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Asymptotically commuting families of operators*

ARTHUR JAFFE, SLAWOMIR KLIMEK, and ANDRZEJ LESNIEWSKI

Abstract. We study families of symmetric operators {Q,} with domains given by the range of self-
adjoint contraction semigroups {e ~*#7}. Assuming the asymptotic commutativity, lim, [Q,, e ~*#"] =0,
and certain other estimates, we establish the existence and properties of a limiting self-adjoint operator
Q =lim, Q,. We apply these results to the study of an elementary supersymmetry algebra.

I. Asymptotically commuting families

One often has occasion to obtain an operator Q as a limit of approximating
symmetric operators ,. We are interested in sufficient conditions on the conver-
gence Q, —» Q so that Q is self-adjoint, as well as possibly having other desired
properties. The method we use here is to associate with Q, a contraction semigroup
K,(t) = e ~"#», generated by a positive self-adjoint operator H,. We assume that
R(K,(1)) =« D(Q,) for every t >0. Here R and D denote the range and domain
respectively. Our crucial assumption is that Q, and H, commute asymptotically as
n — o0; more precisely, that st. lim,, [Q,, K, (1)] - 0. We also require other estimates
on the convergence as n — o0, in order to conclude the existence of an operator Q
which is self-adjoint. We remark that we have previously discussed a related
question, but with stronger hypotheses than the ones used here [JLO]. We have
tried to formulate the estimates here in such a way that they are conveneint to
establish in applications. In particular, the convergence estimates rely on approxi-
mation properties of heat kernel regularizations. In concrete examples, it may be
possible to establish such convergence using estimates on path integral or random
walk representations of the heat kernels.

Let us now formulate two general theorems. We give separately the hypotheses
of the first theorem, as they are somewhat technical.

(x) Let {H,} be a sequence of positive, self-adjoint operators on a Hilbert space 5.
These operators approximate the positive self-adjoint operator H in the norm
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resolvent sense, or equivalently

lim |e="Hn —e=""|| =0, for all t=20. (L1)
Let

2, = UO R(e~#n), (L.2)
and

9 = UO R(e —'H). (L3)

(B) Let {Q,} be a sequence of symmetric operators on »# with domains 2, defined
by (1.2). Assume that for ¢ > 0 there is a function M(¢) independent of n, and such
that

10, e="H=| < M(2). (1.4)

(Note that this estimate is a consequence of a bound such as Q2 < H, or
0. <H,)
(y) Assume that for any s, t > 0, the Q, converge in the sense

lim |e~"#(Q, — Q,,) e *#=| =0. (1.5)

n,m-— oo

() Assume that Q, and H, asymptotically commute in the sense that for each
t>0,

st. lim [Q,, e "] = 0. (L6)

n— o

THEOREM 1. Assume (a, B, 7, 6). Then there exists an operator Q with domain
2, such that Q e "™ is bounded for any t >0, and

Qe M =st. lim Q,e " (L7

Furthermore
(i) Q:2-92.
(i) Q | D is essentially self-adjoint. (We let Q also denote the closure of Q | 2.)
(iil) Q e~ is bounded for t >0 by

1Q e=*| < M(2). (1.8)

(iv) Qe "H=¢""HQ,
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THEOREM 2. Assume (a, B, y, 6) and for each t > 0 assume

() w. lim e~"Hn(Q2 — H,)e " =0. (1.9)

n-— oo

Then H = Q?, for Q the self-adjoint operator of Theorem 1.

The remainder of this section is devoted to the proof of these two statements.
We first construct the heat kernel regularization of Q.

DEFINITION 3. Let K,(t) =exp (—tH,) be a family of strongly continuous,
contraction semigroups with 2, defined by (1.2). If Q, is a bilinear form on
2, x 9,, then K,(1)0,K,(¢) is the weak heat kernel regularization (weak HKR) of
Q, with respect to H,. If Q, is an operator with domain 2,, then Q,K, () is the
strong heat kernel regularization of Q, with respect to H,,.

PROPOSITION 4. (Limit of weak HKR’s) Assume (a, B,y). Then for every
t>0,asn—>

norm lim K, ()Q,K,(1) = A(?) (1.10)

n— oo

exists. Furthermore
A(t) =e " "HQ e~ 'H, (L.11)

where Q is a symmetric operator with domain 9, and bounded by ||Q e ~"#| < M(1),
namely (1.8). Finally, Q, e "= converges weakly to Q e =" as n — o0.

