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An acyclic extension of the braid group

PETER GREENBERG and VLAD SERGIESCU

Abstract. We relate Artin’s braid group B, =lim _, B, to a certain group F’ of p/-homeomorphisms of
the interval. Namely, there exists a short exact sequence 1 > B, -4 - F' — 1, where H, 4 =0, k 2 1.

1. Introduction

Recent years have seen a growth of interest in the dynamical, combinatorial and
homological aspects of groups of p/-homeomorphisms of the real line ([BS], [Br],
[BrG], [Gh], [GS], [G1)).

In this paper, we link certain of these groups with the Artin braid groups in an
algebraic construction which exploits the geometrical bases of the two.

Let F be the group of p/-homeomorphisms of [0, 1] whose derivative, which may
be undefined at a finite subset of Z[}], is otherwise an integral power of 2, and let
F’ be the subgroup of elements of F which agree with the identity near 0 and 1. Let
B, be the braid group on # strings and B_, = lim _, B, the usual infinite braid group.
Recall that a group is acyclic provided it’s homology with trivial coefficients
vanishes in positive dimensions.

Our main result is the following:

THEOREM. There exists an exact sequence 1 +B,, - A > F -1, with A an
acyclic group.

Our task in this paper is the construction of the group 4 and the proof of it’s
acyclicity. We also indicate the homology of related groups, replacing either F’ with
a group acting on the circle or B, with the group X_ of finitely supported
permutations. The latter group is connected with the Fredholm permutations as
studied by J. Wagoner and S. Priddy ([W], [P)).

The construction of A is quite geometrical. It exploits the idea of an action at
infinity on a tree. The critical point is to force H,(4; Z) = 0. The role played here
by the second derivative recalls the discretized Thurston cocycle introduced in [GS].

The initial evidence for the theorem is homological.
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PROPOSITION ([G1], [GS], [S1]). There are maps BF' —QS* BB, — Q3S?
inducing isomorphisms in homology with integer coefficients.

Thus, the path fibration Q%S? — PQS> — QS? suggests the existence of the group
A claimed by the theorem. However, as we will show in Section 6, given a fibration
F - FE — B and groups H and K with the homology of F and B, it is not generally
possible to build an extension of groups 1 - H - G — K — 1 with the homology of
that fibration.

It seems that 4 is a new kind of acyclic group. Well-known examples of such
groups include Higman’s finitely presented group (see [BDH] and Section 6) as well
as various ‘“‘large” groups: the group of compactly supported homeomorphisms of
R" [M2], the group of all permutations of an infinite set or the group of continuous
automorphisms of an infinite dimensional Hilbert space. The proof of acyclicity of
the Higman group uses a Mayer-Vietoris argument, while for the large groups it
requires an infinite repetition device due to Mather and Wagoner.

In contrast, in order to prove that A4 is acyclic we use a different approach
involving a fairly delicate delooping argument.

We note that while a basic theorem of Kan and Thurston embeds any group in
an acyclic one, our construction embeds the braid group in 4 as a normal subgroup.

This paper is organized as follows. In Section 2 we introduce a technique to
build automorphisms of braid groups starting with the action of a group at infinity
on a tree. Section 3 contains the definition of 4 and of some auxiliary monoids. In
Section 4 we use the homological properties of B, and F’ and a delooping
technique to prove the Theorem. Section 5 contains related results for other groups
and Section 6 a relevant example.

We thank J. Barge, F. Gonzales-Acuna, D. Epstein and J. C. Hausmann for
stimulating interest at various stages of this paper.

This paper was initiated during a visit of the second author at the U.N.A.M. at
Mexico City and then completed while the first author was visiting the University
of Lille. The authors warmly acknowledge the hospitality of both institutions as
well as the support of C.N.R.S.

2. Trees and Braids

This section starts with some motivating remarks and an overall idea of our
approach. We hope, thus, to make the material in the rest of the paper easier to
follow.

As already stated in the Introduction, our main goal is to build an acyclic
extension 1 - B, - A4 - F — 1. The group B, being centerless, it is well-known
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that this comes down to a certain morphism from F’ to the group of outer
automorphisms Out B_.

Unfortunately, there is no natural way to obtain this morphism using the
standard description of B, .

Instead, we note that F” acts naturally on the group X viewed as finitely
supported permutations of the dyadic numbers in ]0, 1[. Indeed, F’ is a group of
bijections of the dyadics. This suggests to look for some sort of braiding of the
above action.

To avoid braiding a dense set, we first place the dyadic numbers as vertices of
the binary tree.

A system of generators for the related braid group can be constructed from the
edges of the tree. Note that F’ does not act on the whole tree.

Fig. 2.0

Our basic observation is that nevertheless, each element of F’ does act simpli-
cially outside a finite subtree. Moreover, this action will extend to an automorphism
of B, , well defined up to inner automorphisms. Thus one gets a morphism from F’
to Out B, .

We mention that in fact, a slightly more involved construction is needed in order
to get the extension A acyclic.

We now proceed to put these remarks in a proper context.

Recalling their relationship with configuration spaces, we define braid groups
relative to a discrete set of points in the plane. When this is the set of vertices of a
planar tree, the edges provide generators for the corresponding braid group.

We then introduce braid groups associated to cyclically oriented trees. Our setup
is appropriate to show that an isomorphism “at infinity” of a tree becomes an outer
automorphism of the associated braid group. This fact will be essential for our
constructions in the next section.
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2.1. DEFINITION. Let S be a discrete, closed subset of R%. For any open
relatively compact, contractible set D = R?, let C, be the space of injections of the
finite set S N D into D, modulo the action of the group of permutations of S N D.
Let B, =n,Cp, and By =lim _, B, the limit taken over the directed system of open
sets and inclusions. We call Bg the braid group of S.

2.2. Remarks. a) The isomorphism class of By depends only on the cardinality
of S.

b) Consider an embedded arc ¢ in R? which intersects S precisely at it’s end
points.

Pick a contractible neighbourhood D such that S "D is the end points of c.
Then B, =~ Z; we let ¢ be a generator of B, given by a counterclockwise exchange
of the endpoints of c.

Fig. 2.2

The ¢ constitute a “coordinate-free” set of generators of By, and satisfy simple
relations given by the following propositions, whose proof is left to the reader:

2.3. PROPOSITION (Triangle Rule). Let S be a discrete closed set of R*. Let
a, b, c be the edges, in clockwise order, of a triangle embedded in R?. Suppose that
a, b, c intersect S precisely at their end points, and the interior of the triangle contains
no point of S. Then ¢ =a 'ba = bab ™"

We recall some homological facts.

