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On small eigenvalues of the Laplacian for I'y(q)\o¥

JEFFREY STOPPLE

Let o be the complex upper half plane, and I'((q) be the subgroup of
matrices

a b

c d
in SL(2, Z) with ¢ =0 (mod g). Suppose f is a Maass cusp form with eigenvalue
A; 1.e., a non-constant function f: s — C satisfying

fG2) =f(z)  for yin I'y(g),z in #

02 02
yz((—a};%— a—y—z)f+ Af=0
dx dx

[, o= <o

where # is a fundamental domain for I'y(q). Selberg conjectured [8] that 4 = 1/4,
and showed that A = 3/16. Iwaniec has a statistical result [5] that shows the rarity
of small eigenvalues, similar to density theorems about real zeros of Dirichlet’s
L-series.

For an odd prime ¢, whether ¢ is ramified, split, or inert in a real quadratic
field Q(\/Z) depends only on the Legendre symbol (4/q), and so is periodic in
A(mod q). If we consider instead the set of all norm 1 units ¢ >1 in all real
quadratic fields, ordered by the size of ¢, we expect the behavior of ¢ in Q(e) to be
more or less random. We use the trace formula to show that if there is an
eigenvalue A less than 1/4 then that expectation is wrong; instead ¢ has a bias
towards a certain behavior.

Specifically let ¢t >3 in Z, and write t>—4 =u?A with 4 a discriminant
of a real quadratic field. Then Q(\/z_l) = Q(¢) for ¢ the larger root of
x2—tx+1=0. Let h(4) be the narrow class number and ¢, the fundamental
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norm 1 unit. Define

q if = +2(mod ¢?)

=<{(A4
o) (;}—) otherwise

If 4 is the smallest eigenvalue; 4 = 1/4 + r? with r = ip purely imaginary, 0 < p <
1/2 then for T — oo we have

THEOREM.

1 2h(4) 1 a4
N2 ) (5 Jotuimutmya="6)exp (~1og* /)

~exp (p°T)

Here o(n) = X, d and u(n) is the Mobius function. In the course of proving
this formula we will see that

5 (" )cr(u/m)u(m) > 0;

miu ;
one can show that it is less than o(u). From [2], Theorem 322 we know that

W o) = 00"

for any k > 0. By the Brauer—Siegel theorem and the fact that 4 <> —4,

2h(4) log (¢,)

Ja

for any x > 0, for 4 sufficiently large. Thus if one expects that (4/q) is random for
4 = A(f) as t increases, then there should be cancellation in the sum and it will not
grow like exp (p2T), so A < 1/4 will not occur.

1= <

st"
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The proof of the theorem depends, of course, on the trace formula. Let f be a
Maass cusp form corresponding to the eigenvalue A <1/4. Then for y in
I' = SL(2, Z), f(yz) is also a Maass cusp form for the same eigenvalue, so I acts in
this finite dimensional space. The principal congruence subgroup I'(q) acts trivially
giving a representation m of the factor group G =1I/I'(q), (isomorphic to
SL(2, F,)). Let B =I'4(q)/I'(q), then since f'is fixed by I'y(g), the multiplicity of the
trivial representation in the restriction of n to B is = 1. By Frobenius Reciprocity,
the multiplicity of n in the induced representation Ind, (1) is also =1. This is a
g + 1 dimensional representation isomorphic to the space of functions

{f: B\G —»C}

where the group G acts by right translation

Ind, (1)(g)f(Bx) =f(Bxg).

By Mackey’s Irreducibility Criterion (see e.g. [9] p. 59) the induced representation
has two irreducible components,

Ind, (1) =1@6.

Here 1 is the trivial representation of G and @ is realized in the g dimensional
subspace orthogonal to the constant functions; i.e. in the space of functions

{f: B\G - C | Zf(Bg) = 0}.
Since f is not fixed by I' = SL(2, Z) (4 > 1/4 is known), the projection of f on the
space isomorphic to that of 6 is not 0. Thus there exist cusp forms which transform

according to 6. Then by [4] ((16) on page 182), 4 is an eigenvalue for the Laplacian
acting in the space of vector valued Maass cusp forms for I with multiplier 6:

F:# —-C? such that F(yz) = 0(y)F(z).

We briefly recall the trace formula for such forms, as in Theorem 4.2 in [3], page
315. Let

g(u) = exp (—u?/4T)//4rT, and h(r) =exp (—r?T)

its Fourier transform be our test functions. The eigenvalues of the Laplacian
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An =1/4 +r? are related to the primitive hyperbolic conjugacy classes {P} by

o T 6(P*) log (NP
;h("n)=z 2 r?\f;k/g_)N;%i/z )g(log (NPY)

{P} k=1

(* o0

+ h(r){contribution from central class} dr

(* oo

+ h(r){contribution from elliptic classes} dr

o — ©

+ h(r){parabolic contribution to continuous spectrum} dr

o — ©

+ g(0){parabolic contribution to discrete spectrum}

+ h(0){parabolic contribution to discrete spectrumj}.

All sums and integrals are absolutely convergent. Recall that NP = ¢? where ¢ is the
larger root of the characteristic polynomial of P. By the Dominated Convergence
Theorem, we have, as T — o0,

‘ro h(r){*} dr - 0.

