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Homomorphisms of constant stretch between Mobius groups

PExkA TukiA

A. Introduction

A Mobius transformation g of R” is loxodromic if it can be conjugated by
another Mobius transformation to the form

x> Af(x)  (xeR") (A1)

where A > 1 and f is an orthogonal linear map. The number A > 1 does not depend
on how the conjugacy is chosen and it is the multiplier mul g of g; for non-loxo-
dromic g we set mul g = 1.

If G and H are two groups of Mébius transformations of R” and ¢ : G — H is
a homomorphism between them, ¢ is said to be of constant stretch if there is d > 0
such that

mul ¢(g) = (mul g)¢ (A2)

for all g € G; more precisely we can say that ¢ is of constant stretch d. Note that
d is well-defined if there are loxodromic elements in G and that g is loxodromic if
and only if ¢(g) is. If d = 1, then we say that ¢ is multiplier preserving.

Our main Theorem C says that a homomorphism ¢ of non-elementary groups
is of constant stretch if and only if it is multiplier preserving. Furthermore, such a
¢ comes very near to being a conjugation by a Mdbius transformation. If the limit
set L(G) of G “fills” R”, that is, A(L(G)) ¢ R* for no k <n and no Mébius
transformation 4, then we can actually show that ¢ is a conjugation by a Mdbius
transformation.

A consequence of Theorem C is that if a map f: 4 - R" is compatible with a
homomorphism ¢ : G - H of non-elementary Mobius groups, that is for every
g€G, g4 =4 and

18(x) = o(8)f (x) (A3)
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when x € 4, then ¢ is a conjugation by a Mobius transformation as soon as f
satisfies a bilipschitz property and the above mentioned condition for the limit set
is satisfied (Theorem D).

Originally, we needed Theorem C in [T2] but after we found a simpler method
for [T2], we separated these results into the present paper. In [T1] we have already
treated the case of a multiplier preserving ¢. The present arrangement of the proof
seems to be slightly simpler also for the multiplier preserving case. In our proof of
Theorem C we will first show that a homomorphism of constant stretch is multiplier
preserving and then sketch the remaining part for completeness although we could
here refer to [T1].

DEFINITIONS AND NOTATIONS. We denote the group of all Mobius
transformations of R" by M(R"). Each g e M(R") has a unique extension to a
Mobius transformation of R”*' such that g(H"*') = H"*! when H"*' is the
(n + 1)-dimensional hyperbolic space

H"+1={XGR"+I1x=(x|,--.,xn+1) Where xn+l>0}‘

We identify g and this extension of g to R"*!; thus M(R") =« M(R"*").

A loxodromic g € M(R") has two fixed points denoted by P, = P(g) and
N, = N(g) so that P, is the attracting fixed point and N, the repelling fixed point;
these names are self-explanatory. A loxodromic map g is hyperbolic if it is conjugate
in M(R") to a map as in (A1) where g =id. If g € M(R") is not loxodromic, then
it is either elliptic or parabolic. If g is elliptic, then it is conjugate in M(R"), or in
M(R"*"), to a map as in (A1) where A =1, and g is parabolic if it is conjugate in
M(R") to a map of the form

x> B(x)+a (A4)

where a € R”, a # 0, and B is an orthogonal linear map such that f(a) = a (cf. [T3,
p. 560]).

A Moébius group G is a subgroup of M(R") and such a group is discrete if it is
discrete in the compact-open topology of R”. A set A is G-invariant if g4 = A for
every g €G.

The limit set L(G) of G is

L(G)=clGznR" (AS)

where z € H**! (and where cl is the closure). This does not depend on the choice
of ze H"*! and is a reasonable definition of L(G) also for non-discrete G.
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We define that a Mobius group G is non-elementary if it contains two loxo-
dromic elements with disjoint fixed point sets. If G is discrete, then it is well-known
that G is non-elementary if and only if L(G) contains more than two points (see e.g.
[T3, Theorem B2].)

We usually work in R” but we find it more natural to formulate Theorem D for
Mébius groups of the n-sphere S”={x e R"*':|x|=1}. We also use above
definitions with appropriate modifications for Mobius groups of S”.