2.4. PROPOSITION. Let S be a discrete, closed subset of R*. Then H,(Bg) ~Z,
and the map from Bg to H,(Bg) takes all of the ¢ to the same generator.

It is classical ((CLM] III, App.) that H,Bg ~ Z, generated by some ¢. The
triangle rule shows that all ¢ lie in the same conjugacy class. O
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C
Fig. 2.3

2.5. PROPOSITION. For any integer m = 0, there exists a k >0 such that if
S < 8’ are discrete, closed subsets of R? and card S > k, then the inclusion Bg — B
induces an isomorphism in homology in degrees <m.

For S, S’ finite, this is ((CLM], III, App]. The general result comes on taking
limits. O

In our notation, the usual presentation for the braid group is as B,, where
N={n,0)|neN}; By has generators ¢,e;=[i,i+1] and relations
€€ 418 =€ ,1€€.,,e,e]=1if |i—j|=2. One can show that these relations
follow from the triangle rule. In general, the edges of any tree in the plane with the
set S as vertices provide generators for Bg; the ¢, for arcs ¢ which are not edges in
the tree, may be easily calculated in terms of the edges using the triangle rule. We
proceed to develop this idea.

Let T = (V, E) be a countable, locally finite tree with vertex set V' and edges E.
We always identify T with it’s geometric realization.

2.6. DEFINITION. An orientation of T is an equivalence class of collections
® ={¢,}, ., of bijections 0, : E(v) »{1,2..., card E(v)}, where we set & ~ @ if
for all v e V, ¢, and ¢ differ by a cyclic permutation of {1, 2, ..., card E(v)}.

An embedding f: T — R? is a homeomorphism onto its image, such that (V) is
a discrete, closed subset of R%. An embedding of a tree determines an orientation of
the tree, the clockwise ordering of the edges E(v), v € V. The converse is also true:

2.7. PROPOSITION. If T =(V,E) is a tree, there is a one-to-one correspon-
dence between orientations and isotopy classes of embeddings to R*.

Namely, given an orientation, pick v € ¥ and define f(v) = (0, 0) € R%. The
orientation describes how to embed E(v), and there after by induction on subtrees
(T being connected) the entire tree, up to an ambient isotopy. O

Let T be an oriented tree. Let f: T — R be an orientation preserving embedding.
The group By, has {f(e), e € E} as a set of generators. The relations satisfied by
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the f(e) in B, depend only on the isotopy class of f, that is, by 2.7, only on the
orientation of 7. That is, we can make the following definition.

2.8. DEFINITION. Let T be an oriented tree. Let X be the free group on the
set E of edges of T. An orientation preserving embedding f: T — R? induces a
surjection X — B,,,. Define B, the braid group of T, to be the quotient of X by
the kernel of X — B, for any orientation preserving f. We write f : By — By, for
the induced isomorphism.

In [Ser] the relations amongst the generators e € E which define the group B
are determined. They are: [e, ¢’] =1, if e and e’ share no vertex, ee’e =e’ee’ if e
and e’ share a vertex, and ee’e"e = e'e"ee’ =¢"ee’ e” if e, e’, e” share a vertex, and
are cyclically oriented.

If /:T—>R%f :T"—>R? are orientation preserving embeddings of oriented
trees, such that f(V') = f(V’), then f~' o f” defines an isomorphism from B;. to By.
Our next goal is to define outer automorphisms of B; via embeddings of T in T
defined up to a finite subtree. The approach is suggested by a similar construction
for permutations due to Wagoner ([W], [P)).

Recall that a forest is a disjoint union of trees. We keep the notation 7 = (V, E)

for a forest. We discuss some aspects of the geometry of forests.

2.9. DEFINITION. Let T" = (V’, E’) be a subforest of a forest T'= (V, E). The
complement 77 of 7" is the subforest of T with edges {e € E | e ¢ E’}. Whenever
T7¢ is finite, T’ is called a cofinite subforest. If 7" is connected and T"NT'“ is a
single vertex v, then T’ is a rooted subtree whose root is v.

We shall need one more technical notion. Let T,,..., T, be rooted infinite
disjoint subtrees of an oriented tree 7. Let v, be the root of T;,,i=1, ..., n.

2.10. DEFINITION. We say that T, U - - - U T, has uncut complement if for
some embedding f: T — R? which preserves orientation, there exists an embedding
of the closed unit disc g : D?— R? such that g(D?) nT; = {v;}. The cyclic counter
clockwise order in which the roots v; occur on g(S') = g(éD?) is called the cyclic
order of the T, (we always assume this is T, ..., T,).

Note that a forest can have a connected complement without having an uncut
complement.
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T,, T,, T; in cyclic order T,,T,, T; do not have uncut complement

We state a technical lemma:

2.11. LEMMA. (a) Any finite subforest T’ of an oriented infinite tree T may be
enlarged to a finite subtree T" 2 T’ so that T" has uncut complement.

(b) Let T” be a finite subtree of an oriented tree T so that T =T,u - -- U T, has
uncut complement. Let v; be the root of T,i=1,...,n. Suppose that
f=1f: T“>R? is an embedding, so that each f; : T; - R? is orientation preserving.
Further, suppose that there is an embedding g:D?>—R? of the disk, with
g(D?) Nnfi(T;) = {f;(v;)} and such that the f,(v;) occur in g(S") in the order given by
the cyclic ordering of the T,.

Then f extends to an orientation preserving embedding f: T — R

We leave part (a) to the reader, and pass to part (b). Begin with an embedding
h : T —R?, which we can assume takes 7" to g(D?), and such that A(v;) € g(S") for
each i. By definition of cyclic order, the A(v;) occurs on g(S') in the same cyclic
order as the f;(v;). Thus we can isotope h, keeping h(T’) < g(D?), such that
h(v;) = f;(v;). Lastly, we isotope h outside g(D?) until & = f; on each T. O

One has the following key notion.

2.12. DEFINITION. Let T, T’ be oriented trees. An oriented Fredholm map ¢
from T to 7” is an isomorphism ¢ = {¢,: T, > T;,i=1,-,n} from a cofinite
subforest T,u --- UT, of T with uncut complement to a cofinite subforest
10 - UT, of T" with uncut complement. Each ¢, must be orientation preserving,
and the cyclic orders of the T, and T; must agree. The index of ¢ is defined as
ind (¢p) =card {ve V,v¢uV,} —card{ve V',v¢ uV;}.

The sei of oriented Fredholm maps from T to T’ is denoted Fred* (T, T’). We
put an equivalence relation on Fred *(T, T’) by setting ¢ ~ ¢ if ¢ and ¢’ agree on
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some cofinite subforest. The equivalence classes are called germs and form a set
Germ™ (T, T"). For a single connected oriented tree 7, Germ™ (7, T) is a group
and ind : Germ™ (7, T) —» Z is a homomorphism.

