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Rational Co-H-Spaces

MARTIN ARKOWITZ and GREGORY LUPTON

Section 1—Introduction

H-spaces, or spaces having a continuous multiplication with homotopy unit, have
been intensively studied in topology. In the last twenty five years or so, much work
has also been done on the dual notion of a co-H-space. This is a space X together
with a map X - X v X, called the comultiplication, whose composition with each
projection X v X — X is homotopic to the identity map. The primary example of a
co-H-space is the suspension of a space with the natural pinching map. A number
of authors have investigated basic properties of comultiplications such as homotopy-
associativity [B—C], [Be,], [Ga], homotopy-commutativity [B—G] and existence of
homotopy-inverses [H-M-R,]. Others have considered when a co-H-space is
equivalent to a suspension [ B—Ha], [B—Hi], [Sc] and extensions of one co-H-space
by another [C-N].

In this paper we use the technique of rationalization or Q-localization to study
co-H-spaces. This leads to a consideration of rational co-H-spaces, i.e., co-H -spaces
which are also rational spaces. We study the totality of homotopy classes of
comultiplications on a rational co-H-space. In particular, we are interested in
whether or not there are infinitely many homotopy classes of homotopy-associative
comultiplications, homotopy-commutative comultiplications, etc. on a given rational
co-H-space.

It is well-known that a rational co-H-space X has the homotopy type of a wedge
of rational spheres. The latter space admits a standard comultiplication arising from
the pinching map. However, X with its given comultiplication and the wedge with
the standard comultiplication need not be co-H-equivalent. Thus a rational co-H-
space may admit many comultiplications with different properties. For instance, a
rational co-H-space that has the homotopy type of a wedge of three rational spheres
of dimensions 2, 3 and 5 has infinitely many homotopy classes of homotopy-associa-
tive comultiplications, non-homotopy-associative comultiplications, homotopy-com-
mutative comultiplications and non-homotopy-commutative comultiplications.

The principal tool of the first part of this paper is the Quillen minimal model.
This is a functor which assigns a differential graded Lie algebra L, to a space X and
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a homotopy class of differential graded Lie algebra homomorphisms to a homotopy
class of maps. If X is a co-H-space, then we see that L, and L, , 4 are free graded
Lie algebras with zero differential. From this it follows that a homotopy class of
comultiplications on X corresponds to a unique homomorphism Ly, — L, , y. The
study of homotopy classes of comultiplications on a rational co-H-space X is
therefore replaced by a study of certain homomorphisms L, — L, , , of free graded
Lie algebras. We have found this to be a very effective setting to work in. It would
be possible to phrase the early material of this paper in terms of the rational
homotopy Lie algebra n«(QX)® Q of a co-H-space X, instead of the Quillen
minimal model. In order to do this it would be necessary to relate homotopy classes
of maps of a rational co-H-space into a rational space to the corresponding
homomorphisms of rational homotopy Lie algebras (see [Sc, Prop. 2]). Since the
Quillen minimal model of a rational co-H-space is the rational homotopy Lie
algebra, these two viewpoints are equivalent.

A main objective of this paper is a study of homotopy-associativity of a rational
co-H-space. Homotopy-associativity is perhaps the most basic property of a
comultiplication and has been widely investigated. Homotopy-associative co-H-
spaces are dual to homotopy-associative H-spaces. The latter occupy a central
position in topology, and are the homotopy analogue of topological groups. A
one-connected homotopy-associative co-H-space X also has special properties; for
instance, the homotopy set [X, Y] has a natural group structure, for any space Y.

Although we consider rational co-H-spaces for most of the paper, we have been
able to carry over many results to wedges of ordinary spheres. In a sense these are
the simplest finite CW-co- H-spaces; nonetheless they turn out to have a surprisingly
rich set of comultiplications—cf. Ganea’s discussion of comultiplications on
S? v 8% in [Ga, Sec. 4]. In this context we replace the free graded Lie algebras of
the Quillen minimal model by the homotopy groups of a wedge of spheres with
Whitehead product. Hilton’s theorem is fundamental in this approach for it allows
arguments similar to those given earlier to be made. However, the presence of
torsion in the homotopy groups gives rise to additional complexities.

The paper is organised as follows: Section 2 contains definitions and establishes
the basic framework in which we work. We begin by showing the equivalence of
comultiplications with certain Lie algebra homomorphisms, and we then show that
the latter are equivalent to certain vector space homomorphisms called perturba-
tions. We next give necessary and sufficient conditions for a rational co-H-space to
admit infinitely many homotopy classes of comultiplications in Proposition 2.7. In
Section 3 we begin our study of associativity of rational co-H-spaces. The main
result is Theorem 3.11, which provides a characterization of associativity for a broad
class of comultiplications. Theorems 3.14 and 3.15 give necessary and sufficient
conditions for a rational co-H-space to admit infinitely many homotopy classes of
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homotopy-associative comultiplications or infinitely many homotopy classes of
non-homotopy-associative comultiplications, respectively. Also, we give a dual
version of a result of Leray-Samelson in Theorem 3.18, which implies that any two
homotopy-associative comultiplications on certain rational co-H-spaces are equiva-
lent.

Sections 4 and 5 contain our study of two further topics concerning comulti-
plications on a rational co-H-space: homotopy-commutativity and homotopy-
inverses. Proposition 4.2 provides necessary and sufficient conditions for a rational
co-H-space to admit infinitely many homotopy classes of homotopy-commutative
comultiplications. Much of Sections 4 and 5, though, is concerned with examples
which demonstrate many of the possibilities that can occur. Examples 4.3 illustrate
the independence of the notions of homotopy-associativity and homotopy-commu-
tativity. Corollary 5.6 shows that left and right homotopy-inverses with respect to
any comultiplication on a wedge of two rational spheres always agree. Together
with Proposition 3.16 and Examples 4.3, this gives a rather complete picture of the
comultiplications on a rational co-H-space of the homotopy type of a wedge of two
rational spheres. In Example 5.7, we give an example of a rational co-H-space
whose left and right homotopy inverses do not agree.

Section 6 contains results on wedges of ordinary spheres. Most of the previous
results carry over to wedges of spheres, but others require modification. We also
give two examples to illustrate how certain phenomena, when considered over the
integers, are more complicated than when considered over the rationals. In Example
6.9 we present a wedge of spheres that admits infinitely many homotopy classes of
non-homotopy-associative comultiplications, but whose rationalization does not.
Example 6.13 provides a comultiplication on a wedge of two spheres for which the
left and right homotopy-inverses do not agree. In Section 7 we work in the
universal enveloping algebra of a Lie algebra and prove the result on which
Theorem 3.11, the main result on homotopy-associativity, depends. The fact that
the universal enveloping algebra is free and associative make it more suitable than
the Lie algebra for establishing our main result on associative comultiplications.

We close this section by giving some notation and terminology used in the rest
of the paper. All topological spaces which we consider are 1-connected, based
spaces of the based homotopy type of a based CW-complex. All maps and
homotopies preserve base point. We do not distinguish notationally between a map
and its homotopy class. All vector spaces are vector spaces over Q, the field of
rationals. We frequently work with a positively graded vector space V, that is, a
sequence of vector spaces V,, V,,.... By v € ¥V we mean v € V; for some i. We
write V' = {x,, x,,...> to indicate that x,, x,, . .. is a graded basis of V, and write
| x,| for the degree of x,, i.e., | x;|=m if x, € V,,. A space Y is called a rational
space if the total homotopy group n«(Y) is a graded vector space. The technique
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of rationalization or Q-localization assigns to a space X, a rational space X, called
the rationalization of X. It also assigns to a map of spaces 5, a map of rationalized
spaces fo [H-M-R,, Ch. 2].

We next summarize briefly some of the salient features of the Quillen minimal
model—for details see [B—L], [Ne], [Ta, Ch. 2,3]. For a graded vector space
V =<{x,,x,,...), we denote the free graded Lie algebra generated by V' by L(}) or
L(x,, x5, ...). For free graded Lie algebras L(V) and L(W), we denote the co-
product by L(V) U L(W), and observe that L(V) L L(W) = L(V @ W). For elements
x, y in a graded Lie algebra, we sometimes denote the Lie bracket [x, y] by ad(x)( ),
and similarly [x, [x, . .. [x, y]...]], with x occuring r times, by ad"(x)( y). A minimal
differential graded Lie algebra is a free graded Lie algebra with decomposable
differential. The Quillen minimal model functor assigns to a space X a minimal
differential graded Lie algebra (Ly,dy), and to a map f: X — Y a differential
graded Lie algebra homomorphism f:(Ly,dy)—(Ly,dy). If s He(X; Q) de-
notes the desuspension of the reduced, rational homology of X, ie.,
(s 'Hx«(X;Q)), = (Hx(X;Q)),,,, then as a Lie algebra L, = L(s 'H«(X; Q)).
There is the notion of homotopy for homomorphisms of minimal differential
graded Lie algebras, and the Quillen minimal model functor provides a bijection of
the homotopy set [Ly, L, ] with the homotopy set [X, Y], for rational spaces X and
Y. Further properties of the Quillen minimal model will be recalled as needed.