Proof. Let A,(t) = K,(1)Q,K,(t). The convergence of A4,(¢) follows easily. We fix
t and do not write it. By (f), 0, K, and K, Q, are bounded. Hence

”An - Am n =3 n(Kn - Km)QnKn ” + "Km(Qn - Qm)Kn ” + "KQO(Kn - Km)"

(I.12)

The first and third terms on the right of (I1.12) converge to zero as n,m — o0 as a
consequence of (I.1) and (I.4). The remaining term converges to zero as a
consequence of (1.5). Thus there exists a self-adjoint operator A(f) with

14,0) — A ] ~0, 4] < M), (L13)

We now show that there exists a symmetric bilinear form Q with A(¢) = K(1)QK(?).
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In fact, we claim that for t >0, s 20,
A(t + 5) = K(s)A(H)K(s). (L14)
This follows from
A(t + 5) =norm lim K,,(s)A4,(1)K,,(s)
= norm lim {(K,(s) — K(s))4,, (1)K, (s)
+ K(5)A,(1)(K,.(s) — K(s)) + K(s)4,(DK(5) }. (1.15)

The first two terms on the right of (I.15) converge in norm to zero, as
|4.(0| < M@, |K.(s)| <1, and |K,(s) — K(5)|| > 0. The last term converges in
norm by (I1.14). But (1.13) is symmetric in s and ¢, so also A(¢t + 5) = K()A(s)K(?),
as long as s > 0. Thus let us assume that x € 2 and for some s > 0, x = K(s)x,. We
have

(x, A(t)x ) = (x,, A(t + )X, ) = (K()X,, A()K(D)X, ). (1.16)
The right side of (1.16) is continuous in ¢ as ¢t =0, so we define
{x,0x)= 1il’l‘(1) (x, A()x ) = (x,, A($)X, ). (I.17)

By polarization, this extends to 2 x 2. Furthermore A(f) is bounded and self-
adjoint for ¢ > 0, so Q is a symmetric bilinear form.

We now show that the bilinear form Q uniquely determines a symmetric operator
with domain 2. It is sufficient to prove that for x, y € &, the form {(x, Qy) is
continuous in x. Suppose that y = K(s)y,, for some s > 0. then

x Q> = (x, QKD = Tim <x, AWK,
= lilgl lim {x, 4,()K(s)y;)

= lim lim {(x, 4,()K,(s)y,). (1.18)

t—=0+ n—> o

Thus by (1.4),

[<x, Qy | = [<x, QK(s)7, | < M(s) | x| |7 ||, (1.19)

which is continuous in x as desired. Note that (I1.19) also proves (1.8). Furthermore,
this argument proves weak convergence of Q,K,(¢) to QK(f) on 2 x 9. This
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convergence extends to J# x # by continuity, so the proof of the proposition is
complete.

PROPOSITION 5. Assume (a, B, y, ). Then Q defined in Proposition 4 has the
properties (1.7) and (i—iv) of Theorem 1.

Proof. First we prove that for any ¢ 2 0, Q commutes with K(r) = e ~*". In fact,
since QK(¢) is bounded for ¢ > 0, so is K(f)Q. Hence it is sufficient to fix ¢ and show
that [Q, K(#)] =0 as a bilinear form on the dense domain 2 x 2. By polarization,
it is sufficient to restrict to the diagonal. Using the weak convergence established in
Proposition 4,

{x,[Q, e ~"]x) =lim {x, [Q,, K,(D]x). (1.20)
By (1.6), this limit is zero, so Q commutes with e ~*#. Thus
Q:Rle ") ReH), 0<s<ut.

In particular Q : 2 > 9.

We now show that the two spaces (Q + i)2 are dense, and therefore that Q [ 2
is essentially self-adjoint. Let us suppose the contrary. Then there exists x € #
orthogonal to (Q + )2, or to (Q —i)2. Assume the former; then for some ¢ > 0,

0=<{x,(Q+i)e x)=<(x, e "H2Q e ~"H2x) 4+ i{x, e ~"Hx), (1.21)

where we use the vanishing of (1.20). But (1.21) is the sum of a real number and an
imaginary number and hence can hold only if x = 0. Finally we show that Q,K,(¢)
converges strongly to QK(¢) for every t > 0. Write

0.K,(0) = K,(t/2)2, K,(t/2) +[Q,, K, (1/2)]K,(1/2). (1.22)

The first term on the right of (1.22) converges in norm to

K(1/2)QK(/2) = QK(1).

This is a consequence of (1.10) and the commutativity of Q with K(¢). The second
term in (1.22) converges strongly to zero. In fact K, (¢/2) converges in norm to K(t/2),
SO

(9., K, (t/IK,(¢/2)x = [Q,, K,(/2)]K(t/2)x + O(1)
=0(1),

using (1.6). This completes the proof of Proposition 5 and the proof of Theorem 1.