B. Representation of Mdbius transformations by matrices

The proof of our main theorem depends on matrix representations of Md&bius
transformations. Let O(1, n + 1) be the group of (n + 2) x (n + 2)-matrices which
preserves the quadratic form x}—x3—---—x2,, and let O, (1,n+ 1) be the
subgroup of O(1, n + 1) which preserves

{(Xy,...,%,,2)€eR"*?:x}—x}—++-—x2,,=1and x,>0}.

Then, as is well-known [W], every g € M(R") can be represented by a unique matrix
AeO_ (1,n+1).

If n =2, then we identify R? and the complex plane C. If g e M(R?) is
orientation preserving, then it can be represented by a matrix of SL(2, C), that is,
by a complex 2 x 2-matrix with determinant 1.

We will now give two simple formulas that relate the multiplier of g € M(R")
and the trace tr A4 of the matrix 4 e O, (1,n+ 1) or 4 € SL(2, C) representing g.
If g € M(R") is represented by a matrix 4 € O _ (1, n + 1), then

mulg =tr 4 + M(A) (B1)

where |M(A4)| < n + 2. This follows from explicit matrix representations for loxo-
dromic, elliptic or parabolic Mébius transformations, see Wielenberg [W, Section 5]
and the classification of a Mobius transformation as loxodromic, elliptic or
parabolic mentioned above. Recall that mul g = 1 for non-loxodromic g. Note that
if g is elliptic, then we possibly need to extend g to a Mdbius transformation of
R"*+1! in order to obtain that g is conjugate to an orthogonal linear map.

If ge M(R? is orientation preserving, then g can be represented by
BeSL(2,C), and

mul g = |tr B]* + M'(B) (B2)
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where |[M’(B)| < 3 as a simple calculation shows. The next lemma is based on these
estimates.

LEMMA B. Let g,he M(R") be loxodromic and let y=(mulg)"? and
x = (mul h)'2. Then, for m, k € Z,

mul g”h* = |a(y™x* +y " 7R + b(y™y K +y T mf) )P

+ Cm? "+ Comy T H Ay + dux T+ e (B3)

where a,b are complex numbers such that a +b =1 and depending only on the
quadruple (P,, N,, P,, N,) of the fixed points. The constants cy, d,,, and e,, are
bounded and, furthermore,
(a) a#0+£b if and only if g and h do not have common fixed points,
(b) if g and h are hyperbolic, then ¢, = d,; =0 and |e,.| < 3 for all m, k; in the
general loxodromic case there is a sequence ry <r, <:-- such that as j — o,

¢ +,—0 and d,,, —0 i=12),

(c) if the fixed fixed points of g and h are in R* = C and N, =0, P, = o0, N, =1,
and P, = p, then there are the following relations between the numbers p, a
and b:

a p 1
= ——, = d b=——-o:.
p 5 a P an i~

Proof. The fixed points of g and 4 lie in a 2-dimensional sphere and hence we
may assume that their fixed points lie in C and that

P,=o0 and N,=0.

Let g and A be the corresponding hyperbolic Mébius transformations, i.e. they
have the same multiplier and the same repelling and attractive fixed points. Then g
and A preserve C and can be represented by matrices 4, B € SL(2, C), respectively.
We can conjugate in SL(2, C) to obtain

~ (v O ~ (s t\(x O v —t
=0 ,5) e ()G AN )
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where s, ¢, u and v are complex numbers such that sv — ru = 1. A simple calculation
shows that if

a=sv and b= —1tu,
then
tr A"B* = a(y"y* +y 7" R + b(y™y TF +y b (B4)

Obviously, a and b depend only on the fixed points and a + b = 1. Since P, = s/u
and N, = t/v, we have that a #0 # b if and only if g and # do not have common
fixed points. Remembering that a + b = 1, the formulas in (¢) also follow.