Finally, we show how Fredholm maps produce automorphisms of braid groups.

2.13. PROPOSITION. Let T=(V,E) and T'=(V', E") be infinite oriented
trees, and let ¢ € Germ™ (T, T") with index 0. Then there exists an isomorphism
@ : By > By, so that ®(e) = @(e) for all but a finite number of edges e € E. Further,
@ is well defined up to composition with an inner automorphism of B.

First we show that @ exists. Pick ¥ e Fred*™ (T, T"), ¥ ={¥,: T, -»T;,i=1,
...,n} in the equivalence class ¢. Let f: T—»R? be an orientation preserving
embedding. Define f; : T; > R? by f; =fo ®;'. Because ¥ preserves the cyclic
order of the T;, by 2.11 (b) we can extend f; to an embedding /" : 7" - R?. Since
ind ¢ =0, we can choose f” so that (V') = f(V). Then define ® = f"~'f. Clearly
®(e) = ¢(e) for any e e VE,.

Suppose that ¥ : By — By, is an isomorphism and that ¥(e) = ¢(e) for all but
a finite number of edges e € E. Then ¥ ~'® : B, — B, is the identity on e for all but
a finite number of edges e € E. Thus there exists some finite subtree 77 = (V", E”)
of T such that ¥ ~'® induces an automorphism B, and ¥ ~'® ~!(¢) = ¢, e ¢ E". By
this latter condition and 2.4., ¥ ~'® induces the identity on H, of B;.. The theorem
of Dyer and Grossman ([DG], 4) thus implies that ¥ ~'®, restricted to B;., is an
inner automorphism conjugation of some g € B;.. Enlarging T” if necessary, it
follows that after possibly multiplying with an element in the center of B, g
commutes with any e, e ¢ E”. Thus ¥ ~'® : B, — B is conjugation by g, q.e.d. [J

A mild extension of 2.13 is the following.

2.14. PROPOSITION. Let T,T  be infinite, oriented trees, and
@ € Germ™ (T, T’) with index 0. Let 1,1’ be finite subforests of T, T’ respectively,
and 0 : T — 1’ an orientation preserving isomorphism of trees. Then there exists an
isomorphism @ : By — By such that ®(e) = ¢(e) for all but a finite number of e € T,
and such that ®(e) = 0(e) for all e € .

First, pick ¥ as in 2.13, but so that tn T, = . One can then pick f, as in the
proof of 2.13, so that /|, =f-0"". O

2.15. COROLLARY. Let T be an infinite, oriented tree, and 0 :t -1’ an
orientation preserving isomorphism between finite subforests of T. Then there exists an
inner automorphism @ of By so that ®(e) = 6(e) for all e .

Take ¢ to be the identity in 2.14. O
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2.16. COROLLARY. Let T be an infinite, oriented tree, T a finite subforest, and
¢ € Germ™ (T, T) with index 0. Then there exists an automorphism ® of By so that
P(e) = ¢, e € T and P(e) = ¢(e) for all but a finite number of edges e of T.

Take 0 to be the identity in 2.14. O

3. Constructions

In this section we perform the main construction of the paper. We will define the
group A, to be shown acyclic in Section 4, and a related group 4;. Also, monoids
used in the proof of acyclicity of 4 are constructed. We begin by defining some
oriented trees.

3.1. DEFINITION. The trees T,. For each integer N =1, we construct an
oriented tree T = (Vy, Ey). The set of vertices of Ty is

1
Vy= {v;’,;n >0,de ZI:E:IF\(O, N)}

and the set of edges of Ty is Ey=Cyul,F%, the latter union over
d €Z[3] n (0, N), where

Fé = {ez; n=0} and Oe? = {V‘,f, va )

|
Cy = {e;’, e, d EZ[E](\(O, N)}

and
d ,,Id d __ d d
aef = {v09 v()( ) ’ aer - {VO’ v(r)( )

where if d=k/2", k odd and m=1, or m=0 then I(d)=(2k—-1)/
2"+ d) = (2k + 1)/2m+ 1.

One should think of F% as a fiber over d, and the elements of Cy as connecting
the fibers. The orientation of T is that induced by the following embedding into
R ={(x,y),y >0} '

For example, the cyclic ordering of the edges E(vy) is as follows: el,e}?

32 .32 2
eO ;er/ ,e['
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eN-! N+ 12

Fig. 3.2

3.3. DEFINITION. T} is the oriented subtree of 7T, with edges

E;= ) Fiulef;d=21}ufed;d>1}.

d=s1

We write i : Ty — Ty, . for the obvious embedding of T as a subtree of Ty, 4.
Other useful embeddings are the translation maps t: 7Ty — Ty, , defined by
t(vi) = vtk ted) =edt  (x=r, L n).

3.4. DEFINITION. We write By, for the braid group By, of the tree Ty, and
B, for the braid group of Tj.

3.5. LEMMA. The map H (i) : H, (B)) = H ,(B(y 1 1)) is an isomorphism for
all N, k and H (i) = H (7).

The first assertion is a consequence of 2.5. We show that H (i) = H,(1). Let
x € H,(By,). Then, by definition of B,,, x comes from By, for some finite subtree
T < Ty. The trees i(T) and ©(T') are isomorphic subtrees of Ty, .. Applying 2.15,
there is an inner automorphism of By, ,, taking H (i) (x) to H (1)(x), O

To define the groups 4 and A, and certain monoids, we make some remarks
on the geometry of the trees 7T and 7.

3.6. DEFINITION. A dyadic interval is an open interval of the form I=
(k/2",(k + 1)/2"),n 2 k € Z. If I and J are dyadic intervals, y,, denotes the unique
element of the dyadic affine group such that y,,(J) = I. If I is a dyadic interval and
N=1 so that I<(0,N), let T, be the subtree of T, with vertices
V,={vd;del},E,={e€Ey,de cV,}.
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3.7. LEMMA. Let I and J be dyadic intervals. Then G, (v?) =v¥®, G, (e?)
=el “(x =n,r, 1) defines an isomorphism G, : T, - T, of trees.

Routine verification O

3.8. Construction of A.

We now define, for any piecewise affine dyadic homeomorphism
g :[0,n] -[0,k], an element ¢, of Germ™ (T,, T,). Let M be an integer large
enough so that for every dyadic interval of the form J = (k/2¥, (k + 1)/2M), g | ;18
affine, and g(J) is a dyadic interval.

