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Sur la géométrie des variétés sphériques

Michel Brion

Introduction

Une variété algébrique normale X, dans laquelle opère un groupe réductif
connexe G, est dite sphénque si un sous-groupe de Borel de G a une orbite ouverte
dans X (le corps de base k est algébriquement clos, de caractéristique nulle) Cette
notion englobe les variétés toriques, dont beaucoup de propriétés s&apos;étendent aux
variétés sphériques En particulier, G n&apos;a qu&apos;un nombre fini d&apos;orbites dans X, et
celles-ci sont des espaces homogènes sphériques (voir [LV], [Kn]) Lorsqu&apos;on choisit
un point de l&apos;orbite ouverte, et qu&apos;on note H son groupe d&apos;isotropie, on peut
considérer X comme un plongement de l&apos;espace homogène G/H De tels plonge-
ments sont classés par des objets combinatoires, qui généralisent l&apos;éventail associé à

une variété torique, et qui font intervenir l&apos;ensemble &apos;V des valuations discrètes,
invariantes par G, du corps des fonctions rationnelles sur G/H. Renvoyons à [LV]
pour la classification des plongements, et à [BP], [B3], [Kn] pour la structure de &quot;T;

c&apos;est un cône convexe polyédral
Dans ce travail, nous étudions les faisceaux cohérents d&apos;idéaux fractionnaires

stables par G dans une variété sphénque X, appelons-les idéaux invariants Nous
classons les idéaux invariants intégralement clos, en termes de certaines fonctions
(baptisées coques) sur un sous-cône de Y Nous en déduisons une description de
l&apos;éclatement normalisé d&apos;un idéal invariant, ainsi qu&apos;un critère de hssité pour une
variété sphénque Dans le cas tonque, ces résultats sont dus à B Samt-Donat et G.

Kempf (voir [KKMS, Chapter I])
Voici un résumé plus détaillé du contenu de cet article. Dans la première partie,

nous décrivons les idéaux invariants intégralement clos dans une variété sphénque
affine A la suite de [DEP], de nombreux travaux concernent l&apos;arithmétique des

idéaux stables par G dans l&apos;algèbre A des fonctions polynomiales sur un G-module
V, dans des exemples où A est sans multiplicité, c&apos;est-à-dire où F est sphénque (voir
[R] et ses références) On associe à un tel idéal /, son D-idéal, formé des plus grands
poids des sous-G-modules simples de / Dans chaque exemple, on a constaté que les

idéaux invariants intégralement clos sont caracténsés par une propriété de convexité
de leur D -idéal Nous donnons une explication de ce phénomène, en décnvant
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l&apos;idéal invariant intégralement clos engendré par une partie de A pour toute
G-algèbre A, sans multiplicité. Cette partie nécessite très peu de connaissances sur
les variétés sphériques; cela se paye par des répétitions au cours de l&apos;article.

La seconde partie est consacrée aux variétés sphériques simples, c&apos;est-à-dire qui
ne contiennent qu&apos;une orbite fermée de G. A tout idéal invariant J dans une telle
variété X, nous associons son ordre (c&apos;est une fonction convexe, linéaire par
morceaux, sur un sous-cône de 1T) et son D-idéal (c&apos;est un idéal d&apos;un monoïde formé
de l&apos;intersection d&apos;un cône et d&apos;un réseau). Nous montrons que les données de l&apos;ordre,

du D -idéal, et de la clôture intégrale de J sont équivalentes, et nous caractérisons
les ordres des idéaux inversibles. Les démonstrations reposent sur la structure locale
des variétés sphériques (voir [Bl, 1.1] et [Kn]) et sur la classification des plongements,
rappelée en 2.1. L&apos;extension de nos résultats aux variétés sphériques quelconques ne

présente aucune difficulté, et est laissée au lecteur.
Dans la troisième partie, nous appliquons ce qui précède aux morphismes

birationnels équivariants entre G-variétés sphériques. Après avoir rappelé les liens

entre morphismes birationnels et idéaux intégralement clos (voir par exemple [Li]),
nous décrivons l&apos;éclatement normalisé d&apos;un idéal invariant, en termes de son ordre,
et nous généralisons un théorème d&apos;annulation dû à Kempf (voir [KKMS] et aussi

[B2]). Nous introduisons et étudions la décoloration d&apos;une variété sphérique; dans
le cas des variétés déterminantielles, nous retrouvons ainsi la construction classique
des &quot;collinéations complètes&quot; par éclatements successifs (voir [TK] et ses références).

Enfin, dans la quatrième partie, nous calculons la multiplicité d&apos;un idéal invariant

J cz(9x, lorsque le support de (9xjJ est une orbite de G. Cette multiplicité est

donnée, comme dans le résultat principal de [Bl], par l&apos;intégrale d&apos;une fonction
polynomiale sur un polyèdre. Nous en déduisons une caractérisation (assez

compliquée) des variétés sphériques lisses. Comme application de notre critère, nous
étudions la lissité de certaines compactifications des groupes adjoints, qui ne sont pas
des &quot;variétés symétriques complètes&quot; au sens de DeConcini et Procesi (voir [DPI]).

Les résultats de la seconde partie sont certainement valables en caractéristique
non nulle, grâce aux méthodes de [Kn]. Par contre, dans la quatrième partie, les

représentations des groupes réductifs en caractéristique nulle jouent un rôle essentiel.
L&apos;auteur remercie Peter Littelmann pour des discussions utiles, et le rapporteur

pour son travail ingrat.

1. Idéaux invariants dans les variétés sphériques affines

1.1. Idéaux et D-idéaux

Dans tout ce qui suit, G désigne un groupe algébrique réductif connexe, B un

sous-groupe de Borel de G, et U le radical unipotent de B.
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Soit X une G-variété affine irréductible. On note A -&gt;=k[X] l&apos;algèbre des fonctions

régulières sur X, et K-=k{X) son corps des fractions, i.e. le corps des fonctions
rationnelles sur X. Le groupe G opère dans A (qui est un G-module rationnel), et
dans K.

Définition. Un idéal (fractionnaire) invariant est un A -sous-module de type fini
de K, stable par G.

LEMME. Tout idéal invariant est un G-module rationnel.

Démonstration. Soit / un tel idéal. Choississons /g A tel que/VO et fî c A.
Poui tout cp g K, notons &lt;G - cp &gt; le G-sous-module de K engendré par (p. Posons
&lt;G •/&gt; M; alors MI c A. Soit cp e I: alors/&lt;G • q&gt;} a &lt;G • Mcp) et Mcp est un

sous-espace vectoriel de dimension finie de A, donc il en est de même de &lt;G • Mcp).
Par suite, la dimension de &lt;G • &lt;p&gt; est finie.

Nous allons étudier les idéaux invariants lorsque X est sphérique; cela revient à

dire que le G-module A est sans multiplicité (voir [Kr; III.3.6]).
Pour tout G-module M, on note M(B) l&apos;ensemble des vecteurs propres de B dans

M, et D(M) l&apos;ensemble de leurs poids. Puisque A est une algèbre de type fini, D(A)
est un monoïde de type fini [Kr; III.3.1]. Le G-module rationnel A est isomorphe à

®*eD(A) V*. ou K* désigne un G-module simple de plus grand poids k. On pose

A-=D(K); c&apos;est un groupe abélien libre, engendré par D(A). Tout f e K{B) est

déterminé par son poids, à un multiple scalaire près.

PROPOSITION. Tout idéal invariant I est uniquement déterminé par D(I).
Celui-ci est de la forme (Jr= i K + D(d) pour une partie {A,,..., Xn} de A.

Démonstration. D&apos;après le lemme, le G-module / est engendré par I{B)\ la

première assertion résulte du fait que le poids d&apos;un élément /de K(B) détermine/à
un multiple scalaire près. Puisque / est un ,4-module de type fini, Iv est un
A ^-module de type fini [Kr; III.3.2]. On peut donc en choisir des générateurs

/i, ...,/„ dans IiB); la deuxième assertion est vérifiée en prenant pour Xt le poids de

Définition. Une partie A de A est un D -idéal si A est réunion d&apos;un nombre fini
de translatés de D(A) par des éléments de A.