We then represent g, h, &, h by matrices 4, B, 4, B of O, (1, n + 1), respectively,
and perform similar calculations. The matrix A4 has eigenvalues «,, . . ., a, , , which
we can enumerate so that a;, =y>=mulg and a, =72 and that «;, i >2 are
complex numbers of modulus 1 as follows from the canonical forms for matrices of
O, (1,n+ 1) representing loxodromic Mdgbius transformation [W, Section 5].
Similarly, B has eigenvalues B, = y%, Bo=x"2, ..., B,+2. We can assume that A4 is
diagonal (so that the diagonal entries are the eigenvalues) and that

B = EDE"! (BS)

for some matrices E, D where D is diagonal (they need not be matrices of
O(1, n + 1).) A calculation shows that there are constants g, i, j < n + 2 such that

tr A"B*=) a,apk. (B6)
ij
Thus if we set

ci =Y. a;p¥, (i=1,2keZ),

j>2

d;mz Z ajiaj""$ (i=l,2,m€Z),

j>2

el,nk = Z a..a’."ﬁ]’." (ma ke Z)a

i
i>2,j>2
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we obtain bounded numbers (since |o;| = |B,| =1 if j > 2) such that

trAmBk=a”,yZmX2k+a12,y2mx—2k+a21.y—2mx2k+a22,y-2mx—-2k
+ ey T Al dox T e (B7)

We obtain the matrix 4 from that of 4 by substituting 1 for a, if i >2 (and
leaving «, and «, unchanged). Similarly, substituting 1 for g;in D if j > 2, we obtain
B from the right hand side of (B5). With these substitutions (B6) gives tr A™B* with
a; unchanged but with the new «; and f;, and (B7) is valid if we substitute in it for

/

Cim» di, and e, the numbers

E,'= Z a,-j,

Jj>2

Ji = Z a;;,

j>2
e= Y a.
i>2,j>2

(They do not depend on m and k and so we have not marked them.) It follows by
Kronecker’s theorem ([A, Theorem 7.10] or [C, p. 53]) that there is a sequence
r, <r, <---such that, as i - o0,

Cixn—=C and di,, —d (B8)
fori=1,2.

Applying (B1) and (B2) to mul §”h* we obtain that

|tr A™B* — |tr A"B*?|<n +5. (B9)
Set

Cim = C;m - Eio
dy = dj — d, (B10)
e;;,k = e;,,k —é.
These numbers are bounded and satisfy (b) with respect to the r; in (B8). Write
mul g”h* = (mul g”h* — tr A™B*) + (tr A™B* — tr A™B¥)
+ (tr A™B* — |tr A™B*?) + |tr A"B*.
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On the right-hand sum the first parenthesis is bounded by (B1) and the third
parenthesis by (B9). The second parenthesis can be estimated by (B7) when it is
applied to tr 4”B* and to tr A™B*, and the last term is given by (B4). Combining
all this, we have

mul g”h* = |a("x* +y 7" ) +bG™ T  +y TP
+ Cm? " + Com? T+ dud* + o T+ e

Here e, is the sum of e, in (B10) and of the first and third parenthesis. They are
bounded since e, are bounded, and by what has been said above, and so are the
numbers c;,, and d,,.

If g and 4 are hyperbolic, then we can use (B4) and (B2) to conclude that (B3)
is true with c,, =d, =0 and le,, | < 3.

Finally, (b) follows from (B8) and (B10).

Remark. If we have two (or, in fact, any number of) pairs g, 4 and g,/ of
loxodromic Moébius transformations and if ¢, and 67,7 are the numbers in the
expression for mul ”7A*, and if 7, is the corresponding sequence in (b), then exactly
as in (b), by Kronecker’s theorem, one can choose these sequences so that r; = ;.

C. The main theorem
We can now prove our main

THEOREM C. Let ¢ : G — H be a surjective homomorphism of two Mobius
groups of R" such that one of the groups G and H is non-elementary. Then ¢ is
multiplier preserving if it is of constant stretch d > 0.

Furthermore, let S be the k-sphere of smallest dimension k such that S = gR* for
some g € M(R"™) and that S o L(G), where L(G) is the limit set of G (see (A5)). Then
S is G-invariant and there is h € M(R") such that

hg(x) = @(g)h(x) (CO)

for xe S and g €G.
In particular, if S = R", then ¢ is a conjugation by a Mobius transformation.

