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Homomorphisms of constant stretch between Môbius groups

Pekka Tukia

A. Introduction

A Mobius transformation g of Rn îs loxodromic if ît can be conjugated by
another Mobius transformation to the form

x h» Aj8(x) (xeRn) (Al)

where À &gt; 1 and /? îs an orthogonal lmear map The number À &gt; 1 does not dépend
on how the conjugacy îs chosen and ît îs the multiplier mul g of g, for non-loxo-
dromic g we set mul g 1

If G and H are two groups of Mobius transformations of R&quot; and (p G -&gt; H îs

a homomorphism between them, &lt;p îs said to be of constant stretch if there îs d &gt; 0

such that

mul cp(g) (mul g)d (A2)

for ail g g G, more precisely we can say that &lt;p îs of constant stretch d Note that
d îs well-defined if there are loxodromic éléments in G and that g îs loxodromic if
and only if (p(g) îs If d 1, then we say that q&gt; îs multiplier preserving

Our main Theorem C says that a homomorphism (p of non-elementary groups
îs of constant stretch if and only if ît îs multiplier preserving Furthermore, such a

cp cornes very near to being a conjugation by a Mobius transformation If the hmit
set L(G) of G &quot;fills&quot; R&quot;, that îs, h(L(G)) &lt;£ Rk for no k &lt; n and no Mobius
transformation h, then we can actually show that &lt;p îs a conjugation by a Mobius
transformation

A conséquence of Theorem C îs that if a map / A -&gt; R&quot; îs compatible with a

homomorphism cp G-+H of non-elementary Mobius groups, that îs for every

g e G, gA A and

fg(x) &lt;p(g)f(x) (A3)
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when x e A, then q&gt; is a conjugation by a Môbius transformation as soon as /
satisfies a bilipschitz property and the above mentioned condition for the limit set

is satisfied (Theorem D).
Originally, we needed Theorem C in [T2] but after we found a simpler method

for [T2], we separated thèse results into the présent paper. In [Tl] we hâve already
treated the case of a multiplier preserving &lt;p. The présent arrangement of the proof
seems to be slightly simpler also for the multiplier preserving case. In our proof of
Theorem C we will first show that a homomorphism of constant stretch is multiplier
preserving and then sketch the remaining part for completeness although we could
hère refer to [Tl].

DEFINITIONS AND NOTATIONS. We dénote the group of ail Môbius
transformations of Rn by M(Rn). Each g e M(Rn) has a unique extension to a

Môbius transformation of Rn+l such that g(Hn+l)=Hn+l when Hn+l is the

(n + l)-dimensional hyperbolic space

HH+l {x e Rn+l : x (xl9. ,xn+l) where xw + 1
&gt; 0}.

We identify g and this extension of g to R&quot;+l; thus M(Rn) a M(Rn+x).
A loxodromic g e M(Rn) has two fixed points denoted by Pg P(g) and

Ng N(g) so that Pg is the attracting fixed point and Ng the repelling fixed point;
thèse names are self-explanatory. A loxodromic map g is hyperbolic if it is conjugate
in M(R&quot;) to a map as in (Al) where fi id. If g e M(Rn) is not loxodromic, then

it is either elliptic or parabolic. If g is elliptic, then it is conjugate in M(Rn), or in
M(R&quot;+ &apos;), to a map as in (Al) where k 1, and g is parabolic if it is conjugate in
M(Rn) to a map of the form

jch-&gt;jff(jc)+a (A4)

where a e Rn, a # 0, and /? is an orthogonal linear map such that (}(a) a (cf. [T3,

p. 560]).

A Môbius group G is a subgroup of M(Rn) and such a group is discrète if it is

discrète in the compact-open topology of Rn. A set A is G-invariant if gA A for

every g e G.

