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L*-Curvature pinching

MAuNG MIN-Oo and Ernst A. Run

§1. Introduction

For a Riemannian manifold (M”, g), we will denote by K its sectional
curvature, by Rm = Rﬁ,-k the Riemannian curvature tensor, by Rc = R, = Rf,-k the
Ricci curvature, and by R = R; =g’*R), its scalar curvature. We normalize our
curvature tensors so that the sphere S” of radius 1 has K = 1. If M is compact, we
denote by d its diameter, by V its volume and we define: r=f R=1/V [ R to be
the average scalar curvature. In general we will use the notation $=1/V | to
denote the average integral.

To measure the deviation from constant sectional curvature we introduce the
tensor:

Rm =R§,k=Rf,k~n—(-’;r__—l)g§jk, (1.01)
where gl = g;«8! — g&; 1s the curvature tensor of the standard sphere S”. We will
call Rm the reduced curvature tensor.

The first result of this paper is the following pinching theorem for the average
L*-norm of the reduced curvature tensor. If we replace the L?-norm by the
stronger pointwise C°-norm, in the following, then the corresponding theorem
would be simply the classical differentiable pinching theorem for the case of the
sphere and hyperbolic space. (See [8] for the case r >0 and [5] for r <0). In fact
our proof consists of showing that the weaker pinching assumptions do in fact
imply the stronger one after a small smoothing perturbation obtained by
following Hamilton’s Ricci flow [9] for a short time.

THEOREM 1. For any n=3 and A>0, there exists an €(n, A)>0,
depending only on n and A, such that if a compact Riemannian manifold (M", g)

This work was partially supported by an N.S.E.R.C. Grant A7873 of Canada and N.S.F. Grant
DMS-8601282 of the USA.
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satisfies:
(i) r+0
(i) d*max |K|= A?

1 —
(iii) . J[ |[Rm|*< €(n, A),
then M admits a metric § of constant sectional curvature K(g’)E—?—z—l—).
n(n —

The next result deals with the case where r=0, i.e. with Riemannian
manifolds which are almost flat in the L?-sense, and generalizes the well known
theorems of Gromov [6] and Ruh [14]. In fact, we show that our result can be
reduced to the known theorems.

THEOREM 2. For any n=3 and A>0, there exists an €(n, A)>0,
depending only on n and A, such that if a compact Riemannian manifold (M", g)
satisfies:

(i) d*max|K|= A%
(ii) d“f |Rm|* < e(n, A),

then M is diffeomorphic to a compact quotient of a nilpotent Lie group by a
discrete group of isometries.

Our third result deals with almost Einstein manifolds and generalizes a
previous result of the first author [12] on CP°-almost Einstein metrics. To
formulate the theorem we introduce the reduced Ricci curvature to be the tensor:

~ ~ r e
Rij = R’IZt] = Rl] — ;l-gl] = RC. (1.02)

THEOREM 3. For any n=3 and A>0, there exists an €(n, A)>0,
depending only on n and A, such that if a compact Riemannian manifold (M", g)
satisfies:

(i) r<o0
(i) d?max |K|=<A?

(iii) r—12 ]( |Rc|>< e(n, A),

then M admits an Einstein metric g of constant negative Ricci curvature.
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The basic method used to prove the above theorems is to deform the metric in
the direction of its Ricci curvature as was first successfully done by R. S. Hamilton
in [9]. This flow of metrics, which by [9] exists, at least for a short positive time,
detei.nines a non-linear parabolic evolution equation for the curvature tensor and
its various components. The main idea in this work is to show that a weak
L*-pinching assumption on some appropriate component of the curvature would
lead after a short time along the flow, to a C’pinching condition for the same
curvature component, thus reducing our results to known theorems.

The basic technique used to achieve this is the classical Moser iteration
method together with some recent estimates for Sobolev constants and isoperi-
metric inequalities as obtained by S. Gallot [2]. This work is a natural
continuation of our papers [11] [12] and relies on some of the computations and
methods therein.