Section 2— Comultiplications and Lie Algebra Comultiplications

A comultiplication on a space Xisamap a : X - X v X such that p - a ~id and
p’ ca~id, where p,p’: X v X - X are the projections on the first and second
summands, respectively. A co-H-space is a pair (X, a), where a is a comultiplication
on X. A comultiplication a is called homotopy-associative if the diagram

X _oz__) XvX

.| [ov

1 va
XvY — XvXVX

is commutative up to homotopy. A comultiplication is called homotopy-commuta-

tive if the diagram

¥y % xvyx

o\ lT
XvX
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is commutative up to homotopy, where 7 is the twisting map given by
T(x, *) = (%, x) and T(*, x) =(x, x). A comultiplication on X induces a binary
operation on the set [X, Z], for any Z. The operation is written additively and
defined as follows: If £, g € [X, Z], then f+,¢g = (f|g) >, where (f|g): X vX>2Z
is the map determined by f and g. It is known that this binary operation gives
[X, Y] the structure of an algebraic loop [H-M-R,, Th. 2.3]. In particular, every
element f of [X, Z] has a unique left inverse L(f) and a unique right inverse R(f);
ie., L(f) +,f=0 and f +, R(f) =0, where 0 is the homotopy class of the
constant map. If « is a homotopy-associative comultiplication, the left and right
inverses are identical.

Now suppose that Y is a 1-connected rational space with H«(Y) finite dimen-
sional. It is known that if Y admits a comultiplication, then Y has the homotopy
type of a finite wedge of rational spheres, i.e., Y ~Sg*'v ---v §%*! for some
integers ny, n,, . . ., 1, [Be;, Th. 2.2], [He]. Thus, to investigate comultiplications on
a rational space Y, it is sufficient to study wedges of rational spheres. Consider the
following example:

2.1 EXAMPLE. The pinching map S” — S” v S” is a comultiplication on the
p-sphere, for any p [Sp, p. 41]. Therefore, any wedge of spheres
Smtly.--v8S%*!is a co-H-space, with comultiplication constructed from the
pinching map on each factor. If we denote this map by o, then
(S"*lv--.-v §%*! g)is a homotopy-associative, homotopy-commutative co-H-
space.

Thus any wedge of rational spheres SH*!'v - - v 8% ™' admits a standard
comultiplication o6y obtained by rationalizing o¢. It follows that
(Sg*'v---v 8%+ gg) is homotopy-associative and homotopy-commutative. If
(Y,«) is a rational co-H-space, then Y ~S%4+'v .- v 8% ™! as spaces, but the
homotopy equivalence from Y to SH*'v:--v S%*! need not be a co-H-map
from (Y, o) to (SYT'v - v S%*! ag).

The preceding discussion translates easily into DG Lie algebra terms, via the
Quillen minimal model functor. If Y is a rational co-H-space, then Y is a wedge of
rational spheres, up to homotopy. Consequently, the Quillen model Ls'A +(Y))
of Y has trivial differential. Furthermore, the Quillen minimal model preserves
coproducts [Ne, Lem. 8.6], and so the Quillen model of the wedge Y v Y is the
coproduct (s ~'H«(Y)) U L(s ~'Hx(Y)), with trivial differential. Thus a comultipli-
cation a on a rational co-H-space Y induces a map of free graded Lie algebras
&:0L(s'Hu(Y)) > (s 'Hu(Y)) UL(s~'Hx(Y)). Denote the Quillen model of Y
by L,, and the Quillen model of Y v Y by L, U L, where L is just a copy of L.
Then the projection p:Y v Y—Y induces the canonical projection
n:LyuULy— L, of Quillen models, where n(x) =x and n(x’) = 0; similarly the
projection p’: Y v Y- Y induces n’: L, ULy =Ly, n'(x) =0 and n'(x") = x.
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2.2 LEMMA. Let Y be a rational co-H-space and let L be the Quillen model of
Y. There exists a bijection of sets:

Homotopy classes of Homomorphisms ¢ : Ly, —- L, UL’
“—>
comultiplications on Y Withmed =id=n"o¢ ’

where m and ©’ are the projections.

Proof. The bijection between the homotopy set [Y, Y v Y] and homotopy
classes of differential graded Lie algebra maps [L,, Ly ,] restricts to a bijection
between homotopy classes of comultiplications on Y and homotopy classes of
differential graded Lie algebra maps ¢ :L,—»L, UL, with no¢ ~id and
n’ o ¢ ~id. However, L, and L, , , have zero differential. For differential graded
Lie algebra maps between Lie algebras with zero differential, homotopy reduces to
equality, and the result now follows. O

2.3 DEFINITION. (cf. [Sc, p. 67]) A map of Lie algebras ¢ : L(V) - L(V)
L L(V’) i1s called a Lie algebra comultiplication, or simply a comultiplication, if © o ¢
=1d and n’ - ¢ =id, where V"’ is a copy of V.

2.4 EXAMPLE. The standard comultiplication map o, on a wedge of rational
spheres S *'v -+ v S% *! induces the comultiplication ¢, : L(V) — L(V) L L(V")
given by ¢,(v) =v +v’, for all v eV. We call ¢, the standard comultiplication.

By Lemma 2.2, the set of homotopy classes of comultiplications on a rational
co-H-space Y is equivalent to the set of comultiplications on [L(V), where
V =s5"'H«(Y). Thus the focus of most of this paper is the study of those Lie
algebra homomorphisms ¢ : L(V) — L(V) U L(V’) such that ¢(v) =v +v' + &, for
some &, € L(V) U L(V’) with n(€,) =0=n"(&,).

The following terminology is adapted from [N-M]:

2.5 DEFINITION. A graded linear transformation P: V -L(V)UL(V’) is
called a perturbation if & - P and n’ o P are both zero. A perturbation P is called a
one-stage perturbation if there is an integer n, such that P(V;) =0, for all i #n.

Now let ¥V ={x,,...,x» and V' =<{x{,..., x; ), where |x;| = |x]|=n,. Note
that for a perturbation P, P(x;) is a sum of brackets of the elements
X1y Xas o ouy Xy X1, X5, .. .5 Xi, With no bracket containing only elements from
Xy, X2, ..., X, Oor only elements from x1i, x5, ..., x;. Also observe that any Lie
algebra comultiplication ¢ restricted to V is of the form ¢y|, + P, for P a
perturbation. We write this as ¢ = ¢, + P.
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2.6 COROLLARY. If Y is a rational co-H-space, then the set of homotopy
classes of comultiplications on Y is in 1-1 correspondence with the set of all
perturbations P s~ 'Hyx(Y) - (s "Hx(Y)) UL ' Hx(Y)).

Proof. Suppose ¢ : L(V) - L(V)UL(V’) is a Lie algebra comultiplication. Then
¢ = ¢+ P, where P is a perturbation. The result follows from Lemma 2.2. [

Notice Corollary 2.6 implies that a rational co-H-space admits either a single
comultiplication or infinitely many, since the set of perturbations is a vector space
over Q. The dimension of this vector space could be used to measure, in some sense,
the size of the set of homotopy classes of comultiplications on a rational co-H-
space. Indeed, to calculate this dimension, it would be sufficient to know
dim (V;) and dim ((L(V) U L(V")),), for each i. A Witt formula for graded Lie
algebras (cf. [Hi,, p. 155]) provides a formula for the latter in terms of the dimensions
of the V,’s. However, we content ourselves with giving necessary and sufficient
conditions for a rational co-H-space to admit infinitely many comultiplications.

2.7 PROPOSITION. Let Y be a rational co-H-space with Y ~SG*'v - --v
S+ 1, for some integers n\,n,, ...,n with n; 2 1. Then Y admits infinitely many
comultiplications if and only if there is a j such that n; = [_, a;n;, for some integers
a; 20 with X/_,a, =2.

Proof. Y admits infinitely many comultiplications if and only if there exists a
non-zero  perturbation P:VoL(V)UL(V’), where V=s"'HW(Y)=

Xy, ooy xe ). I my=27_ an;, with @, 2 1 and Zi_, a; = 2, then define the non-
zero perturbation P(x;) = ad(x,)ad*(x,) - - - ad* ~'(x,)(x;). On the other hand, if
P(x,) # 0 for some j, then n; = X;_, a;n; with £7_, a; = 2. O

Section 3— Associativity

In this section we give a complete determination of associative Lie algebra
comultiplications with one-stage perturbation. This leads to necessary and sufficient
conditions for a rational co-H-space to admit infinitely many homotopy classes of
homotopy-associative comultiplications and to admit infinitely many homotopy
classes of non-homotopy-associative comultiplications. We assume for the remain-
der of the paper that Y is a rational co-H-space with ¥ ~Sg*'v - v Sg*' and
that 1 <n, <n,<---<n,. Weset V=s""Hs(Y), and write x;, X,,...,x, for a
fixed basis of ¥, where |x;| = n;. The following notation will be used freely in this
section:
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3.1 NOTATION. For the graded vector space V, let V" and V" be copies of V.
The free Lie algebra L(V) LU L(V') = L(V @ V’) will often be denoted L(V, V"), and
the free Lie algebra L(V)UL(V)UL(V") =LV @ V' @ V") will similarly be de-
noted L(V, V', V"). We define homomorphisms g,y,6 : L(V, V)= LV, V', V") by
first defining them on vector space generators and then extending to the free Lie
algebras. For veV set B(v) =v+v’, BE) =0v"; y@) =v, pv’) =v’'+v"; and
o(v) =0, 0(v") =v". We regard L(V, V') and L(V’, V") as contained in L(V, V’, V).