Asymptotically commuting families of operators 677

Proof of Theorem 2. We need to prove that H = Q2. Since 2 is a core for H and
for Q, it is sufficient to prove that H = Q? on 2 x 9. By polarization we may
consider the diagonal. Thus we consider for x € D,

(x, @°x) ={Qx, Qx) ={Qe "%, Qe %)

= lim <Q, e~ "%, Q,e "%,

in—’CO

= lim (x,,e "HQle~"Hnx,>
n-— oo

= lim <{x,,e " """H, e ~"Hn%x,> = {(x, Hx).
n— o0

Here we use (¢) and the fact that |H, e "= — He="#| - 0. This completes the
proof.

II. Application to a supersymmetry algebra and the spectral condition

In this section we give estimates which are sufficient to construct three operators
Q.:, 0, and P on the domain 2, which leave 2 invariant, and which satisfy the
supersymmetry algebra

Qi=H+P, Qi=H-P, 0,0,+2,0,=0. (IL1)

Here Q,, Q,, and P are each essentially self-adjoint on &, and P commutes with
0., 0,, and H. As a consequence of (II.1),

1
(0, +0, 1.2
0="75@+0) (1L2)

satisfies Q2= H. Also +P < H. (This last inequality is called the spectral
condition.)

As in Section I, we assume that H is a positive self-adjoint operator which can
be approximated in the norm resolvent sense by a self-adjoint family {H,}. We
formulate hypotheses on two families {Q, ,} and {Q,,} of approximating operators
such that we can construct limits Q, and Q, with the desired properties: essential
self-adjointness and satisfying the algebra (II.1). We assume the following:

(«") The operators Q,,, Q,, are symmetric on the domain 2, of (1.2), and the
operator P is essentially self-adjoint on 2, and P commutes with Q,,, with Q,,,
and with H, on 2 x 9. We also assume the approximate algebra

Q%.n = Qrzr + Ps Q%n = Qi - P’ Ql,nQZn + Ql,n = 0 (113)
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(") In (IL.3), the operators Q, are

1
Qn = :/"—5 (Ql,n + Q2,n)9

and satisfy the hypothesis (8) of Section I. As a consequence
|Qane™" | < M(t), a=1,2. (11.4)
(y") For every s,t >0, the Q,, converge as n — oo in the sense that

lim |e="""(Q,, — Qum)e | =0, a=1,2. (I1.5)

n,m— o

(6") The Q,, and H, approximately commute in the sense that

st. im [Q,,, e "#] =0, a=1,2. (IL.6)

n-— o

THEOREM 6. Assume (a, B, 7, 0, €) of Section 1 and (a’, B’,y’, ). Then there
eixst symmetric operators Q,, Q, with domain 2, such that for t > 0,

Q,e " =norm lim Q,,e ", a=1,2. (IL.7)

n— oo

Furthermore |Q, e ~"| < M(¢), and

(i) Q,:2 - 2.
(i) Q, is essentially self-adjoint on 9 for a =1,2. (Let Q, denote the closure

Q.192)
(iii) The algebra (11.1) holds.
(iv) The spectral condition holds,

+P <H. (I1.8)
Proof. We use Theorem 1 to establish the existence and self-adjointness of Q,
and Q, as limits of Q,, and Q,,. We now remark on some properties of
P =%Q3%, — 0%,). We infer from (a’, f) that +P < Q2, so
|e="H=P e~ Hn|| < M(t)?.

Since P and H, commute, we obtain

|Pe=5| < M(t/2)>. (IL9)
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Define B, = P e '"= as a sequence of bounded operators. We claim that

norm lim B, = B(t) = Pe 4. (11.10)

n-—» o0

In fact writing K = e ~"4/2 etc., we have

|B, - B,.| = | K,PK, — K,,PK,, ||
= “(Kn - Km)PKn + KmP(Kn - Km)“
<2M(t/2)*|K, — K,,| =0, asn,m— 0.
Thus B(f) =lim, B, exists. The operators P and H, satisfy the hypotheses of
Theorem 1 with P replacing Q,. Consequently P is essentially self-adjoint on 2 and
B(t)=Pe " =¢'HP,

Let us now return to the proof of (II.1). First we work on the domain 2 x 2.
From (I1.3) we have

e~ ine—zun =e tHnQ2 e~ Hn 4 o —tH, P o —tH,

and this converges as n — oo to
e*tH fe"”=e“”(H+P)e"”.

On 2 x 2 we let t -0 to obtain Q0 = H + P. Likewise we conclude Q3= H — P.
Finally we have on 2 x 2,

<x’ QI Q2x> = ll};n <Ql,n e —lan-n Q2,n e~[H"5ét>
= — lim <Q2.n e_tH"fn Ql,n e_tﬂn-it> = —<(x, 0,0,x).

A similar argument shows that P commutes with the self-adjoint operators Q, Q,,
and Q,.

This completes the verification of (II.1) on the domain 2 x 2. Since 2 is a core
for Q, Q,, and Q,, and since 9 is invariant under each of these operators, the algebra
(I1.1) extends to the self-adjoint limits. '
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