Theorems similar in spirit to the above results have also been obtained by Gao
[4]. The main results of [4] deal with purely L"*-pinching assumptions on the
curvature and hence are weaker than our a priori assumption on d” max |K|. On
the other hand, Gao requires a somewhat restrictive assumption on the lower
bound of the volume or the injectivity radius, which is needed in order to appeal
to an abstract compactness theorem due to Gromov. This kind of assumption
would rule out any version of Theorem 2 above.

§2. The evolution equations

We follow R. S. Hamilton’s basic paper [9] and consider the Ricci flow:

d 2
5 =—g = —2Rc + = r(0)g, .
§=28 c nr( )8 (2.01)

where r(0) is a constant which we choose to be the average scalar curvature of the
initial metric g(0) at time ¢ = 0. This differs in normalization from the equation
used by Hamilton [9] since r(0) is constant in time. It is proved in [9] that, on a
compact manifold, this flow of metrics can be integrated for a maximal time
interval [0, T) such that if T <o, then lim, ,r max |K(¢)| = o.

We will freely use here the notation and also some formulas of [12]. For
example, the Laplacians used here will be non-negative operators, which is
opposite the sign convention of [9].

In terms of the reduced Ricci curvature Rc = R;; introduced in (1.02) the basic
evolution equation (2.01) becomes g = —2Rc.
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If u denotes the volume form of g, then we have
i=—Ru, (2.02)

where the dot denotes time derivative, and R = R — r(0), is the trace of Rc. The
rate of change of the total volume V is given by:

dit log V(£) = — ]( R (2.03)

The standard decomposition of the curvature tensor into its irreducible
components is:

Rl]k qu + lek + Wl]k) (2.04)

R
n(n—1)

Here W denotes the Weyl conformal curvature tensor, and Z, the traceless Ricci
curvature tensor of type (1, 3) is given by:

1
Zig= " —— (z8i + gixZi — Zu8; — 8ikZ}); (2.05)

where z; = R;; — (R/n)g; is the trace free Ricci tensor of type (0, 2).

The basic evolution equation for the whole Riemannian curvature tensor
Rm = R}, regarded as a 2-form with values in gl(TM) = T*M ® TM, as derived
in Thm. 7.1 of [9] or in Lemma 4 and formulas (2.14) and (2.15) of [11] is:

3 _
 Rm + ARm + 0 =0, (2.07)

where A = V*V = —tr V? is the rough Laplacian and the quadratic term Q is given
by:

Qi = RZR. ., + 2R%R%, — 2R%R4
+ R, R? + R\, R? + Ri,R% — RR,,. (2.08)

up

Expanding Q in terms of the decomposition:
_p o 1O i py 7O
Ruk qu + (n _ 1) gijk and Rl Rz n gl
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we obtain:
qk = quRl pgk + 2Rlep;k - ZRPqu~
+ RPlkRp +R tkap + Rf”,R” Rg'kR;
+—"O_ (gragt 4 oRr gt _ofelee
n(n—1) (RE*gpai a8oik T8 pik)
(0) _
(Rplkg it R'Pkg] 5jpgi — Ri,g ,1,)
_r(O
-1 n(n—1) (gqul ak + 28, RPJk - 281 Rptk

+ gpiji + gikaf + gfij-i l[kR )

r(0) \?
+ ( ) (g{;quqk + zglqu]k - 28 gplk)

n(n-1)

r(0)*
+ i — 1) Brn8? + 8l + gl — 818))
Al r(O) 51

=Qux+ (- 2R,,k 2R:gu — 2R! kij 2R! 8ix + 2R ,q,)
n(n—1)

+ .—g—z (R z}k ljk qk l]k)

r(0) 1 5 51
+ n(n—1) (- 2Rzik + 2Rzkt Zg,R,k 2ka, + 2ijik + giuR,i

—.g;sz gth +ng1+ngk g]Rtk g/kR +gsz1)

r0) Y’
+ (=) (28— 21— Vgl = 28k + 2n ~ Dgug + 28k

r(0)°
n*(n—1)