Recall from Section 2 the condition for a comultiplication to be homotopy-asso-
ciative. It follows, as in the discussion there, that a comultiplication ¢ : Y > Y v Y
on a rational co-H-space Y is homotopy-associative if and only if the corresponding
induced map & : (V) -» L(V) L (V) satisfies (1 U Q)& = (& LI 1)&:

A

V) —  LW)ULY)

o?l 11uo?

&Ll
L(V)UL(V') —— (V) L L(V) L (V).

3.2 DEFINITION. A Lie algebra comultiplication ¢ : L(V) — L(V) b (V") for
which (1 U ¢)p = (¢ U 1)¢ is called associative.

3.3 LEMMA. Suppose ¢ =¢o+ P :L(V)->LWV, V') is a comultiplication,
where ¢o(v) =v +v’ for all vand P=0on Vi <h.

(i) If ¢ is associative, then P(v) + B(P(v)) = 6(P(v)) + y(P(v)) for all v e V,,.

(1) Suppose further that P is a one-stage perturbation with P =0on V,,i >n. If
P(v) + B(P(v)) = 6(P(v)) + y(P(v)) for all v e V,, then ¢ is associative.

Proof. We have (¢ U Dd@)=(@uU)v+v +P0)=v+v" +PW)+v"+
(¢ L 1)P(v), and similarly (1L @)p(v) =v +v" +0v" + P(v’) + (1 Ll ¢)P(v). Thus ¢ is
associative if and only if P(v) + (¢ L 1)P(v) = P(v') + (1 U ¢)P(v) for allv. Ifv e V,,,
then P(v) is a linear combination of brackets of elements of degree less than »n, and
thus (¢ U 1)P(v) = B(P(v)) and (1 U ¢)P(v) = y(P(v)). Furthermore P(v’) = d(P(v)).
Hence for veV,, (¢ UDP@®) =(1U@)¢(w) if and only if P(@)+ B(P®)) =
O0(P(v)) + y(P(v)). This implies (i). For (ii), note that ¢ = ¢, on elements not of
degree n and that ¢, is associative. O

Subsequent results in this section require additional notation for perturbations.

3.4 NOTATION. Let P: V - L(V, V') be a perturbation. We denote by P,(x;)
the linear combination in the expression for P(x;) involving only Lie brackets in
XisenesXesXys...,xi of length r. If P(x;) = P,(x;) for all i, we say that the
perturbation P is quadratic.
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3.5 PROPOSITION. Suppose ¢ : L(V)—->L(V, V') is a comultiplication of the
form ¢ = ¢o+ P, with P a one-stage perturbation. If P is quadratic, then ¢ is
associative.

Proof. Let P be non-zero on V,. Suppose x,eV,, and write
P(x,) =X 4;,[x;, x}]. Then P(x,) + B(P(x,)) = Z 4;,[x;, x;] + £ 4, ,[x; + x}, x]], and

o(P(x,)) +y(P(x,)) =X 4, [x;, x; ] + X 4 ;[x;, x; + x]]. Since these are equal, it fol-

ir vy J
lows from Lemma 3.3 that ¢ is associative. O

3.6 REMARK. A similar argument to that of 3.5 holds for certain quadratic
perturbations P that are not necessarily one-stage. One simply requires that, if
P(x,) = X A} ;[x;, x;] for all r, then P(x;) =0 and P(x;) = 0 for each r, i, j such that
A, #0.

We need to consider the universal enveloping algebra of a free graded Lie
algebra. For a graded vector space V, the universal enveloping algebra of L(V) is
the graded tensor algebra 7(V') on V' [M-M], [Ta, p. 19]. Multiplication of elements
v and w in T(V) is denoted by vw = v @ w. An element of T(V) is said to be of
homogeneous length r > 1 if it can be written as a linear combination, with non-zero
coefficients, of products of r elements of V.

3.7 EXAMPLE. Let V =(x, y), where | x |=p and |y| = 3p. For degree rea-
sons, any comultiplication is of the form ¢(x) = ¢y(x) =x+x’, and ¢(y) =
do(y) + P(y), where P(y)=Ai[x,[x, x| +ulx’, [x, x]] with 4, u € Q. Consider
those cases with u =0, ie., P(y)=A[x, [x,x]]. A simple calculation shows
that  P(y) + B(P(y)) — 8(P(y)) —y(P(»)) = A{[x +x', [x +x', x"]] =[x, [x, x"]]
—[x’, [x’, x"]]}, and we claim that this is non-zero unless A = 0. Inspection alone
suffices in this simple case, but consider the following argument which is applicable
to other situations. Denote the element in the braces by y, and consider the image
of y under the standard map i :L(V @ V' @ V") ->T(V @ V'@ V") into the univer-
sal enveloping algebra. Since i is injective, it is sufficient to show i(y) # 0. Now
(N=x+x)®(x+x)R®x" —x@x®x" —x'®x’®x"+n, where n i1s a sum
of terms of homogeneous length 3, each having x” in the first or second place. By
expanding the parentheses, it is clear that for i(y) to be zero, (x @ x" + x' @ x) @ x”
must be zero. This is not the case, and so y # 0. Hence ¢ is a non-associative
comultiplication if 4 # 0, by Lemma 3.3.

The basic idea behind this last example can be generalized to give the following:

3.8 PROPOSITION. Let V =Lxy,...,X.y and let ¢ =¢o+ P :L(V)-
LV)ul(V’) be a comultiplication with P=0 on V; for i <n—1. Suppose
P(x,) = Ax; ,[...,[x; _,»xi].. ]| for some x, € V,, and some iy, . .., i, where s 2 3

and A #0. Then ¢ is non-associative.
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Proof. We check that P(x,) + B(P(x,)) # d(P(x,)) + y(P(x,)). As in Example
3.7, a simple calculation shows that

P(x,) + B(P(x,)) — o(P(x,)) — y(P(x,))
=M, +xi 0. b +xi_xi] ]
Sl D770 R R 58 IR | IRl PS4 IR A 4 I | } X

Denote the term in braces by y. The argument of Example 3.7 using the universal
enveloping algebra can readily be generalized to show this latter term is non-zero.
Inductively, one shows that in the universal enveloping algebra,

i) =0 +x;)® ®x;, _,+xi_)®x;)
—(x,® ®x, ,®x;)

5

— (X, ® ®x; _ ®x;)+1,

where 7 is a sum of homogeneous length s terms, none of which has x| in the last
place. Thus P(x,) + B(P(x,)) — 0(P(x,)) — y(P(x,)) # 0, and so ¢ is non-associative
unless 4 =0, by Lemma 3.3. O

3.9 NOTATION. Let TWV,V)=TWV @V’ and TW, V', V") =
TWV@®V' @V”"). In analogy to 3.1, define maps 8,7,6 : T(V, V)->T(V, V', V") as
follows. On generators v € V and v’ € V’, set B(v) =v +v’, B(v’) =v"; y(v) =v,
yv)=v"+v"; and () =v’,6(v’) =v"; and extend to algebra maps. If
V ={(x,, X5,..., X, define the binomial B, e T(V, V') by B, = x; + x;.

The central theorem of this section requires the following proposition:

3.10 PROPOSITION. Let & € T(V, V') be of homogeneous length r, with r = 3.
Then the equality & + B(&) = () + (&) holds if and only if

r-—l®xjr

(=2 4{B,®  ®B, _®B - x,@  Qx
J
- X, ® ®x] _ ®x]}

where each J is a sequence jy,...,j, with jie{l,... k}, |¢|=n; + - +n, and
2, € Q.

The proof of 3.10 is postponed until the last section.
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3.11 THEOREM. Let V =<x,,...,x,) and let ¢ = ¢,+ P be a comultiplica-
tion on L(V) with perturbation P, where P=0 on V, for i<n. Write
P(x,) =ZX, ., P,(x;) for each x; e V,.

(1) If ¢ is associative, then for r 2 3, P,(x;) can be written

P.(x) =Y Wilx;, +x;,[...[x, _,+x;_,x +x;]..]
sl b7 PR b FRRPR ) O | Il & 4 R b SR 5 A Ak (%)

for each x; € V,, where 3, € Q and each J is a finite sequence j,,j,,...,j, with
Jjie{l,....k}andn=mn, +---+n.

(i) If P is a one-stage perturbation with P #0 on V, and if, for r = 3, P,(x;) can
be written as in (*) for each x; € V,, then ¢ is associative.

Proof. We work in the universal enveloping algebra of L(V, V"), then use a
result of Quillen’s to return to the Lie algebra. Since ¢ is associative, Lemma 3.3
implies

P(x,) + B(P(x;)) = o(P(x;)) + v(P(x;))

for each x; € V,,. The maps f, y and ¢ all preserve bracket length, so this equation
splits into homogeneous bracket length components. Thus ¢ is associative implies
that

P.(x;) + B(P,(x))) = (P, (x;)) + ¥(P,(x;)) (3.12)

for all r 2. In order to work with this equality, we pass to the universal
enveloping algebra T(V, V’, V"). Since the standard map i:L(V, V', V") —>
T(V, V', V") is injective, equation (3.12) holds if and only if

iP, (x;) + iB(P,(x)) = i8(P,(x;)) + (P,(x))).