Cela revient à dire que A est stable par translations par D(A), et est contenu
dans un translaté de D(A) par un élément de A. Grâce à la proposition, on attache
à tout idéal invariant /, un D-idéal D(I). Un problème ouvert est de reconnaître
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parmi les D-idéaux, ceux qui proviennent d&apos;idéaux invariants (voir [R] pour
des résultats partiels). Dans les sections 1.2 et 1.3, nous allons caractériser les D-
idéaux associés aux idéaux invariants intégralement clos, par des propriétés de

convexité.

1.2. Clôture intégrale et valuations invariantes

Rappelons d&apos;abord la notion de clôture intégrale d&apos;un idéal (voir [ZS; Appendix
4]). Soient A un anneau commutatif unitaire et intègre, K son corps des fractions,
et / un idéal (fractionnaire) de K. Un élément/de K est entier sur I s&apos;il existe une
relation fn -f axfn ~ 1 + • • • + an 0 où ap e Ip pour 1 &lt;&gt;p ^n. Les éléments entiers

sur / forment un idéal, noté 7, et appelé la clôture intégrale de /. On dit que / est

intégralement clos si / 7
Pour tout idéal /, on a : 7 r\IOv où 0v décrit les anneaux de valuation de K.

Lorsque A est noethérien et intégralement clos, on peut se limiter aux anneaux de

valuation discrète qui contiennent A [loc. cit, Theorem 3].

Revenons au cas où A est l&apos;algèbre des fonctions régulières sur une G-variété
sphérique affine X. Choisissons x e X tel que l&apos;orbite B • x soit ouverte dans X, et

notons H GX son groupe d&apos;isotropie dans G. On identifie G • x et G/H, d&apos;où

K k(G/H). On note if l&apos;ensemble des valuations discrètes G-invariantes de K, à

valeurs dans Q; on note i^(X) l&apos;ensemble des v ef telles que A &lt;^®v.

LEMME. Soit I un idéal invariant.

(i) La restriction de I à G • x est le faisceau structural de G - x.
(ii) La clôture intégrale de I est

k[G/H]n f] 16v.

Démonstration, (i) Puisque les translatés de B • x forment un recouvrement
affine de G • x, et que / est stable par G, il suffit de montrer que la restriction /0

de / à B - x est triviale. Posons A0-=k[B - x] et J0-={feA0 \fIoaAo}. Alors Jo

est un idéal B-stable de Ao, et Jo^0 donc J0 A0. Par suite, I0&lt;^A0, d&apos;où

(ii) Soit / une indéterminée; considérons A *= ®^°= 0 Intn c= K(t). Puisque A est la

normalisation de ®^==QIntn dans K(t)9 c&apos;est une ^-algèbre de type fini. Le groupe
0-=G x k* opère dans A, et Z:=Spec^î est une (?-variété sphérique. Notons
n : 2 -? X le morphisme associé à l&apos;inclusion de A dans A. Choisissons x e % tel que
G • x soit ouvert dans Jf, et que 7r(jc) jc. Soient vx ,...,$„ les valuations associées
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aux composantes iréductibles de codimension 1 de X\G Je; elles sont invariantes

par G. Puisque X est normale, on a:

Â k[G&apos;x]nf] (9Cr

i= i

En outre, puisque la restriction de tout In à G/H est triviale, ona:^=i/x{l}.
D&apos;où k[G • x] k[G/H][t, t~1]. On en déduit que

7= [fek[G/H] | vXft) * 0 pour 1 &lt;; i &lt; n}.

De l&apos;invariance de vt par G, il résulte qu&apos;il existe vt e V et at e Q tels que vt((ptn)
0/Op) H&quot; ain pour tout cp g In. Par suite, on a:

T=h[GIH]nÇ) {feK\v,(f)*a,}
l= 1

d&apos;où

k[G/H]n f] IOvczL
v e r-(X)

L&apos;inclusion opposée est évidente.

Nous sommes amenés à décrire les ensembles y et Y°{X). Par restriction à KiB\
tout élément de Y définit un morphisme pv de A vers Q. On pose

i?:=Homz {A, Q). Dans l&apos;espace vectoriel AQ&apos;=A ®z Q dual de 1, définissons un
cône convexe I comme suit: I est engendré par les différences v — X — n où

l,/i,ve D(A) et le produit de Vx et V^ dans A contient Vv. L&apos;énoncé suivant est un
cas particulier de résultats de Luna-Vust et Pauer (voir [LV, 7.4], [P, Proposition
2.1] et [Kn, Lemma 5.1]), qu&apos;on reverra en 2.1. Nous en donnons une démonstration

pour mémoire.

PROPOSITION
(i) Uapplication p : v -&gt; pv est une injection de V dans È.

(ii) U image p(i^) est le cône dual de Z.

Rappelons que pour toute partie a de AQ, le cône dual de a est
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Démonstration, (i) Soit yef. Il suffit de prouver que pour tout G-sous-
module simple M de A, la restriction de v à M est constante. Mais cela résulte du
fait que Mn-.= {m e M | v(m) ^ n) est un sous-G-module de M, quel que soit «eQ.

(ii) Soit ref; montrons que v est non négative sur Z. Soient À, fi, v g D{A) tels

que Vv a VÀ - V^. Alors {v, v&gt; &gt; &lt;u, A&gt; H- &lt;y, ^&gt; où on note &lt;t;, A&gt; la valeur de pv

sur FA.

Réciproquement, soit veï. Etendons v en une application v : A -+Qv{co}
comme suit: on pose v(0) oo. Si/e^\{0}, on pose v(f) =min &lt;r, co&gt;, le

minimum portant sur les poids a&gt; de &lt;G -f}(B). Il est clair que 0 est invariante par
G; montrons que v est la restriction à A d&apos;une valuation de K.

Soient fl9f2eA. Choisissons un poids X de &lt;G • (fx +f2)}(B) tel que

#(/i +/2) (v&gt; ^&gt;- Alors/, -f/2 a une projection non nulle sur VÀ, donc on peut
supposer qu&apos;il en est de même de/,. Par suite, À est un poids de &lt;G /i&gt;(i°, d&apos;où

&lt;0, A&gt;. On conclut que v(fx +/2) &gt; min (r(/,), 0(/2)).
De l&apos;inclusion de &lt;G -/,/2&gt; dans &lt;G •/,&gt; • &lt;G -/2&gt;, il suit que

^^(/i)+^(/2) avec égalité si /,,/2 sont vecteurs propres de B, et plus
généralement, s&apos;ils sont invariants par U. Pour tout entier n &gt; 0, posons

4,&apos;= © V, {feA\v(f)&gt;n}.

Alors (y4w) est une filtration décroissante de A. Notons gr^ le gradué associé.

D&apos;après ce qui précède, l&apos;algèbre (gr A)u est isomorphe à A u. Grâce à [Kr; III.3.3],
on en déduit que gr^4 est intègre, d&apos;où v(flf2) =v(fl) +v(f2) quels que soient

COROLLAIRE. Uimage pii^iX)) est le cône dual de I + D(A).

Démonstration. D&apos;après la preuve de (i) ci-dessus, on a: v g i^(X) o v e Y et

v &gt; 0 sur D(A).

1.3. Structure des idéaux invariants intégralement clos

THÉORÈME. Pour tout idéal invariant /, le D-idéal de T est l&apos;intersection de

D(k[G/H]) avec l&apos;enveloppe convexe de D(I) -f I.
Démonstration. Soit A g D(k[G/H]). Si À est dans l&apos;enveloppe convexe de

I -f /)(/), alors on a, pour tout v e

min &lt;i;, /x&gt;= min &lt;u, ^&gt;

e £ + D(I) M e D(I) fe I
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Cela signifie que 1(9v contient tout élément de KiB) de poids À. On conclut grâce au
lemme 1.2, que X g /&gt;(/).

Supposons maintenant que X n&apos;est pas dans l&apos;enveloppe convexe de I + D(I).
D&apos;après le théorème de Hahn-Banach, il existe cp e 1 telle que:

&lt;&lt;p,A&gt;&lt; min O,/*&gt;.

Soit v e I + /)(/): montrons que &lt;&lt;p, v&gt; &gt; 0. En effet, choisissons fi g £&gt;(/); alors

// + nv e I + D{I) pour tout entier w ^ 0, donc &lt;cp, A&gt; &lt; &lt;&lt;p, /i + nv} et l&apos;assertion.