+ (28 gjk)’

where we have substituted the definition g}, = g8/ — gug’ and where

)= R""R’ bak + 2RER, ~ 2RERS,,
+R.,R? + R!, R? + R,,R, — RE,R., (2.09)

is quadratic in the reduced curvature Rm = R,,k
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Using now the first Bianchi identity and collecting terms we obtain:

2r(0) - 2r(0) ) _
l]k ijk +— n Ruk 1) (gijf - glkRj) (2 10)

n(n —

We note that the terms which are quadratic in the scalar curvature and g cancel
away nicely. Since

o - _
é;gf'jk = "2Rjkgf" + 2Rikg;1‘

R
= 22481+ 22u8; = 2 &y (2.11)

we have

3 3 r0) 3
A)R, ( +A>R, Ot
<8t =\ o1 " (n— 1) 9t

= 2r(0
= Ql]k ( ) ,,k
2r(0) - <
+ n(n —1) (iR} — guRj + Rigi— Rixg})
= 2r(0) /R
= — f]k (n ) ( {]k qk (n I)Wl]k)

" 2
= —Qlix+ (0 )(R,,k o 1Z,,k 2Wf,-k) using (2.04)

The evolution equation satisfied by the reduced curvature Rm is therefore:

o 2r(0
(a + A)Rt]k gjk+ r(l ) (Ruk

ik 2W,,k) (2.12)

Taking now the trace with respect to i and / in (2.12) we find that Rc satisfies:

d -\ 2r0 n
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where
3y Qky = 2R5;RG + R,RS + R,RY

is a trace free symmetric tensor. From this it follows that the scalar curvature
satisfies:

- 2
g—R+AR—é—R+AR=2|Rc|2+~r(O)R
n

2
=2 |Rc|* - . r(O)R
2 2 o3
=2|z| +;1-RR. (2.14)
Taking the scalar product of (2.12) with Rm, we get:
1/9 P — R
E(é—t+ A) |Rm|*+ |VRm|*+ (Q, Rm)

_2r(0 — e
"E)(|R| nf1|212—2|W|2)+(Rc*Rm,Rm), (2.15)

where the last term (Rc * Rm),,,,c = (gZR? + R?g/)R.,, arises from the fact that we
also have to differentiate the norm we use to measure the curvature.

Since the terms (Q, Rm) and (Rc* Rm, Rm) are cubic in the reduced
curvature Rm, we have therefore the parabolic inequalities:

3 — —_ 2(0) — __
'21'<37+ A) \Rm[2+ WRm|25—f’(z—)|Rm|2+ c(n) |RmP ifr(0)>0  (2.16)

and

1/0 . ——— 2 0
- (-— + A) \RmP + VRmP = ’( ) ( 12 +2 |W|2) +¢(n) |Rm|?
2 \ot n-—
—2r(0) |Rm|2 +c(n) |[Rm|® in case r(0)<0. (2.17)

For the case r(0) =0, we can refer directly to the evolution equation (2.07) of
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the total curvature and deduce that:

1/9
i(é’ﬁ A) |Rm|? + |VRm|* < c(n) |Rm|? (2.18)

Integration of the above inequalties (2.16) and (2.17) gives us:

10 [ — —_— 21r(0)| [ — — 170 . —
IR 2+f VR zs_—J 2 ] 3_..f 2
28tj| m| IVRm| " |Rm|*+c(n)| |Rm| 5 R |Rm|*,

(2.19)
where the last term arises from differentiating the volume form pu.
The above estimate still holds for the case r(0) =0, i.e.,
1 a 2 2 3 1 D 2
>3 |IRm|*+ | |[VRm| Sc(n)f |Rm| —EJ’R |Rm|“. (2.20)

Finally, the following evolution equations for the reduced Ricci curvature
were derived in [12]. (Rc = h in the notation of that paper).

d \= 2 -
<<_9-t + A)Ru' = r(O)R; — q;;, (2.21)

where

qi = Q:ij
= ZRZ,,R’; + R,,,-Rj-’ + R,:R?

