(X) est
engendré par une partie d’une base de Hom, (4, Z).
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(3) Nous vernons de voir que lorsque G est un tore, la premiére condition de
I’énoncé (ii) du théoréme implique les deux autres. Ceci n’est pas vrai en général. En
effet, soient J un G-module simple, v un vecteur propre de B dans V, et X:=G - v.
Alors la variété affine X est sphérique d’aprés [Kr, II1.3.5], et le monoide D(k[X])
est engendré librement par le plus grand poids A de V'*. Par suite, le cone €(X) est
une demi-droite, et € est I'intervalle [0, 4]. Or X n’est jamais lisse, sauf si G opére
transitivement dans ¥\{0} (voir [loc. cit]).

4.3. Exemple: lissité de certaines compactifications des groupes

Dans cette section, G est un groupe simple adjoint; on le considére comme
espace homogéne sous G x G opérant par multiplication a gauche et a droite. La
théorie des plongements de G est un cas particulier de celle des plongements d’es-
paces symétriques (voir [V]), ce que permet de décrire les objets introduits en 2.1.

Soient T un tore maximal de G, et R le systéme de racines de (G, T). Alors A
est le réseau des racines de R, donc Homy (A, Z) est le réseau des poids de R. De
plus, ¥~ s’identifie aux points rationnels d’'une chambre de R, qu’on prend comme
chambre positive. Enfin, I’application p : 2 — 2 est injective, et son image est
formée des opposées des coracines simples (voir [loc. cit, Propositions 1 et 2]).

Le plongement simple (X, x) de G, tel que F(X) = et que ¥ (X) =7, est
lisse (et posséde bien d’autres propriétés remarquables; voir [DP], [V]). Soit « une
racine simple. Si le rang de G est au moins deux, il existe un plongement simple X,
de G tel que #F(X,) ={—d} et que ¥'(X,) =7 . De plus, X, est projectif.

PROPOSITION. Avec les notations précédentes, la variéte X, est lisse si et
seulement si o. est une racine longue, a une extrémité du diagramme de Dynkin de R.

Démonstration. Ordonnons les racines simples de fagon que a =a,. Le cone
¢(X,) est engendré par —a,, n,, ..., n,;, ou on note =«,, ..., 7, les poids fondamen-
taux. De plus, on a:

i
—oy = —2m — Z (ay, & )m;
i=2

avec —<{a,, d;» =2 0. Si X, est lisse, alors le cone €(X,) est simplicial, donc il existe
i tel que 7, soit combinaison linéaire positive des n; pour j # i, et de —a,. Par suite,
tous les {a;, & > sont nuls, sauf un; donc a, est une extrémité du diagramme de
Dynkin. On peut supposer que o, est la racine simple liée a «,. Posons
m= —{a,,d,) et n = —{d&,, a,»; ce sont des entiers positifs, et mn € {1, 2, 3}.
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Puisque —a, + 27, = mn,, le cone €(X) est engendré par —ay, n,, 5, ..., n,;

son dual est donc engendré par na, + 2a,, a,, as, . .., ®,. Par suite, €(X) est

engendré par une base de A si et seulement si n # 3. On vérifie que % est le simplexe

de sommets 0, (n/2)a; + oy, &y, ..., 0, et que @ est donnée par ¢(p) = {p, &, >%
c’est a-dire

qD(xl((n/z)al + az) +x2a2 + +x,0€,) = nzx%.

D’ou, par un calcul élémentaire:

L e(p)dp =n’l(1 +2)!.

Puisque la codimension de 'orbite fermée de X, est / 4+ 2, on conclut que X, est lisse
si et seulement si n = 1, c’est-a-dire si «, est plus longue que o,.
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