Remark. Actually, it would suffice to assume that (A2) is true for all g € G such
that g is loxodromic (if G is non-elementary) or such that ¢(g) is loxodromic (if H
is non-elementary).
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The sphere S in the theorem is well-defined if L(G) contains at least two points.
Since either G or H is non-elementary, and ¢ is of constant stretch, G has
loxodromics and hence S is well-defined (the proof shows that both groups are
non-elementary).

Proof. We first assume that G is non-elementary and that ¢ is an isomorphism.

We first prove that d = 1. Since G is non-elementary, there are two loxodromic
elements g, h € G without common fixed points. Then also ¢(g) and @(h) are
loxodromic by (A2).

Let g=¢(g) and h=¢0). Then mulg=(mulg)?=9>* and
mul 4 = (mul h)? = x*? and hence if 4, b, ¢,,, d, and &,, are numbers as in Lemma
B, we have that

mu] gmh—k = |a—(,})dmxdk + v —de—dk) 1 E(ydmx—dk e yu—dmxdk)|2

F ¥+ Comy T Ay P+ Aoy TP A Cy (C1)
We now use the equality
mul §"h* = (mul g”h*)4 (C2)

together with (B3) and (C1) and let m, k tend to + o0 or to — 0. Since g and 4 do
not have common fixed points, a # 0 # b by Lemma B (a) and it follows that

|a| =|al¢ and |b]=|b|“ (C3)
In particular, it follows that @ # 0 # b and hence g and 4 do not have common

fixed points by Lemma B (a). Thus H is also non-elementary and, if necessary, we
can replace ¢ by ¢ ~! and thereby assume that

d=1. (C4)

Next, substitute again (B3) and (C1) into (C2) and divide both sides of the
resulting equation by |a|%y?#y2%* = |a|y2@y?*. Keep k fixed and let m assume the
values r; of Lemma B (b) (see also the Remark following Lemma B) and let i — co.
We obtain

|1 + by ~%9/a]* = |1 + by ~*/al* (C5)

which is valid for every k € Z.
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Let

r = |b|/|a|, a =argh/a, & =argbh/a,

so that r¢ = |b|/|a|. Substituting this into (CS5) and using elementary trigonometry,
we obtain for all k € Z

1+ 2rdy —2cos @ + r?¥y ~*%4 = (1 4 2ry =%  cos o + r2y ~*).

We develop the right hand side into a power series for ¢ = y ~2* and compare it to
the left side. When cos o # 0, we obtain immediately a contradiction if d > 1.

We look at the geometric situation when cos a = 0, that is, « = +n/2. Suppose
that g fixes 0 and oo and that 4 fixes 1 so that 0 and 1 are the repelling fixed points.
By Lemma B (c), s fixes also the point —a/b and we know that arg —a/b=
—a = +n/2 and hence this point lies on the imaginary axis.

We state this in terms independent of normalization. Let S, and S, be the two
circles through the fixed points of g and through one fixed point of 4. Then S, and
S, intersect orthogonally.

But this is absurd since g and A can be any two loxodromic elements of G
without common fixed points. If we have chosen g,he€ G and S, and S, are
orthogonal for these g and &, we can replace h by h*gh =%, k big, in such a way that
they are no more orthogonal. This contradiction concludes the proof that d = 1.

We now assume that d = | and prove the remaining part of the theorem. As we
have already done this in [T1, pp. 338-339] in more detail, we present only the
main points.

We continue from the preceding situation with g, 4 € G loxodromic without
common fixed points. Since d = 1, (C3) becomes |a| = |al, |p| = |b| and in addition
we know that a + b =1 and @ 4+ b = 1. Hence the two triangles with vertices 0, 1, a
and 0, 1, a, respectively, have the same sidelengths and consequently either

d=a and b=b, or a=a* and b=>H*

where * is the complex conjugation. Conjugating by a Mdbius transformation we
obtain that the fixed points are

P,=P,=w0, N,=N,=0, N,=Nz;=1 P,=—alb, P;= —a/b.
Here P and N denote the attractive and repelling fixed points (see Section A) and

we have-also used (¢) of Lemma B for P, and P;. Hence at leasj we can conjugate
the fixed points of g and & to the fixed points of g and A. In particular, if
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N, =Nj= o, then the two triangles with vertices P,, N,, P, and P,, N, P,
respectively, are similar.