The limit set L(G) of G is

L(G) c\GznR&quot; (A5)

where z e Hn+] (and where cl is the closure). This does not dépend on the choice

of zg//w+1 and is a reasonable définition of L(G) also for non-discrete G.
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We define that a Mobius group G îs non-elementary if ît contams two loxo-
dromic éléments with disjoint fixed point sets If G îs discrète, then ît îs well-known
that G îs non-elementary if and only if L(G) contains more than two points (see e g

[T3, Theorem B2]
We usually work in Rn but we find ît more natural to formulate Theorem D for

Mobius groups of the «-sphère Sn {x e Rn+l |*| 1} We also use above

définitions with appropnate modifications for Mobius groups of S&quot;

B. Représentation of Mobius transformations by matrices

The proof of our main theorem dépends on matnx représentations of Mobius
transformations Let 0(1, n + 1) be the group of (n + 2) x (n + 2)-matrices which

préserves the quadratic form x\ — x\— — xî + 2 and let O+(l,w + l) be the

subgroup of 0(1, n + 1) which préserves

{(*„ ,xH + 2)eRH + 2 x2-x2- -x2n + 2=l andx,&gt;0}

Then, as îs well-known [W], every g e M(R&quot;) can be represented by a unique matnx
A eO+(l,n + l)

If n 2, then we identify R2 and the complex plane C If g e M(R2) îs

orientation preserving, then ît can be represented by a matnx of SL(2, C), that îs,

by a complex 2 x 2-matnx with déterminant 1

We will now give two simple formulas that relate the multiplier of g € M(Rn)
and the trace tr A of the matnx ^eO+(l,«-fl)or^G SL(2, C) representing g

If g e M{Rn) îs represented by a matnx A e 0+(\,n + 1), then

mulg tr,4 +M(A) (Bl)

where \M(A)\ &lt;n+2 This follows from exphcit matnx représentations for loxo-

dromic, elhptic or parabohc Mobius transformations, see Wielenberg [W, Section 5]

and the classification of a Mobius transformation as loxodromic, elhptic or

parabohc mentioned above Recall that mul g 1 for non-loxodromic g Note that

if g îs elhptic, then we possibly need to extend g to a Mobius transformation of
R&quot;+l m order to obtain that g îs conjugate to an orthogonal linear map

If g g M(R2) îs orientation preserving, then g can be represented by

BeSL(2, C), and

\trB\2 + M&apos;(B) (B2)
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where |M&apos;(#)| ^ 3 as a simple calculation shows. The next lemma is based on thèse

estimâtes.

LEMMA B. Let g, h e M(R&quot;) be loxodromic and let y=(mulg)1/2 and

X (mul h)1/2. Then, for m, k e Z,

mul gmhk \a(ymxk + y~mX~k) + Klml~k + 7
&quot;

mXk)\2

+ ^?2m + c2m? ~2w + rf,**2* + dlkx ~2k + ^ (B3)

a, è are complex numbers such that a + b 1 âwa1 depending only on the

quadruple (Pg9 Ng, Ph9 Nh) of the fixed points. The constants clk, dim, and emk are
bounded and, furthermore,

(a) a 7^ 0 ^b if and only if g and h do not hâve common fixed points,
(b) ifg and h are hyperbolic, then cmk dmk 0 and \emk \ &lt; 3 for ail m, k\ in the

gênerai loxodromic case there is a séquence r, &lt; r2 &lt; • • • such that as j —&gt; oo,

clf±0-^0 and &lt;±o-0 (i l,2),

(c) if the fixedfixed points ofg and h are in R2 C and Ng 0, Pg oo, Nh 1,

and Ph /?, then there are the following relations between the numbers /?, a

and b:

/? —-, a= - and b=-
b p — 1 1 —p

Proof The fixed points of g and h lie in a 2-dimensional sphère and hence we

may assume that their fixed points lie in C and that

Pg oo and Ng 0.

Let g and /i be the corresponding hyperbolic Môbius transformations, i.e. they
hâve the same multiplier and the same repelling and attractive fixed points. Then g
and /Tpréserve C and can be represented by matrices Â,Be SL(29 C), respectively.
We can conjugate in SL(2, C) to obtain

y M and *«(* &apos;Y; 0,Yr &quot;)
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where s, t, u and v are complex numbers such that sv - tu 1. A simple calculation
shows that if

a sv and b —tu,

then

tr ÂmÈk a(ymxk + y ~mX ~k) + %m7 ~k + y ~mXk)- (B4)

Obviously, a and 6 dépend only on the fixed points and a 4- £ 1. Since PA s/w
and Nh t/v, we hâve that a ^0 ^ b if and only if g and /z do not hâve common
fixed points. Remembering that a +b 1, the formulas in (c) also follow.