D&apos;après le corollaire ci-dessus, on peut écrire cp pt avec t? e ^(X); alors

&lt;u, A) &lt; min &lt;t&gt;, //&gt; min v(f).
nel + D(f) fe I

Comme précédemment, on en déduit que À $ D{T).

Pour tous À, fi e A, on note À&lt;fi si À—fiel. Cela définit un ordre partiel sur
A; en effet, In(-I) {0} puisque 1 est engendré par des racines négatives.

Lorsque / est inclus dans A, on peut remplacer D(k[G/H]) par D{A) dans le

théorème ci-dessus. On obtient un énoncé qui unifie plusieurs résultats antérieurs
([DEP, Theorem 8.2], [AD, Theorem 6.2], [R, Proposition 4.7]).

COROLLAIRE. Quels que soient A,,..., kn g D(A), la clôture intégrale de

Vidéal invariant engendré par VÀ{9. Vkn a pour D-idéal Vensemble des A e D(A)
tels qu&apos;il existe fi dans l&apos;enveloppe convexe de À{,..., Àn avec À ^ fi.

1.4. Exemples

(a) Les variétés déterminantielles
Soient m, n deux entiers tels que \&lt;m &lt;&gt;n. Considérons l&apos;opération naturelle du

groupe G-=GLm(k) xGLn(k) dans X-&gt;=Homk(km9 kn). Les adhérences des G-
orbites dans X sont les &quot;variétés déterminantielles&quot; (voir [Kr, III.3.7]).

Soit B le sous-groupe de Borel de G formé des couples (m, v) où u est triangulaire
inférieure, et v triangulaire supérieure. Posons x.= (\n0) où \n est la matrice unité
n x n. Le groupe d&apos;isotropie de x dans G est:

// 1(7&quot; b\ a)\ae GLW (*), b g Hom* (*&quot;-», k% c e GLm _„(*)}•

Par suite, BnH est isomorphe au produit direct d&apos;un tore de dimension aï, par un

sous-groupe de Borel de GLm _ „ (k). Un calcul de dimensions montre que B • x est

ouvert dans X.
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Nous allons rappeler la décomposition de A k[X] en somme directe de

sous-G-modules simples, et décrire le cône I introduit en 1.2. Pour 1 &lt; / &lt; «,
notons 9, (resp. if/,) le poids dominant du G-module simple Alkm (resp. a&apos;&amp;&quot;)*).

D&apos;après [loc. cit.], le monoïde D(A) est engendré par q&gt;x + i/^,. cpn + \j/n,

qui forment une base du réseau A. Soit T le tore maximal de B formé des couples
de matrices diagonales. On note a,,...,am_, (resp. /?,,...,/?„_,) les racines

simples de GLm(£), T (resp. de G\n (k), T), ordonnées de façon que &lt;(p,,a,&gt;

PROPOSITION. Le cône I est engendré par - a, - ft,...,- aw _,-/*„_,.
Démonstration. Remarquons que I est contenu dans l&apos;intersection Z&quot; du cône

engendré par les racines négatives, et de l&apos;espace vectoriel engendré par
q&gt;x -f \j/ q&gt;n + \\fn. On vérifie sans peine que le cône T&apos; est engendré par
— a! —/?!,..., — aw_ i — /?„_ Pour conclure, il suffit de prouver que

(*) ~otp - fip el pour \&lt;&gt;p&lt;n-\.

Pour 1 ^ /}&lt;•••&lt; /^ &lt; « et 1 ^y*! &lt; • • • &lt;jp ^ n, notons (^ • • • ip \jx • • • jp)
l&apos;élément de A défini par

O&apos;i
&apos; &apos; * h \j\ &apos; &apos;

&apos;jp)(&lt;*tj) det (ala/a), ^a^p.

Pour /? fixé, les fonctions (/, • • - ip \jx • • -jp) engendrent un sous-G-module simple
Vp de A, isomorphe à Hom^ t\pkm, Apkn)*. Un vecteur propre de B dans Vp est

(1 • • - p | 1 • • •/?), de poids q&gt;p + ij/p- On vérifie aisément que l&apos;élément

est un vecteur propre non nul de 5, de poids 2((pp + il/p) —ap — j}p. Puisqu&apos;il

appartient au carré de Vp dans A, l&apos;assertion (*) en résulte.

D&apos;après la proposition, l&apos;ordre partiel ^ sur A est induit par l&apos;ordre usuel sur
les poids. En traduisant le langage des poids et racines dans celui des tableaux, on

peut déduire du corollaire 1.3 les résultats de [DEP, §8].

(b) Un exemple isolé

Soit m ^4 un entier. Dans X&apos;=Homk(km,k4), faisons opérer
G &apos;-= GLm (k) x Sp4 (k) où Sp4 (k) désigne le groupe symplectique associé à la forme
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ex a (e2 + e3 + e4) + e2 a e3 dans la base canonique de A:4. Définissons B9 T, H, x de

façon analogue à l&apos;exemple ci-dessus. Alors

a g Sp4 (k), b e Hom* (km ~ \ k% c g GLm _ 4 (k) }.

On en déduit que B n H est isomorphe au produit direct du centre de Sp4 (k) par un
sous-groupe de Borel de GLm _ 4 (k), et que B • x est ouvert dans A&quot;.

Pour 1 &lt; i &lt;&gt; 4, soit «p, le plus grand poids du GLm (k)-module simple a&apos;A:&quot;1;

soient ^,, ^2 les poids fondamentaux de Sp4(A:). On peut vérifier que le monoïde
Z)(v4) est engendré librement par (pi+if/u q&gt;2, &lt;Pi + &lt;Ai, (p4, &lt;Pi H- &lt;jf&gt;3 + ^2» et Que ^
est engendré par -a1? -a2, -a3, -j5l5 ~jS2 où al9. am_ JS,, j32 sont les

racines simples de G. Par suite, l&apos;ordre partiel sur A coïncide encore avec l&apos;ordre

usuel sur les poids.

2. Idéaux invariants dans les variétés sphériques simples

2.1. Rappels

Nous allons étendre les résultats de la première partie aux G-variétés sphériques
simples, i.e. qui ne contiennent qu&apos;une orbite fermée de G. Voici d&apos;abord quelques
rappels sur la classification et la structure de ces variétés; pour les démonstrations
et plus de détails, voir [LV, §8], [BP, §2], [Bl, 1.1] et [Kn]. Dans tout ce qui suit, et
sauf mention expresse du contraire, X désigne une variété sphérique simple, et Y
l&apos;orbite fermée de G dans X.

(i) Classification des plongements simples
Choisissons x e X tel que B • x soit ouvert dans X, et posons H-=GX; alors

(X, x) est un plongement de l&apos;espace homogène G/H. On note 3&gt; l&apos;ensemble des

diviseurs irréductibles if-stables de GjH, et Y l&apos;ensemble des valuations discrètes

(/-invariantes de K-=k(G/H). Notons ^(X) l&apos;ensemble des D e 3f dont l&apos;adhérence

contient 7, et soit @(X) l&apos;ensemble des valuations associées aux diviseurs
irréductibles G-stables de X\ alors @(X) c Y. D&apos;après [LV, Proposition 8.3] ou [Kn,
Theorem 2.3], le plongement (X, x) est uniquement déterminé par le couple

Les éléments de ^(X) s&apos;appellent les couleurs de X.

(ii) Description des valuations invariantes
On note A l&apos;ensemble des poids de K(B\ et Ê «= Homz (A, Q). Tout v g f se

restreint en un élément pv de Ê. D&apos;après [LV, Proposition 7.4] ou [Kn, Corollary
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1.8], l&apos;application &apos;V -*Ê : v -+pv est injective, et son image est un cône convexe
polyédral dans J. De même, tout D e ^ définit une valuation vD de K, d&apos;où pD e «â;

mais l&apos;application D -+pD peut ne pas être injective. On note *é(X) le cône de M

engendré par p(,f(I)uJ(J)), et on note i^(X) l&apos;intersection de &lt;g(X) et de

ce sont deux cônes convexes polyédraux.