Now, g and A can be any two loxodromic elements in G without common fixed
points. Using this and the fact that every distinct point-pair of L(G) x L(G) can be
approximated arbitrarily closely by the fixed points of a loxodromic map in G (this
follows from [T3, Theorem Bl1]), we can show that the map defined by

P,—P (C6)

o(g)
(g € G loxodromic) is the restriction of a Mobius transformation f. It follows that
12|L(G) = ¢(g)f|L(G) for g € G from which fact the rest of Theorem C follows.

Finally, we remove the assumptions that ¢ was an isomorphism and G non-
elementary. If ¢ is not an isomorphism but G is non-elementary, we pick as above
loxodromic g, h € G without common fixed points. Then for big enough k, the
group G’ generated by g* and A* is a Schottky group which is a free group such
that every element of G'\{id} is loxodromic (e.g. [T, p. 333] contains the simple
argument). Then every ¢(g’), g’ € G'\{id} is loxodromic by (A2) and hence ¢|G’ is
an isomorphism onto ¢(G’) and we can apply above reasoning with G replaced by
G’ and H by ¢(G’). Since replacing g by g* and h by h* does not affect the
attractive and repelling fixed points, the reasoning leading to (C6) is still valid.

If G is elementary, then H is non-elementary. Thus there are loxodromic
g, h € H without common fixed points. As above, for big enough k, the group H’
generated by g* and A* is a Schottky group. Find g, h, € G such that ¢(g,) = g*
and @(h,) = h* and let G’ be the group generated by them. Since H’ is free, ¢|G’
is an isomorphism onto H’ and we can apply the above reasoning to H’, G’ and
@ ~'|H’ and show that g, and h, are loxodromic and without common fixed points
and hence G was in fact non-elementary, contrary to the assumption.

Remark. 1t is clear that there are non-trivial situations in which Theorem C is
not true. For instance, let G be generated by g : x +> 2x and H by 4 : x — 4x which
are Mobius groups of R". Then the isomorphism mapping g onto A is of constant
stretch 2.

Another example is given by the group G whose elements are of the form
x — Ax + a where 4 >0 and a € R". Let a be an affine homeomorphism of R" and
let @(g) = aga~'. Then ¢ is an isomorphism G — G which preserves multipliers but
is not a conjugation by a Mobius transformation if a is not a similarity.

Thus it is necessary to assume something on the groups G and H although it
might be, as is suggested by the last example, that if the groups contain two
loxodromic elements with different fixed point sets (but which may have a common
fixed point), then, if ¢ preserves multipliers, (A3) might be true for some affine 4
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(i.e. h is a map such that hyhh,|R" is affine for some Mobius transformations A,
and A,).

D. Bilipschitz maps and rigidity

In this last section we note a consequence of Theorem C. Roughly, it says that
if ¢ is induced by f, i.e. (A3) is true, and f is a bilipschitz map, then ¢ preserves
multipliers and hence is, or almost is, a conjugation by a Mobius transformation.
Since we use the euclidean metric which is not a metric of whole R”, we transfer the
situation to the n-sphere S” = R”*!. It turns out that the bilipschitz condition need
not be satisfied everywhere, and taking account that in Theorem C we actually
considered homomorphisms of constant stretch, we can generalize this as

THEOREM D. Let ¢ : G — H be a homomorphism of two Mdbius groups of S"
such that G is non-elementary. Let A = S" be a non-empty G-invariant set and let
f:A—> 8" be a map inducing ¢. Suppose that there are an open set U < S" and
numbers L =1 and d > 0 such that U N L(G) # ¢ and that

lx —y|/L <|f(x) —f(»)| < L|x — p| (D1)

for x,y e UnA. Then d = 1, ¢ preserves multipliers and, if in addition, L(G) < h(S*)
for no Moébius transformation h and no k <n, ¢ is a conjugation by a Mobius
transformation.

