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Normal forms for Hamiltonian systems with Poisson commuting
integrals — elliptic case

L. H. ELIASSON

1. Introduction

In this paper we will consider the problem of normal forms of Hamiltonian
systems near an elliptic stationary point. These systems are transformed as vector
fields by local symplectic diffeomorphisms, and this transformation gives rise to
an equivalence relation on the space of all such systems. In strict rigour, the
normal form problem amounts to exhibiting a set of relatively simple systems (the
normal forms) which has one and only one system in common with each
equivalence class. A weaker version of this problem is to exhibit some set of
relatively simple systems which intersects each equivalence class along a subset
which is substantially smaller than the class itself.

Classifying Hamiltonian systems under local symplectic diffeomorphisms
amounts to classifying functions under such diffeomorphisms. The problem is thus
to find symplectic normal forms for functions. A nice non-symplectic normal form
always exists. Indeed, a generic function is locally equivalent to its quadratic part.
This is the content of Morse’s lemma. However, such a normal form, though
extremely simple, does not give much information about the Hamiltonian system
itself.

It is otherwise with a symplectic normal form, for example Birkhoff’s normal
form which exists in a formal sense for most systems. If this normal form could be
attained by a differentiable or analytic, and not only formal, symplectic
transformation, the Hamiltonian system would be transformed to a very simple
form which is easy to analyze. But in general this is not so. In the analytic case
the transformation has in general convergence radius 0 — if the normal form itself
is convergent or divergent is not known — and in the differentiable case one gets a
restterm. Because of this disappointing result of Siegel, one must look for weaker
normal forms. One such weaker form is given by the existence of the
centermanifolds of Lyapounov.

In this article we will see what can be said about these problems when the
Hamiltonian system has several integrals which commute for the Poisson bracket,
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and, in particular, when the system is integrable. Though such systems are very
exceptional in any generic sense, there exist many well known examples. The
3-body problem and many rigid body problems have several Poisson commuting
integrals. The 2-body problem, certain rigid body problems, and the Neumann
problem are integrable, together with more recent examples, like the inverse
square potential of Calogero and the lattice of Toda. We will restrict the
discussion to the smooth, i.e. C*, case but there are corresponding resuits also in
the analytic and the finite differentiable cases.

Preliminaries

Let (M, w) be a smooth symplectic manifold of real dimension 2n, and let E,
be the space of all germs of smooth real functions at some point p on M. We say
that a germ f is critical if df (p) = 0.

The Hamiltonian vector field X; of f is defined through the equation

(X, Y)=df | Y

for any vector field Y, where | is the interior product.
The Poisson bracket of two germs f and g is

{f. 8} =df | X, = 0(X;, Xp).

It defines a structure of a Lie algebra on E,, containing all the critical germs as a
maximal ideal.

Two germs are said to be Poisson commuting (or to be in involution) if their
Poisson bracket vanishes. This implies that their Hamiltonian vector fields
commute. (For critical germs this is even equivalent.) The R-linear span of a set
of pairwise Poisson commuting germs is an abelian subalgebra, and their
Hamiltonian vector fields generate a local abelian group action. When the
dimension of the abelian subalgebra is half the dimension of M, we say that this
subalgebra is integrable. (In this case all the Hamiltonian vector fields involved
are integrable in the sense of Liouville.)

To each critical germ f we associate, in a unique way, a quadratic form

d3f € S(T,M, w,)*

where w, = w(p). (In local coordinates this quadratic form is just the Hessian of f
at p.) The symplectic form provides S*(T, M, w,)* with a Poisson bracket {, },
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making this space into a Lie algebra isomorphic to sp (2n, R). This bracket can be
defined by {d>f, d2g}, = d>{f, g}, so d> becomes a Lie algebra homomorphism
for this structure.

A Cartan subalgebra (CSA) of S*(T,M, w,)* is an n-dimensional subalgebra q
which is abelian and self-centralizing, i.e. the centralizer,

Centr (q) = {a € S(T,M, w,)*: {«, q}, =0}

is equal to q itself. We say that it is elliptic if it is generated by q; = 3(x? + y?),
i=1,...,n, in some set of coordinates on T,M such that w,=Y dx; A dy;
(symplectic coordinates). Such a base is unique up to permutation of order, and
g1, - - - » 9, Will always denote this particular base for q, if not otherwise specified
— it is the base for the CSA. (The elliptic CSA :s represent one conjugation class
out of finitely many. In section VII we shall say someting about the other classes.)
Let a;, ..., & be k quadratic forms. The set of all X € T,M such that
a; | X, ..., a ] X has rank less than k is the singular set. It is the union of all

S(ay, ...,a)={XeTM:a,]X, ..., ax] X haverank =<r}, r<k.

This set only depends on the R-linear span of a;,..., @ and not on the
particular basis.
If q is an elliptic CSA of S*(T,M, w,)*, then the singular set S,(q) is a union

of <n) symplectic subspaces of T,M of dimension 2r — the singular subspaces. By
r

abuse of notations we shall also let S,(q) denote the set of all these subspaces.

DEFINITION. An abelian subalgebra p of S*(T,M, w,)* is said to be
non-degenerate if Centr (p) is an elliptic CSA and S;_,(p) = S-.(Centr (p)),
k =dimp.

Since Centr (p) is an elliptic CSA, the condition that S;_,(p) = Si-1(Centr (p))
says precisely that the restriction of p to any singular subspace E in
Sx_1(Centr (p)) is an elliptic CSA of S*(E, w,/E)*. This is a strong maximality
condition of p, and clearly generic.

If dimp p = n, then p is non-degenerate if and only if p is an elliptic CSA.

A Morse lemma for Poisson commuting functions

THEOREM A. Let h,,..., h, be k germs of smooth functions at p in
(M, w), all critical at p and pairwise Poisson commuting, and let h be their
R-linear span. Assume that d>h is non-degenerate of dimension k.
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Then there exist a smooth diffeomorphism ®:(T,M, 0)— (M, p), and smooth
functions y,, . . ., Y, such that

hi°¢=wi(q1,...,qn), isk
where qy, . . ., q, is the base for Centr (d2h).

When k =1 this is just Morse’s lemma. The case kK =2 seems to be new.

We must stress here that the theorem does not say that @ is a symplectic
mapping. In fact, @ is not unique, but it seems very unlikely that it exists such a
symplectic diffeomorphism in any generality. Indeed, if it did, then there would
exist not k, but » commuting functions, and we would be in the integrable case.
This is likely to be a very exceptional situation. (Though this has been shown
rigorously only when k =1 [1, 2, 3, 4].)

In particular, the theorem gives no information about the action of h, besides
the evident fact that this action takes place on the common fibers of k4, . . ., h,.
But it gives a fairly nice description of these fibers themselves. In general, they
are submanifolds of dimension 2n — k and fibrated into n-dimensional tori. Since
the ;s are not unique, the fibration is determined up to diffeomorphic
equivalence by some special class of such functions. (We will supply some partial
result on these equivalence classes in section II1.)

