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Stability of minimal hypersurfaces

BENNETT PALMER

This paper is concerned with the stability of minimal hypersurfaces of n + 1
dimensional Euclidean space E"*'. For n =2 it was shown independently by Do
Carmo-Peng and Fischer Colbrie-Schoen that a smooth, orientable, complete,
stable minimal surface must be a plane. In higher dimensions, n = 7, the celebrated
result of Bombieri, De Giorgi and Giusti on the existence of minimal graphs
indicates that the situation is more complicated since these hypersurfaces are
minimizing and hence stable.

With the existence of minimal, stable graphs in mind it is natural to seek a
topological restriction which implies instability. We show:

THEOREM 1. Let M" < "+ ! be a complete, orientable minimal hypersurface.
Suppose there exisis a codimension one cycle C in M which does not separate M. Then
M is unstable

Proof of Theorem I. Suppose C exists. By the results of [D], Cor 1, M supports
a non-trivial L2-harmonic vector field £. Let V¥ denote the naturally defined
connection on M and let V; denote V, where ¢; is a locally defined orthonormal
frame for TM. Compute

il = 2(2 (VW& &Y + <Pk, V,-é»)
=2({tr. VVE EY + |VE|P
Since ¢ is harmonic, one has

{tr. PVE, &) = Ricci(¢, &)

so that

4[] -2 Rieci(¢, &) = 2|[7¢ | (1)
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For a minimal hypersurface,
— Ricci = {dv, dv)
where v: M — S” is the Gauss map. Therefore

lav|?|€]? = <av(&), av(€)»'= —Ricci(, &). 2)

By diagonalizing dv at an arbitrary p € M and using the fact that M is minimal,
one easily sees that equality holds in (2), at P, if and only if |dv(P)|*=0 or
¢(P) =0.

We claim ¢ cannot vanish identically on any open set in M. One way to see this
is to associate to ¢ the one form w =<, -). Using a theorem of Andreotti and
Vesentini stated in [D], one has dw =0=d » w. The lift of w to the simple
connected universal cover M and M is hence the differential of a globally defined
harmonic function U. If £ =0 on an open set then on the lift of this set U = const,
on M by unique analytic continuation for the Laplacian. This implies ¢ =0 on M.
Using these facts we write (1) as

AE|P+ 2] av |2 €2 =2|ve|? + 2w? 03)

where W2 20 and w?=0 a.e. implies |dv|*=0.
Away from the zeroes of &, one has

Alglz=20]glaleh+ 17 el 1. ©

In fact this equality holds globally in M in the sense of distributions, which is how
it will be used. Recalling Kato’s inequality

|

we obtain from (3) and (4),

7l =1vicl

bl

NEhAlEl+ ISz + lav?E]? = |vel> + w2 = v |&] > + w2
and hence

[&lalel + llav]*e]® = w2 (5)
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Next recall that M is stable provided

0= [ v ) ®)

for all Y € W2, the space of W'? functions with compact support in M. We take
¥ = w|¢] in (6). Here w denotes a “standard” cutoff function of geodesic distance
r with the following properties:

(1) we C™,
(i) 0<w<1
(11) o =1o0n Br/2, o =0off Br

(iv) |Vw|? < ¢/r? where ¢ = const. independent of .

Br denotes the geodesic ball of radius r centered at a point P € M.
We have

0< | (IP@]ePl* = llav|*[¢]Pe?)

r

= | (=l¢fwadE]lw) = av || €]

— [ 1ot + wale] + 270, 71> - a2 0
. j o2 |EAE] + v e —2 j 1E1v<7 ], P> — j I 4o
< [lep1ror - [

< c/rzf | we
Br

Br/2

Letting r — co and using the assumption ¢ € L? one finds W?=0 on M. This
implies that ||dv||> = 0 which implies M is a hyperplane. A contradiction is reached
by the existence of the cycle C. Q.E.D.
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