(iii) Une carte affine
Avec les notations précédentes, on pose

X0:=X\
D e

C&apos;est un ouvert de X, stable par le sous-groupe parabolique

P-= {s 6 G | s • D D VD €

qui contient B. En fait, Xo est affine, et recontre Y suivant une unique orbite de P
et de B. Plus précisément d&apos;après [Bl, 1.1], il existe un sous-groupe de Levi L de P,
et une sous-variété Z de Xo, tels que:

(a) Z est affine, stable par L, et contient x.
(b) L&apos;application ?MxZ^I0:(5,z)-^rz est un isomorphisme.
(c) Le sous-groupe dérivé (L,L) de L opère trivialement dans YnZ, qui est

l&apos;orbite fermée de L dans Z.

Posons ,4 *=fc[Jf0], et notons D(A) l&apos;ensemble des poids de A(B\ Alors D(A) est

l&apos;intersection de A et du cône dual de ^(X).
Nous allons décrire les idéaux invariants de X, en termes de A, ^(X) et i^{X).

Grâce à la structure de la carte Xo, nous nous ramènerons à des problèmes
concernant la L-variété sphérique affine Z.

2.2. Idéaux invariants

On conserve les notations de la section précédente.

Définition. Un idéal (fractionnaire) invariant J de X est un sous-faisceau,

cohérent et stable par G, du faisceau constant des fonctions rationnelles sur X. Le
D&apos;idéal de J est l&apos;ensemble des poids de r(X0, J)(B\

En particulier, le D-idéal de 0x est D(A) A n&lt;£(X)y.
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PROPOSITION. Soit J un idéal invariant.

(i) La restriction de J à G /H est égale à (9GjH.

(ii) Le D&apos;idéal de J&gt; est réunion d&apos;un nombre fini de translatés de D{OX)\ il
détermine uniquement J&apos;.

Démonstration. La preuve de (i) est analogue à celle du lemme 1.2(i). Pour (ii),
posons I:=r(X0&gt; J). C&apos;est un idéal ^-invariant de A, donc l&apos;isomorphisme de A sur
k[Pu] ® k[Z] (voir 2.1(iii)) envoie / sur k[Pu] ®/, où / est un idéal L-invariant de

k[Z]. Puisque Xo rencontre toutes les orbites de G dans X9 et que J est G-invariant,
il est déterminé par /, donc par J. Comme D(0x D(k[Z]) et que
D(J) D{I) D(J), on est ramené au cas où X est affine. L&apos;énconcé résulte alors
de la proposition 1.1.

Pour tout v g &apos;V, il existe un plongement simple (Xv, xv) de G/H tel que
&amp;(Xt) 0 et &amp;(XV) {v}; on l&apos;appelle le plongement élémentaire associé à v (voir
[LV, 3.3]). La complémentaire de G • xv dans Xv est une seule orbite de G, de

codimension 1; notons-la Yv. Le lemme suivant est évident.

LEMME. Avec les notations précédentes, tout idéal invariant de Xv est de la
forme (9x{—nYv) pour un unique entier n.

D&apos;après [LV, Proposition 4.8], il existe un morphisme de plongements
7rt : (Xv, xv) -?(Ar, x) si et seulement si v e i^(X) (notations de 2.1(ii)). Sous cette
hypothèse, pour tout idéal invariant «/ de X, son image inverse J(9Xt est égale à

Définition. L&apos;ordre de J est l&apos;application ord J de y{X) vers Q définie par:

)(y) =n(v)a(v)

où a(v) est le générateur positif du groupe des valeurs de v.

L&apos;ordre de J se lit sur son D -idéal; plus précisément, on a le

THÉORÈME. Pour tout idéal invariant J, et tout v e i^(X), on a les égalités:

(ord J)(v) min v(f) min v(f).fr(Xf) feD(f)

Démonstration. On peut supposer la valuation v normalisée. Alors (ord
est le minimum des v(f) pour fe Jv où Jv est l&apos;idéal de (9V &lt;9Xv.yv associé à J.
Puisque v e V(X\ on a: k[X0] c (9V. Comme Xo est affine et J cohérent, le

£t -module Jt est engendré par r(X0, J) d&apos;où la première égalité. Pour la seconde,
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on remarque que F(X0, «/) k[Pu] ® / où J est un idéal L-invariant de Z. Puisque
v est invariante par P, on a: min/er(A-0t%f) v(f) =minfeJv(f). De plus, J est un
L-module rationnel d&apos;après 1.1, et la restriction de v à k(Z) est constante sur tout
sous-L-module rationnel simple de k(Z) (voir la preuve de la proposition 1.2(i)).
On en déduit que

min v(f) min v(f) min v(f).
fe J fe D(J) fe D{J)

COROLLAIRE. La fonction ord./ est positivement homogène, linéaire par
morceaux, continue, convexe sur ^(X). Elle prend des valeurs entières sur Vintersec-
tion de i^{X) et de Homz (A, Z), et s&apos;étend en une fonction non négative sur

Définition, Une telle fonction est appelée un coque.

Démonstration du corollaire. D&apos;après la proposition ci-dessus, il existe

/,,...,/„€ A tels que D{J) (J?= \f + D((9X). Puisque tout v e rT(X) est non
négative sur D{6X il résulte du théorème que ord J est la restriction à i^(X) de

la fonction min! ^, ^ „ f sur ^(X). Les assertions du corollaire s&apos;en déduisent

aussitôt; la non-négativité sur ^(X) suit du fait que F(X0,J) est formé de

fonctions régulières sur XonG • x, donc sur B • xu \JD

2.3. Ordre et clôture intégrale

Rappelons d&apos;abord la notion de clôture intégrale d&apos;un idéal J\ il s&apos;agit du
sous-faisceau J du faisceau constant K, tel que pour tout ouvert affine V de X, et

toute s e K, on ait: s e F(V, J) si et seulement s&apos;il existe un recouvrement ouvert
(Fa) de V tel que pour tout a, s | Va est entier sur T(Fa, &lt;/) (voir [Li, §5]). Pour un
idéal invariant, il se trouve que les données de l&apos;ordre et de la clôture intégrale sont

équivalents; plus précisément, on a le

THÉORÈME. Soit $ : r(X)-*Q une coque {voir 2.2 Définition).
(i) // existe un unique idéal invariant J&gt;&apos;# de X, dont le D-idèal est l&apos;ensemble des

feA telles que f^O sur ^(X) et que f&gt;$ sur i^(X). De plus, J# est

intégralement clos.

(ii) On a: ord J0 &lt;P.

(iii) Pour tout idéal invariant J, on a: */ord^ =«/.

Démonstration, (i) L&apos;unicité de J# résulte du fait que tout idéal invariant est

uniquement déterminé par son D-idéal (voir 2.2. Proposition). Pour l&apos;existence,

considérons l&apos;espace homogène sphérique GjH où G-=G x k* et ff-=H x {1}.
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Avec des notations évidentes, on a A A x Z, I ixQ, i^ i^xQetD=D
D&apos;après [LV, Proposition 8 10] ou [Kn, Theorem 3 1], il existe un plongement
simple (T, x) de G/H tel que &amp;(jt) ^(X) et que

1T(X) {(v, u) e r(X) x Q | &lt;P(v) + u &gt; 0}

De plus, on a un G-morphisme cp (X, x) -&gt; (X, x) qui prolonge la projection
G/H G/H xk*-*G/H [loc cit, Theorem 4 1] On vérifie sans mal que
(p~~l(X0) Xo D&apos;après 2 2(in), on a avec des notations évidentes, pour
(/, n) e A (/, n) e D(A) si et seulement si vD(f) ^ 0 pour tout D e &amp;(X) et

vif) + un &gt; 0 pour tout iv, u) e i^iX\ î e si /&gt; 0 sur ^(X), l&apos;entier n est non
négatif, etf&gt;n&lt;P sur ^(A&quot;) Donc l&apos;action de A:* dans Xo induit une graduation de

A, avec Ao A, de plus, D^) est formé des/e /l tels que/^ 0 sur ^(X) et que
/&gt; ^&gt; sur i^iX) D&apos;où isomorphisme de (9X-modules gradués ^^ ®^=Q Jn avec

,/0 (9X De plus, les yn sont des idéaux invariants de X, intégralement clos (car X
est normale), et on peut prendre J# J x