Moreover, the theorem has as an immediate consequence the existence of
singular manifolds on which the action of h is integrable.

COROLLARY. There exist ( X r—z 1) symplectic smooth submanifolds of

dimension 2k —2 at p which are invariant under the action of h, i.e. they are
invariant under each X, , j < k.

Generalized centermanifolds

The singular manifolds of an abelian subalgebra h of dimension k are
symplectic submanifolds of dimension 2k — 2. In many cases, however, there exist
invariant submanifolds of dimension 2k on which h is integrable.

THEOREM B. Let hy, ..., h, be germs of smooth functions at p in (M, w)
which are all critical at p and pairwise Poisson commuting, and let h be their
R-linear span. Let E be a symplectic subspace of (T,M, w,) of dimension 2k, and
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assume that

1) there is an h in h such that E is invariant under j, X, — the linearized vector
field at p — and such that a solution of j, X, is 2n-periodic if and only if it lies in E;

2) the restriction of d>h to E is an elliptic CSA of S*(E, w,/E)*.

Then there exists a unique smooth submanifold N at p, T,N = E, such that N is
invariant under the action of h.

For one analytic function, theorem B is mainly due to Lyapounov, who
proved the existence of a 1-parameter family of periodic solutions [5]. Siegel [6]
proved the regularity at the origin, and the (first?) differentiable version can be
found in [7].

Symplectic normal form for Poisson commuting functions

THEOREM C. Let hy, . .., h, be n germs of smooth functions at p in (M, )
which are all critical at p and pairwise Poisson commuting, and let h be their
R-linear span. Assume that dzh is non-degenerate of dimension n.

Then there exist a smooth diffeomorphism ®:(T,M,0)— (M, p) which is
symplectic, i.e. P*w = w,, and smooth functions y,, . . ., Y, such that

hic®=vYi(q1,---,qn), i=n
where q., . . . , q, is the base for d>h.

The functions vy, . .., ¥, are here uniquely determined in distinction to the
case in theorem A, but @ itself is not unique. It can be composed with any
element of the linear action of dZh. In symplectic coordinates, its invariance
group G consists of the rotations (x, y)—> (x’, y’) of the form

X/ =x;cosa; +y;sin a;

y; = —x;sina; +y; cos a;

for any function a; = a;(q, . . . , q,)-

Formally, theorem C is just a consequence of Birkhoff’s normal form [8]. For
analytic functions it has been proved by Riissmann when n =2 [9], and by Vey in
the general case [10]. Vey’s proof, however, does not carry over to the smooth
case. (H. Ito has sharpened Vey’s result, but his proof also only works in the
analytical case [11].) We will deduce this result from theorem A, thus providing a
unified approach to this problem in the smooth and the analytical cases.
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One can use this result to construct singular action and angle variables near a
lower dimensional torus. Theorem C represents, from this point of view, the case
of a 0-dimensional torus.

Let hy, ..., h, be Poisson commuting germs such that dh,(p), . .., dh,(p) is
of rank k. To the R-linear span we can associate, in a natural way, an abelian
subalgebra

d2h c SX(K/L, w,)*

where K =()Kerdh,(p) and L is the linear span of X, ,..., X, . (Suppose
hy+1s - - -, b, are all critical at p. Introduce symplectic coordinates (x, y) near p,
with y,=h; for j=<k. Then hy,,, ..., h, are independent of x,, ..., x;, so we
just let y,=---=y,=0 and take the Hessian at the origin of each of
Riivs - -, h, as functions of xi 1, . .., X,y Yiw1sr - - - » Yn+)

THEOREM. Let h,, ..., h, be Poisson commuting smooth functions on M
with R-linear span h, and let c € R” be such that I’ = (\,=;=, h; (c;) is compact and
connected. Assume that the rank of dh, . .., dh, is k on I', and that df,h is non-
degenerate of dimension n — k at some point p € I'. Let T be the 1-torus R/(2nZ).

Then there exist a neighbourhood U of T, a neighbourhood V of T X0 in
T(T* x R"™*), a smooth diffeomorphism

D:V->U, DT x0)=r

which is symplectic, i.e.

D*w = 2 dx; A dy;,

1=i=n

and smooth functions ., . .., Y, such that

hi° ¢(x’ )’) = Wi(Qn L] qn))
where we have put q; =y;, i<k, and q; =3(x?+y?), i=k + 1.

The existence of non-singular action and angle variables was first proven by
Arnold [12] under an extra assumption. Now, other proofs are available in the
literature, for example [4]. One can prove the above theorem by, for example,
adapting the proof in the non-singular case and using a parameter dependent
version of theorem C. This is rather straight forward so we shall not carry it out
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here. (It has been done in [13]. J. P. Dufour and P. Molino have another proof of
this theorem in the smooth case [14].)

Organization of the paper

In section II we give some more details on the elliptic CSA’s.

In section III we study a division problem on the singular spaces S,(q) of some
elliptic CSA q. This division problem turns out to be the essential difficulty in the
proof of theorem A.

In section IV we construct the singular manifolds. They will be constructed
inductively, starting with those of lowest dimensions, and they are obtained as the
solution of a set of equations which are singular. The division result from section
III, however, will permit us to divide out this singularity and then to solve the
equations by the implicit function theorem.

The construction of the diffeomorphism @ in theorem A also involves a
singularity problem, and it is only the existence of the singular manifolds which
permits us to apply our division result and get rid of the singularity.

In section V we construct the generalized centermanifolds. This construction
involves a singularity problem of the same kind as in section IV, and we shall
treat it in the same way — we use the division result in order to divide out the
singularity of the equations and then apply the implicit function theorem.

In section VI we formulate a version of Darboux’s lemma for a given
Lagrangian fibration using a deformation argument & la Moser [15]. This result
fills the gap between theorem A and theorem C.

In section VII, finally, we discuss the corresponding results for other CSA’s
than the elliptic ones. These have been studied in [13], and, except for minor
changes, theorem A and C remain true also for them. We also discuss briefly
what is known for other types of Lie algebras.

NOTATIONS. The elementary result on linear symplectic algebra that we
shall use can be found in [12] or [16].

Consider the real symplectic vector space (T,M, w,). We define J,: T,M—
T,M by w,(J,df, Y)=(df)Y. Then J; = —J,, and the Hamiltonian vector field of
a function f on T,M, with respect to w,, is X; =J, df.

Given a symplectic base on T,M and its dual base on T,M, we have

0 I
= (-—1 0)'
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Such a choice of bases permits us to identify 7,M and T M and, hence, to
consider J, as an isomorphism on T,M. Then w,(J,, ) is the standard euclidean
metric in this base.

If E is a symplectic subspace of T,M, then E' is the skew-orthogonal
complement of E. Clearly (E*)' =E and T, M =E + E*. We let «r and x; be
the natural injection and projection with respect to this decomposition.

We use the notation f € O*'(z) to denote that f and all its derivatives (with
respect to z) of order =k vanish when z =0.

