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The semiregular polytopes

G. BLIND AND R. BLIND

Abstract. A convex d-polytype in E? is called semiregular, if its facets are regular and its vertices
equivalent. A list of semiregular polytopes for d > 4 is known since 1900. Recently it has been proved
by I1. B. Makapos [cd. Bonp. auckp. reom., Mart. uccien. UM AH Moaa. CCP sem. 103, C. 139150,
Kummunes 1988], that this list is complete for d = 4. We present here a simple proof for that this list is
complete in any dimension.

1. Introduction

Let P be a convex d-polytope in E“. P is called regular-faced, if all its facets are
regular. P is called semiregular, if its facets are regular and if its vertices are
equivalent (i.e. the group of symmetries of P acts transitively on the vertices of P).
Clearly, every semiregular polytope is regular-faced.

For d = 3 the semiregular polytopes coincide with the Archimedean solids. For
d > 4 Gosset established a list of semiregular polytopes in [6]. Various constructions
of semiregular polytopes have been described since, but all the time it stayed open
whether Gosset’s enumeration is complete (see [7, p. 413]). Only in 1988 there is
published a proof [8], that Gosset indeed found all the semiregular d-polytopes for
d = 4. This proof uses the complete enumeration of regular-faced 3-polytopes in [9];
the vertex-figure of a semiregular polytope is then carefully examined.

In [1], [2] and [3] we completely enumerated the regular-faced d-polytopes for
d = 4; a wide class of them, however, is only given by a method how to construct
them. We shall show, how to deduce from this list of all regular-faced polytopes

THEOREM 1. Gosset’s list of semiregular d-polytopes is complete for d = 4.

2. Gosset’ list of semiregular d-polytopes for d > 4

Besides the regular polytopes Gosset found 7 semiregular polytopes, namely 3
for d =4 and always one for d =5, ..., 8. They are described in [6] by the sets of
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their facets together with some incidence properties of the following type

d name in | 6] sets of facets a (d — 3)-face is contained in
4 tetroctahedric S octahedra 2 octahedra
5 tetrahedra 1 tetrahedron
tetricosahedric 24 icosahedra 2 icosahedra " 1 icosahedron
120 tetrahedra 1 tetrahedron 3 tetrahedra
octicosahedric 120 icosahedra 1 icosahedron
600 octahedra 2 octahedra
5, .., 8 (d — 1)-crosspolytopes 2 (d — 1)-crosspolytopes
(d — 1)-simplices 1 (d — 1)-simplex

3. Regular-faced d-polytopes for d = 4

In [1], [2] and [3] we showed, that for d > 4 the following list of regular-faced
d-polytopes is complete:
for d = 5: the regular polytopes,

the polytopes of Gosset’s list,
the pyramid with basis a regular (d — 1)-crosspolytope, and
the bipyramid with basis a regular (d — 1)-simplex.
for d = 4: the regular polytopes,
the polytopes of Gosset’s list,
the pyramid with basis an octahedron,
the bipyramid with basis a tetrahedron,
the pyramid and the bipyramid with basis an icosahedron,
the union of a tetroctahedron (see Gosset’s list) and of a pyramid, whose
basis is an octahedric facet of the tetroctahedron, and
the set .« of polytopes arising from the regular 600-cell by cutting off
vertices in the following way:

Let Z be the 600-cell and let {E;}%_, be a set of vertices of Z, such that no two
vertices of {E,}%_, are adjacent, i.e. joined by an edge of Z. Since Z is regular, for
every E, the vertices adjacent to E; are contained in a hyperplane, which determines
a closed halfspace H(E,) not containing E;. Then Zn ni_, H(E;) is a convex
polytope, which is regular-faced, because Z is simplicial and no two vertices of
{E,}f_, are adjacent. We say that Zn N%_, H(E;) arises from Z by maximally
cutting off the vertices of {£,}%_,. Thus the set & is the set of those regular-faced
polytopes which arise from the 600-cell by maximally cutting off a set of vertices,
where every two vertices are non-adjacent.
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Let us remark that analogously we may maximally cut off a suitable set of
vertices from the icosahedron.

4. Proof of the Theorem

Let P be a semiregular polytope, which is not regular and not contained in
Gosset’s list. Since P is regular-faced and since the vertices of P are equivalent, we
immediately deduce from the list of all regular-faced polytopes that P is 4-dimen-
sional and that P € «/.

Now let P be any semiregular polytope with P € /. Let P arise from Z by
maximally cutting off £ >0 vertices of Z. Then, since Z has 120 vertices, the
number e of vertices of P is given by

(*) e+k =120

The set of facets of P is a set of tetrahedra and exactly k icosahedra. Let a vertex
E of P be incident with m = 0 icosahedric facets. Then the vertex-figure of P at E
is a 3-polytope arising from an icosahedron by maximally cutting off m vertices
where every two are non-adjacent. But such 3-polytopes exist only if m < 3. We
remark that for m = 3 there exists only one such 3-polytope: its 3 pentagonal faces
do not have a common vertex, but every two of them have a common edge; so in
case m =3 the 3 icosahedral facets through E do not have a common edge, but
every two of them have a common 2-face.

The vertices of P are equivalent, hence every vertex of P is contained in m
icosahedric facets; thus m = 1. Moreover, every icosahedric facet contains 12
vertices of P, so e = 12k/m. From this and (*) follows

124+ m
m

k =120, 1<m<3.

The only integer solution of this equality is m = 3, kK = 24; so we have m = 3.

Now let E be a given vertex of P and let 7, I,, I, be the m = 3 icosahedric facets
through E. Then by the previous remark /nI,n 1, is not an edge of I, but Inl;
and I n 1, are 2-faces of I. Thus, if # is the set of those 2-faces of I, which are also
contained in another icosahedric facet, then no two elements of % have a common
edge, but every vertex of I is contained in exactly two elements of #. From this it
is easily seen that & is uniquely determined for given I~ 1, and In1,, and so are
the facets intersecting 7 in a 2-face. Proceeding in this way we see that P is uniquely
determined for given 7, I, and 1,.
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Three icosahedric facets through a vertex correspond to vertices of Z, which are
uniquely determined up to isometries of Z by the previous remark. So there exists
at most one semiregular polytope in /.

The tetricosahedric polytope of Gosset’s list is known to be in </ (see e.g. [5, p.
152f.]). Hence it is the only semiregular polytope in &/, which concludes the proof.

5. Concluding remarks

1. We tried to make the proof as self-contained as possible. The result would
also follow immediately from k = 24 using Theorem 2 in [4].

2. Tt is well known (see e.g. [7, p. 413]) that if the definition of semi-regularity
is slightly changed by substituting ‘all vertex figures are congruent’ for the transitiv-
ity of the symmetry group, then the Archimedean solids are no more the only
3-polytopes allowed, but there exists exactly one additional polytope. Further
additional 3-polytopes exist, if instead of the congruence of the vertex figures we
assume only, that every vertex is contained in the same number of facets (see [9]*).
This is in contrast to the situation in higher dimensions:

In the proof of our Theorem we did not really use the transitivity of the
symmetry group of a semiregular polytope, but only the fact that every vertex is
contained in the same number of facets. Thus we have

THEOREM 2. A regular-faced d-polytope, where every vertex is contained in the
same number of facets, is semiregular for d = 4.
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