We then represent g, h, g, hby matrices A, B, Â, S of O+ 1, n 4-1), respectively,
and perform similar calculations. The matrix A has eigenvalues «j,..., art + 2 which
we can enumerate so that olx y2 mul g and a2 y

~2 and that a,, / &gt; 2 are
complex numbers of modulus 1 as follows from the canonical forms for matrices of
O+(l,w4-l) representing loxodromic Môbius transformation [W, Section 5].

Similarly, B has eigenvalues px x2, Pi X~2&gt; • • • »
/?w + 2- ^e can assume that ^ ^s

diagonal (so that the diagonal entries are the eigenvalues) and that

B EDE~X (B5)

for some matrices £, D where D is diagonal (they need not be matrices of
0(1, « 4- 1).) A calculation shows that there are constants ay, i,j &lt;.n +2 such that

tr AmBk Y, ay(xTPj. (B6)

Thus if we set

c* X flMj8f, (i 1, 2, fc e Z),

Z
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we obtain bounded numbers (since \oLj\ \fij\ 1 if j &gt; 2) such that

tr AmBk auy2™x2k + ai272mX-2k + &lt;*2iy-2mX2k + a2iy-2mX~2k

2™ + d&apos;lmX2k + d&apos;2mX-2k + e&apos;mk. (B7)

We obtain the matrix Â from that of A by substituting 1 for a, if / &gt; 2 (and
leaving cc{ and a2 unchanged). Similarly, substituting 1 for /?, in D ifj &gt; 2. we obtain
S from the right hand side of (B5). With thèse substitutions (B6) gives tr ÂmBk with
atJ unchanged but with the new a, and /?y, and (B7) is valid if we substitute in it for
c&apos;m9 d&apos;lm and e&apos;mk the numbers

^ Z ^m

i &gt; 2j &gt; 2

(They do not dépend on m and k and so we hâve not marked them.) It follows by
Kronecker&apos;s theorem ([A, Theorem 7.10] or [C, p. 53]) that there is a séquence

r\ &lt; r2 &lt; &apos; &apos; &apos; such that, as i -? oo,

c&apos;l,±rt-+cl and d&apos;h±ri-*dt (B8)

for i l,2.
Applying (Bl) and (B2) to m\x\gmhk we obtain that

|tr ÂmBk - |tr ÂmBk\2\ ^ n -f 5. (B9)

Set

dlk=d:k-d,, (B10)

emk — emk ~~ ^«

Thèse numbers are bounded and satisfy (b) with respect to the rt in (B8). Write

mul gmhk (mul gmhk - tr AmBk) + (tr AmBk - tr AmBk)

+ (tr ^w^ - |tr l^^p) + |tr im^|2.
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On the right-hand sum the first parenthesis is bounded by (Bl) and the third
parenthesis by (B9). The second parenthesis can be estimated by (B7) when it is

applied to tr AmBk and to tr ÂmBk, and the last term is given by (B4). Combining
ail this, we hâve

mul gmhk \a(ymxk + 7 ~mX ~k) + b{ymx ~k + y ~mXk)\2

+ cXmy2m + c2my
~2m + dxkl2k + d2kX ~2k + emk.

Hère emk is the sum of e&quot;mk in (B10) and of the first and third parenthesis. They are
bounded since e&quot;mk are bounded, and by what has been said above, and so are the
numbers cim and dlk.

If g and h are hyperbolic, then we can use (B4) and (B2) to conclude that (B3)
is true with clm djk=0 and \emk \ &lt; 3.

Finally, (b) follows from (B8) and (B10).

Remark. If we hâve two (or, in fact, any number of) pairs g, h and g, h of
loxodromic Môbius transformations and if ctJ and dtJ are the numbers in the

expression for m\\\gmhk, and if rl is the corresponding séquence in (b), then exactly
as in (b), by Kronecker&apos;s theorem, one can choose thèse séquences so that rl rl.

C. The main theorem

We can now prove our main

THEOREM C. Let cp \G -+H be a surjective homomorphism of two Môbius

groups of R&quot; such that one of the groups G and H is non-elementary. Then &lt;p is

multiplier preserving if it is of constant stretch d &gt; 0.

Furthermore, let S be the k-sphère of smallest dimension k such that S gRk for
some g e M(Rn) and that S ^ L{G), where L(G) is the limit set ofG (see (A 5)). Then

S is G-invariant and there is h e M(Rn) such that

hg(x) (p(g)h(x) (C0)

for x e S and g e G.

In particular, if S R&quot;, then (p is a conjugation by a Môbius transformation.