3.9. DEFINITION. Let d € (0, n). Define g"(d) = log, g'(d) — log, g'(d), where
g'(d) =lim, og'(d +¢), g/(d) = lim, ,g'(d —¢).

Let s, = max, o, | £"(d) | Define a cofinite subtree of T, to be the union of
the T,, J = (k/2™, (k + 1)/2*), with subtrees F¥ of the fibers F d = k/2™; F¥ has
edges {ef,n =5, +1}. A glance at 3.2 shows that this cofinite subtree has uncut
complement.

We define a representative ¢, € Fred™ (T, T) of ¢, € Germ™ (T,, T}) as fol-
lows: @, | T, = Gy, for any J = (k/2™, (k + 1)/2™). For each d =k /2", define
P (ed) = 89,4y, s0 that @, (F?) is a subtree of F&4. It is clear that the image of
@, is a cofinite subtree with uncut complement, and that ¢, preserves the cyclic
order of the components of the subtree.

3.10. PROPOSITION. If g : [0, n] =[O0, k], h : [0, k] = [0, m] are piecewise affine
dyadic homeomorphisms, then ¢,, = ¢, ®,.

This follows in a straightforward way from the following two facts. First, if
I, J, K are dyadic intervals, then G,,G,x = G,,. Second, the derivative defined in 3.9
satisfies the chain rule: 2"(g(d)) + g"(d) = (hg)"(d). O

3.11. PROPOSITION. Let g : [0, n] = [0, k] be a piecewise affine dyadic homeo-
morphism, such that g"(0) = g'(n) = 1. Then ind ¢, = 0.

Since @, takes fibers to fibers, ind ¢, = Z,. 0,,g"(d). Since g'(0) = g'n) =1, by
the “fundamental theorem of calculus” Z,.,,,8"(d) =0, so ind ¢, = 0. O

3.12. DEFINITION. A4 is the group of automorphisms 4 of B,,, such that there
exists a g.€ F” such that A(e) = ¢, (e) for all but a finite number of edges e € E,. We
say that A lies over g, and define p : 4 > F’ by p(h) =g.
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3.13. THEOREM. There is an exact sequence 1 — B,y — A LSF o1

Definition 3.12 gives p : 4 - F’, which is a homomorphism by 3.10, and
surjective by 3.11. The kernel of p contains all inner automorphisms of B ,; by
definition, ker(p) is the set of all automorphisms of B, which fix e for almost all
e € E,. By the argument of 2.13, ker(p) consists of exactly the inner automorphisms
of B,. But B, has trivial center, and can be identified with its group of inner
automorphisms. Hence ker(p) = B,. O

3.14 PROPOSITI(%N. The action of F' on H, B, coming from the exact
sequence 1 — By - A —» F' — 1 is trivial.

Let ge F', x € H, B,. Then x is the image in H B, of an X € H B, for T a
finite subtree of T,. By corollary 2.16, we can pick an & € A over g such that 4 fixes
T. Thus g fixes x. U

3.15. Construction of Ag

We briefly describe the construction of the extension B; — A; — G. Here, G is
the group of orientation preserving piecewise affine dyadic homeomorphisms of S,
thought of as [0, 1] with 0 and 1 identified, see [GS]. As in 3.8, to every g € G we
associate a ¢, € Germ™* (T, T;) with ind ¢, = 0. Then A; is defined as the group
of automorphisms /4 of the group B, such that for some g € G, h(e) = ¢, (e) for all
but a finite number of edges e € T;. As in 3.13 and 3.14, we obtain an exact
sequence B; —» A; — G, and G acts trivially on the homology of B. Note that we
have a commutative diagram, whose vertical arrows are inclusions:

B,y —»A-F
| (3.16)
BG '-")AG ‘—’G

The proof of acyclicity of A4 requires the construction of strictly associative
topological monoids and continuous homomorphisms Mz — M, % M. The con-
struction of M is due, in essence, to Quillen ([Q], §.8).

3.17 Construction of My

M is the (thin) geometrical realization B% of a category €. The objects of €r
are 0,1,2, .... The set of morphisms % (n, k) is null if n =0 unless kK =0, and
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%r(0,0) = {id}. For n,k 21, €(n, k) is the set of piecewise dyadic affine home-
omorphisms g : [0, n] - [0, k] such that g"(0) = g(n) = 1. Composition in € is via
composition of homeomorphisms. Note that M = B is the union of a point 0
with a K(F’, 1), and the inclusion F' >%.(1, 1) defines a homotopy equivalence
« 1l BF' - M.

The product pr= Mgy x Mp— M is defined via a functor, also denoted
prp:€r x €p—> €. On objects, pup(k,n) =k +n. 1f g € €r(k, n) and g’ € € (k’, n’),
define ur-(g,g") e 6r(k +k',n+n’) by

(8 2)0) = {5 x=k

) X) =

.qug g/(x_k/)+n .x—>-k

Composing with the canonical homeomorphism B&. x B€r— B(€r x €r), we
obtain up: M. x M.— M, one checks that u, is strictly associative with unit
*x=0.

3.18. Construction of Mg

M is the geometrical realization B% g of a category €. The objects of €5 are
0,1,.... The set of morphisms € (n, k) is empty unless n = k, and € (0, 0) = {id}.
For n > 1,%4(n, n) is the set of elements of B, and composition in €5 is a
composition in the B,,. Thus My = B¢, =01, ., BB,.

The product pugz : Mz x My — My is defined via a function up : €5 X €5 »€5.
On objects, pugzm,k)=n+k. If ge¥z(n,n) and he%by(k,k) then
up(g, h) €€g(n +k,n+ k) is defined by

us(g, h) = i(g)t(h)

where i : T, - T, ,,1: T, —T,, , are as defined below 3.3. Again, one checks that
Kp 1s strictly associated, with unit 0.

3.19. Construction of M ,

M , is the geometrical realization B¢, of a discrete category € ,. The objects of
%, are 0,1,.... The set of morphisms % ,(k,n) is the set of isomorphisms
h : By, — B, such that there exists some g € ¢ r(k, n), and h(e) = _(,eg@ for all but
a finite .number of edges e € E, (recall 3.8). ¥,(0,k) is void if k0, and
€4(0,0) = {id}. Composition in €, is via composition of isomorphisms. The
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isomorphism 4 5% ,(1, 1) induces a homotopy equivalence * IL BA - M, ; we send
* to Q.