Using the maps B, y, 6 of 3.1 and 3.9, we see that iff = Bi, iy = yi and i = di:

Y, 0
L(v, V) —/-'}—y—a L, v, v

i l l i
vy P8 rw v v,
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Therefore (3.12) holds if and only if &, + B(£,) = 6(E,) + y(&,), where &, = i(P,(x;)).
By Proposition 3.10, this implies that, for each r > 3,

¢ =i(Pr(xj)) =ZJ:“{I{B/,® ) '®Bjr_l®Bjr
—le®. ' ‘®xjr~—l®xjr_x.;l®. ) ‘®x1,'r—|®xj/'r}'

But Lemma 2.2 of [Qu, Ap. B] asserts that, for any vector space W, the map
p:T(W)-L(W) given by

1
p(wl®"'®Wm—-l®wm)=;[wla["'a[wm—lawm]"']] m>0

is a left inverse for i : L(W) - T(W). Hence P,(x;) = pi(P.(x;)), for each r = 3. This
proves (i).

(i) By Lemma 3.3, it is sufficient to show that P(x;) + B(P(x;)) = é(P(x;)) +
7(P(x;)) for each x; € V,. Since the maps B,y and ¢ all preserve bracket length,
it suffices to check that P.(x;) + B(P.(x;)) = 6(P.(x;)) + y(P,(x;)) for each r = 2.
For r = 2, the proof of Proposition 3.5 shows this equality holds. It also holds for
r 2 3, as is easily shown, since P,(x;) has the form described by (*). Thus ¢ is
associative. O

3.13 EXAMPLES. (1) Let V =<{x,, y,,, zs, ) With subscripts denoting degree.
Define a one-stage perturbation by

P(Z) = [By9 [Bx9 Bv]] - [ys [xs y]] - [y/, [x” y’]]
+ [Bx’ [B)m [Bx’ B»]]] - [xs [X, [x’ y]]] - [x,:' [x,’ [X’, y,]]]a

where B, =x + x’ and B, =y + y’. Then Theorem 3.11 implies ¢ = ¢, + P is an
associative comultiplication. On the other hand, consider the one-stage perturbation
defined by

0@ =01y, x, yN + [y, Ix, vl + [, ¥, y' 1 + ', [x, ¥l
+[y% ey T+ I

A direct calculation shows the comultiplication ¢,+ Q to be associative, and so
Q(z) can be written as in Theorem 3.11. In fact Q(z) =[B,, [B,, B,]] — [y, [x, yII
—[»’, [x’, ¥']]. Thus it may be difficult to recognize that a given one-stage perturba-
tion has the form of Theorem 3.11. Nonetheless, 3.11 provides a useful criterion for
associativity, as will be seen.
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(ii) Let V' =<x,, y,,, 23, » with subscripts denoting degree. Consider the comul-
tiplication ¢ on L(x, y, z) defined by ¢ = ¢, + P, with P(x) =0, P(y) =[x, x’] and
Pz) =[x,y ]+ [x,y] +[x,[x, x]] +[x, [x,x]]. A straightforward computation
shows that ¢ is an associative comultiplication, although P is not a one-stage
perturbation. This example can be generalised to produce many associative comul-
tiplications which do not arise from one-stage perturbations.

Theorem 3.11 leads to necessary and sufficient conditions for a rational co-H-
space to admit infinitely many homotopy-associative or infinitely many non-homo-
topy-associative comultiplications. Let ¥ ~S%+!'v ---v §% *! and consider the
following three conditions on the integers n,, n,, ..., 1.

Condition (i): For some j, n; = a,n; + a,n,, with a, and a, 20 and q, +a,=2.
Condition (ii): For some j, n, = a,n, + - - + a,n, with each a;, 2 0, at least two of
the a;’s non-zero and X/_, @; = 3.

Condition (ii1): For some j, n, = an, for some i and a = 3.

These conditions are not mutually exclusive, but are exhaustive of the condition
on n,,n,,...,n given in Proposition 2.7. Furthermore, when combined with
earlier results, they yield the following theorems.

3.14 THEOREM. If Y is a rational co-H-space with Y ~S{*' v - v Sg+1,
then Y admits infinitely many homotopy classes of homotopy-associative comultiplica-
tions if and only if the integers n,,n,, ..., n, satisfy condition (i) or condition (ii).

Proof. Suppose (i) or (ii) is satisfied. If (ii) holds, write n; =a;n, + - - - +a,n,,
with a, > 1. The one-stage perturbation

P(x,) = ad* ~'(B,)ad“'(B,) - - - ad” -~ (B, _,)(B,)
—ad® ~!(x,)ad"(x,) - - - ad” = 1(x, _ 1 )(x,)
—ad* ~!(x7)ad"(x}) - - - ad* ~{(x7_)(x7)

has length at least three and is non-zero. This gives an associative comultiplication
¢o + P on L(V) by Theorem 3.11. Suppose (i) is satisfied. If n; =2n; for r =1 or 2,
set O(x;) =[x;, x;]; otherwise, set Q(x;) = [x,,, x;,]. Then the one-stage perturba-
tion Q gives an associative comultiplication ¢, + Q on L(V) by Proposition 3.5. As
was remarked in Section 2, the set of perturbations is a vector space over Q. Thus
one non-zero perturbation yields infinitely many perturbations by taking scalar
multiples. It follows that Y admits infinitely many homotopy classes of homotopy-
associative comultiplications.
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On the other hand, assume there exist infinitely many homotopy classes of
homotopy-associative comultiplications on Y, and that ¢ = ¢, + R is an associative
comultiplication on L(V') with R # 0. If R, # 0, condition (i) must hold, so assume
R, =0. Consider the first n for which R is non-zero on V,. Theorem 3.11 implies
that

R(x)=Y M {B,,[....[B,_,B). . N—Ix,L .. _,.x1..1
xS x] T

for each x; eV, and for each r = 3. If, in each summand, j,_,=j,_,=},, then
R.(x;) would be zero, since [n, [1, #]] = 0 for all #. By assumption, this is not true
for some r and j. Therefore some n, can be written as a linear combination of
ny, Ny, ...,n;_, as in condition (ii). O

3.15 THEOREM. If Y is a rational co-H-space with Y ~ SH+t'v - - v S +1,
then Y admits infinitely many homotopy classes of non-homotopy-associative comulti-
plications if and only if the integers n,,n,, ..., n, satisfy condition (ii) or condition

(ii).

Proof. Suppose (ii) is satisfied and n; = a;n, + - - - + a,n,, with a, = 1. Then the
one-stage perturbation defined by P(x;) =0, for i #j, and

P(x;) = ad(x,)ad"(x,) - - - ad* = '(x,)(x}),

gives a comultiplication ¢ = ¢, + P which is non-associative by Proposition 3.8.
Similarly, suppose (iii) is satisfied. The one-stage perturbation defined by P(x;) =0,
for i #j, and P(x;) = ad”~ '(x;)(x;) gives a non-associative comultiplication, again
by Proposition 3.8. Thus if either (ii) or (iii) holds, Y admits infinitely many
homotopy classes of non-homotopy-associative comultiplications.

Conversely, suppose ¢,+ P is a non-associative comultiplication. If P, # 0 for
some r = 3, then either (ii) or (iii) must hold for degree reasons. So suppose P is a
quadratic perturbation, with P(x;) =X, 4/ [x,, x;], for each j. If P(x;) is a sum of
brackets of elements on which P is zero for every j, then by Remark 3.6, ¢, + P is
associative. Thus for ¢, + P to be non-associative, there must exist a j such that
P(x;)=X,, 4 ,[x,, x;], and P(x,) #0 or P(x,) #0, for some non-zero A/,. If
P(x,) #0, then P(x,) =X, A?,[x,, x;], and n, = n, + n, for each s and ¢ in the sum.
Therefore there exists some n,,n,, n,,n, with n,=n, +n, =n . +n,+n,, and so
condition (ii) is satisfied. A similar argument holds if P(x,) # 0. Hence if Y admits
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infinitely many homotopy classes of non-homotopy-associative comultiplications,
condition (ii) or (i) must hold. OJ

As an application of Theorems 3.14 and 3.15, we consider the case where Y is
a wedge of two rational spheres.

3.16 PROPOSITION. Let Y ~ S4*' v S4. If ¢ = 2p, then Y admits infinitely
many homotopy classes of homotopy-associative comultiplications and no homotopy
classes of non-homotopy-associative comultiplications. If q = np with n 2 3, then Y
admits infinitely many homotopy classes of non-homotopy-associative comultiplica-
tions and a unique homotopy class of homotopy-associative comultiplications. Other-
wise, i.e., if p does not divide q, Y admits a unique homotopy class of
comultiplications, which is necessarily homotopy-associative.