=2RY9 P p zP
_2Ripqu+RpiZj +Rp]Z,,

and hence

1 — —_— —_
2 (éa‘t+ A) |Rc” + |VRc|* < c(n) |Rm| |Rc[?, (2.22)

1d [—, 2 — —
id—tf|Rc|2_<.;1-r(0)f|Rc|2+c(n)f |Rm| |Rc|. (2.23)

§3. Moser iteration
We begin by normalizing the initial metric g(0) at t =0. We assume:

max |K(0)| =1, d0)=A (3.01)
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This implies that |r(0)] =n(n — 1) and |Rm(0)| =c(n), where from now on, by
abuse of notation, c(n) will denote any constant depending only on the
dimension.

Since |Rm|* satisfies a parabolic inequality (2.18) with a cubic non-linearity in
the zero™ order terms, the usual maximum principle shows that there exists a
universal time T = T'(n) >0, depending only on the dimension n, such that:

max |K(t)|=2 forall te[0, 3T] (3.02)
This implies max [Rm(t)| < c(n) and hence also max |Rc(f)| <c(n) for 0=t =

3T. It follows that all the metrics g(¢), t € [0, 3T] are uniformly bounded. This is
because the change in the metric satisfies:

max
lvi=1

g} log g(v, v)

<2 max |Rc(t)| = c(n)
p

and hence for v #0

exp (—c(n)T) = _g_,((_v,_z% =exp (c(n)T),

O\ Y)»

which also gives a volume estimate:

c(n, T)™* s—:—:—((—(%sc(n, T) foralltel0,3T].

Our assumptions on the initial curvature in Theorems 1, 2 and 3 are:

@ §IRmO)P=r(0)
(i) FIRm(0)*=d ‘e
(iii) §|Rc(0)>=r(0)%, r(0)<0 (3.03)
where § denotes the average value.

Using the notation || ||, for the L?>-norm, we have from (2.19), (2.20), (2.23),
and the uniform bound on |Rm| in [0, 3T] the following inequality:

SITOIB= () IT@I3 for € [0,37] (.00
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for any of the tensors T = Rm, Rm, or Rc. This implies the following estimate for
their L*-norms:

ITONZ= T O)II3 exp (c(n)t) for te [0, 3T] (3.05)

In order to proceed to a C’-estimate we use the pointwise inequality:

1/90
5 (5}+ A) IT)?+ |VT|*<c(n) |[Rm||T|%

which by (2.16), (2.17), (2.18), and (2.22) holds for all the curvature tensors we
are interested in.

Applying the Cauchy-Schwarz inequality, dividing through by |T|, and using
the uniform bound on |[Rm|, we obtain the linear parabolic inequality:

(é%* A) IT|<c(n)|T| forte[0,3T] (3.06)

where we interpret the inequality in the weak sense at the points where T = 0.

We will now apply the Moser iteration technique to the above inequality
(3.06) to obtain C%estimates for all the quantities |R7n|, |Rm|, and IR\El. We will
show that after some short time the C°-norms are controlled by the average
L*norms up to a constant depending only on the dimension n and the constant
A. Since this estimate is a basic ingredient of this paper, we will prove a general
Lemma about the Moser iteration technique on a compact manifold.

LEMMA. Let M be a compact manifold and let g(t) be a smooth one
parameter family of Riemannian metrics for t € [0, 3T] with T <« and suppose
that for some constant B =0, we have a uniform estimate:

max
lvj=1

<B forte[0,3T], (3.07)

d
"-I;gt(vx U)

where the norm used is with respect to the metric at time t.
Assume further that there exists t' € [0, 3T] such that the diameter d and the
Ricci curvature of the metric g(t') at time t' satisfies the estimate:

d?> min Ric(v, v) = —(n — 1)H* for some H =0. (3.08)

lvl=1
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Let u:[0,3T] X M— [0, <] be a non-negative function with square integrable
first derivatives satisfying the parabolic inequality:

d
—a—tu+Au_<_Au (*)

in the weak sense, where A is the time dependent Laplacian with respect to the
metric g(t) at time t, and A is a constant.