Remark. Actually, it would suffice to assume that A2) is true for ail g g G such

that gis loxodromic (if G is non-elementary) or such that q&gt;(g) is loxodromic (if H
is non-elementary).
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The sphère S in the theorem is well-defined if L(G) contains at least two points.
Since either G or H is non-elementary, and cp is of constant stretch, G has

loxodromics and hence S is well-defined (the proof shows that both groups are

non-elementary).

Proof. We first assume that G is non-elementary and that cp is an isomorphism.
We first prove that d 1. Since G is non-elementary, there are two loxodromic

éléments g, h e G without common fixed points. Then also cp(g) and cp(h) are
loxodromic by (A2).

Let g q&gt;(g) and h q&gt;(h). Then mul g (mu\ g)d y2d and
mul h (mul h)d x2d and hence if à, b, cim, dlk and ëmk are numbers as in Lemma
B, we hâve that

mul gmhk \â(ydmxdk + y ~dmX ~dk) + Rydml ~dk + 7 -dmxdk)\2

+ cxmfdm + c2my
-2dm 4- dlkl2dk + dlkl -2dk + ëm*. (Cl)

We now use the equality

mul gmhk (mul gmhk)d (C2)

together with (B3) and (Cl) and let m, k tend to + oo or to — oc. Since g and h do

not hâve common fixed points, a ^ 0 ^ 6 by Lemma B (a) and it follows that

d and |6| |6|&lt;&apos;. (C3)

In particular, it follows that à ^ 0 # b and hence g and h do not hâve common
fixed points by Lemma B (a). Thus H is also non-elementary and, if necessary, we

can replace cp by q&gt;
~l and thereby assume that

d*l. (C4)

Next, substitute again (B3) and (Cl) into (C2) and divide both sides of the

resulting équation by \a\dy2dmx2dk \â\y2dmx2dk. Keep k fixed and let m assume the

values rt of Lemma B (b) (see also the Remark foliowing Lemma B) and let / -* oo.

We obtain

|1 +bX-2kd/â\2 \\ -f bx~2k/a\2d (C5)

which is valid for every k e Z.
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Let

r |6|/|û|, a =arg b/a, â arg£/â,

so that rd \b\j\à\. Substituting this into (C5) and using elementary trigonometry,
we obtain for ail k e Z

1 + 2rdx ~2kdcos à + r2dx ~4kd 1 -h 2rx ~2k cos a + r2X ~4k)d.

We develop the right hand side into a power séries for / x~2k and compare it to
the left side. When cos a ^ 0, we obtain immediately a contradiction if d &gt; 1.

We look at the géométrie situation when cos a 0, that is, a ±7c/2. Suppose
that g fixes 0 and oo and that h fixes 1 so that 0 and 1 are the repelling fixed points.
By Lemma B (c), h fixes also the point — a/b and we know that arg —a/b
— (x=±n/2 and hence this point lies on the imaginary axis.

We state this in terms independent of normalization. Let S, and S2 be the two
circles through the fixed points of g and through one fixed point of h. Then S, and
5*2 intersect orthogonally.

But this is absurd since g and h can be any two loxodromic éléments of G

without common fixed points. If we hâve chosen g, h e G and S, and S2 are
orthogonal for thèse g and h, we can replace h by hkgh~k, k big, in such a way that
they are no more orthogonal. This contradiction concludes the proof that d 1.

We now assume that d 1 and prove the remaining part of the theorem. As we
hâve already done this in [Tl, pp. 338-339] in more détail, we présent only the
main points.

We continue from the preceding situation with g, h e G loxodromic without
common fixed points. Since d \, (C3) becomes \â\ \a\, \b\ \b\ and in addition
we know that a + b 1 and à + b 1. Hence the two triangles with vertices 0, 1, a
and 0,1, &lt;â, respectively, hâve the same sidelengths and consequently either

à—a and b b, or â — a* and b= b*

where * is the complex conjugation. Conjugating by a Môbius transformation we
obtain that the fixed points are

^ P^ oo, Ng=Né=0, Nh NR=\ Ph -alb9 Ph-=-â/b.

Hère P and TV dénote the attractive and repelling fixed points (see Section A) and

we hâve also used (c) of Lemma B for Ph and P^. Hence at least we can conjugate
the fixed points of g and h to the fixed points of g and h. In particular, if
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Nh Nfi= oo, then the two triangles with vertices Pg,Ng,Ph and Pè,Ng9P^,
respectively, are similar.