As before, p, : M, x M, — M, is defined via a functor pu, : €, x €, —~>%,.
On objects, pu,k,n)=k+n. If he€,nk),h ecb,(n’,k’) lie over
g€br(n k), g €6r(n, k") respectively, then u, (h,h')e € ,(n+n’,k +k’), lying
over ur(g,g’) is defined on the generators ¢,e € E, , - by

Halh ) () =€l n =0
wa(h, W)@ =he) eeT,
talh, k) (ze) =h'(e) e €Ty

where 7 : T, — T, is the translation map defined after 3.3. The above formulae
determine u,(h, h')(e}) and u,(h, h')(e?). One checks that u, : M, x M, > M, is
strictly associative, with unit 0.

3.20. Homomorphisms

The homomorphisms Mz - M, SMm ¢ are defined via functors €z —> %, Le e
On objects, the functors send n to n. The map €z(n, n) —» % 4(n, n) is the isomor-
phism of B, with its group of inner automorphisms. The map % ,(n, k) > € An, k)
assigns to an h: B, — B,, the element of %.(n, k) over which it lies. It is
straightforward that these functors define homomorphisms of monoids
My,-M,5M,.

4. Proof of Acyclicity

We will now prove that A4 is acyclic, quoting propositions 4.1.—4.3. which will
be proven later in this section.

Essentially, 4.1. and 4.2. show us how to “deloop” the sequence
BB, — BA — BF’. Acyclicity of 4 then reduces to proving (4.3.) that H,(4; Z) =0.
It is here that all details of our construction come into play.

To begin, recall that if M is a (strictly) associative topological monoid, we can
construct BM, namely as the realization of the simplicial space

— D
* M—— MxM:---

—
L ——————
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and that this construction is functorial for monoids and continuous homomor-
phisms. The evident map £ M — BM has as adjoint a map M — QBM which is not,
in general, a homotopy equivalence. We will use the group completion theorem
[McS] (see also [D] for a very detailed treatment) to compare the homology of M
and QBM.

In the previous section we constructed monoids and homomorphisms
My — M, 5 M,. Therefore we have spaces and maps BM — BM % BM ~, whence

BM g — BM , - BM, (~ denotes universal cover).

4.1. PROPOSITION. (a) There is a map BA — QBM , inducing isomorphism in
homologf;:/ 5

(b) BMyz — BM , —» BM . is homotopically a fibration. There is a weak homotopy
equivalence from BM g to the homotopy fiber of Bp.

4.2. PROPOSITION. There are weak homotopy equivalences QS° ~ BM B
BMF o~ S3.

4.3. PROPOSITION . H 4 =0.

4.4. Proof of Acyclicity

By 4.1. (a) and 4.2, we have, up to homotopy, a fibration QS*— BM, — S°. By
4.3.and 4.1. (a) H,BM , = 0. This, and an easy Serre cohomology spectral sequence
argument, show that BM , is contractible. Thus QBM , is contractible, and by 4.1.
(a), 4 is acyclic. O

The proof of 4.1. begins with lemmas 4.6. and 4.7. below. Recall from Section
3 the maps BA - M ,, BF' —» M, induced by the identifications 4 = ¢ ,(1, 1), and
consider the diagram:

BA — M, — QBM,

13,; l lOBp (4.5)
BF’ > M (. > QBM -

4.6. LEMMA. The horizontal compositions in (4.5.) induce isomorphisms in
homology:

H_BA > H (QBM,)

H BF — H (QBM)
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We shall use the group completion theorem of [McS]. Recall that
BA - M,, BFF - M, induce homotopy equivalences *I1B4 — M ,, *IIBF' — M.
Thus, for M = M, or M, my M is a multiplicatively closed subset of H M with two
elements (the multiplication in H, M is induced by the product M x M — M). We
consider the ring H (M)[n,M ~'] obtained by inverting n,M in H, M, one checks
easily that H BA = H (M ,)[roM '], H BF' ~ H (My)[n, Mz ']. O

The map H M — H QBM factors through H,(M)[n,M ~'], because n,QBM is
a group. The lemma follows if we can show that H (M) [r,M ~'] - H (QBM) is an
isomorphism for M = M, and M. But this is exactly what the group completion
theorem does for us, provided that we show that m,M is in the center of H M.
Following lines of Quillen ([Q], §8) we provide this for M ,. For M, the proof is
parallel.

Recall that 4 may be identified with € ,(1, 1); let 4, denote the set € ,(2, 2) with
the obvious group structure whose composition is composition of automorphisms.
Proving that myM, is in the center of H M, comes down to proving that the
homomorphisms L, R : 4 — A, defined by

L(g) = pa(g, id,), R(g) = p,(idy, g)

induce the same map in homology.

Let A, be the subgroup of A4 consisting of elements g € 4 lying over elements of
F’ whose support is contained in (¢, 1 —¢) and such that g(e§) =e4(* =1, r, m) if
d<e/2ord>1—¢g/2. Clearly, A is the direct limit of the A4,, so it suffices to show
that L and R, restricted to an A,, induce the same map on homology. Let
g. € €x(2, 2) such that g, restricted to (1 +¢/4,2 — ¢/4) is translation by —1, and
pick h, € A,,h, lying over g, such that h(ed)=ed ™' if de(l+¢/4,2—¢/
4), x =1, r,m. Then for any g € 4,, h, R(g)h;' = L(g). Hence R and L induce the
same map on H_A,. O

47. LEMMA. There is a map BB(,)—-»QW g inducing an isomorphism in
homology, so that the square

BB“) ""QB,'\MB

l !
BA - QBM,

commutes up to homotopy.
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We first apply the group completion theorem of [McS] to prove that
H, (Mp)[neMz'] > H (QBMp) is an isomorphism. Thus we need that ngM; ~ N
is in the center of H M. But this is a consequence of 3.5. O]

Now H, (Mp)[reMz'l = H,(Z x lim_ BB,,), where i:B, —B,, is the
usual inclusion. Since by 3.5, these inclusions induce isomorphism in homology,
and since BB, —»QBMjy takes BB, to the component (QBMj), of
1 emyBMp ~Z, we have an isomorphism in homology BB, —(2BMj),,. Com-
posing with a representative of —1en, BMy gives a homotopy equivalence
(2BM ), — (2BMy),. Composing with the homeomorphism (QBM B)oaQBTJB,
we obtain

o—1 st
BB(I) - (QBMB)I——_——) (QBMB)O —_— QBMB

L

BA —QBM,

which commutes up to homotopy, because 1 =0 in n,QBM ,.

4.8. Proof of 4.1.

4.1. (a) is part of lemma 4.6. We pass to the proof of 4.1. (b).