Proof. If p does not divide g, there is a unique homotopy class of comultiplica-
tions on Y by Proposition 2.7. Let {x,,y,} be a basis for s~ 'H4(Y), with
subscripts denoting degrees. If g = 2p, the only possible perturbations are of the
form P(y) = A[x, x’], for A € Q. These all give associative comultiplications by
Proposition 3.5. This proves the first assertion. Now suppose g = np, with n 2 3. By
Theorem 3.15, Y admits infinitely many homotopy classes of non-homotopy-asso-
ciative comultiplications. By Theorem 3.14, Y admits a unique homotopy class of
homotopy-associative comultiplications. (W

As a further application of Theorem 3.11, we give a dual version of a theorem
of Leray-Samelson. To state the theorem, we need the concept of equivalence of
comultiplications.

3.17 DEFINITION. If « and a” are two comultiplications on the space X, then
a 1S equivalent to a’ if there is a homotopy equivalence f: X — X such that
@ of=(fvf)oa If ¢, ¢": L(V)—>L(V)UL(V’) are Lie algebra comultiplications,
then ¢ is equivalent to ¢’ if there is an isomorphism of Lie algebras 0 : L(V) — L(V)
such that ¢’ -0 = (6L 0) o ¢.

The notion of equivalence of Lie algebra comultiplications corresponds to the
notion of equivalence of comultiplications on a co-H-space. The latter in turn is
dual to equivalence of multiplications on an H-space. We show next that if V is
oddly graded, then any two associative comultiplications on L(}') are equivalent.
This is an appropriate dual of the Leray-Samelson theorem which asserts that any
two associative diagonals on an oddly generated, free, commutative Hopf algebra
over Q are equivalent [M-M, p. 258], [Cu, p. 8].
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3.18 THEOREM. Suppose ¢ : L(V) - L(V) L L(V’) is an associative comultipli-
cation. If V, =0 for even i, then ¢ is equivalent to the standard comultiplication ¢,.

Proof. Let V,,, be the graded vector sub-space of V' consisting of all elements of
degree <n and let {x,, x,,..., x,} be a basis of V. We show inductively that, for
all positive integers n, there are comultiplications ¢” on (V) such that ¢ is
equivalent to ¢” and ¢" = ¢, on L(V,). This is true for n =1 since ¢ = ¢, on
L(V,,))- Assume ¢” ' exists with ¢"~ ' = ¢, on L(V,,_ ). Write "~ ! = ¢, + P. By
Theorem 3.11, for each x; € V, and each r = 3,

P.(x) =Y M{lx, +x; 0., 0%, _,+x;,_,x +x;]1...]
J

gl /T Y C /TR 78 P | el 710 ERRPY LSRR 78 R 12

where each J =, j,, ..., J,. Furthermore, P has zero quadratic part, since V; =0
for even i. Thus d)"‘ l(xj) = @o(x;) + X, 3 P,(x;). Now define a map 6 : V' - L(V)
Vo, 0(x;) =x; + Z, .3 0,(x;), where
0,(x;) =%, ,[ X; s [. . [ X, _1> x;]...]l. The summation is taken over the same
J=Ji,...,J, which appear in the decomposition of P,(x;) above. Extend 6 to a
map of Lie algebras 0 : L(V) - L(V). Then 0 is an isomorphism of Lie algebras;
indeed for x; € V,,, 07 '(x;) = x; — Z,. 3 0,(x;) while for x; ¢ V,,, 0 ~'(x;) = x;. Define
a comultiplication ¢": L(V) - L(V)uU L(V’) by ¢"=(6 L 6"~ '6~'. By construc-
tion, ¢" is equivalent to ¢”~'. On elements veV,_,,0@) =v, and so

¢"(v) = ¢"~ '(v). Thus

qb"(x)—(OLJB)dJ"“(x —za,[ X, ...,[xj,_,,x,,]...]])
=(9u9)(x,+x 21 70 P P B |

——Z). [x,s ...,[x]’-’_l,xj’-r]...]]),

since 0"~ '(x,; ) = ¢o(x;) = x; + x;, for each x; appearing in 6,(x;). Now 6 L6 = 1
on the entries appearing in the sums, so ¢”(x;) = x; + x;. Hence ¢” ' is equivalent
to ¢" and ¢" = ¢, on V,,,. This completes the induction. O

3.19 COROLLARY. If Y is a rational co-H-space with Y ~S4*'v---v
S% +1 with all n; odd, then any two homotopy-associative comultiplications on Y are
equivalent.
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Section 4— Homotopy-Commutativity

The definition of homotopy-commutativity for co-H-space given in Section 2
can be translated into the following Lie algebra definition:

4.1 DEFINITION. A comultiplication ¢ : L(V) - (V) U (V") is called com-
mutative if ¢ = ¢, where v : L(V)UL(V') > L(V)uL(V’) is the twisting isomor-
phism given by t©(v) =v’, t(v)=vforveVand v e V"

Now let (Y, a) be a rational co-H-space and let & : L(V) = L(V) U L(V’) be the
map induced by a, where V =5 'H,(Y). It is straightforward to see that o is
homotopy-commutative if and only if d is commutative. Write & = ¢, + P, where ¢,
is the standard comultiplication and P is a perturbation. Since 1y = ¢, & is
commutative if and only if P = P. Clearly, for v € V, tP(v) = P(v) precisely when
P(v) = w + t(w), for some w € (V). This fact provides the following analogue of
Theorem 3.14.

4.2 PROPOSITION. Let Y be a rational co-H-space with Y ~S3+'v -
v S% 1. Then Y admits infinitely many homotopy classes of homotopy-commutatie
comultiplications if and only if one of the following conditions holds: (i) For some
hnp=n, +n,,  with iy #i, or n;=2n; with n, odd. (i) For some
Ln=an +an,+---+a,n,, with each a; 20 and Z;_, a; = 3.

Proof. Suppose (ii) is satisfied, with g, = 1. Define a one-stage perturbation P as
follows: P(x;) =w +t(w), where w =ad*(x,)ad*(x,) ---ad*~'(x,)(x;) and
P(x;) =0 for i # j. It is easy to see that AP(x;) #0, for A # 0 € Q. By construction,
this provides infinitely many commutative comultiplications. Suppose that (i) is
satisfied. Then set w = [x;, xi,]if n;=n; +n,,, and set w =[x, , x; ] if n,=2n, .
As before, define P(x;) =w +1t(w) and P(x;)=0 for i#j. In either case,
AP(x;) #0, for A #0 e Q, and so we have infinitely many commutative comultipli-
cations.

Conversely, suppose neither (i) nor (ii) holds. Then, for any comultiplication
¢ = ¢+ P, P must have the form P(x;) = A[x;, x;], with x; and x; of even degree
and 1eQ. If ¢ is commutative, then A[x,, x;]= P(x;) =tP(x;) = A[x], x;] =
—A[x;, x]], so A=0. Hence, ¢ =¢, is the unique commutative comultiplica-
tion. [J

4.3 EXAMPLES. Let Y ~S2%!'v Sg*' and let V = (x,, y,,» with subscripts
denoting degrees. Consider the comultiplications ¢, = ¢+ AP :L(V) -
L(V)uL(V"), where A € Q and P is a one-stage perturbation with P(x) = 0.
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(i) Let r =2 with p even and put P(y) =[x, x’]. The comultiplications ¢, are
associative by Proposition 3.5, but are clearly non-commutative if 4 #0. Thus Y
admits infinitely many homotopy classes of homotopy-associative, non-homotopy-
commutative comultiplications.

(i1)) Let r =2 with p odd and put P(y) =[x, x']. The comultiplications ¢, are
associative by Proposition 3.5 and are clearly commutative. Thus Y admits infi-
nitely many homotopy classes of homotopy-associative, homotopy-commutative
comultiplications.

(iii) Let » =3 and put P(y) =ad”~'(x)(x’) +ad”~ '(x)(x). The comultiplica-
tions ¢; are non-associative if 4 # 0 by Proposition 3.16, but are clearly commuta-
tive. Thus Y admits infinitely many homotopy classes of homotopy-commutative,
non-homotopy-associative comultiplications.

4.4 EXAMPLE. Every comultiplication whose perturbations P,, for r = 3,
have the form (%) of Theorem 3.11 and is such that 1P, = P, is also commutative.
For example, let V =<x,,y,,z3,). Then the one-stage perturbation given by
P@)=[x+x"[x+xy+yN++y,[x+x,y+y1 —[x [x y]] =[x [x y]l
— [ [x, 1 =y, [x’, y’]), defines a commutative comultiplication.

4.5 REMARK. Let Y~ S3*'v - - v S%*!, with the n,’s all odd. Then every
homotopy-associative comultiplication on Y is also homotopy-commutative. This
follows, since Corollary 3.19 asserts that any homotopy-associative comultiplication
is equivalent to the standard one, which is homotopy-commutative.

Section 5S— Homotopy-Inverses

In analogy to the discussion of left and right inverses for a co-H-space in
Section 2, we consider left and right inverses for Lie algebra comultiplications. Let
¢ :L(V)-L(V)UL(V) be a comultiplication and let M be a free differential
graded Lie algebra. Then ¢ induces a binary operation on the set of homotopy
classes of differential graded Lie algebra maps [L(}'), M]. This is denoted additively
and defined as follows: If f,ge[L(V), M), then f +4,8=(f|g - ¢, where
(f|g) : L(V)uL(V')—> M is the homotopy class given by f and g on each sum-
mand. The class of the zero homomorphism is a two-sided identity element for + .
As in the topological case, this operation admits unique left and right inverses.