Now, g and h can be any two loxodromic éléments in G without common fîxed

points. Using this and the fact that every distinct point-pair of L(G) x L{G) can be

approximated arbitrarily closely by the fîxed points of a loxodromic map in G (this
follows from [T3, Theorem Bl]), we can show that the map defîned by

(g g G loxodromic) is the restriction of a Môbius transformation /. It follows that
fg\L(G) cp(g)f\L(G) for g g G from which fact the rest of Theorem C follows.

Finally, we remove the assumptions that (p was an isomorphism and G non-
elementary. If cp is not an isomorphism but G is non-elementary, we pick as above

loxodromic g,heG without common fixed points. Then for big enough k, the

group G&apos; generated by gk and hk is a Schottky group which is a free group such

that every élément of G&apos;\{id} is loxodromic (e.g. [T, p. 333] contains the simple
argument). Then every cp(g&apos;), g&apos; g G&apos;\{id} is loxodromic by (A2) and hence &lt;p\G&apos; is

an isomorphism onto &lt;p(G&apos;) and we can apply above reasoning with G replaced by
G&apos; and H by (p(Gr). Since replacing g by g* and h by hk does not affect the

attractive and repelling fîxed points, the reasoning leading to (C6) is still valid.

If G is elementary, then H is non-elementary. Thus there are loxodromic
g, h s H without common fîxed points. As above, for big enough &amp;, the group H&apos;

generated by gk and hk is a Schottky group. Find g0, /z0 g G such that (p(g0) gk

and cp(h0) hk and let G&apos; be the group generated by them. Since H&apos; is free, &lt;p\G&apos;

is an isomorphism onto H&apos; and we can apply the above reasoning to H\ G&apos; and
cp~x\H&apos; and show that g0 and h0 are loxodromic and without common fîxed points
and hence G was in fact non-elementary, contrary to the assumption.

Remark. It is clear that there are non-trivial situations in which Theorem C is

not true. For instance, let G be generated by g : x i-&gt; 2x and H by h : x i-+ 4x which
are Môbius groups of Rn. Then the isomorphism mapping g onto h is of constant
stretch 2.

Another example is given by the group G whose éléments are of the form
x h-» Àx + a where X &gt; 0 and a e Rn. Let a be an affine homeomorphism of Rn and

let cp(g) oLgoL&quot;1. Then q&gt; is an isomorphism G -+G which préserves multipliers but
is not a conjugation by a Môbius transformation if a is not a similarity.

Thus it is necessary to assume something on the groups G and H although it
might be, as is suggested by the last example, that if the groups contain two
loxodromic éléments with différent fîxed point sets (but which may hâve a common
fixed point), then, if cp préserves multipliers, (A3) might be true for some affine h
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(i.e. h is a map such that hohhx \Rn is affine for some Môbius transformations h0

and hx).

D. Bilipschitz maps and rigidity

In this last section we note a conséquence of Theorem C. Roughly, it says that
if q&gt; is induced by /, i.e. (A3) is true, and / is a bilipschitz map, then q&gt; préserves
multipliers and hence is, or almost is, a conjugation by a Môbius transformation.
Since we use the euclidean metric which is not a metric of whole R&quot;, we transfer the

situation to the «-sphère S&quot; c Rn+ l. Tt turns out that the bilipschitz condition need

not be satisfied everywhere, and taking account that in Theorem C we actually
considered homomorphisms of constant stretch, we can generalize this as

THEOREM D. Let ç : G -* H be a homomorphism of two Môbius groups of S&quot;

such that G is non-elementary. Let A a S&quot; be a non-empty G-invariant set and let

f : A -* S&quot; be a map inducing ç. Suppose that there are an open set U ci S&quot; and
numbers L &gt; 1 and d&gt;0 such that UnL(G) ^ (j) and that

\x -y\d\L &lt; \f(x) -f(y)\ &lt; L\x-y\d (Dl)

for x,y e U r\A. Then d 1, cp préserves multipliers and, if in addition, L(G) cz h{Sk)

for no Môbius transformation h and no k &lt;n, (p is a conjugation by a Môbius

transforma tion.