Acknowledgement
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II. Algebraic preliminaries

On S*(T,M, w,)* there is a natural Lie bracket defined in the following way.
Let « and B be quadratic forms, and let v, w € T,M. Define a, € T;M and
&, € T,M by

a,(w)=a(v,w) and w,(&, w)=a(v,w).

Then

O'(U, Bw) = wp(&v’ Bw) =- p(Bw’ &U) = —ﬁ(W, éi(v)

If we now define

{d, ﬁ}p(v’ W) = (Y(U, Bw) - ﬁ('U, &w)

then clearly {a, B}, is a quadratic form. And it is plain to verify that {, }, is a
Lie bracket, making S*(T,M, w,)* into a Lie algebra isomorphic to sp (2n, R).

A CSA q of S¥(T,M, w,)* is defined to be elliptic if it is generated by the
quadratic functions ¢;=3(x?+y?), 1<i=<n, in some symplectic coordinate
system z =(x, y) on T,M. Another way to describe the ellipticity in symplectic
coordinates is the existence of a quadratic function p(z) =z*Az in q such that
J,A has distinct purely imaginary eigenvalues. This follows from the following
lemma, which also establishes a certain stability property of an elliptic CSA.
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LEMMA 1. Let A(A) be a real symmetric matrix of class C’, defined in some
neighbourhood of the origin in R™, and such that J,A(0) have distinct purely
imaginary eigenvalues. Let f(z, 1) = z*A(A)z.

Then, for small A, there is a C" matrix C(A) which is symplectic, i.e.
C(A)J,C(A)* =J,, and such that

fCW)z, )= > a(A)q2).

1=<i=n

In particular, any quadratic function Poisson commuting with f is a linear
combination of the g;’s.

Proof. If « is an eigenvalue of J,A then —a also. In fact, det (af — J,A) =
det (al + (J,A)*) since J; =J,'=—J,, and a matrix and its transpose have the
same eigenvalues.

Let £(a;, ..., a,) be the eigenvalues of J,A(4), and let w; be an eigenvector
that corresponds to «;. These numbers and vectors are C” in A (i.e. the
eigenvectors can be so chosen), the eigenvalues are pairwise different, and w; is
an eigenvector corresponding to —a;.

We first notice that w}J,w, = w/J,w, =0 for all j # k. In fact,

o (Wi, wi) = (LAW) L,we = wiAw, = —w/! I, (J,Aw,) = —a (W] T, W),

which implies that (a; + a;)w/J,w, = 0. Hence w/J,w, =0, and in the same way
it follows that w/J,w, = 0.

Since w/J,w;=0 and w;,...,w,, W,..., W, is a base, it follows that
w;J,w; # 0. Moreover,

wil,w; = (Wi, w)* = —wil,w; = —w/], W,
so w/J,w; is purely imaginary and #0. By eventually replacing w; by w;, we can
assume it is of the form V—1 b2 with b real, and, by dividing w; by b, we can
assume that b = 1.

If we now just let V2u;=w;+w, and V2u;=V-1(w;—Ww,), then
Uy, - -, Uy Vg, ..., U, is a symplectic base which depends in a C” way on A, and
which takes f to the required form.

The singular sets of an elliptic CSA q in S*(T,M, w,)* are easy to describe.
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Indeed,
S(qq=E,U---UE,

where E; is the 2-dimensional symplectic subspace {X :q, | X =0}*. (Notice that
these subspaces are not of dimension 2 for an arbitrary base of q, but only for the
particular base ¢; =i(x?+y7), i=1,...,n.)

S,(q), r =n, is the union of all products of r different spaces E;. By abuse of
notation, we let S,(q) also denote the set of all such products.

DEFINITION. Let B be a k X n-matrix, k<n. We say that B is non-
degenerate if all kK X k-minors are #0.

When k = n this just means that B is of maximal rank, but for k<n it is a
much stronger condition. When k =1, for example, it means that all components
of B are non-zero.

The relation of this concept to the non-degeneracy of abelian subalgebras of
S*(T,M, w,)* is the following. Suppose

pi= Z b;q;, jsk

1<i=n

where q,, . . ., g, is the base of an elliptic CSA. If k =2, then p,, ..., p, span a
non-degenerate subalgebra if, and only if, the k X n-matrix (b;) is non-
degenerate. (This holds for the particular base q,, ..., g, of q but not for an

arbitrary base.) If k = 1, the non-degeneracy of B is necessary, but not sufficient,
for the non-degeneracy of the subalgebra. In this case, a necessary and sufficient
condition is that |byy|, . .., |b,,| are #0 and pairwise distinct.

LEMMA 2. Let A be a non-degenerate k X n-matrix. Then there exists a
non-singular matrix C such that CA has a non-degenerate (k — 1) X n-submatrix.

Proof. 1t suffices to show that there exists a non-singular k X k-matrix C, such
that all (k — 1) X (k — 1)-minors of B = CA are #0.
Let A =(a;;), and let A" be a (k —1) X (k — 1)-submatrix,

A= (aji ii}é’éii
say, which is singular. Let B’ be the corresponding submatrix of B. Since there

only are finitely many minors in A, it suffices to show that B’ can be made
non-singular for some choice of C arbitrarily close to the identity. It is now easy
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to verify that
C=1+ £(C,-,-), with C)‘i = 6‘;6;(,

some /, will arrange this for any € #0. This proves the lemma.
If p is a non-degenerate abelian subalgebra of S*(T,M, w,)*, dim p =k, then
the lemma says that p has a non-degenerate subalgebra of dimension k — 1.

III. The division

Let R” ={z=(x,y)} and let ¢;=3(x?+y?) and E,={(x, y) e R*:x;=y; =
0,j#i}fori=1,...,n. Let S, =S,(q), r=n.
0 I, . .
Let J be the matrix (__ I O)’ and let {, ) be the standard euclidean metric
on R*". The metric permits us to identify dg; with a vector field on R*".
In this section we let C” denote the r times differentiable functions,
r e NU {}, or the analytic functions.

LEMMA 3. Let X be a germ of a C" vector field on (R*,0), r =1, such that
(X, dq;) =0 for all i, Then there exist unique germs of C"~! functions c,, . .., c,
such that X =Y, ¢;J dg;.

Proof. 1t is sufficient to prove this for n = 1. Then

0= (X(X, ,V)’ dql(x’ y)) =X1(xr y)x+X2(x, )’)y,

which implies that X,(x, y) = X,(x, y)y and X,(x, y) = X,(x, y)x, with X, + X, =
0 and X, and X, of class C"~'. Now we just let ¢, = X,.

COROLLARY. Let f be a germ of a C* function on (R?, 0) which is rotation
invariant. Then there exists a unique germ of a C’ function ¢ on (R, 0) such that

flx,y)=pEE*+y?).

Proof. v is defined by the equation ¥(x)=f(V2 x|, 0), and of class C* for
x #0, and continuous everywhere. Since f is rotation invariant we have that
(J df, dgq,) =0, which, by lemma 3, implies that df = c dq, for some germ c of a
C¥~? function. Moreover, ¢ is rotation invariant, and, since c is equal the
derivative of y (outside the origin), the result follows by induction.