(n) D&apos;après la proposition 2 2, on a ord «/# min (/) où on prend le minimum

sur les / 6 A telles que / &gt; 0 sur &amp;iX) et que / &gt; &lt;P sur Y(X) L&apos;assertion

resuite donc du fait que &lt;P s&apos;étend en une fonction convexe sur ^iX), non négative
sur ^(X)

(ni) Considérons la 0^-algebre graduée cohérente ©JLo^n» notons X son

spectre Puisque la restriction de chaque Jn à G /H est triviale, Xest un plongement
de l&apos;espace homogène sphénque G/H On a un morphisme de plongements
cp iX, x) -? (Z, x), dual de (9X a (9% Du fait que cp est le quotient par l&apos;action de

k*, résulte que X est simple et que ^(JP) &amp;iX) Par suite, on a (p~~\X0) Xo

Soit (v, u) e M alors

un &gt; 0 V(/, h) €

&gt;0 V/e 7

(ord ^)(i;) + m &gt; 0

Par suite, on a i^iX) f (JP) où A* est la variété construite en (1) avec &lt;P ord J
Donc X X d&apos;après la classification des plongements, et J Jx J&lt;p

2 4 Classification des idéaux invariants intégralement clos

L&apos;énoncé suivant généralise une partie de [KKMS, Theorem 9]
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THÉORÈME
(i) Les applications J -+ord&lt;f et $-*J# définissent des bijections décroissantes

réciproques entre idéaux invariants, intégralement clos, et coques.

(ii) On a: ord («/«/) ord J -f ord / quels que soient les idéaux invariants J et #&apos;.

(iii) Un idéal invariant intégralement clos J est inversible si et seulement si ord J est

la restriction à i^(X) d&apos;une application linéaire, nulle sur

Démonstration, (i) est conséquence immédiate du théorème 2.3, et (ii) résulte

du fait que (ord J)(v) min/er(^0&gt;Jf) v(f) pout tout v e i^(X).
(iii) Soit J un idéal invariant inversible. D&apos;après [Bl, Proposition 2.1], la

restriction de J à Xo est triviale. Par suite, il existe &lt;P e K(B) telle que
F(X0, J) &lt;PA. Puisque la restriction de J à G - x est aussi triviale, on a: vD(&amp;) ^ 0

pour tout D e ^(X). En remplaçant «/ par son inverse, on en déduit que &lt;P est nulle

sur ^(X). De plus, D(J) est égal à &lt;P+D(OX), d&apos;où ord J ^ d&apos;après la

proposition 2.2.

Réciproquement, soit &lt;P un élément de A, nul sur 1F{X). Alors £&gt;(&lt;/#) est égal
à ^ -h D(0x), d&apos;où r(X0, J^YB) 4&gt;AiB) puis r(JT0, «/*) *A. Par suite, la restriction

de J\p à Xo est inversible, d&apos;où l&apos;assertion.

Remarque. On munit l&apos;ensemble des idéaux intégralement clos, du produit défini

par J * / «//. Si de plus J, / sont invariants, alors ord (J * /) ord «/ +
ord &lt;/. Dans cette définition du produit, il est nécessaire de prendre la clôture
intégrale; en effet, il arrive que le carré d&apos;un idéal invariant intégralement clos, ne

soit pas intégralement clos (voir [DEP, §8, Example 2]).

Question. Soient X une variété sphérique affine, et / l&apos;idéal de l&apos;orbite fermée de

G dans X. Est-ce que /&quot; est intégralement clos pour tout entier n ^ 1?

3. Morphismes birationnels entre variétés sphériques

3.1. Eclatement normalisé

II y a des liens étroits entre idéaux intégralement clos, et morphismes
birationnels. En effet, soient Z une variété normale, et J c k(Z) un faisceau cohérent
d&apos;idéaux. Alors les conditions suivantes sont équivalentes [Li, §§5 et 6]:

(i) J est intégralement clos.

(ii) Pour toute variété Z&apos;, et tout morphisme birationnel propre n : Z&apos;-*Z, on

a: J 7rj|t(t/0z,).
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(iii) II existe une variété normale Z&apos;, et un morphisme birationnel propre
n \Z&apos; -*Z, tels que J(9Z soit inversible, et que J n^{

Sous ces hypothèses, il y a une variété minimale vérifiant (iii): c&apos;est Yéclatement
normalisé de J dans Z, défini par Z&apos; Proj (©JL0 &lt;?&quot;). Tout morphisme
birationnel projectif n : Z&apos; -*Z&gt; où Z et Z&apos; sont normales, est l&apos;éclatement normalisé
d&apos;un faisceau cohérent d&apos;idéaux J &lt;= k(Z). Lorsqu&apos;un groupe algébrique affine
F opère dans Z et Z&apos;, et que n est T-équivariant, on peut prendre J stable par
f.

Revenons au cas d&apos;une variété sphérique simple X\ nous allons décrire l&apos;éclatement

normalisé n : X&apos;-*X d&apos;un idéal invariant «/, en termes de ord J. Posons
x&apos;*=n~l(x); alors (X\ x&apos;) est un plongement de G/H, donc il est recouvert par la
famille (Za,xa) de ses sous-plongements simples (voir [Kn, Corollary 2.2]). Pour
chaque a, on note &amp;(Xa), ^(XJ comme en 2.1(i). Puisque n est propre, la famille
des ^(Xç) est une subdivision du cône ^(X), d&apos;après [loc. cit, Theorem 4.2]. De la
définition de l&apos;éclatement normalisé, et du théorème 2.4(ii), suit la

PROPOSITION. Avec les notations précédentes, la famille (i^(Xa)) est la plus
grande subdivision de i^(X) telle que ord J soit linéaire sur chaque V{X^). Si /a est

une application linéaire telle que fu \ ^(XJ ord J \ ^(XJ, alors ^(Xa) est
l&apos;ensemble des D e &amp;(X) telles que vD(fa) 0.

Remarque. Si le plongement (X, x) est sans couleur (i.e. ^(X) est vide) et si J
n&apos;est pas inversible, alors son éclatement normalisé n&apos;est pas un plongement simple.
Par contre, lorsque ,^(X) n&apos;est pas vide, choisissons # e A telle que v(&lt;P) ^ 0 pour
tout v e V{X\ et que vD(&lt;P) &gt; 0 pour tout D e &amp;(X). Alors l&apos;éclatement normalisé
de J9 est le plongement simple (X\ x&apos;) tel que &amp;(X&apos;) 0 et que
On reviendra là-dessus en 3.3.

3.2. Un théorème d&apos;annulation

Soit n : (X\ x&apos;) -&gt;(X, x) un morphisme propre de plongements de G/H. Soit &lt;P

une coque sur 1T(X) T(X&apos;\ Soit S* (resp. J&apos;*) l&apos;idéal invariant de X (resp. X&quot;)

défini en 2.3; alors J&apos;* est la clôture intégrale de J&lt;p(9x-.

THÉORÈME. Avec les notations précédentes, on a: n^J&apos;^ — J\ et Rln+S&apos;# 0

pour tout i ^ l.

Démonstration. Comme dans la preuve du théorème 2.3, considérons la ®x-algèbre

graduée ®^L0 &lt;?n ©^°=o «^«*? et son spectre X avec le morphisme canonique
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cp : Jf-&gt; X. Définissons de même q&gt;&apos; : X&apos; -+X&apos;. On a un diagramme commutatif

Xf —

où le morphisme n est dual de l&apos;inclusion

« 0 /j 0 n 0

Par suite, n se factorise en un morphisme fini X&apos; -&gt; X&apos; x x X, suivi du morphisme
canonique X&apos; x x X -&gt; 2. Puisque n est propre, n l&apos;est aussi. D&apos;autre part, X et X&apos;

sont des plongements de (G x k*)/(H x {1}), et n est un morphisme de plongements

(car les restrictions de J$ et de «/^ à G/H sont triviales). En particulier, n

est birationnel. D&apos;où n^G^ (9% d&apos;après le théorème principal de Zariski. De plus,
^&apos;^?^jf 0 pour tout i ^ 1 car les singularités de X tt de X&apos; sont rationnelles (voir
[Bl, 1.2 Corollaire 1] et ses références). D&apos;où

&apos;§/&apos;•

et en particulier J# =n^Jf^. Puisque cp et cp&apos; sont affines, on obtient de même:

R&apos;nt(®?=0J&apos;n4&gt;) =0 pour tout i 2&gt; 1.