Proof Pick z e L(G) n U. Thus there are g, e G and w e S&quot; such that

locally uniformly, as follows easily from the définition of the limit set (cf. (A5)) and

the convergence property of Môbius groups (see [GM, Theorem 3.2]). This fact has

two conséquences. The first is that if ace A dénotes the accumulation points of A,
then

(D2)

(for (D2) we remark that A is in any case actually infinité by non-elementariness)
and the second is that

is a cover of L(G)\{w}. (D3)
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It follows that if g e G is loxodromic, then there is h e G which is conjugate to g in
G such that at least one of the fixed points of h is in U. Consequently, if we can

prove that

mu\(p(g)=(mu\g)d (D4)

for ail loxodromic g e G with one fixed point in U, then this is actually valid for ail
loxodromic g e G.

So suppose that g e G is loxodromic and fixes u e U. We can assume that u is

the attractive fixed point of g. Then u e L(G) and hence, by (D2), there are distinct

x,yeUr\A not fixed by g. Under thèse circumstances we hâve, as can be seen

from (Al),

mulg lim \gk(x) -g\y)\-vk. (D5)
k-KX)

We observe that (D5) gives mul g for any Môbius transformation g as follows from
the représentations (Al) and (A4), provided that x and y are not fixed by g. By

(Dl) and G-compatibility, f(x) and f(y) are not fixed by (p(g). Hence (D5) and

(Dl) imply that

(mul*)*= lim \fgk(x)-fgk(y)\-l&apos;k
k-&gt; oo

lim \&lt;p(g)kf(x)-&lt;p(g)kf(y)\-l/k
k-* oo

mul ç(g)

and (D4) is valid for ail loxodromic g g G.

This is ail that is needed for the validity of Theorem C if G is non-elementary
(see the Remark after it). Theorem C implies the rest of the présent theorem, for
instance that &lt;p préserves multipliers for ail g e G.

Remarks. 1. We needed the assumption that G is non-elementary in order to

apply Theorem C but to obtain (D4) for loxodromic g, this assumption was not
used (though we must assume that A contains at least three points if G is

elementary). In fact, if g is parabolic such that g is conjugate to some h with a fixed

point in U or if g is elliptic, then basically as above one obtains that (D4) is valid
for g; in the non-elementary case a parabolic g is always conjugate to such h. It is

valid even if g is parabolic and not conjugate to such a map h but then a more
complicated reasoning, given below, is necessary. Thus even if G is elementary q&gt; is

still of constant stretch d, provided that A contains at least 3 points.
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Suppose that g is parabolic with the fixed point v and h(v) e U for no h e G. It
follows that v must be the point w in (D3) and that v is fixed by every g e G. We
cannot hâve that {v} L{G) (since then v e U) and hence there are at least two
points in L(G). Consequently, there is loxodromic h e G [T3, proof of Theorem E].
Then h fixes v and we assume that v is the repelling fixed point. It follows from (Al)
and (A4) (transform the situation to R&quot; so that v oo) that there are k, &gt;0 and

n, &gt; 0 such that if

q •=. h &apos;&amp;n&apos;h ~~
&apos;

Si &quot; &lt;5 * &apos;

then g, (x) -» x for ail x e Sn.

It follows that also &lt;p{gl){x) -&gt;x for ail x ef(U nA). Since f(U n A) is infinité,
it follows by the convergence property [GM, 3.2] that we can pass to a subsequence

in such a way that (p(g, -» g where g is a Mobius transformation such that

g\f(UnA) =id. hence g is elhptic and mul g 1 =\iml_aom\x\(p(gl). However,
&lt;p(g,) is conjugate to &lt;p(g)n&apos;. Consequently, mul ç(g) (mul (p(g,))x/n&apos; 1.

2. Actually, we need not assume that (Dl) is true for ail x,yeUnA, only that
for each loxodromic g e G there are distinct points u, v e A, not both of them fixed
by g, such that (Dl) is valid for x gk(u) and y gk{v) when k &gt; 0 with some
L &gt; 1 which may dépend on g and some d &gt; 0 which does not.