5.1 LEMMA. If (V) is a free Lie algebra with comultiplication ¢ and M is a
free DG Lie algebra, then every element f € [L(V), M] has a unique left inverse and
a unique right inverse with respect to the binary operation + ,. In particular, the
identity element 1 € [L(V), L(V')] has unique left inverse A and unique right inverse p.



Rational co-H-spaces 97

Preof. It suffices to prove the existence of a unique 4 and p in [L(V), L(V)]; for
then the left inverse of f is just fo A, and the right inverse is f o p. Note that
A+4,1=0 is equivalent to (A|Dp()=0, for all veV. Writing
¢(v) =v + v’ + P(v), we obtain

AMv) = —v — (4 | )P(v). (5.2)

This gives an inductive method for constructing A: Let V|, denote the graded vector
subspace of V of all elements of degree <i and suppose 4 is defined on L(V,,_ ).
If veV,, then for degree reasons, P(v) € L(V,_,) UL(V(,_ ). Now (A|1) is
defined on L(V,_,,) UL(V,_,y) by the inductive hypothesis, so A(v) is defined by
(5.2). The induction starts by setting A(v) = —v for v € V,. This proves the existence
and uniqueness of A. A similar argument for p holds by setting

p@) = —v — (1] p)P(v). 0 (53)

We now investigate whether or not the left inverse 4 agrees with the right inverse
p, for a free Lie algebra L(V).

5.4 DEFINITION. Let P:L(V)->L(V)ulL(V’) be a perturbation, where
V=<_x,...,x,>. Pis called an even perturbation if, for each i, P,(x;) =0 for all
odd r. Note that if P is even, then P(x;) can be written as a linear combination of
brackets in the elements x,, x,, ..., X, X}, X3, ..., Xk, such that in each bracket
the number of primed entries is congruent modulo two to the number of un-primed
entries.

5.5 PROPOSITION. Let ¢ : L(V) > L(V)UL(V’) be a Lie algebra comultipli-
cation with V. =<x,, ..., x; ). If ¢ = ¢y + P, with P a one-stage, even perturbation,
then the left inverse A equals the right inverse p.

Proof. Suppose P #0 on V,. If x; € V,, for m # n, then A(x;) = —x; = p(x;) by
(5.2) and (5.3). Note that (4| 1)(x;) = —x;, (A|D(x})=x;, (1 | p)(x;) = x; and
(1] p)x}) = —x;. Now let x;eV, and let y be a bracket in the elements
X1y Xy ooy Xg, X1, X5, . .., X; appearing in P(x;) with non-zero coefficient. Suppose
X is made up of r of x;,x,...,% and s of x},x3,...,x;. Then
(2| D(x) =(—=1)"F and (1] p)(x) = (—1)°f, where } € L(V') is obtained from yx by
removing all primes from the xi,..., x; which appear in x. Since P is even,
AID@ =(1]p)(). Thus (4| DP(x) =(1]|p)P(x;). By (52) and (53),
Mx;) = p(x,), and so 1 = p. 0]
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5.6 COROLLARY. Every comultiplication on a rational co-H-space Y which
has the homotopy type of a wedge of two rational spheres has left homotopy-inverse
equal to right homotopy-inverse.

Proof. Let V=s""Hy(Y) = {(x,,y,7- If ¢ =2p, then P(y) = u[x, x'] for some
p € Q. This is a one-stage, even perturbation, so A = p by 5.5. Now let ¢ = rp with
r = 3. Then P(y) is a linear combination of r-fold brackets, each bracket involving
only x and x’. Hence (4 | 1)P(y) =0, since [x, [x, x]] = 0. Similarly (1|p)P(y) =0.
Thus by (5.2) and (5.3), A = p. If ¢ # rp for any integer r, then P =0, and 4 = p by
(5.2) and (5.3). Consequently, for any comultiplication on Y with left inverse / and
right inverse r, [ =r. O

Notice that by combining 5.6 with 3.16, we have examples of comultiplications
on S&*1v SZ*! for r 2 3, which are not homotopy-associative and yet for which
[ = r. We conclude this section with an example of a wedge of three rational spheres
that admits a comultiplication for which / # r.

5.7 EXAMPLE. Let Y~82*'v Sg"'vS¥*4+! and let V=s5""H«(Y) =
{X,, Vys Z2p + 4 »- Define a comultiplication ¢ : L(V) - L(V) LU L(V') by ¢ = ¢+ P,
where P(x) =0= P(y) and P(z) =[x, [x, y’]]. Using (5.2) and (5.3), we see that
Az) = —z —[x, [x, y]], and p(z) = —z + [x, [x, y¥]]. Thus, if « is the comultiplication
on Y corresponding to ¢, then / #r.

Section 6— Wedges of Spheres

We begin with some terminology and notation. Denote by X the wedge of spheres
Sutly...vS%+iwithl<n <---<m.Letyens(S"+' v v §**1) be the
inclusion into the jth summand. Since X is a wedge of spheres, a : X > Z is
completely determined by the k elements ax(1),...,ax(1) € nx(Z). Let
Iy ooy ey 17, ..., 1, be the elements of (X v X) given by the inclusions into the
summands. From the definition in Section 2, if o : X = X v X is a comultiplication
then

ax(1;,) =1 +1; + P(;)

for some P(1;) € T 1 (X V X) such that p«P(1;) =0 = p%P(3;) for the two projec-
tions p, p’ : X v X = X. We call P the homotopy perturbation of the comultiplication
a (cf. Definition 2.5). A comultiplication on X is thus completely specified by the
elements P(1,), ..., P(1;) € n+(X v X). We use homotopy perturbations in order to
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construct and analyse comultiplications on wedges of spheres following the methods
of the previous sections. In particular, we say that a homotopy perturbation P is
one-stage if there exists some m € {n,, ..., n,} such that P(1;) =0 except possibly
for those 1, € m,, , (X).

6.1 PROPOSITION. If X=S8n*!'v---v S+ then X admits infinitely
many homotopy classes of comultiplications if and only if for some j, n, = Z;_ | a;n; for
integers a; = 0 with X/_, a; = 2.

Proof. Let €(X) denote the set of homotopy classes of comultiplications on X
and let Y = Xgo=S3*'v---v S%*'. Then the rationalization functor 6 defined
by 6(x) = ag induces a mapping 6 : €(X) - €(Y). It is known that this mapping is
finite-to-one [H-M-R,, Cor. 5.4]. Thus if €(X) is infinite, then some n; = Z]_ | a;n;
as in the hypothesis, by Proposition 2.7. Conversely, if some n; = X;_ | a;n;, then an
infinite family of comultiplications can be defined on X, in analogy to the proof of
Proposition 2.7. ]

6.2 REMARK. Proposition 6.1 was known to Arkowitz and Curjel (unpub-
lished) and is also a consequence of a result of Naylor [Na].

For the remainder of this section, the bracket operation in homotopy groups
will be the Whitehead product. For properties of the Whitehead product refer to
[Wh, Ch. 10].

6.3 PROPOSITION. Let o be a comultiplication on X =S+ ' v -+ v §%+!
with homotopy perturbation P.

(1) Suppose P is a one-stage homotopy perturbation with P #0 on =, . ,(X). If,
for each 1, e m,,  (X), P(1;) =Z,, a1, 1;] for integers a), then a is homotopy-
associative.

(ii) Suppose that P(1;) is a torsion element for 1, € m, . (X) if r <m, and that
there exists some 1; € m,, . |(X) with P(y;) = a1, [1;,, .- ., [1;, _,»15) .. .]] for some
non-zero integer a, where s 23 and i, € {l,...,k} for each r. Then o is non-
homotopy-associative.

Proof. (i) The proof given in Proposition 3.5 holds over the integers.

(i) The rationalization «g is a comultiplication on Xg. The associated Lie
algebra comultiplication ¢ has perturbation as in Proposition 3.8. Since ¢ is
non-homotopy-associative, a is non-homotopy-associative. O

6.4 NOTATION. Let J=j,,...,j, be a sequence of integers with each
Jie{l,..., k}. Define the elements

BJ = [(ljl + l.lll)’ [ ©r [(ljr__] + l]/,—_|)’ (’j, + l},)] e ]],

=L, _,yl- and 1, =[,[...0; _,,1]. 0]
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in Tx(X v X). An element y € (X v X) is said to be of standard associative form
if

X= Z a;(B;, — 1, —1}),
7

with a, € Z, where the sum is over sequences J of length at least three (cf. Theorem
3.11). In particular, zero is an element of standard associative form.

6.5 THEOREM. Let X =S"*1v ---v 8"+ and let o be a comultiplication
on X with homotopy perturbation P.

(1) Suppose that P is a one-stage homotopy perturbation with P #0 on n,,, . (X).
If, for each 1; em,, , \(X), P(1;) can be written in standard associative form, then o is
homotopy-associative.