This argument is good except for an analytic function. If f is analytic, then it
only shows that v is C*. But then the Taylor expansion of vy clearly converges, so
1 must also be analytic.
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LEMMA 4. Let V,,...,V, €S8. Let f; be germs of C" functions on (V,, 0)
and let ®; be germs of C'-diffeomorphisms on (V;, 0).

If ,=f on V.0V, for all i, j, then there exists a (non-unique) germ of a C”
function f on (R**, 0) such that f o1, =f; for all i.

If @, leaves invariant the subspaces V,N\V,, and if ;= ®;on V,NV, for all i, j,
then there exists a (non-unique) germ of a C'-diffeomorphism ® on (R*", 0) such
that ®@o iy, = P, for all i.

Proof. We construct f by induction on m. If m = 1, then the statement is true,
so suppose it is true for m —1. The problem then easily reduces to the case
fhi=---=f,=0. So we let E =1V, and we define f(z) = fi(zx), zz = Agz. If now
zeV, i=2, then zg e V; since V,=(V,NE)+(V,NE"). Hence, f(z)=fi(zg) =
filzg) =0.

The construction of @ is completely analogous.

LEMMA 5. Letf,, ..., f., k=<n, be germs of C" functions on (R*", 0) such
that all ;=0 on S,_,. Let B = (b;;) be a germ of a non-degenerate k X n-matrix of
class C°, 0=s =<r, on (R*, 0).

Then there exist n germs of C* functions g, . . . , g, on (R*", 0), such that

f}' = 2 bjlgl and 8i € O(Zi)

1=l=n

foralll1=i<=nand 1<j=<k.

Proof. For any E € S;, E=E,+ - - -+ E, say, we denote by D the set of all
germs f on (R*, 0) such that f € O(z;) N - - - N O(z,), i.e. f vanishes identically on
all subspaces E;", j <k.

It is easy to see that if f vanishes on S,_,, then there is a (very non unique)
decomposition

f=2f% [ffeD"

E€eS:
In fact, since f =0 on S;_; we have
foigonze DE forallE €S,
and

fotgng=0forallE, E' € S,, E+#E'.
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Hence

(f— > fOLEon'E)=00nSk

EES[‘

and we can proceed by induction.

We can therefore reduce the problem to the case when each f; belongs to some
DE, E=E,+ - - -+ E, say, and then the proof is easy. Since B is non-degenerate,
the equations

(i o f)=(81- -, 8B g1 = =8, =0
determine g,, . . ., g, uniquely. By construction, g; € O(z;) for all i.
PROPOSITION 1. Let X,, ..., X, be germs of C" vector fields on (R*", 0),

r =2k, with linear part

> a;dq, j=k

1=i=<n

Assume that the k X n-matrix A = (a;;) is non-degenerate, and that X,, ..., X,
have rank less than m on S,, for all m.
i) Then there exist germs of C"~***? vector fields Y,, . .., Y, on (R*, 0) and

germs of C"~**? functions b; on (R*", 0) such that b;(0) = a;; and
Y;=dgq;,+0%z) and Y, eO(z), i=n

and such that

X;= > b)Y, j=k

1=l=n

In particular, X,, . . ., X, have rank less than m only on S,,, m =k — 1.

ii) If k=n, and if Z is a germ of a C"~***! vector field on (R*", 0) such that
Z,X,,...,X, are linearly dependent, then there exist unique germs of C™ "
functions c,, . . ., ¢, such that

Z = z C,‘Xi.

I=<i=<n
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iii) If k =n, and if Z is a germ of a C"~***! vector field on (R*", 0) such that
(Z, X;) =0 for all i, then there exist germs of C"~*" functions c,, ..., c, and a
germ of a C"~***! matrix C such that C(0) =J and

Z= E C,-CX,-.

1=i=n

There is no uniqueness in this case.

Proof. We first prove that ii) and iii) follows from i). In these cases we can
assume that X; =Y, for all i. Then we can write Y;=Y/x; + Y!y;, and define a
matrix M by

M l'=(Y;--- YY) YD)

Then MY, =dg; for all i, and M(0)=1. Hence, MZ, dq,, . . ., dq, are linearly
dependent everywhere, which implies that (JMZ, dq;) =0 for all i. Now the
existence follows from lemma 3, as well as the uniqueness.

In case iii) we get ((M~")*Z, dq;) = 0 for all i, and again the existence follows
from lemma 3 with C = M*JM.

We must now prove i). If k = 1, then i) follows from lemma 5 (applied to each
component), so we can proceed by induction on k. By lemma 2 we can assume
that the submatrix

A= (%’)1222—1

is non-degenerate. Since X, . .., X;_; have rank less than m on §,, we can apply
induction. Therefore we can assume that

X;= > b, j=k-1

I<i=n

Let now E be a space in S;_;, E=E; +---+ E,_, say. It then follows from
ii) that

”EXkOLE= 2 CjE.n'EonLE
1=sj=k-1
for a unique set of germs cE, ..., cE_,. Since Xy, ..., X, are linearly dependent

on E, it follows that

Xyolp= Z C}EXJ'”E: 2 diY;o .

1=sj=k-1 1=si=k-—-1
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Hence, there exists a family of germs df, parametrized by all E€S,_,,
E, c E. The uniqueness in lemma 3 implies now that d¥ =d} on E N E’ for any
two spaces E and E’. So by lemma 4 there is a germ d, such that

d, = d¥ on each space E € S;_; such that E, c E.

And the same is true for each i. Hence,

Xi=X,— > b,Y;=0onS_, j=<k

1<i=n

where we have put b,; = d,;.

The result now follows by applying lemma 5 to each component of the vector
fields X Iy ooy X’k. The last part in i) is obvious if we consider MX,, ..., MX,,
with M~ defined as above.

The following lemma will permit us to apply the proposition to the case when
the linear dependence occurs on certain submanifolds.

LEMMA 6. Let V,,..., V€S, and let N,,..., N, be germs of C’
submanifolds such that TyN; = V,. Then there exists a C" diffeomorphism

®:(R* 0)— (R*,0), D®O)=1I

such that ®(V;) = N, for all i.

Proof. We assume that NN N, =V,NYV, for all i, j, and that N;=V, for i = 2.
Let E=V, and F = E*. N, can be written as

zr=y(ze), Y(0)=0, Dy(0)=0

with y of class C”. Since NyNV,=ENYV, for i =2, we have that y(zz) =0 for
zg € ENV,. If we now define

D(z) = (zg, zr + Y(2£)),
then &(V}) =N, and @/V, =id for i = 2.

An obvious induction then gives the general result.

Parameter dependence

The preceding results have immediate analogies when the functions and vector
fields depend on parameters A. For example, if, in proposition 1, X, ..., X,
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depend in a C° way on some parameters A defined near the origin in a euclidean
space, then also the Y;’s and the b;’s depend on A in a C° way. Indeed, the Y;’s
and the b;’s are not unique but the proof provides an explicit construction of such
vector fields and functions, and the Y;’s and b;’s so constructed are C°-dependent
on A. The same holds for ¢y, ..., ¢, and the matrix C in ii) and iii), if Z is C°
in A.