Remarque. Dans le cas des variétés toriques, le résultat ci-dessus est dû à G.

Kempf (voir [KKMS, 1.3 Corollary 1]), qui le déduit d&apos;une description des groupes
de cohomologie des idéaux invariants, en termes combinatoires. Il en déduit aussi

que H%X, J) 0 pour tout / ^ 1 lorsque X est une variété torique complète, et J
est engendré par ses sections globales [loc. cit, Corollary 2]. Ce théorème d&apos;annulation

est encore vrai dans les variétés sphériques (voir [B2, Théorème 2.3]); mais
c&apos;est un problème ouvert de déterminer la cohomologie des idéaux invariants d&apos;une

variété sphérique complète.

3.3. Factorisation de morphismes birationnels

Soient (X, x) et (X\ x&apos;) deux plongements de l&apos;espace homogène sphérique G/H.
Nous allons étudier les morphismes de plongements n : (X\ x&apos;) -*• (X, x). Supposons
d&apos;abord que Jfest sans couleur; alors il en est de même de X&apos;. Soit P le sous-groupe
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parabolique de G, formé des s e G tels que s B x B x Rappelons qu&apos;il existe

un sous-groupe de Levi L de P, et une sous-variété Z de X, tels que Z est stable

par L, et contient x, le sous-groupe dérivé (L, L) de L opère trivialement dans Z,
et l&apos;application naturelle de ?&quot; x Z vers X est une immersion ouverte De plus, Z
recontre toute orbite de G dans X, suivant une unique orbite de L (voir [BP,
Proposition 3 4]) Posons Z&apos; =n~\Z) et C L/(L, L) Alors (Z, x) et (Z&apos;, x&apos;) sont
des plongements du tore C/CnH, de plus, n est uniquement détermine par sa

restriction a Z&apos;, que est un morphisme birationnel équivariant entre variétés

toriques Bien que de tels morphismes aient été beaucoup étudiés, nous n&apos;en avons
qu&apos;une connaissance incomplète (voir [O, 17] et ses références) Appelons dans ce

cas X, Xf des variétés toroidales, et n un morphisme toroidal
Lorsque (X, x) est un plongement quelconque de G/H, il existe un unique

plongement toroidal (X, x) muni d&apos;un morphisme propre de plongements p vers X,
et minimal pour cette propriété Si (XX9 xa) es la famille des sous-plongements
simples de (X, x), alors (X, x) a comme sous-plongements simples les (Jfa, xa) tels

que ^(Xx) =0 et que ^(JP.) ^(A^) Appelons 2 la décoloration de X

PROPOSITION Soit n (X\ x&apos;)-+(X, x) un morphisme de plongements II
existe un unique morphisme toroidal n tel que le diagramme

n
X&apos; &gt;X

commute, ou p, p&apos; sont les décolorations de X, X&apos; De plus, si n est propre, alors n
l&apos;est aussi

Démonstration On peut supposer X simple Soit (X^) la famille des sous-

plongements simples de X&apos; Alors la famille des ir{X&apos;a) est une subdivision d&apos;un

sous-cône de i^(X), et n est propre si et seulement si (J« ^(Xa) ^W L&apos;énoncé

en resuite aussitôt

Nous sommes conduits à étudier la décoloration d&apos;un plongement (X, x), que
nous supposerons simple Faisons de plus l&apos;hypothèse suivante

(*) Tout diviseur de Weil de X est un diviseur de Cartier
D&apos;après [Bl, 2 2 Remarque (n)], cela se traduit par

(*?) @(X) kj&amp;(X) est une partie d&apos;une base de Homz (A, Z)
avec les notations de 2 l(i) Pour tout D e^(X), il existe alors fDe A tel que
vD(fD) 1 et que v(fD) 0 pour tout v s &amp;(X)u&amp;(X), v^vD Soit SD l&apos;idéal

invanant intégralement clos tel que ord JD -fD (voir le théorème 2 3)
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THÉORÈME. Sous l&apos;hypothèse (*), la décoloration de X est le composé (dans un

ordre arbitraire) des éclatements normalisés des JD pour D g ^(X). De plus, quel que
soit D g^(X), ridéal JD est la clôture intégrale de I&lt;geGg (9X(-D).

Autrement dit, pour supprimer les couleurs, on éclate l&apos;intersection schématique
de leurs translatés.

Démonstration. La première assertion est conséquence immédiate de la proposition

3.1. D&apos;après le théorème 2.3, pour prouver la seconde assertion, il suffit de

montrer que ord&lt;/D=/£), où on pose yD =2,geGg - &amp;X(—D). Soit vei^(X);
alors (ord,/D)(t;) mint;(/), où/décrit l&apos;idéal JD associé à (/D dans (9XY. Mais
puisque v est G-invariante et que JD £ge£&gt; &amp;x,y( —g &apos; ^)» on a:

(ord fD)(v) min v(f).
feOxr(-D)

On en déduit comme dans la preuve de la proposition 2.2, que
(ord /D)(v) min v(f) où/décrit l&apos;ensemble des fonctions régulières sur Xo, nulles

sur Z), et vecteurs propres de B. Mais d&apos;après (**), un tel/s&apos;écrit sous la forme fDcp,

avec v(ç) ^ 0; d&apos;où l&apos;assertion.

Remarque. Dans certains cas, l&apos;idéal ZgeGg &apos; &amp;x(—D) est premier, pour tout
D g ^(X); de plus, on peut ordonner ^(X) {D,,..., Dn} de façon que l&apos;éclatement

du produit JD
x

• • • JD soit normal pour \ &lt;&gt; p &lt;n. Alors la décoloration de

X se factorise en éclatements successifs de sous-variétés irréductibles G-stables.

Nous allons voir un exemple classique d&apos;une telle situation: la construction de

&quot;collinéations complètes&quot; (ou de &quot;formes bilinéaires complètes&quot;; voir [TK] et ses

références).

3.4. Exemple

Comme dans l&apos;exemple 1.4(a), considérons G-=GLm(k) x GLn(k) opérant
dans Z — Hom^. (km, kn) où m, n sont des entiers tels que 1 &lt; n ^ m. Puisque X est

lisse, la condition (*) ci-dessus est bien vérifiée. Pour O^p ^ «, notons Xp la

sous-variété de X formée des matrices de rang au plus /?, et Dp la couleur associée

au poids q&gt;p + ij/p (avec les notations de 1.4). Alors l&apos;idéal

geG

est engendré par le sous-G-module simple de k[X]9 dual de HomA:( Apkm, Apkn);

par suite, Ip est l&apos;idéal de Xp _.,.
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Pour 1 &lt; q &lt; p &lt; «, définissons des variétés Xpq) par:

Y(q+l) est l&apos;éclatement de Xiq) dans

Xpq + l) est la transformée stricte de Xpq) dans cet éclatement.

Montrons, par récurrence sur q, que

(i) Xiq) est lisse pour 0 &lt;&gt; q £ n.

(ii) Xpq) est normale pour 0 &lt; q &lt;&gt;p.

(iii) Xpp) est lisse pour 0 &lt; p ^ n, et c&apos;est la décoloration de Xp.

Pour # 0, on a: X™ X, et A^0) {0}. De plus, Xp0) Xp est une sous-variété
irréductible G-stable de X; elle est donc normale d&apos;après [BP, Proposition 3.5]. Si

les énoncés (i), (ii), (iii) sont vrais pour q éclatements, alors X(q+Ï) est lisse, comme
éclatement de la sous-variété lisse X(q) dans la variété lisse X(q). Comme ci-dessus,

on en déduit que Xpq+ 1} est normale pour p&apos;Z.q + l. On vérifie sans peine que
Xqq+il) s&apos;obtient en éclatant les intersections des translatés des couleurs de Xq+X\
c&apos;est donc la décoloration de Xq+l. Il reste à montrer que pour 0 ^p ^ ai, la
décoloration Xp de Xp est lisse.