REFERENCES

[A] T M Apostol, Modular functions and Dinchlet séries in number theory Gradua te Texts in
Mathematics 41 Spnnger 1976

[C] J W S Cassels, An introduction to diophantine approximation Cambridge U P 1957

[GM] F W Gehring and G J Martin, Discrète quasiconformal groups I Proc London Math Soc

55, 331-358 (1987)
[Tl] P Tukia, Multiplier preserving isomorphisms between Mobius groups Ann Acad Sci Fenn. Ser

AI /, 327-341 (1975)
[T2] P Tukia, A ngidity theorem for Mobius groups Inventiones math 97, 405-431 (1989)
[T3] P Tukia, Differentiability and ngidity of Mobius groups Inventiones math 82, 557-578 (1985)
[W] N J Wielenberg, Discrète Moebius groups Fundamental polyhedra and convergence Amer J

Math 99, 861-877 (1977)

Department of Mathematics
Vnwersity of Helsinki
Halhtuskatu 15
SF-00100 Helsinki
Finland

Received February 26, 1990



Buchanzeigen

Michal Karonski, Jerzy Jaworski, Andrzej Rucinski, Random Graphs, John Wiley &amp; Sons,
1990, 368 pages, £40 00

Préface - List of Participants - Bollobas B, Sharp concentration of measure phenomena in the
theory of random graphs - Buckley F and Z Palka, Property preserving spanning trees in random
graphs - Cooper C and A M Fneze, Pancychc random graphs - Fneze A M and L Kucera Parallel
colounng of random graphs - Fneze A M and T Kuczak, Hamiltonian cycles in a class of random
graphs one step further - Godehardt E Connectivity of random graphs of small order and statistical
testing - Janson S T Kuczak and A Rucinski, An exponential bound for the probabihty of nonexis-
tence of a specified subgraph of a random graph - Jaworski J Random mappmg with independent
choices of images - Kemp R Further results on leftist trees - Kordecki W normal approximation and
isolated vertices in random graphs - Kratochvil M J Maly and J Matousek, on the existence of perfect
codes in a random graph - Euczak T, On the équivalence of two basic models of random graphs -
Maehara H, On the intersection graph of random arcs on a circle - Matula D and L Kucera, An

expose-and-merge algonthm and the chromatic number of a random graph - Mutafchiev L, Large
components and cycles in a random mapping pattern - Nowicki K Asymptotic distributions of graph
statistics for colored graphs - Pittel B W A Woyczynski and J A Mann, Random tree-type partitions
as a model for acychc polymenzation Gaussian behavior of the subcntical sol phase - Promel H J

Almost bipartite-making graphs - Rucinski A Small subgraphs of random graphs - a survey - Spencer
J Undecidable probabihties - Szymanski J, On the maximum degree and the height of a random
recursive tree - Tomescu I, Almost ail digraphs hâve a kernel - Vahidi-Asl M Q and J C Wierman,
First-passage percolation on the Voronoi tessellation and Delaunay triangulation - Weber K Random
spread of information, random graph processes and random walks - Random graphs 87 Open
problems

Frédéric Blen, D-Modules and Spherical Représentations, Princeton University Press, 1990, 131

pages, $22 50

Introduction - I Locahzation Theory - II Spherical D Modules - III Microlocahzation and Irre-
ducibihty - IV Singulanties and Multiplicities

Jonathan D Rogawski, Automorphic Représentations of Unitary Groups in Three Variables,
Princeton University Press, 1990, 257 pages, $60 00 Cloth, $19 95 Paper

Introduction - I Prehminary définitions and notation - 2 The trace formula - 3 Stable con-

jugacy - 4 Orbital intégrais and endoscopie groups - 5 Stabihzation - 6 Weighted orbital intégrais -
7 Elliptic singular terms - 8 Germ expansions and hmit formulas - 9 Singulanties - 10 The stable

trace formula - 11 The unitary group in two variables - 12 Représentation theory - 13 Automorphic
représentations 14 Companson of inner forms - 15 Additional results

Nicholas M Katz, Exponential Sums and Differential Equations, Princeton University Press, 1990,

430 pages, $65 00 Cloth, $22 50 Paper
1 Results from Représentation Theory - 2 D E &apos;s and ^-Modules - 3 The generahzed hypergeo-

metnc équation - 4 Detailed analysis of the exceptional cases - 5 Convolution of ^-modules - 6

Fourier transforms of Kummer pullbacks of Hypergeometncs - 7 The «f-adic theory - 8 /-adic
hypergeometnes - 9 G2 examples, Fourier transforms and hypergeometncs - 10 &lt;f-adic exceptional
cases - 11 Reductive tannakian catégories - 12 Fourier umversahty - 13 Stratifications and convolution

- 14 The fundamental companson theorems


	Homomorphisms of constant stretch between Möbius groups.