The results also remain true in the complex if we are considering holomorphic
objects.

IV. A Morse lemma

Let hy, ..., h, be germs of smooth functions at p on (M, w) which are all
critical at p and pairwise Poisson commuting, and let h be the R-linear span of
these germs.

Let S,(h) be the set of points where dh,, . . . , dh, have rank less than r.

Singular manifolds

LEMMA 7. §,(h) is invariant under the Hamiltonian vector field X, of any
function f, Poisson commuting with h.

If N is a local symplectic submanifold of dimension 2r, invariant under all X, ,
then N < S,(h).

Proof. The first part follows from the fact that the pull back of X, by the flow
of X; is X, itself. The second part is true since the X,’s span an isotropic
subspace of the tangent space of N at any point.

PROPOSITION 2. Let E be a symplectic subspace of (T,M, w,) of dimension
2k —2, and assume that 1) there exists a h € such that d;h = dih/E + d3h/F,
F = E*, with dh/F non-singular and d>h/E = 0;

2) d>h/E is an elliptic CSA of S*(E, w,/E)*.

Then there exists a unique smooth submanifold N, T,N = E, which is invariant

under all X, .

Proof. We shall construct N as the unique submanifold N in S, _,(h) such that
T,N = E. The uniqueness of the construction will then imply the invariance.

Notice that condition 1) implies that each d>h; splits over E + F as a sum
d>h;/E + dh;/F. Moreover, there exists an elliptic CSA q < S*(T,M, w,)* such
that q/E = dﬁh/E . It is given on E by condition 2), and the extension is trivial.
Also by 2), we can assume that d2h,/E = q;/E, j<k — 1.
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LetS,=S,(q)andlet E=E,+---+E,_,, E;€8,.

Since the problem is local we can identify (M, p) with (T,M, 0), but we don’t
identify w and w,. M =T,M will have two symplectic structures, the linear w,
and the non-linear w. On (7T,M, w,) we introduce some symplectic base
z = (x, y) together with the corresponding euclidean metric ( , ).

We shall construct N under the following assumption, which we shall justify
by induction:

(*) Si—2N E is invariant under each X,,;.

Observe that (*) implies that S, N E is invariant under each X, for allm =k —2.
Let h, be the element whose existence is assumed in condition 1). Then
hy, ..., hcis a base for h. Define

f£=£1h1+’ * .+£k——1hk—1+hk’ X£=st.

Then

ApX°©= Z gngd, dq; + 0°(z) (D

1=<i=k-—1
(because each d?h; splits over E + F) and
(dh, X*) =0, j=k-1. )

We now want to solve the 2n equations X ®=0. In order to do this we first
consider

JTFXE =(.
Since d>h,/F is non-singular and X °(0) =0, these 2(n — k + 1) equations in

2n + k — 1 many unknowns can be solved by the implicit function theorem, and
the solution is a family of submanifolds

N¢:zp = ¢°(2¢), ¢5(0)=0
for ¢ sufficiently small.

Since each d>h; splits over E + F, it follows that Xy (2, 0) = 0%(zg). This
implies that D¢ *(0) =0 and, hence,

T,N*=E 3)
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for all € sufficiently small. By assumption ( *) we have that 7;X*=0o0n S;_,NE.
So ¢°=0on S;_, N E and, hence,

N NE=§_,NE 4
for all € sufficiently small.

By (*) and lemma 7 it follows that X,, ,..., X,  have rank less than m on
S, NE for all m=k —2. Hence, this is true also for dh,, ..., dh,_; and for
agdhy, ..., magdh,_,. And, by (4), this is true also for npdh, e
¢ ..., ngdh_,°¢°, where ¢ here denotes the embedding zz— (zz, ¢ *(zg)).

By (3), the linearized vector fields are easy to compute:
ﬂEdhj°¢£=nEdqj+02(ZE), ]Sk“‘l.

Since (X, Y) = (neX, mzY) + (7eX, nzY) for all vectors X,Y, we get
by (2)

(ng dhod®, mgX o ¢y =0, j<k-—L1.

This permits us to apply proposition liii). Hence, on E there exist germs of
functions cf, . . ., cx_;, and a germ of a non-singular matrix C* such that

X o (zp) = 2 ci(zg)C(zg) 7 dhie ¢°(zg)

1si=k-—1

(with smooth dependence on ¢).
Linearizing this relation at z; =0 is easy by (1) and (3). It gives

(Cf(O), trr 02_1(0)) = (81» By Ek-l)'

Hence, by the implicit function theorem, there exist unique germs of functions
ey, ..., ex_on (E, 0) such that

ct*(z) =0, ¢(0)=0
for all i. e,, ..., e_; are uniquely determined by m X°°¢° even though

ci, ..., ch_, are not.
Then the manifold

N:zp = ¢*(zp), £ =e(zg),
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is contained in S,_;(h) and intersects E along S,_, N E. Clearly N is the unique
manifold in Si_,(h) such that 7,N = E. Hence, N is invariant under all X, .

It is obvious that d>h satisfies conditions 1) and 2) for all singular spaces in
S,NE, r=k—2. So we can use the above procedure to verify (*) by an easy
induction, using lemma 6 to flatten out the submanifolds. The uniqueness follows
from this construction.

COROLLARY. Suppose that d5(h) is non-degenerate.
Then there exists a smooth diffeomorphism ®:(T,M, 0)— (M, p), D®(0) =1,
such that

@7 '(Si-1(h)) = Si_1(Centr (d7h)).

Proof. Let S, = S,(Centr (d3h)) and let E € S, _,. Then clearly condition 2) of
proposition 2 is fulfilled, and, there exists an h e h such that d>h/E vanishes
completely. If now d2h/E* were singular, then there would exist some singular
space E; € S, contained in E-, such that df,h /E; =0. But then h would be of rank
less than k—1 on E + E;, contradicting the assumption of non-degeneracy.
Hence also 1) is fulfilled.

Proposition 2 together with lemma 6 give now @ and the inclusion . That
equality holds is a consequence of proposition 1.

It follows from theorem C that we can choose @ to be symplectic when
k =n. Also, one singular manifold can always be straighten out with a sym-
plectic diffeomorphism. In general, however, knowledge of the intersections
of the singular manifolds is required in order to conclude the existence of a
symplectic P.

Proof of theorem A

Let S, = S,(Centr (d>(h)).

Since the problem is local we can identify (M, p) and (T,M, 0), but we don’t
identify w and w,. On (T,M, w,) we introduce some symplectic base z = (x, y)
together with the corresponding euclidean metric (, ). By the corollary of
proposition 2, we can assume that S, _;(h) = S;_,. By lemma 2 we can assume that
dihy, ..., d>h, generate a non-degenerate subalgebra for all m <k.