Let x € BM be the canonical basepoint arising from the definition of BM as
the geometrical realization of the simplicial space * < M.« ---. Let Fib, (Bp) be
the homotopy fiber [Sp] of Bp : BM , — BM . over *. The natural numbers N are a
submonoid of M., coming from the objects 0, 1, . .. of €, and the image of BM B
in BMis BN. Now BN is contractible in BM . Picking a contraction defines a map
B:BM, — Fib,(Bp). We aim to show that f is a weak equivalence. It suffices to
show that Qf : (BM;),, — Fib, (2Bp) is a homotopy equivalence; here we identify
QBM, = (2BM),, and QFib, (Bp) with Fib, (2Bp), the homotopy fiber of
QBp : QBM , - QBM ., over the constant loop at * € BM .

Add a whisker to BF’, so that BF' — QBM, takes the new basepoint to the
constant loop at *. As before, denote by Bp : BA - BF’ the map from BA to (the
new) BF’. The whisker gives an obvious homotopy equivalence BB, = Fib,, (Bp),
and naturality of homotopy fibers gives a map Fib, (Bp) - Fib, (2Bp). Now

QBM , Ei QBM . is the + construction [Be] of Bp : BA — BF’, by 4.6. Further, F’
acts trivially on the homology of B,,, by 3.14. Thus by ([Be], 6.4),
Fib,(Bp) — Fib,(2Bp) is an isomorphism in homology.
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We have a square
o-—1

l 1 i (4.9)
Fib,, (Bp) - Fib,, (2Bp)

which, one checks by hand, is homotopy commutative. Further, every arrow, except
possibly Qf, induces isomorphism in homology, and so 28 must as well.

So Qf is a map between loop spaces, which induces isomorphism in homology.
We can apply Whitehead’s theorem to see that Qf, and hence f, is a weak
equivalence. 0J

The proof of proposition 4.2 is divided between lemmas 4.10 and 4.12.

4.10. LEMMA. There is a weak equivalence S* — BM ..

Let I be the pseudogroup of orientation preserving, piecewise affine dyadic
homeomorphisms between open subsets of R. In [GS], using techniques of [G1], it
is shown tht BI' ~ S3. Results of [G2] extending a theorem of Mather show that
there is a homology equivalence BF’ — QBI', hence BF’' — QS*. But by 4.6, there is
a homology isomorphism BF’ — QBM . Further, 1, QBM = 0. Thus (see e.g. [Be])
QBM  and QS* are both the plus construction of BF’ with respect to n,BF’ = F’,
and 5.1. of [Be] implies that QBM, and QS°* are weakly equivalent. O

4.11. LEMMA. Let X be a space such that QX is weakly equivalent to QS3. Then
X is weakly equivalent to S°.

By the Hurewicz theorem, it suffices to show that X has the homology of S°.
Consider the Serre cohomology spectral sequence of QX — PX — X, where PX is
contractible. Let a € H2QX = E%? be a generator. Let b € H>X = Z a generator so
that d3°b) =a. A little work with the multiplicative structure shows that
d3?®" . E3*— E3*+? is an isomorphism for all n. Suppose that for some k > 3,
H*X #0, and let y € H*(X), y # 0, for smallest such k. Then y must survive to E_,
a contradiction. O

4.12. LEMMA. ﬁlB is weakly homotopy equivalent to QS>.

It suffices to show that BM, ~ QS?, since 25?=S"' x QS3. Let M = »11, . , BB,
be the disjoint union of the classifying spaces of the finite braid groups, considered
as a monoid as in [S1]. We will define a homomorphism a : M - My, and prove
that Ba is a weak equivalence. Since by [S1] (see also [CLM], III, 3, for an
alternative approach), BM ~ Q2S?, the lemma follows. O
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ak(e/')
2i-1/2 V! 2l
Vs 0 vg'+12
Fig. 4.13
Let By =<ey,...,es y|leel=1,i—j|22,¢ee,,e,=e,, ee. > as usual.
We define a : M - My by a(*) = 0, and with homomorphisms g, : B, - B, defined
by “braiding the v{/%, ..., v3¥~ "2 That is (see Figure 4.13), using the triangle rule

we define a,(e;) = (el) ~'ebel. One checks that M — M thus defined is a homomor-
phism of monoids. Applying group completion to both monoids, we obtain a
diagram:

H,(Z x lim_, BB,) ~ H (M) [n,M '] > H QBM

l | |
H.(Z x1lim_ BB,) ~ H (My)n,M5'] - H QBM,

By 2.5, lim_, BB, —lim _, BB, induces an isomorphism in homology. Therefore
QBM — QBM is a homology isomorphism and a loop map, and hence a weak
equivalence, whence BM — BM is a weak equivalence. O

4.14. Proof of 4.3.

We have an exact sequence B;, » 4 — F’, and F” acts trivially on the homology
of Bg,. Further, since BF' has the homology of €S°, we know that
H\B,) ~H,F'~Z, H F' =0. Thus, to prove that H; A =0 it suffices to show that
the differential d, : H,F’ — H, B, in the Leray-Serre spectral sequence is an isomor-
phism. We will explicitly calculate the image in H, B, of a generator of H,F’ as
follows.

H,F’ is generated (via Hopf’s formula) by the relation [g, h] =1, for g, h € F’
described below. To calculate the image k € H, B, we lift g, h to g, heA, and
compute the commutator [g, 4] which will lie in B,,,. The image of the commutator
in H, B, is k. Indeed, we shall see that [, /], thought of as an element of 4, is an
inner automorphism of B,y by an element ¢, for a certain edge in Ty,. By 2.4, the
homology class of e generates H, B,,.
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It is found in in [GS] that the commutator of the following g, & € F’ generates
H,F":

x x<1/8
_ 2x —1/8 1/8<x<1/4
8) =< nxi1/a 1a<x<1p
x x=1/2
x x<1)2
h(x) = 2x —1/2 1/2<x<5/8
12x +7/16 5/8<x<7/8
x 7/8<x
g h

Recall (Figure 4.15(a)) the standard embedding o : T, - R?. As in the proof of
2.13, g and A are defined via embedings G, H : T, - R? (Figure 4.15 (b), (c)) which
agrees with ¢ o ¢,, 0 o ¢, near infinity; the ¢, ¢, being defined in 3.8. Namely,
h=H"'g,§ =G 'g. Note that, restricted to T, G =o. Similarly, H=o0 re-
stricted to T, Also, G(e}?) =oa(e}?), H(e”?) =a(e}’®). It follows that
ghg'h~'(e)=e, for e =e}?, el e € Eg,2 U Eqp.y,- Further for n 22, G(e)?) =
H(el/*) =el?,. Hence, for n>3,ghg —'h—'(e)/*) =el?. It remains to calculate
ghg'h—'onel?n=0,1,2.