Soit xp := I ^ I g X, où \p est la matrice unité p x p. Notons Hp le groupe

disotropie de xp dans G. Avec des notations évidentes, on vérifie comme en 1.4 que
D{AP) (resp. Ip) est engendré librement par (px + ^,,..., ij/p + \l/p (resp.
— &lt;*! — /?!,..., —&lt;xp_l—pp_l). Par suite, le cône dual de ^(Xp) est engendré par

&lt;Pi + *Ai » — «i — 0i &gt; • • • &gt; ~v*p-\— $p-\ qui forment une base de /l^. Donc ^(A^)
est engendré par une base de Homz (Ap9 Z). Grâce à la structure locale de %p

rappelée en 3.3 et au critère de lissité pour les plongements toriques, on conclut que
Xp est lisse.

Remarques. (1) On peut montrer que l&apos;éclatement de Ip dans Xp est lisse pour
1 &lt; p &lt;n; en fait, c&apos;est la résolution des singularités de Xp introduite par G. Kempf
(voir [K, Proposition 2]).

(2) On construit de façon analogue les &quot;formes bilinéaries symétriques (ou
antisymétriques) complètes&quot;.

4. Caractérisation des variétés sphénques lisses

4.1. Multiplicité d&apos;un idéal invariant

Soit A un anneau local noethérien excellent; notons d sa dimension et m son
idéal maximal. Soit / un idéal m-primaire de A. Les fonctions H(n).= \g(A/In) et
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H(n)&apos;=lg(A/In) sont des polynômes pour n assez grand, avec le même terme
dominant end\d\. Le nombre e est un entier positif, appelé la multiplicité de / (voir
[M] et ses références).

Soient X une variété algébrique et S un faisceau cohérent d&apos;idéaux de @x,

définissant un sous-schéma fermé S de X. Supposons pour simplifier que le support
Y de OxjJ est irréductible. On peut alors définir la multiplicité e de &lt;/, ou de X le

long de S, comme la multiplicité dans l&apos;anneau local (9XY de l&apos;idéal associé à J (voir
[F, Example 4.3.4]).

Lorsque X est une G-variété sphérique, et J un idéal invariant, nous allons

exprimer la multiplicité de J en fonction de son ordre. On suppose pour simplifier
que X est simple et que l&apos;orbite fermée Y de G dans X, est le support de 0x/J\ on
utilise les notations de la seconde partie. Posons AR-=A ®ZR. Notons DR(J)
l&apos;ensemble des/g Ar telles que/&gt; 0 sur 1F(X) et que/&gt; ord J sur Y°(X)\ alors

DR{(9X) est le cône dual de ^(X), et DR{J) est un polytope convexe rationnel dans

DR((9X). Soit 7i : AR-+E le quotient par le sous-espace orthogonal à ^(X). Notons
^(«/) l&apos;adhérence de k(Dr((9x)\Dr(*/)). C&apos;est une réunion finie de polytopes
convexes, rationnels par rapport au réseau n(AR).

Avec les notations de 2.1(iii), toute/g D(0x) s&apos;identifie à un vecteur propre de

BnL dans k[Z], donc / engendre un L-module simple &lt;L •/&gt; dont on note
dim (/) la dimension. D&apos;après la formule de Weyl, l&apos;application dim se prolonge en

une fonction polynomiale sur AR, notée encore dim. Puisque tout élément de D(&amp;x)

orthogonal à ^(X) est vecteur propre de L, la fonction dim est invariante par
translations par l&apos;orthogonal de ^(X). Donc elle se factorise par une fonction
polynomiale, toujours notée dim, sur E.

On note IXY l&apos;idéal de 0XY associé à f. Pour tout entier n &gt; 0, on note H(n) la

longueur du GXY -module @x,yIIx,y-

THÉORÈME. Avec les notations précédentes, on a: H(n) £ dim (/) où la

somme porte sur les f e n^{J) n n(A).

Démonstration. On pose A k[X0] et / F(X09 J). Puisque le support de A/I
est Xon Y, le A -module A/In admet une filtration dont tous les sous-quotients sont
annulés par l&apos;idéal de XQn Y; le rang (sur k[X0 n Y]) du gradué associé à une telle

filtration est égal à H(n). De plus, l&apos;isomorphisme de A sur fc[PM] (g) k[Z] envoie /
sur k[Pu] ®J,oùJest un idéal L-invariant de k[Z], et envoie In sur k[Pu]®Jn. On

peut donc remplacer X par Z (cela ne change pas ord J, DR(«/), etc). Alors H(n)
est le rang (sur k[Z n Y]) du gradué associé à toute filtration de k[Z]/F(Z, Jn) avec

sous-quotients annulés par l&apos;idéal de Zn K Or k[Zn Y] ©fc/où la somme porte
sur les/g A qui sont nulles sur ^(X). De plus

k[Z]= © &lt;L/&gt; et r(Z,Tn)= ©_&lt;L-/&gt;= © &lt;£•/&gt;.

/e / D/
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L&apos;énoncé s&apos;en déduit aussitôt.

COROLLAIRE. L&apos;ensemble %&gt;(J) est borné, et la multiplicité de J est égale à

&lt;P(P) dp

où d est la codimension de Y dans X, q&gt; est le terme de plus haut degré de la fonction
polynomiale dim, et dp est la mesure de Lebesgue sur E, normalisée de façon que la
maille du réseau n(A) soit de volume 1.

Démonstration. La première assertion résulte du fait que H{n) est finie pour tout
entier n &gt; 0. Pour la seconde assertion, on remarque que

H(n) Yj dim i

est équivalente quand n -? oo à

£ &lt;p(f) ndegi&lt;f&gt;) £ cp(f)

et que la dernière somme est le produit de ndim{E) par une &quot;somme de Riemann&quot;

pour j^(^) (p(p) dp.

PROPOSITION. L&apos;application H est la restriction aux entiers naturels d&apos;une

fonction polynomiale.

Démonstration (analogue à [KKMS, 1.3 Corollary 3]; voir aussi [M]). Comme
dans la preuve du théorème ci-dessus, on peut supposer que X est affine. Soient

n : X&apos; -+X l&apos;éclatement normalisé de J, et S£ -=J(9X&apos;. Notons Y&apos; le sous-schéma

fermé de Xf défini par if, et i : Y&apos;-&gt;X&apos; l&apos;inclusion, avec &lt;£&apos;-&gt;=&lt;£ \ Y&apos;. On a une
suite exacte

De plus, n+&amp;&quot;
~7&quot;, et Rln+£&quot;&apos; 0 pour tout / ^ 1 d&apos;après [B2, Théorème 1.1];

en effet, S£n est engendré par ses sections globales. On en déduit que
Rln^(i^&lt;£fn) 0 pour tout i ^ 1, et que la suite



258 MICHEL BRION

est exacte. Puisque X est affine, on a une suite exacte

0-&gt;r(X, Jn+ 1)-&gt;T(X9 Jn)

de plus, H&apos;(Y\ g&quot;n)=Q pour tout i &gt; 1. Puisque &lt;£&apos; est un fibre en droites sur Y\
on déduit de [F, Example 18.3.6] que l&apos;application n -?/(F/, if &apos;&quot;) est la restriction
aux entiers naturels d&apos;une fonction polynomiale; il en est donc de même de

l&apos;application n -&gt;dim r(X, ^f&quot;)/r(X9 Jn+X) H(n -h 1) - H(n).

Exemple. Soient (X, x) un plongement projectif de G/H, et ô un diviseur de

Cartier ample sur X. D&apos;après [Bl, Proposition 3.3], on peut associer à ô un
caractère %(ô) de B9 et un polyèdre convexe rationnel &lt;é&gt;(X,ô) dans AR, tels que
l&apos;ensemble des poids de r(X9 nô){B) s&apos;identifie à nx(8) + (rtV(X, S) n A) pour tout
entier n &gt; 0. Notons A l&apos;algèbre graduée ©JL0 r(X,nô). Le groupe G--=G x k*
opère dans A par automorphismes, et A est un G-module sans multiplicité. Par
suite, X&apos;= Spec (^4) est une (^-variété sphérique affine, avec un point fixe noté 0. Soit

/ l&apos;idéal de 0 dans X9 i.e. l&apos;idéal maximal homogène de A. La multiplicité de / n&apos;est

autre que le degré deg (ô) du diviseur ô. En outre, il est immédiat que

&lt;g(S) {(A, 0 g AR x R | A g f(x(&lt;5) + *(jr, &lt;5)), 0 &lt; t ^ 1} u {0, 0}.

Les données de %&gt;{J) et de ^(X, ô) sont donc équivalentes, et le corollaire ci-dessus

permet de retrouver l&apos;expression intégrale de deg (ô) (voir [Bl, Théorème 4.1]).