Let’s consider the following statement for O=m <k —1:

(P.) There exist a smooth diffeomorphism & = @™ and functions y; = ¢}
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such that &(S,_;) = S;_; and
hj°¢=wj(q])"-)qn)0nsmy ]Sk

(Py_,) implies the theorem.
We can assume without restriction that @*~' is the identity. We want to
construct a non-autonomous vector field Z, such that

(d(¢; +t(hi— ), Z,) = —(h; — ¢), j=k
for all 0=t =1, where we have put ¢, = y,(q,, . . ., q,).

Let a;=d(¢; +t(h;— ¢;)). dh,, ..., dh, and d¢,, . .., d¢p, both have rank
less than m on S,,, and, by assumption (P, _,), this is also true for a,, . .., a,. By

the assumption of non-degeneracy, the conditions of proposition 1 are fulfilled.
Hence, we can write

a,f= 2 btii! .’Sk

1<i=<n
with
Y;eO0(z;) and Y,=dq,+0%z), i=<n

and, by lemma 5,

(h;— ¢;) = Z b;gi, J=k

I=<i<n
with
g € 0(z), i=n.

@;, b;, Y; and g; all depend smoothly on ¢.
It is now sufficient to solve

(Y, Z,)=g, i=n
for all 0=t =1, which we can do in the following way. Write

Y,=Yx;+ Y, and g =gix;+gy,
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and let M be the matrix (Y},..., Y, Y3, ...,Y?2) and g the column vector
(gl --.,8% 8% --.,82). Then M is invertible for 0=t =<1, and Z, = M~ 'g solves
the equations.

Let now @ be the “time-1-map” of Z,. Then

hj°¢=u’(q1)-'°’qn) (5)

for all j <k, and this proves that theorem A follows from (P,_,). Moreover, @

preserves S;_, and each singular space in S;_, (since it preserves the rank of
dh,, ..., dh, and D®(0) =1I). Hence

gicPotg=q;o1gforal E€S;_,, i<n. (6)

Proof of (P,,).

Since (P,) is obvious, we can assume (P,,_,) and apply induction. We can also
assume without restriction that @' is the identity.

So we let E be a singular space in S,,,, E=E,+---+E,, say, E; €S,. Then
there exist a local diffeomorphism &%, @&~5(S,_,)=S,_,, and functions
Vi, ..., ¥F such that

hic ®* =yFqy,...,q,)on E, <k @)
and
gi°o DPEo1p =q;°o g for any E' € S,,, E'+E, i<n. (8)

®° and Yi(q1,---59n)s - Yolq1, - - -, qn) are constructed on E by applying
theorem A to hy°ig, ..., h, iz, and then extended in a trivial way to E + E*.
@F preserves S,,_;N E and, hence, S;_,. For m <j =<k, zpf follows from the
corollary of lemma 3, since all h;e ®fo, are constant on the fibers of
hyo®Foug, ..., h,o P Finally, (8) holds by assumption (P,,_,), just as (6)
above holds by assumption (P _,).

We can do this construction for each singular space in S,,, and we can let @ be
the composition of all the ®*. (8) now implies that (7) holds for all E € S,,,, with
@* replaced by @. Moreover, by (P,—;), we know that there exist y,’s such that

hj = wj(qlr oy qn) on Sm—l'
(8) also implies that h;°c @ = h; on S,,_,, and therefore

wf:zpf' on ENE'forall E, E'€S,,, J=k.
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Now we can apply lemma 4, to get functions y; such that
Yotz =y forall E€S,, j=<k.

This proves (P,,), and completes the proof of theorem A.

Parameter dependence

Suppose that &, . .., h, depend smoothly on parameters A defined near 0 in
some euclidean space, and that they verify the assumptions of theorem A for each
A. Suppose also that d,z,hl, ce d,z,hk does not depend on A. It is then clear, from
the explicit construction given in the proof, that also @ and the vy,’s depend on A
smoothly.

Remarks

The fact that the germs are Poisson commuting is, of course, essential. If, for
example, h; =x3+ yi +x3y, and h, =x3 + y5 + (x] + y?)?, then S,(h) is the union
of one 2-dimensional subspace and three 1-dimensional subspaces near the origin.
In particular, it follows from theorem A that there exists no symplectic structure
on R* for which h, and k, commute in the sense of Poisson.

The non-degeneracy condition cannot be relaxed without caution. For
example, if A= (x3+y?)+ (x3+y3) and h,=(x,y, — x,,)°, then S,(h) is the
union of two 2-dimensional spaces and the set A5 '(0). These germs commute but
the non-degeneracy condition is not fulfilled.

The theorem gives a fairly nice description of the common fibers of
hy, ..., he. On the singular manifolds, the fibers are tori (in general of half the
dimension of the manifold), but outside these manifolds the fibers are sub-
manifolds of dimension 2n — k, each of which is fibrated into n-dimensional tori.
And this fibration is determined (in a non unique way) by the v,’s.

In case k = 1, n there is only on such fibration (up to diffeomorphism), but not
for 1<k <n. In particular, for k =2 we have the following normal forms for

Y1, Yo

d2h,+ Y, P(q), dih,

T1=i<n

where P, is a polynomial of degree [-1—2———] — 1. So in this case the fibrations are
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finitely determined, and for n =6 they are completely determined by the
quadratic part d(h).

The proof also works in the analytic and the C” cases. In the C” case, @ will
undergo a loss of differentiability which depends on k. A crude computation
shows that one looses not more than 7 derivatives at each induction step. Hence
@ is at least of class C"~7%.

V. Centermanifolds

We shall construct N as the set of all 2x-periodic solutions of a family of
vector fields X, all of which commute with all the vector fields X,,, j = k. Since
the flow of X, takes one 2z-periodic solution of X° onto another, N must be
invariant under all X, .

We first notice that condition 1) implies that E is invariant under j, X), — the
linearized vector field at p — for each j. There exists an elliptic CSA q of
SYT,M, w,)* such that d’h/E =q/E. By condition 2), we can assume that
dih;/E = g;/E, j<k.

Let S,=S,(q)andlet E=E,+---+E;, E;€8,.

Since the problem is local we can identify (M, p) with (T,M, 0), but we don’t
identify w and w,. On (T,M, w,) we introduce some symplectic base z = (x, y)
together with the corresponding euclidean metric ( , ).

We shall first assume that

(*) S-1NEis invariant under each X,

— an assumption which we will justify by induciton. Notice that (*) implies that
Sw N E is invariant under X, , for each m <k — 1.

Consider now the restriction he tgi~g, and notice that E fNE€eS,_;. Then we
get k Poisson commuting functions on the symplectic submanifold Ei N E of
dimension 2(k —1). Hence, there exists a function f; such that fi(h,, ..., h)
vanishes on E{ NE, and di(fi(h,, ..., h))=d>h,. (This is easy to see by
introducing, by theorem A, coordinates on Ei N E such that each h;o eing 18 of
the simple form y;(q,, . . ., q«), j =k.) Doing this construction for each E;*, we
can assume that h; vanishes on E;" N E for each j. Now, since Ef NE €S, _; is
invariant under X, by (*), it follows that

dh]-°LEl.lnE=O, jsk
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Let now h be the function whose existence is assumed in condition 1), and
consider the vector field

X6=Xh+81Xhl+"'+8thk

and its time-27r-map @°. Then

np(@t—id)eig(zg) = mg D, (2™ —1I)dg, + O*(zg) 9)

1=i=<k

since E is invariant under j; X, .
Moreover, if we Taylor expand h; at z and use that h;c @° = h;, we get

(vj(2), 9%(2) = 2), =0, (10)

where

vf(z)=fo1 dh;(z +s(@°(z) — z)) ds, j=<k.

