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The Gauss map of a spacelike constant mean curvature
hypersurface of Minkowski space

BENNETT PALMER

The Bernstein problem for maximal (mean curvature zero) spacelike hyper-
surface of n + 1 dimensional Minkowski space E**' was introduced by Calabi [C]
in 1968. He showed that for n =4 the only entire maximal graph was a linear
supspace. For n >4 the same conclusion was reached by Cheng and Yau in [CY].
Nonlinear entire graphs of constant non-zero mean curvature were found by
Treibergs [T].

For hypersurfaces of Euclidean space E"*', one possible generalization of the
Bernstein problem is to study the distribution of normals to a complete constant
mean curvature hypersurface. This problem was suggested by Chern in [Ch]. The
best result in this direction is that of Hoffman, Osserman, and Schoen [HOS] who
showed that the normals to a complete constant mean curvature surface in [E>
cannot lie in a closed hemisphere of S2, unless the surface is a plane or right
circular cylinder.

Here we study the analogous problem for spacelike constant mean curvature
hypersurfaces M c Ef*'. The case n =2 was previously discussed by the author in
[P]. In order to state the main result we let 7 be the timelike unit normal field to
M. For p e M we regard n(P) as a point in the n-dimensional hyperbolic space
H"(—1) canonically embedded in E7*'. We show

THEOREM 1. For H+#0 there exists a number t=1(n, H)>0 with the
following property: Let M" c E1*! be a spacelike hypersurface with constant mean
curvature H. If n(M) is contained in a geodesic ball of radius t, <t in H"(—1)
then M is not complete.

To this end we demonstrate that there is an upper bound on the radius of a
geodesic ball B,(x,) =« M if n(M) is contained in a geodesic ball of radius 7 in
H"(-1) for 7 sufficiently small.

We would like to thank Professor Robert Osserman for his helpful comments
in the preparation of the manuscript.

We will need the following.
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LEMMA 1. Let M be a smooth Riemannian manifold with Laplace operator
A. Let S be a smooth function on M satisfying

1< AS
and
o=S=r1

Let Qc M be relatively compact smoothly bounded domain. Then the first
eigenvalue A, = A,(L2) of the problem

Au+Aiu=0, on Q

u=0 ondQ
satisfies
(t— 0)—15A.1. (1)

Proof. Let f be a smooth function on £ and consider the problem

Av=f, in L
v=0, on JdQ.

It is well known that the solution is given by

~u(x) = | F(9)G@ ) *10) @

where G(x, y) is the (positive) Green’s function and *1 is the volume element of
M. In particular when f =1,

~¥()= | G )10

solves Ay =1, P|s0=0. Let S be as above and note that
AS —¢)=0, inQ

and
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Therefore by the maximum principle
S—y=t inQ

and so
—yY=1t—0 In L.

Let u be an eigenfunction belonging to A,. It is well known that u is positive in Q.
We have by (2)

u) = | u(»GE )*1)
= Amaxu) | G(x,y)*10)

=< A,(mgx u)(t — o).

Choosing x, such that u(x,) is a maximum, one obtains (1).

Let M be a spacelike hypersurface of Ef*'. We will always consider M with
the induced Riemannian metric. For x e M let B,(x) denote the geodesic ball of
radius p centered at x. Similarly for n e H*(—1) c E{*!, B.(n) will denote the
geodesic ball of radius t centered at 7.

THEOREM II. Let M" c E{*! be a spacelike hypersurface of constant mean
curvature H#0. Let x € M such that B,(x) c M. Assume that n(M) c B,(#}) for
some 7) € H"(—1). Then A, = A,(B,(x)) satisfies

nH*(cosht—1)"'=<A,.
In order to prove Theorem II, the following lemma is needed.
LEMMA 2. Let M and n be as above. Then the differential dn of n satisfies

lldnl|* = nH>.

Proof. Using a standard argument, it is easily seen, using the smoothness of
M, that dn is self-adjoint. Choosing an orthonormal basis at an arbitrary point in
M which diagonalizes, we can assume a matrix representation dn = diagonal
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(ky, . . ., k,) where k; are the principal curvatures. We have:
ldn|l* =2 kf =£(k)

nH =2, k;=g(k))

Using, for example, Lagrange multipliers it is easily checked that the minimum of
f on the level set g = nH occurs when k; = H for all j.

Proof of Theorem 11

By a result of Ishihara [I] the Gauss map 7 is a harmonic map of M into

H*'(-1). If n=(7n,, ..., N.+1) then each component satisfies the Euler-Lagrange
equation,
An; = |ldn]*n;. (3)

We may assume, by first applying a Lorentz transformation to M if necessary,
that 7 = (0, 0, ..., 0, 1). The assumption (M) = B, (7)) implies

1=9n,,1=cosht
By (3) we have
ANpsr = AN Ny > nH?1, > nH>.
Define s = 1,,,,(nH*)~". Then
1< As
and
(nH») '=s=<(nH* "cosht.
So by Lemma 1,

(nH?)(cosh 1 —1)"'=A,.
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Proof of Theorem I

It is well known [CY] that the Ricci curvature of M is bounded below by
(—n?H?/4). Assume that B,(x) € M and n(M) c B,(#). Then applying the lower
bound for A, derived above along with an upper bound for A, due to M. Gage,
[G] we obtain the following inequalities:

When n =2,

H? 2 H?
2H*)(cosht— 1) '=A =s—+=S—-——F——
(2H7)(cosh 7= 1) '="4 7 02 4sinh? (Hp)

forn=3

2

(BH*(cosht—1)"'=A, =3H*+ g—z

and for n =4

(n — )n*H?

(nH*)(cosht—1)"'= A}, =< ™

+ inf

O<t<1

{ a? N (n—1)(n— 3)n2H2}
(1-r*)p* 16sinh® (tpn(H/2))

and the theorem follows.
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The author would like to call the readers’ attention to a recent paper of H. L
Choi and A. Treibergs, with the same title as the present one, in which the Gauss
map of an entire spacelike surface is studied using its ideal boundary.
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