4.2. Un critère de lissité

On désigne toujours par X une variété sphérique simple, d&apos;orbite fermée Y.

Nous allons donner des conditions nécessaires et suffisantes pour que Y soit formée
de points lisses de X. Soit J le faisceau d&apos;idéaux de Y dans X; déterminons d&apos;abord

le D-idéal et l&apos;ordre de */, introduits en 2.2.

Avec les notations de 2.1 et 2.2, le jD-idéal de J est l&apos;ensemble des/g A telles

quQfeD(6x) et que/ne soit pas inversible dans D(OX)\ autrement dit, on a:

D(J) {/g A \f :&gt; 0 sur &lt;g(X) et/1 V(X) # 0}.

Soit {/i,...,/w} l&apos;unique système générateur minimal du quotient du monoïde

D(®x Par &apos;e groupe de ses éléments inversibles. Alors pour tout v e
l&apos;expression v(ft) a un sens, on l&apos;on a:

(ord f)(v) min v(ft).
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Comme en 4.1, posons AR.= A ®z R et notons DR(J) l&apos;ensemble des/e AR telles

que/ &gt; 0 sur &amp;(X) et que/ ^ ord ./ sur iT(X). Notons enfin #(«/) &lt;€ l&apos;adhérence

de l&apos;image de DR{(9X)\DR(J&gt;) dans le quotient n : AR-&gt;Epar l&apos;orthogonal de ^(X).
Alors &lt;# est formé des fe E telles que/^ 0 sur (^(Ar) et qu&apos;il existe v e ^(JT) avec

v(f) ^ K/) Por 1 — l - n- Soient cp la fonction polynomiale, et dp la mesure
de Lebesgue sur E, définies dans le corollaire 4.1; notons d la codimension de Y

dans X.

THÉORÈME. Avec les notations précédentes, les conditions suivantes sont

équivalentes :

(i) Uorbite Y est formée de points lisses de X.

(ii) Le cône ^(X) est engendré par une partie d&apos;une base de Homz (A, Z). De

plus, &lt;&amp; est un simplexe, de volume l/dl pour la forme cp(p)dp.

Démonstration, (ii) =&gt; (i). D&apos;après le corollaire 4.1, la multiplicité de X le long
de Y est égale à 1. On conclut grâce à [F, Example 4.3.5].

(i) =&gt; (ii). Grâce à la structure de la carte Xo (voir 2.1(iii)) et à [Lu, Corollaire
2], on se ramène au cas où Xest affine, et où Y est réduite à un point noté 0. Puisque
G opère dans X avec une orbite ouverte et un point fixe lisse, X est G-isomorphe à

un G-module rationnel F d&apos;après [loc. cit.]; le point 0 est l&apos;origine de V.

Comme B opère dans V avec une orbite ouverte Q, le monoïde D(k[ V]) est

engendré librement par les équations des composantes irréductibles de V\Q. Par suite,
le cône DR(k[V]) est engendré par une base de A, d&apos;où la première assertion. De
plus, ^ est convexe; en effet, si ô désigne la section hyperplane de l&apos;espace projectif
P(F), l&apos;ensemble ^ s&apos;identifie à un cône tronqué sur #(P(K), ô) (avec les notations
de l&apos;exemple 4.1). Puisque DR{k[V])\%&gt; DR{J&gt;) est aussi convexe, on en déduit que
^ est un simplexe. L&apos;assertion sur le volume de ^ résulte du corollaire 4.1.

Remarques. (1) Renvoyons à [Bl, 4.2] pour la détermination de la fonction &lt;p,

et le calcul de son intégrale sur un simplexe quelconque.
(2) L&apos;énoncé précédent généralise un critère de lissité classique pour les variétés

toriques (voir [O, Theorem 1.10] et ses références). En effet, prenons pour G un tore
7&quot;, et pour X un plongement affine de 7&quot;, avec un point fixe. Alors $*(X) est vide,
et ^(X) est le cône dual du monoïde formé des poids de T dans k[X]. Soit
(/i&gt; • • • Jn) Ie système générateur minimal de ce monoïde. Alors # est le
complémentaire dans ^(X) de l&apos;enveloppe convexe de (J&quot;= xf 4- ^(Xj; de plus, ç 1. Si

^(X) est engendré par une (partie d&apos;une) base de Homz(A, Z), alors (/,,... ,/„)
est une base de A. Donc n d et # est le simplexe standard; il est bien connu que
son volume est \jd\. On conclut que X est lisse si et seulement si le cône %&gt;(X) est

engendré par une partie d&apos;une base de Homz (A, Z).
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(3) Nous venions de voir que lorsque G est un tore, la première condition de
l&apos;énoncé (ii) du théorème implique les deux autres. Ceci n&apos;est pas vrai en général. En

effet, soient V un G-module simple, v un vecteur propre de B dans F, et X -=G • v.

Alors la variété affine X est sphérique d&apos;après [Kr, III.3.5], et le monoïde D(k[X])
est engendré librement par le plus grand poids A de V*. Par suite, le cône ^(X) est

une demi-droite, et ^ est l&apos;intervalle [0, À], Or X n&apos;est jamais lisse, sauf si G opère
transitivement dans V\{0} (voir [loc. cit]).

4.3. Exemple: lissité de certaines compactifications des groupes

Dans cette section, G est un groupe simple adjoint; on le considère comme

espace homogène sous G x G opérant par multiplication à gauche et à droite. La
théorie des plongements de G est un cas particulier de celle des plongements
d&apos;espaces symétriques (voir [V]), ce que permet de décrire les objets introduits en 2.1.

Soient T un tore maximal de G, et R le système de racines de (G, T). Alors A
est le réseau des racines de R, donc Homz (A, Z) est le réseau des poids de R. De

plus, if s&apos;identifie aux points rationnels d&apos;une chambre de R, qu&apos;on prend comme
chambre positive. Enfin, l&apos;application p : Q) -? 2, est injective, et son image est

formée des opposées des coracines simples (voir [loc. cit, Propositions 1 et 2]).
Le plongement simple (X, x) de G, tel que ^(X) 0 et que if(X) if, est

lisse (et possède bien d&apos;autres propriétés remarquables; voir [DP], [V]). Soit a une
racine simple. Si le rang de G est au moins deux, il existe un plongement simple Xa

de G tel que &amp;(Xa) {-a} et que i^(Xa) if. De plus, Xa est projectif.

PROPOSITION. Avec les notations précédentes, la variété Xa est lisse si et

seulement si oc est une racine longue, à une extrémité du diagramme de Dynkin de R.

Démonstration. Ordonnons les racines simples de façon que a a1. Le cône

^(Xx) est engendré par — ax nx,..., nh où on note nx,..., nt les poids fondamentaux.

De plus, on a:

avec — &lt;a,, a,&gt; ^ 0. Si Xx est lisse, alors le cône ^(X^) est simplicial, donc il existe

i tel que nt soit combinaison linéaire positive des rcy pour y ^ i, et de — a,. Par suite,

tous les &lt;&lt;*!, a, &gt; sont nuls, sauf un; donc &lt;xx est une extrémité du diagramme de

Dynkin. On peut supposer que a2 est la racine simple liée à olx. Posons

m — &lt;a1? â2&gt; et n — &lt;âï, a2&gt;; ce sont des entiers positifs, et mn e {1, 2, 3}.
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Puisque -a, H- 2nx mn2, le cône &lt;g(X) est engendré par —a,, nl9 n39 ,nh
son dual est donc engendré par nonx + 2a2, a2, a3,. a, Par suite, V(Xj est

engendré par une base de yl si et seulement si n # 3 On vérifie que # est le simplexe
de sommets 0, (n/2)otl + a2, &lt;x2, a/? et que ç est donnée par (p(/?) &lt;/?, d^)2,
c&apos;est a-dire

(p(xx((n/2)(xx + a2) -f x2a2 + + *,&lt;*,) /i2*?.

D&apos;où, par un calcul élémentaire

i (p(p)dp=n3/(l

Puisque la codimension de l&apos;orbite fermée de Xa est / 4- 2, on conclut que Xa est lisse

si et seulement si n 1, c&apos;est-à-dire si a, est plus longue que a2
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