We now want to solve the 2n equations ¢ “(z) = z, and in order to do this we
will argue as in the proof of proposition 2. So we first consider

(@ — id) = 0.

Since d>h/F has no 2m-periodic solutions and ¢°(0) =0, these 2(n — k) equ-
ations, in 2n + k unknowns, can be solved by the implicit function theorem, and
the solution is a family of submanifolds

Nezp=¢%z), $(0)=0

for ¢ sufficiently small.
Since E is invariant under j, X, , it follows that 7wg(¢°—id)(zg, 0) € 0%(zg).
This implies that D@ “(0) = 0, and, hence,

T,N*=E (11)

for & sufficiently small. By assumption (*), it follows that mz(¢@°—id)=0 on
Syi—1NE, so

NEOE=Sk_1nE (12)

for ¢ sufficiently small.
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By (10) we get
(mgvjo ¢, mp(@®—id)°¢°) =0, j=k

where ¢ here denotes the embedding z. — (zz, ¢°(z£)).

We know that dh; vanishes on E;" N E. By (*) it follows that v} and, hence,
mgv; vanish on Ej N E. Finally, by (12) it follows that m,v;°¢*® vanishes on
E;* N E. Moreover, by (11), it is easy to compute the linearized vector field:

npvfo ¢°=3mp(e*™ + I) dg; + O°(zg), j=zk.

The right hand side can be written, for all j, as D.mwgdq;, where D, is a
2k X 2k-matrix with D, = 1. This permits us to apply proposition liii). Hence,
there exist germs of functions cf, . . ., cx and a germ of a non-singular matrix C*©
on E such that

Ding(@®—id)op (zg) = E Cz:e(ZE)CE(ZE)Ds‘lﬂEUfo ¢°(z¢)

1=i=<k

(with smooth dependence on &).
Linearizing this equality at zz =0 is easy by (9) and (11). It gives

(c5(0), ..., c0)=2n(¢y, ..., &)+ O%e).

Hence, by the implicit function theorem there exist unique germs of functions
ey, ..., e.on (E,0) such that

§(z5) =0,  e(0)=0

for all j. Moreover, e, . . ., e, are uniquely determined by 7z(¢@°®—id)° ¢° even
though ci, . . ., cj are not.
Hence, if

N:zp = ¢°(zg), £ =e(zg)

then @°“&(z) =z for all z = (zg, zr) e N. If N’ were another manifold with this
property, then it would follow from the uniqueness of the construction that
N=N’. So N is invariant under all vector fields X, .

This proves the theorem modulo (*). If we now only observe that d2h
satisfies conditions 1) and 2) for all singular spaces in S,NE, r =k — 1, then it is
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clear that we can fulfill (*) by an obvious induction. This proves the existence of
N, and the uniqueness follows from this construction.

VI. The symplectic normal form

Darboux’s lemma with a Lagrangian fibration

Consider R*" = {(x, y)} with the symplectic structure w, =Y dx; A dy,. Let
gi=3(x?+y? foralli=<n.

LEMMA 8. Letg,, ..., g, be germs of smooth functions at (R*", 0) such that
dgiJJp dq]=dg].l‘]p dqi’ i,an.

Then there is a germ of a smooth function f at (R**, 0), and there are unique
germs of smooth functions y,, ..., ¢, at (R", 0) such that

df-IJqui;-gi_Wi(ql)'-°’qn)) iSn.

Proof. We give an explicit formula for the solution (due to J. Moser). Let @}

be the flow map of J, dg; (the Hamiltonian vector field of g; with respect to w,),
and define

27T

1 t
Mg(x, y) = - g(@i(x, y)) dt,

0

Lgty) =5z [ 1a(wix, 1))~ Mg, )

for any function g.
Then one verifies easily that M,g;=(M,---M,)g;, and then Mg =

Yi(q:,...,q,) by to the corollary of lemma 3. Now we just take f=
leisn Ml e Mi—lLigi-

PROPOSITION 3. Let @ be a smooth symplectic form on (R**,0) with
w(0) = w,, such that

{g:, q;} =0, Lj=n

i.e. the fibration () {q; = const.} is Lagrangian for w.
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Then there exists a diffeomorphism @:(R*", 0)— (R*", 0) such that ®*w =
w(0), and P respects the fibration, i.e. ® maps fibers into fibers.

Proof. Let « be a primitive to w. We can assume without restriction that the
linear part j,& of ais 3 ¥ x; dy; — y; dx;.

The vector fields J, dg; and J, dg; commute and are tangential to the fibration.
Therefore, the assumption on the fibration, which can be formulated

w(J, dq;, J, dgq;) =0, I,j<n,
implies that

d(a’J Jp dql).l Jp dq] = d(aJ Jp dq;).] Jp dqi'

Notice also that these relations still hold with a replaced by j,« since the fibration
is Lagrangian also for w(0).
Now we need a function f such that

df.l Jp dqz = (a-jla’)JJp dqi

for all i. It follows from lemma 8 that such a function exists if and only if the
mean value of (& —j,&) | J, dq; vanishes for all i, as we now assume.
Now the proof is straight forward. Let’s consider the equation

(@(0) +s(@ — 0(0))) | Z; = —(a — j1a — df).

It defines a non-autonomous vector field Z; for 0 =s =1, whose “time-1-map”
pulls w back to w(0). Moreover, since

(0(0) + s(w — w(0))(Z,, J, dg;) = —(a — jyo — df) | J,dq, =0

for all i, and since the fibration is Lagrangian both for w and w(0) (and therefore
also for their interpolation), it follows that Z is tangential to the fibers. Hence,
the “‘time-1-map”’ leaves the fibers invariant.

In order to complete the proof we must show that the assumption on the
meanvalue can be fulfilled. So let ¢', t € T", be the group action generated by
integrating the commuting vector fields J, dq,, . . . , J, dq,, and let M denote the
operation of taking the mean value under this group action. Notice that « is so
chosen that M« and « has the same linear part, and notice also that M commutes
with the exterior differential d.
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Suppose now that Mw = w(0). Then we have
aM (o — ji@) =d(Ma — j,a) =0,

so there is a function f such that M(a —j,a) =df. Since df = M df =d Mf, we
can assume that f = Mf, hence df | J, dg; =0 for all i. Now

M(a« —j@) ) J,dg)=M(a —j,a))J,dq;=df | J,dq; =0, i=<n

so the assumption is fulfilled.
It now suffices to find a diffeomorphism @ respecting the fibration and such
that M®@*w = w(0), but this is easy. We just let Z; be the unique solution of

(@(0) —s(Mw - w(0)) | Z, = —M(a — j ).
The “time-1-map”” @ of Z; pulls Mw back to w(0), and, since it commutes with
@' (because (¢')*Z,=Z,), we have that M®*w = ®*Mw. This completes the
proof.
Parameter dependence

It is clear from the construction that if w depends smoothly on some
parameters A, defined near the origin in an euclidean space, and if w(0) is
independent of A, then also @ will depend smoothly on the parameters near
A=0.