Then, there exists a constant c(n, T, A, B, H) depending only on the
arguments indicated such that the following estimate holds:

3T

maximum |u(t, x)|°<C(n, T, A, B, H)d"][ ][ lu(t, x)|* dx dt (**)
T M

(t,x)e[2T.3T1xM

where d is the minimum diameter of all the metrics {g(t)|t € [0, 3T]}, + denotes
the average integral, and maximum stands for the essential maximum.

We give a proof of the above Lemma following closely Moser’s original paper
[13]. The only technical point we have to take care of is the fact that the metric
and hence the volume form we are using is changing with time. First the
assumption (3.07) implies:

4 1oggv, v)| =B

max
dt

vi=1

and hence

g, (v, v)

T, B)_lsg (v, v)

<c(T,B) forallt,t,e[0,3T] and v #0. (3.09)

This implies in particular that the diameters and the volumes of all the metrics
are equivalent:

_ diam (g(1,)) _

O ol B = o (e ()~

c(T, B) (3.10)
and

V(e
(i) c(n, T, B)_IS—‘;—E}—%SC(n, T, B) forallt,, t,€[0,3T).
2
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For the rate of change of the volume form u we have

l(g;u)u"' =c(n, B). (3.11)

We also need to establish a uniform bound for the Sobolev constant Cs., for
the Riemannian manifold M, which appears in the Sobolev inequality:

n

llull5m = Cson(lldullz + llull3) where m = —t

(3.12)

It is well known that the best constants in Sobolev inequalities are determined
by the isoperimetric constant defined by:

Ciso = inf {(vol D)"/(vol D)""'}, (3.13)

where the infinum is taken over all (not necessarily connected) open submanifolds
D" < M" with smooth boundary dD"~" and with 2 vol (D) =< vol (M).

The precise relation of Cj, with the optimal Cs,, appearing in (3.12) is then:
(see for example [2], [10]):

CSOb = C(n)C{;gln. (3.14)

By its very definition, C;, is a C’-invariant of the metric and by our
information Lipschitz estimate (3.09) for the C’-norms of the metrics we have

C(n, B, T)Ciwo(t") = Ciuo(t') = C(n, B, T) 'Ciio(t") for t', t"€ [0, 3T]. (3.15)

Now by results due to S. Gallot [2] (see also [1] and [3]), which are based on
an isoperimetric inequality of M. Gromov [7], we know that C,,V~' can be
bounded from below by a constant depending only on an upper bound for the
diameter and a lower bound for the Ricci curvature. More explicitly, under the
assumption (3.08) we have, according to [2(), Theorem 1.1], the following
estimate:

Ciso =V d_nl(n) H) (3 16)

where

1 H 1 n—1
I(n, H)“=Hf0 (%%(H)cosht-kr—lf—lsinht) dt
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with
H/2
€H(H) =H"‘j (coshs)" 'ds in case H>0
0

and if H =0, we set I(n, 0)=2""",
Therefore, by (3.14):

maximum Cs,,()V(£)*"d(t)*<c(n, B, T, H). (3.17)

te[0,37)

If u =0 is a sub solution of (*) then for any g >0, we compute:

o
(—CZ + A)u" = qu""‘(—é—t + A)u —q(q — Du??|dul* < Aqu°.

ot

By setting: vo=u and v, ., =v%, for k=0,1,... with p= " we obtain:
a k

(—a—t+A w=Ap“-v, fork=0,1,..., (3.18)

which shows that the powers u?" also satisfy (*) except that the constant A has to
be replaced by A, = Ap*.