Proof. Pick z € L(G) n U. Thus there are g; € G and w € §” such that
g|S"\{w}-z
locally uniformly, as follows easily from the definition of the limit set (cf. (A5)) and
the convergence property of Mobius groups (see [GM, Theorem 3.2]). This fact has

two consequences. The first is that if acc 4 denotes the accumulation points of A4,
then

acc 4 o L(G), (D2)

(for (D2) we remark that A4 is in any case actually infinite by non-elementariness)
and the second is that

{g,/'(U)} is a cover of L(G)\{w}. (D3)
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It follows that if g € G is loxodromic, then there is # € G which is conjugate to g in
G such that at least one of the fixed points of 4 is in U. Consequently, if we can
prove that

mul ¢(g) = (mul g)¢ (D4)

for all loxodromic g € G with one fixed point in U, then this is actually valid for all
loxodromic g € G.

So suppose that g € G is loxodromic and fixes u € U. We can assume that u is
the attractive fixed point of g. Then u € L(G) and hence, by (D2), there are distinct
x,y € Un A not fixed by g. Under these circumstances we have, as can be seen
from (A1),

mul g = lim |g“(x) — g“(»)|~ "~ (DS)
k — o0

We observe that (DS5) gives mul g for any Mdbius transformation g as follows from
the representations (A1) and (A4), provided that x and y are not fixed by g. By
(D1) and G-compatibility, f(x) and f(y) are not fixed by ¢(g). Hence (DS5) and
(D1) imply that

(mul g)d= kll,n:o lfg"(x) _fgk(y)l_l/k
= lim |o(g)"f(x) — (&) F(»)|~"*

= mul ¢(g)

and (D4) is valid for all loxodromic g € G.

This is all that is needed for the validity of Theorem C if G is non-elementary
(see the Remark after it). Theorem C implies the rest of the present theorem, for
instance that ¢ preserves multipliers for all g € G.

Remarks. 1. We needed the assumption that G is non-elementary in order to
apply Theorem C but to obtain (D4) for loxodromic g, this assumption was not
used (though we must assume that A4 contains at least three points if G is
elementary). In fact, if g is parabolic such that g is conjugate to some A with a fixed
point in U or if g is elliptic, then basically as above one obtains that (D4) is valid
for g; in the non-elementary case a parabolic g is always conjugate to such A. It is
valid even if g is parabolic and not conjugate to such a map 4 but then a more
complicated reasoning, given below, is necessary. Thus even if G is elementary ¢ is
still of constant stretch d, provided that 4 contains at least 3 points.
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Suppose that g is parabolic with the fixed point v and A(v) e U for no h € G. It
follows that v must be the point w in (D3) and that v is fixed by every g € G. We
cannot have that {v} = L(G) (since then v € U) and hence there are at least two
points in L(G). Consequently, there is loxodromic 4 € G [T3, proof of Theorem E].
Then A fixes v and we assume that v is the repelling fixed point. It follows from (A1)
and (A4) (transform the situation to R" so that v = o0) that there are k, >0 and
n, > 0 such that if

g = h*g"h "k,

then g;(x) —» x for all x € §”.

It follows that also ¢(g;)(x) = x for all x € f(U n A). Since f(U n A) is infinite,
it follows by the convergence property [GM, 3.2] that we can pass to a subsequence
in such a way that ¢(g;) >g where g is a Mobius transformation such that
g|f(UnA) =id. hence g is elliptic and mul § = 1= lim,_, ,, mul ¢(g;). However,
¢(g;) is conjugate to ¢(g)™. Consequently, mul ¢(g) = (mul ¢(g;))'" = 1.

2. Actually, we need not assume that (D1) is true for all x, y € U A4, only that
for each loxodromic g € G there are distinct points u, v € A, not both of them fixed
by g, such that (D1) is valid for x = g“(«) and y = g*(v) when k > 0 with some
L > 1 which may depend on g and some d >0 which does not.
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