The terms with A(0) and g(0) are O(1) as T — oo. We next consider the terms from

the spectral side. For all but finitely many n, say n > N we have 4, > 1/4sor, is in
R. Thus

Y. h(r,) >0

n>N

again by the Dominated Convergence Theorem. The finitely many eigenvalues less
than 1/4 have r, purely imaginary. Note that the contribution of the smallest such
eigenvalue dominates the others, and 0 does not occur as an eigenvalue as 6 is a
nontrivial representation. Thus as 7 — oo we have

1 ® Trace O(P*) log (NP)
4nT (P k=1 NP*? — Np~+2

exp (—log? (NP*)/4T) ~ exp (p*T). (D

We define the usual map ¢ from matrices to binary quadratic forms

a b bd—a —c
¢:|:c d]—*[v’ v ’—v_]
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where v = ged(b, d — a, ¢). A form [a, f, y] with discriminant D is the image of

t—up
2

uo

t+uf
2

where 12 —u?D = 4 is the fundamental solution to Pell’s equation for D. Sarnak
shows in Proposition 1.4 of [7] that ¢ is a 2 — 1 map and commutes with the action
of the modular group giving a 2 — 1 correspondence between primitive hyperbolic
conjugacy classes and equivalence classes of indefinite binary quadratic forms. For
a {P} corresponding to a class {¢} of discriminant D, write D = d*4, with 4 the
discriminant of a real quadratic field. We will often suppress 4 from the notation.
Note that NP is the square of the larger root of the characteristic polynomial and
so only depends on the discriminant D. Write

2
JdAa
NP =¢34 for ed=£"—_—tf—‘i2—d~—.

We next analyze Trace §. We will show that Trace 6(P*) depends only on the
characteristic polynomial of P* which is the minimum polynomial x? —tx + 1 of
k. First suppose

t = +(mod ¢?).
Sarnak ([7], Proposition 3.3) shows that
P¥= +I(mod q) <> q |u<>q?| 1> —4 <>t = +2(mod ¢?).

Tables ([1] vol. IV, p. 1829) show this is the case when Trace 6 is equal to g. Now
suppose

t # +2(mod q).

From the tables Trace ® =1 if and only if the matrix element P*(mod q) is
diagonalizable -over F, but not central. This occurs if and only if the discriminant
1> —4=u?4is a square in F}; i.e., (4/g) = 1. Similarly Trace 6 = —1 if and only if
the matrix element P*(mod g) is not diagonalizable over F, but is diagonalizable
over F_.. This occurs when the discriminant > — 4 = u?4 is not a square in F}; i.e.,
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(4/q9) = — 1. Finally if

t = +(modgq) but not (mod gq?),
then

t?—4=0(modq) but not (mod g?).

By the above, g fu, so ¢q| 4. Also, x> —tx + 1 has repeated roots (mod g), but
P¥(mod ¢) is not central. Thus P* is unipotent (mod q) and the table shows that
Trace 6(¢) = 0 = (4/q). This shows that the Trace 8 depends only on the character-
istic polynomial and is equal to the function @ defined above. (Since the determi-
nant is always 1 only the x coefficient, yet another trace, matters.) It will be
convenient to write @(eX).

This gives the formula

\/7» 24 kZ 2h(d>4) log (¢) (Z;k exp (—log? (€4)/T) ~ exp (p°T). (2)

The class number h(d?4) of forms is related to the ideal class number h(4) of
@(\/Z) by formula (see e.g. [6] p. 95)

a4
h(4)d (7)
h(d*4) = ———— |l
@ =tox . zim M\ 77
And for ¢, the fundamental norm 1 unit in Q(\/Z) we have

€ = €10 Zeal™]

In fact this follows the definition of ¢, and Z[¢,]. Substituting this in (2) gives

A4
(7) - Oleq
\/1;]_" _2‘;2 2h(4) log(e,)dllg 1——7— kz_:l—e-;—(e—z;)——exp( —log? (¢X)/T)

~exp (p°T) (3)

Still viewing 4 as fixed we want to group all terms of the form e} =ef.
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We have

_ t;+uy\/d*4

€4 )

and suppose

o 1) + u(n)/4
e 2

then
€k —e7* =€ — e =u(n) /4.

We combine the infinite sum on d and k to sum on n and d | u(n) to get

i)
1 z:2h(A) log (1) & 4 1_(_’__ O(c?) exp (—log? (¢7)/T)

\/;7—" a \/j ngl d[g(n) u(n) 11;11 /

~exp (p°T) (4)

Now

a 1_@ _ 5 s (2)

d|u(n) u(n) lld

From this we get that (4) is equal

1 ZH(A) log (¢;) & 4\ [u(n)\ O(e}) 2
¥ y ¥ 2\ (B —1 "/T
\/n‘T a \/Z n=]m|u(n)ﬂ(m)( )6< m ) u(n) exp (~log"(<D/T)

~exp (p’T). (5)
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To get the theorem we now need to reorder the terms in the sum. We have a
sum over all real quadratic fields, and over all positive powers of the fundamental
norm 1 unit of that field. These units are in 1 —1 correspondence with their
minimum polynomial x?— tx + 1 ordered by their trace t. Note that @ depends
only on t above. As the units ¢} — oc0; we have ¢;"—0, and since t =€} + ¢; " we
can replace €} with ¢ in the statement of the theorem.

The authors would like to thank Morris Newman for correcting some mistakes
in an earlier version of this paper.
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