(ii) Suppose that o is homotopy-associative and that P(i;) is a torsion element for
all 1;en, . (X) such that r <m. Then there exists an integer N such that, for each
L € T, 4 1 (X)),

N ’ P(lj) = Z ajr-,s[lrs l;] + Xj9

where y; is in standard associative form.

Proof. (1) This is checked by a straightforward calculation.

(i1) Since a is homotopy-associative, so is ag. Furthermore, ag has homotopy
perturbation Pg which is zero on «, . ,(Xg) for r <m. Thus Theorem 3.11 applies,
and so for each 1, em,, , (Xg),

PQ(lj) = Z )‘jr.,s[ln l;] + Z A'{I(BJ — 1y l.ll)s
r,s J

where the 1/ and A/ are rationals, and the 1; and 1] now denote the two inclusions
of $%+!into Xg v Xg. Choose a finite collection of non-zero integers as follows:
for each non-zero A/, let N/ be such that N’ A/ is an integer; for each non-zero
A%, let N’ be such that N/ A/ is an integer; for each 1, € m, , ;(Xq) with r > m, let N;
be such that N,Pg(1;) is a sum of brackets in the i, and the i with integer
coefficients. Let M be the product of all the N/, the N/ and the N,. Write
W, = MA., and p), = M/, Define a homotopy perturbation £ on X by P(1,) =0
for 1, e m, . ,(X) such that r <m,

PGy) =Y w1, ]+ Y wh(By— 1, —15)
r.s J
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for 1, e n,, (X), and 13(1 ) = MPg(y,) for 1, e, , | (X) with r > m. Then 13(1 ) and
MP(z ) rationalize to the same element in Ty, + 1(Xgq Vv Xg), for each j. Therefore,
MP(1)) = P(l ) + 1; for some torsion element 7, €M, , 1(Xq v Xq). Suppose that
each 1, has order M, and set N= MMl -M,. Then for

,em,  (X), NP(,)) =M, - -- Mkﬁ(zj), which is easily seen to have the desired
form. O

The foliowing theorems refer to conditions (i), (ii) and (iii) preceding Theorem
3.14.

6.6 THEOREM. A wedge of spheres S™*'v ---v §"™*! admits infinitely
many homotopy classes of homotopy-associative comultiplications if and only if
condition (i) or (ii) on the integers n,, . .., n, holds.

Proof. If (i) or (ii) holds, then proceed as in the proof of Theorem 3.14.
Conversely, assume that neither (i) nor (ii) holds. Let « be a homotopy-associative
comultiplication with homotopy perturbation P. We prove inductively that each
P(1,) 1s a torsion element in M, +1(X v X). Assume this is true for all 1, € =, | (X)
such that r < m. Then, by Theorem 6.5, there is some integer N such that for each
L, €N, (X), NP(1;) =X, a1, 1;] +x, where x; can be written in standard
associative form. Since condition (i) does not hold, then N - P(i;) = y,. Since
condition (ii) does not hold, then y, =a/(B, —1, —1}), where J =j,j,,...,j;.
However, J is a sequence of length at least three and [, [, #]] is a torsion element
for any #, so each N - P(1;) is a torsion element. Thus P(1,) is a torsion element for
each 1, e m,, , ,(X). This completes the induction. Since there are only finitely many
torsion elements in the group XZ¥_, T, 41 (X v X), there are only finitely many
homotopy perturbations that give homotopy-associative comultiplications. This
completes the proof. U

6.7 PROPOSITION. A4 wedge of spheres S™*' v -+ v 8" ™ admits infinitely
many homotopy classes of non-homotopy-associative comultiplications if condition (ii)
or (iii) on the integers n,, .. ., n, holds.

Proof. The proof given for this implication in Theorem 3.15 holds over the
integers. O

Unlike Theorem 3.15, the converse of Proposition 6.7 is not true, as Example
6.9 below shows.

In what follows, we let b, e nx(X v X) denote a basic product in the
Uyoouy g, 1, ..., 1% [Hiy p. 154], such that b, contains at least one entry from the
li,...,1, and at least one entry from the 17, ..., 1. If P is a homotopy perturba-
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tion, it follows from Hilton’s theorem [Hi,, Th. A] that P(1;) =X, b, o §, for each
i, €m, . 1(X), where b, is a basic product, |b,| denotes the degree of b, and
0, € T+ 1(8'% ). This sum can be decomposed into a torsion part and a free part:

P)= Y bo6,+ Y b6, (6.8)

s, 65 torsion 1, 6, free

Note that if 6, is a suspension, then left-additivity holds, i.e.,
(a,+ay)o0,=a,°0,+a,°0, for any homotopy elements a,, a,. In particular,
(nal) ° es = n(al © Bs) =4a,c° (nes)'

6.9 EXAMPLE. Let X =S’ v S'' v §?! and observe that neither condition (ii)
nor condition (iii) holds for 6, 10, 20. Define a collection of comultiplications «” by
P"(1;) =0, P*(1,) =0 and P"(i3) =[1y, [1y, 11]] 2 0@ + n[1,, 15], where n is an integer
and 6 #0€emn,(§")=2Z, [To, Ch. 14]. We check that (a"v Da"(i;) —
(1 vama"(;) #0:

(@™ v Da"(13) = (" v D3+ 154+ [1g, [14, 17]] © 0 + 11y, 13))

= l3 + 1/3 + [ll’ [ll9 l;]] © 9 +n[125 lé]

+as+ [+, [+ 1y, 170 2 0 + nf1, + 15, 15]
Similarly,
(I'vama™(s) =13+ 15+ 15+ 17, [17, 1711 0 0 +nl1z, 15
+[1y, [1y, 17+ 17]] 2 0 + n[1,, 15+ 15].
Since @ is a suspension, we obtain
(@" v Da"(13) — (1 v aa"(i3) =1, [17, 17]] 2 0 +[17, [1, 17]] = 6.

Commutativity and the Jacobi identity for the Whitehead product and the fact that
0 has order two yield

(@" v Da"(13) — (1 v a"a"(3) =[17, [11, 11]] = 6,

which is non-zero by [Hi,, Th. A]. Thus a” is a non-homotopy-associative comulti-
plication, for each n. Notice that Xgo =S84 v S§ v S4 only admits homotopy-
associative comultiplications, whereas X admits infinitely many non-homotopy-
associative comultiplications.
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We now consider homotopy-commutativity for a wedge of spheres. Proposition
4.2 and Examples 4.3 carry over verbatim into this context. Of more interest,
perhaps, is a consideration of how torsion elements can affect homotopy-commuta-
tivity. Let 7 : tx(X v X) 5 (X v X) denote the homomorphism induced by the
twisting map 7:XvX->XvX Let a be a comultiplication on X =
Sntly ... v §%+1 with homotopy perturbation P. Notice that a is homotopy-
commutative if and only if TP = P.

6.10 EXAMPLES. Let X=S*'v S§4*! and let 1 en,, (X) and
1,em,,1(X) be the inclusions. We shall consider two different pairs (p, g) to
illustrate the rdle of torsion. In each case, we define a one-stage homotopy
perturbation P with P(1,) =0.

(i) Let X =S5%v S” and define P(1,) =[1,,1;] 20, where 0 # 0 e n,(S°%) = 2Z,,
which is a suspension [To, Ch. 14]. Then z([1;,11]°0) =(—[1,,11]) 0=
[1,,11] e (—6). But 8 is of order two, so t([t,,17] 2 8)=[1,,17] 6. Also, the
one-stage homotopy perturbations Q"(1,) = n([1,, [1,, 1]} + [1, [11, u]]), for n an
integer, give homotopy-commutative comultiplications. Thus there are two infinite
families of homotopy-commutative comultiplications on X, one given by the Q" and
one by the P + Q".

(i) Let X =S%v S® and define P(1,) =[1,,11] 0, where 6 is an element of
order three in ng(S°) =Z,, [To, Ch. 14]. Then tP(1,) = (—[1;,171]) 20, so «a is
homotopy-commutative if and only if (—[1,,11]) 0 =[1,,17] 6. Since 0 is a
suspension, « is homotopy-commutative if and only if [1,, 1] - 260 = 0. The latter
holds if and only if 20 = 0. However, 26 # 0, since 8 has order three. Therefore a
is non-homotopy-commutative. The rationalization of &, however, must be homo-
topic to the standard comultiplication on S3 v S% since P(1,) is a torsion element,
and hence oy must be homotopy-commutative. This gives an example of a
non-homotopy-commutative comultiplication whose rationalization is homotopy-
commutative.

We next present a brief treatment of homotopy-inverses for comultiplications on
a wedge of spheres. We do not give general results, but instead emphasize examples.
It is straightforward to construct examples of comultiplications whose left and right
homotopy-inverses are equal, as in the proof of Proposition 5.5. However, the
presence of torsion allows more possibilities as the following example shows.

6.11 EXAMPLE. Let X =S?v S?v S° and let P be the one-stage homotopy
perturbation given by P(13) = [1,, [11, 15]] 0 0 + [11, [11, [11, 12]]], where 8 # 0 € n5(S?)
= Z,[To, Ch. 14]. Then by (5.2) and (5.3) and the fact that 8 has order two, we have
that / = r for the corresponding comultiplication on X.
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We next show how torsion can lead to different left and right homotopy-
inverses.