Proof of theorem C

Theorem C now follows immediately from theorem A and proposition 3. In

fact, if hy, ..., h, are pairwise Poisson commuting for the symplectic form o,
then the fibration () {h; =const.} is Lagrangian for w. If, moreover, h; =
Y4, . .., q.), then this fibration is precisely () {g; = const.}. This proves the
theorem.

Parameter dependence

We shortly discus a parameter dependent version of theorem C. So let
hy, ..., h, depend on the parameters A, defined near the origin in an euclidean
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space. Assume that, for all A, they are critical at p and pairwise Poisson
commuting, and that, for A =0, d>h is non-degenerate. Then theorem C remains
true for all A near the origin, and & and all y,’s depend smoothly on these
parameters.

Indeed, if each d,z,hi is independent of A, then this follows immediately from
the remarks on parameter dependence in theorem A and in proposition 3. And
the general case can always be reduced to this particular case, as follows from
lemma 1.

VII. Various generalizations

Other CSA

As we mentioned in the introduction, all CSA’s are conjugate in the complex.
In the real, however, the elliptic ones constitute only one conjugation class out of
finitely many. A general CSA in S*(R*, Y. dx; A dy;)* has a base consisting of
elliptic functions q; =3(x?+ y?), of hyperbolic functions q; =x;y;, and pairs of
functions of the type q; = x;y; + Xiv1Yiv1, Gis1 =XiYiv1 — Xiv1Yi- (See for example
[17}.)

It is easy to generalize our results to include also hyperbolic functions. The
reason for this is that the singularities S;(q) remain the same as for elliptic
functions. In the analytic case, everything goes through in the same way, and
theorem A and C are still true. In C” everything goes through too, with two little
exception. Lemma 8 remains true, without uniqueness, but the proof is different.
The corollary of lemma 1, however, is not true for flat functions since the fibers
xy = const. are not connected. In theorem A and C the conclusion therefore
becomes slightly weaker, namely that h;° @ is invariant under the linear action of
Lie algebra generated by q,, . . . , q,.-

Of course, the purely hyperbolic case in C” is not very interesting since one
knows, by a theorem of Sternberg, that a single hyperbolic Hamiltonian (in
general) is integrable in C™ [18, 19].

In the case when the CSA contains pairs of functions q;, g;,,, as described
above, the situation is more involved since the structure of the singular sets is
different. For example, dg;, dg;,, has rank 0 when x; =y, =x;,;, =y,,; =0, but
rank 2 everywhere else, and the rank-l-spaces only exist in the complex.
Theorem A and C, however, still remains true. We shall just in few words
indicate how this can be proven.

In the analytic case we can complexify, and reduce the problem to the elliptic
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holomorphic version plus a reality condition which can be verified. This
procedure also makes sense in a formal way if we are considering formal power
series. In the C™ case we don’t have this possibility, and the division problem
then becomes much more delicate. However, it can be solved if we know that the
functions are flat at the singularities (modulo functions of normal form
W(ql’ et qn))

In general, the functions are not flat (modulo normal forms) at the
singularities, but this can be achieved by considering Taylor expansions of the
functions, not in all variables z = z; + z,, but only certain directions, in z say. If
now the functions are flat at the singularities in E, then we can combine the
formal and the flat procedure and solve the problem in this ‘“‘semi-formal” way,
and obtain that the functions are flat (modulo normal forms) at E. By a finite
induction, one can then achieve that all functions are flat (modulo normal forms)
at the singularities. Such a procedure is technically quite involved, but it has been
carried out in some detail in [13].

There should also be a generalization of theorem B in the case when the CSA
contain pairs gq;, q;+;- In fact, ag;+ Bg;,, has complex eigenvalues, and for
appropriate values of a and B there exists a 4-dimensional “‘centermanifold” as is
described in [20].

An example

The systems which are neither elliptic nor hyperbolic has not been much
considered in the literature. Birkhoff, for example, seems to ignore their
existence in [8]. We shall therefore describe the example of the Lagrangian
spinning top where they appear. (See [12, 16].)

This top has principal moments of inertia I, = I, # L5, is rotational invariant
around the third principal axis of inertia, and lives in a gravitational field which is
rotational invariant around the vertical. It can be described by a Hamiltonian
system on T*SO(3), and the Hamiltonian H and the two infinitesimal generators
Q3 and Q2 of the rotational invariance, are all in involution.

The vertical positions is a circle T in configuration space. A neighbourhood of
such a position can be parameterized by symplectic coordinates
(X1, X2, X3, Y1, Y2, y3) such that QF(x, y) =y, and

1
H(x,y)=-271(y¥+y%)
1, m) , m , 1 3
— )= x3 +—y3+ O (xy, X2, Y1,
+(211 Y3 ) X1 2)52 11y3x1y2 213)’3 (x1, X2, Y1, ¥2)

Q3(x, y) = x1y2— X231 + 3ys(x1 — x3) + y3 + O%(x1, x5, Y1, ¥2).
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(m is the mass of the top.) That H and Q3 commute with Q% is reflected in the
fact that they are independent of x;.

Fixing the value of y;, H and Q3 become functions in (x,, x,, y;, y,)-space,
and the linearized Hamiltonian vector fields at the origin have eigenvalues

1 1
AZ=E(—aiVaz—m7), a=é—1:y§—m
for H, and

M+ E=0

for 03.

Hence, if y5>4ml,, then we can apply theorem C and introduce symplectic
coordinates, in a neighbourhood of x, =x, =y, =y, =0, such that the algebra
H, Q3 is generated by

xi+yl,,  x+yi
But if y3 <4ml,, then the quadratic algebra is generated by

X1y tx2y,, X1Y2— X2 )

so we are in the non-elliptic-hyperbolic case.

Other Lie algebras

Another class of Lie algebras where the question of normal forms can
reasonably be asked is the semisimple ones. There is a result of Hermann-—
Guillemin—Sternberg—Kushnirenko that says that a semisimple Lie algebra of
analytic vector fields can be simultaneously linearized near a stationary point
[21, 22, 23]. If the vector fields are Hamiltonian, then it is not hard to show that
this can be done by a symplectic diffeomorphism, so for analytic systems the
problem is solved.

It is otherwise with C” systems. In [22] there is a counter example for
arbitrary vector fields, but if linearization is possible for Hamiltonian vector fields
is an unsolved problem.

Of course, if the Lie algebra is compact and semisimple, then the problem
reduces to the linearization a compact group action, near a fixed point. A
problem which can always be solved [19].
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