Figure 4.16 is useful for the application of the triangle rule to the calculation of
g7 (ed, &', A~ '(e§®, F~'(e}”®). From 4.16 (a), writing « = (¢,"*) ~'e}"e}",

we have
g '(ed®) = (ed®) 'aed® (4.17)
and it follows that

R (& (ed®) =& (ed?) (4.18)
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a x
b

1 3 1 3

4 8 2 A

(a) ¢:T, - R? standard embedding.

Hiz)

7 ! REF E

(b) G:T,-R? (only G restricted to T 1 pictured)

3 t 3 ?

(¢) H:T,-R? (only H restricted to Ty y, pictured)
Fig. 4.15

129
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)

/(_’ A 3(96/?) \

! G(e,”z) /2_6( ?)

(a)
’/I
.
H (90/2
H(e,i/z)
(b)
Fig. 4.16

We also see from 4.16 (a) that
F el =187 (e e 2 el
and consequently
2l = (e ~elel
From 4.16 (b) we see A~ '(e}®) =e!?, and
h'(el) = (es®) ~'eres
Further, from 4.16 (b), e} =h~"'((el’® YA~ (e}/>h~'(el?), and so
heg) = (es) ~

lel%ey/?

(4.19)

(4.20)

(4.21)

(4.22)
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Now, let us calculate. Let ¢ =ghg ~'A~". Then

cleq) = ghie}®) = §(ed®) = (el®) ~'ed%el? (4.23)

c(ex?) =&(2 7 '(e1?) ~'ei?E " (e1?) (4.24)

= (e1?) "'ej%e}”

Lastly, c(ei?) = ghg ~'((ed ~'e}ed/?). Using 4.18 and h(e)?) = el?,

hg ~'((ed) ~'etled®) =g~ (1),
and thus

c(ei”®) =¢i” (4.25).

Now, (4.23) — (4.25) affirm that ¢ is conjugation by e}’?, hence, by 2.4 a generator
of H B,.

5. Related Groups

In this section we describe the homology of two groups closely related to A.

In will be convenient to make use of the plus construction of Quillen ([Q], [ Be]).
Recall that if X is a space, and N < n, X is the maximal perfect subgroup, there
exists a space X, and a map X — X, well defined up to homotopy, such that
m X, =n,X/N, and X - X is an equivalence in homology. We will often invoke
the fact ([Be], 6.4)] thatif 1 - H -G — K — 1 is an exact sequence of groups, such
that BH, is a nilpotent space and such that n, K acts trivially on H (H; Z), then
BH_ — BG, — BK, is a quasifibration.

5.1. The group Ag

Recall (3.15) the group 4; which was constructed as an extension B; = A; —» G.
We will prove:

5.2. PROPOSITION. The cohomology ring H*(Ag;; Z) is the free graded Z-alge-
bra with generators in dimensions 2 and 3.

We do not know whether B4, is homotopy equivalent to S* x CP>.
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The proof of 5.2 will involve an auxiliary group 4. Let G be the group of
homeomorphisms of R = §! which are lifts of elements of G. Let B; —» A; — G and
B; - A**8 - F’ be the extensions obtained by pullback over the natural maps
F’ -G - G. We have the following diagram:

By, —»B; —B;—B;

l l Lo
A >AM 5 As->Ag (5.3)
l l o

FF -»F -G -G

The inclusion By — B induces isomorphisms in homology, and thus 4*"® is an
acyclic group.

Let LS? denote the space of unbased maps of a circle to S° and let
ZS*=ES' x 51 LS? denote the homotopy quotient of LS*® by S!, acting by
reparametrization of loops. One can apply the plus construction to (5.3), obtaining
the following diagram commuting up to homotopy, whose vertical arrows are
fibrations.

9253;9253 igzsa

! ! l
* —>BAs, —BA;, (5.4)
! l )

QS? LS -28°

The map Q25— LS? has homotopy fiber QS?, because it is simply the inclusion
Q83— S3 x QS*= LS?. Further, it is not hard to see that the plus construction
commutes with pullbacks of surjective homomorphisms. We thus obtain a fibration
QS 3ok BAG+ .

5.5. PROPOSITION. There is a homotopy equivalence S* — BAg, .

Since n, BAs, = 0, it suffices to show that B4, has the integral cohomology of
S3. This follows from an easy argument on the cohomology spectral sequence of the
fibration QS>?—*— BAg., . O

5.6 LEMMA. The homomorphism Ag—G induces an isomorphism
Z~HYG) > H*Ag) ~Z.

Consider the fibration Q25% - S* — LS?, arising, as an application of 5.5, from
the middle column of 5.4. The identification of LS® with QS° x §3 gives an
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element of 7,283 x 1,83 = Z/2 x Z which is either 0 x 1 or 1 x 1. In either case,
the map H*(LS?) » H3(S?) is an isomorphism. a

The short exact sequence Z—G —G lifts to a short exact sequence
Z—>Ag— Ag. Let e e H(Ag; Z) be the Euler class of this extension, and consider
the associated Gysin sequence:

f ve
0— H Ag; Z) » H (Ag; L) > H¥(Ag; L) — HY(Ag;Z) — - - - = H'(Ag; Z)
S H" A Z) — H"* (dg; Z) » H+ (Ag; Z) — -+ - (5.7)

Proposition 5.2 follows from the following:
5.8. PROPOSITION. H*(Ag;Z) - H*(A;; Z) is the zero map.

Proof of 5.2. Since BAg, ~ S, we have isomorphisms H*(4;; Z ~ H*(Ag; Z),
and we : H"(A;; Z) - H"**(As;: Z), n = 2. This implies the proposition; indeed, if
y eH*Ag: Z) is a generator, H*(A;: Z) = Z[e, y]/(y? = 0).

Proof of 5.8. Considering the Gysin sequences arising from the extensions
0>Z—>Az—>A;—>1and 0-Z -G -G — 1, we obtain a commuting square:

HY4s:7) 5> H (44 Z)
ro, (5.9)
H¥G;Z) > HXG;Z)

Let § € HG; Z) be a generator, and a = f(f). By lemma 5.6, it suffices to show:
5.10. ASSERTION. The image of o in H*(Ag; Z) is 0.

Consider the differential d, : H,(G; Z) - H,(B;; Z) = Z in the homology spec-
tral sequence of the extension B; —» A; — G. It is not hard to see that the kernel of
d, is H,(Ag; Z). Let y € H¥G; Z) be the cohomology class defined by d,. We will
show that y = a, proving 5.10.

Write y = ma + ne, where e € HXG ; Z) is the Euler class of the extension.
Evaluating both sides of this equality on the image of a generator of H,(F'; Z) ~Z,
and using the computation in the proof of 4.3, we see that m = 1. The proof of 5.10
is complete when we show that n = 0.