6.12 EXAMPLE. Let X = S®v §°v §% and let P be the one-stage homotopy
perturbation given by P(i5) = [1,, [1,, 15]] o 8, where @ is an element of order three in
T,59(S'¢) = Z5, which is a suspension [To, Ch. 14]. If / and r are the left and right
homotopy inverses for the corresponding comultiplication a, then it is easily shown
that / #r. Notice that P(i1;) is a torsion element and so a«g is the standard
comultiplication on $& v §§ v §&. Thus ag has identical left and right homotopy
inverses.

We conclude this section with an example which shows Corollary 5.6 is not true
for a wedge of two ordinary spheres. This example again illustrates the variety of
behaviour which can be displayed by comultiplications on a wedge of two spheres.

6.13 EXAMPLE. Let X =S*v S'° and define a one-stage homotopy pertur-
bation by P(1,) =[1,,[1;,11]]. Let / and r be the left and right homotopy
inverses for the comultiplication a corresponding to P. Then (/, )«P(1,) =
(1, [, 4]l = 01, [1,1]), where 1emn,(S* 1is the identity class. Similarly
(1, )+ P(1;) = —1x[1, [1,1]]. If I =r, then (/, 1)« P(1;) = (1, r)x P(1,), by (5.2) and
(5.3), and so [1,[1, 1]] = —[1, [1, ¢]]. This is impossible, since [i, [1, 1]] € 7,,(S*) has
order three [Hi,]. Thus « has distinct left and right homotopy-inverses. This
example extends to $%" v §% 2 for n > 2, since [, 1, 1]] € 76, _ »(S?") is known to
have order three for n > 2.

Section 7—Proof of Proposition 3.10

This final section is a technical one devoted to the proof of Proposition 3.10. The
proof is given after several lemmas concerning the maps f,7,6 : T(V, V') »
T(V, V', V"). For the purposes of the proof, we introduce some notation. Suppose
the vector space V has basis {x,x,,...,x.}. As before, denote the binomial
x;+x;eT(V,V’) by B,. Now extend this notation by defining, for each sequence
I=i,i,...,0,withie{l,2,... k},

Bl=Bi|Bi2 e Bf,’

’

’ 4 /
Xp=X; X, X, and  Xx7=Xx;Xxi X,

Observe that we denote multiplication in the tensor algebra by juxtaposition. Thus,
for example, B, , = B, B, = (x; + x1)(X; + X3) = X; X5 + X, x5 + x| X, + x1x5. Notice
that B(x;) = B; and y(x;) = 8(B;). Throughout the following lemmas, y denotes an
element of T(V, V') of fixed homogeneous length.
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7.1 LEMMA. (1) B(x) =0 if and only if y =0, and (ii) y(x) =0 if and only if
y =0.

Proof. (1) Clearly B(0) =0. For the converse, 8 preserves length, so we use
induction on the length of y. Suppose y is of length 1. Write y = X (4;x; + u,x}), so
that B(x) =X (4;(x; + x}) + w;x!). Thus B(x) =0 implies A, = 0 and y,; = 0, for all i.
Now suppose y is of length r + 1 for some r > 1. Write y = X (x;4, + xC;), where
A; and C,eT(V,V’), and both are of length r. Then B(¥) =Z (x;5(A,) +
x;B(A4;) + xiB(C;)), so B(x) =0 implies f(4;) =0 and B(C;) =0. Thus 4, =0 and
C, =0 by the inductive hypothesis. Hence (i) is proved by induction. The proof of
(i1) is similar. O

7.2 LEMMA. If y has homogeneous length r, then B(x) =y(x) if and only if
x =2, A, B,, where the sum is taken over all sequences I of length r.

Proof. If y =%, 4,B,, then B(x) =y(x) since B(B,) = y(B,) for each I. For the
converse we again argue by induction. If y has length 1, then y =X (4,x; + u;x}). So
B() = Z(Aix; + Aixi + px) and y(x) = Z(4:x; + wx; + w;x]). Thus B(x) = y(x) im-
plies £ 4,x; =X u;x; and so 4, = y, for all i. Hence y = X A,B;. Now suppose y has
length r + 1, for some » > 1, and assume the result holds for length r terms. Write
r=X(x;A;,+x:C;), where A, C,eT(V,V’) both have Ilength r. Then
B =X (x;B(4;) + x[B(A4;) + x7 B(C,)) and y(x) = X (x,9(4;) + x;9(C;) + x79(C;)).
Therefore f(x) = y(x) implies B(4;) =v(4,), f(A4;) =y(C;) and B(C;) =y(C;). The
first and third of these latter equalities give 4; = X, /B, and C; = X, u} B, for some
Ay, ub, by the inductive hypothesis. From the second and third equalities, we obtain
B(A4;) = B(C)). This implies A, =C; by Lemma 7.1. Thus
A=Z;, A0+ x])B, =%, ;A}B;,. [

The proofs of the next four lemmas are omitted. They follow an identical
pattern to the proofs of the previous two by induction over the length of y.

7.3 LEMMA. (i) y(x) = x if and only if y € T(V'), and (i) f(x) = x if and only if
x=0.

7.4 LEMMA. (i) y(x) = 6(x) if and only if x =0, and (ii) B(x) = 6(x) if and only
if y e T(V").

7.5 LEMMA. x + B(x) = y(x) if and only if x =2 4,{B, — x,}.

7.6 LEMMA. B(x) = 8(x) + y(x) if and only if y =2 1,{B, — x}}.
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7.7 LEMMA. Let A and C be elements of the form A =X A,(B, —x,;) and
C =Z (B, — x}), where each I in the sum is a sequence of length r with r > 2.
Then C + B(A) = 6(A4) + y(C) if and only if A, = y, for all I.

Proof. If A, =y, for all I, then clearly C + B(A) =d(4) + y(C). We prove
the converse by induction on r. Suppose r =2, so that B, =B, , for each I
Expand B, as x; B, + x; B;,, and write 4 =X ,{x; (B;,,—x;,) +x] B;,} and

C=Zu{x; B,+x, (B,—x;,)} Then

C+p(A4) =) x; (1, B;, + 4, B(B;, — x;,)) + terms with leading entry x; or xj ;
and

o(A) +v(C) =Y x; uy(B;,) + terms with leading entry x; or xj .

Thus C + B(A) = 6(A) + y(C) implies T, {u,B;, + 4,B(x;,)} = Z;, u,7(B,,), for each
fixed i,. The latter equality implies 4, =y, for each I, since B(x;,) =x;, and
Y(B;,) = x;,+ x{,+ x;,. This starts the induction.

Assume the result holds for length r elements and let 4 and C be of length r + 1,
for some r>2. Expand A4 and C as A=Zi{x (B,
taeeep ) FXLB, i,+1} and C=ZX l‘l{xi,Biz  +xi, (B,

G i)} where I'=iy, iy, ... i, . Then

X
X

"""""

C+ﬁ(A)=Z#IX;,(B:2 ..... i,H—x:z ..... i,+,)

+Z)'lx;,ﬁ(Bi2 ,,,,, oy " Xig o, i,+])

n"

+ terms with first entry x; or xj|;

and

o(A) +9(C) = Z llx;lé(Biz ‘‘‘‘‘ o1 " Xig .. i 4 l)
+zulx;|'Y(Bi2 ..... i 41 —xiz ..... i,+|)

+terms with first entry x; or x7 .

Hence C + f(A) = 6(A) + y(C) implies, for each fixed i,, that

Z#l(Biz ..... i,+|_x¢,'2 ..... i,+|)+ﬂ<z Al(Bi-_; ..... i1 Kig, ..., i,+|)>

=5<Z )~1(Bi2 ..... i,‘,_l—xiz,.“i,,*,))-l—’))(z .“l(Bi2 ..... i,+|—x;2 ..... i,+|)>a
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where the sums are taken over all sequences i,, ..., i;, ;. The induction hypothesis
applied to the terms A=Xi4(B, .,  —x, ..,) ad C=
(B, . . . oy = Xl i, .,) yields 4, =y, for all I. Thus induction is complete,
and the result follows. O

Proof of Proposition 3.10. It is straightforward to check that if £ has the form
described in Proposition 3.10, then ¢ + (&) = 6(&) + y(£). We prove the converse.
Suppose ¢ e T(V, V') is of length r + 1, with r >2. Write £ =ZX,(x;4, + x;C,),
where 4,, C,e T(V, V’) are of length r. Expanding ¢ + (&) = (&) + p(¢) and
equating terms with first entry x,, x;, or x;, respectively, we have the following
three equations for each j:

A; + B(A4;) =y(4) (7.8)
C; + B(4;) =6(4,) + (C;) (7.9)
B(C;) = o(C;) + y(C)). (7.10)

Now, Lemma 7.5 and (7.8) imply that 4; =X A}(B; — x;). Similarly, Lemma 7.6
and (7.10) imply C, = X pj(B; — x;). Thus Lemma 7.7 and (7.9) show 4} = u} for
each j and /. Hence

¢ = Z Z M(xj(Bl —-Xx;)+ xj/'(Bl —Xx7))
P
= Z 4;(B; —x; —x}),
J
where J is the sequence j, [ and A, = 4]. O
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