If x(¢) is a function of ¢ alone, and if v satisfies (*) with a constant A’, then we
have:

d .
‘—i;(lelvll%) + 2% |ldvll3 — 2xx vl

=2xzj(vi;+vAv)+x2f v
<(2A' +c(n, B))x*|vllz by (3.11).
<4A'x* (lvll3 (3.19)

where we assume, without loss of generality that 2A’ = c(n, B).

For any 0<T =t <t + 17 =1t,,.1=2T, we choose a cut-off function x(¢)
satisfying: xy =0 on [0, t,], x =1 on [t;4q, ®] and 0= y <27;".

By integrating inequality (3.19) over the interval [¢,, 3T], and neglecting the
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first term, which is nonnegative, we obtain the following energy estimate:

J, ldu()I=c(n, B)(A' + 15") j v (@)I3. (3.20)

k+1

On the other hand, by integrating on [t,, t] where € [t., 3T] is chosen to
be such that:

maximum |[v(?)||Z<2 |lv(®)|3

t1=t=3T

and neglecting the non-negative energy term, we have

3T
maximum |[v(t)||Z<=4(A" + r;‘)J v ()13 . (3.21)

ty 1 =t=<2T

The Sobolev inequality (3.12) implies

1/m
(]( v2m) = CSosz/,,]( (ldvf? + v?)

and by the Holder inequality:

1/m 2/n 1 2 2
][UZPS()[UZ"') ({vz) , since —+—=1 and p=—+1.
m n n

Combining them we have

2/n
]( v¥ < CSosz’"<)[ vz) )[ (|dv)* + v?)

and hence by integration with respect to ¢, we get

{7 o< e (f )t o

k1 t€[ty+1,3T])

Substituting now the estimates (3.20) and (3.21) and using the fact that we
have uniform estimates (3.10), and (3.15) for the volume V(¢), diameters d(t)
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and the Sobolev constants of all the metrics g(¢) we get

J(3T)f v <c(n, B, T, H) dz((A +r-1)][3TJf ) (3.23)

tk+1

where d is the diameter of any of the metrics g(¢) for ¢ € [0, 3T].
Choosing now a partition: T=t,<---<t;, =TQR-p ) <-.-<t,=2T of
[T, 2T such that

=y —th=——Tp "
k =lev1 — U n+2P

and applying (3.23) to the inequality (3.18) satisfied by the powers v, of u on the
intervals [t,, 3T] we get:

][BT](vi”Sc(n T, B, H) dz((Ak+rk )][nka) ,

fe+1

fT ][vk+1 =<c(n, T, B, H) dz(A,;FT ]( vk) (3.24)

k+1
with

n+?2 k___( n+2)k
or P =\Ar o P

If we set L(k) = (37§ v2y"™*, then (3.24) can be expressed as

Ar=A,+ 1 =Ap* +

k 1 2 -
L(k +1)=< L(0) H (c(n, T, B, H) dz)l’ ! (A + nz-; ) plp
j=0

=c(n, T, A, B, H)d"L(0)
This proves Lemma 1, because

lim L(k) = maximum |u(t, x)|>.
k—>o (t,x)e[2T,3T|xM

Applying Lemma 1 to the linear parabolic inequality (3.06) satisfied by the
curvature tensors Rm, Rm, and Rc in the time interval [0, 3T] chosen above, and
using the L*-estimate (3.05) now reduces the proofs of Theorems 1, 2 and 3
respectively to their known C%versions [8], [5], [6], [14] and [12].
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Finally, we check that al the constants appearing in this case depend only on
the dimension n and the a-priori bound A:

(i) after the initial scaling (3.01) the time T >0 was chosen to depend only
on n;

(ii) the constant B of the assumption (3.17) is given by |Rc| and hence can be
estimated by c(n) |[Rm| =<c(n) in the time interval [0, 3T]

(iii) the constant H of (3.08) can be estimated by A

(iv) the constant A is estimated by c¢(n) |Rm| < c(n) in the given time interval.

(v) the diameter d(0) at time 0 is normalized to be <A.
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