Now G is a group of homeomorphisms of the circle, and contains the cyclic
subgroups Z/2',r > 1 generated by rotations R,(x) =x + 27", x € R/Z. Suppose
that the inclusion Z/2" — G lifts to A;. Since H¥(Z/2"; Z) ~ Z/2', generated by the
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pullbacks of the Euler class e € H*(G; Z), one would obtain that n =0 mod 2’,
r 2 1, and thus that n» =0.

It thus remains to show that the subgroups Z/2" lift to A;. We do this explicitly
for r = 1; the general case follows similarly, but is more intricate.

The rotation R, acts naturally on T; away from the edges e}/?, e!/? (see Figure
5.11). We define a lift R, € A; of R, by sending e}’ to §, and e} to ¢, where § and
¢ are as shown in Figure 5.11.

Fig. 5.11

Let us verify that R? is the identity.

This is clear away from e}/? and e}/?. Using the triangle rule, we find:

Rie!®) =R, (e}"%e} (€' ") =de} 3" =¢)?

Ri(el?) = R((e'?); 'eie,) =g 'ele =€)

So R? is the identity, as claimed.

S.11. The group Ajx

We now introduce a second group related to A. Recall the tree 7, fudamental
in the construction of A4, and let V(T,) be the set of vertices of T,. Let A5 be the
set of bijections ¢ : V(T,) —» V(T,) such that there is some g € F’, such that
e(vd) = v&D, ), vl € V(T) except for a finite number of points.

Clearly, A; surjects to F’ with kernel X, the group of finitely supported
permutations. If we consider 4; as embedded in the natural way in Aut(X ), we
have a map of exact sequences

l>B,—2A->F -1

Lol
152, —2A;>F -1
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Thus the group A4y is an analogue of 4. In the rest of §5, we shall identify the space
BAy . Two auxiliary groups introduced by Wagoner [W] will be useful.

5.12. DEFINITION. Let P_, be the group of bijections ¢ of V(T},) such that for
some € >0, p(v¥) =viford<e 1 —e<d Set Fl,=P_/%.

5.13. Identifying the space BAj .

It is clear that 4> = P_ and that this inclusion induces an inclusion F’' < F/_, so
that we have a pullback

12, —-2A;->F -1

[ !
12 —->P, —->F_—1

Passing to the plus construction, we obtain a pullback of fibrations:

BY . —+>BA;, — BF,

| l !
BX,,—>BP,, —BF,,

As BP_, . is contractible [W], we see that BA;, is the homotopy fibre of the map
BF’, - BF’, . . Now, we have already used the fact that BF’, ~ 05°=QS? and a

theorem of Priddy [P] identifies BF,, as Q=-'S*. We conclude this section with
a sketch of the following:

5.14. Assertion

BAj, is the homotopy fibre of the inclusions 25> —Q® ~ !S>,

i) Let M, be the monoid, associated to the braid groups, that we considered in §3,
and let M, be its analogue for permutations. The results of Cohen ([C] p.
106—108) imply the existence of a homotopy commutative diagram

ﬁlB—*mz

= |- (5.15)
Q‘S-z_,gw"—’lsoo

whose vertical arrows are homotopy equivalences.
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ii) Recall (3.19.) the monoid M, associated to the group 4, and let M, _ the
monoid constructed in the same way for P,,. Further, let M, be the monoid
constructed analogously to M. As we have seen in (4.1. (b)), we have a quasi-
fibration ﬁflﬁ-eBMA — BM,.; the same is true for BM, —BM, — BM,. .
The total spaces of these quasifibrations are contractible (cf. (4.4) for BM ).
We therefore have a homotopy commutative square.

QBM —QBM,._

l ) l ) (5.16)
BM, — BM,

whose vertical arrows are homotopy equivalences.

iii) As we have seen (4.6), there is a homology equivalence BF' — QBM and thus
a homotopy equivalence BF’, - QBM . Similarly, we have a homotopy equiv-
alence BF,,, - QBM . Further, the square

BF, —BF,,
J= |- (5.17)
QBM . —QBM,_

is homotopy commutative.

iv) Assembling the diagrams 5.15, 5.16 and 2.17, we can identify the map
BF’, — BF’_, with the inclusions Q82— Q> ~'S%_ thus establishing the asser-
tion. 0

6. An example

In this section we provide the example referred to in the introduction. We
construct a fibration F — E — B, and groups L and K with the homology of F and
B, such that there is no exact sequence 1—-L—->P—->K-—>1 so that
BL_ — BP, — BK, is equivalent to the original fibration.

6.1. The idea of the construction

Start with the fibrations S!' x S! - E - S' whose monodromy is the involution
(x, y) = (y, x). The exact sequence of fundamental groups Z x Z — n, E — Z has plus
construction the initial fibration. We will enlarge Z x Z to a group L with the same
homology, such that the involution does not extend, and this leads to our example.
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6.2. Main construction

Let # be Higman’s acyclic group [BDH]:s# ={a,b,c,d|aba="=b?,
beb ~'=c?* cdc™' =d? dad ' =a*). Let o be the automorphism of # which
cyclically permutes a, b, c, d. This automorphism determines an extension
1-># >H—->Z->0 where n is a homology equivalence since 4 acyclic, and
[H, H] = #.

Let L =Z x H. Obviously BL, ~S' x S'. We shall show that there is no
automorphism ¢ of L such that Bg, :S'x S§'—>S!x S! is homotopic to the
involution (x, y) —(y, x). This proves that no exact sequence 1 > L P —>Z -0
induces a sequence BL, — BP_ — S' equivalent to the fibration S' x S' > E > S'.

The nonexistence of such a ¢ is established by the following three claims.

6.3. CLAIM. The automorphism « is not inner. Clearly, a is of order 4. If
a(x) = w ~'xw, then w* is an element of the center of #. But J is an iterated
amalgamated free product, starting with a centerless torsion free group. The center
theorem and torsion theorem for amalgamated products ([MKS], [LS]) show that
w = e, a contradiction.

6.4. CLAIM. No element y € H such that 7(y) = 1 commutes with 5. Indeed,
such an element allows us to identify H with # x Z, contradicting the fact that «
is not inner.

6.5. CLAIM. No automorphism ¢ of L induces on H,(L) = Z@® Z the involu-
tion (n, m) — (m, n).

If such a ¢ exists, then ¢(1,e) =(0,y), for some y € H such that n(y) =1.
Moreover, (0, x) = (n(x), x(x)) where y:H —H is a morphism such that
yx(x) = x(x)y. But y(#) = # as o([Z x H, Z x H]) = ¢(0 x [H, H]) =0 x [H, H].
Thus y and # commute, contradicting claim 6.4.
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