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Une structure symplectique sur R® avec une sphére lagrangienne plongée
et un champ de Liouville complet

MARIE-PAULE MULLER

On construit une sphére lagrangienne plongée dans RS, pour une structure
symplectique ayant un champ de Liouville complet. Cette structure est obtenue par
symplectisation, a partir d’une forme de contact sur R>.

M. Gromov a montré que la structure symplectique habituelle sur R® ne
contient pas de sphére lagrangienne plongée. En corollaire, nous obtenons I’exis-
tence d’une structure symplectique exotique compléte sur R®, et d’une structure de
contact exotique sur R°.

Introduction
Dans ce travail, nous nous proposons de démontrer le

THEOREME A. Il existe sur R® une structure symplectique 2, possédant un
champ de Liouville complet, qui accepte un plongement lagrangien de la sphére S°.

Les conjectures d’Arnold, datant des années soixante, ont donné aux variétes
lagrangiennes un roéle central en géométrie symplectique globale. Sous I'impulsion
de V. Armold et de M. Gromov, de nombreux travaux one été consacrés a leur
étude. L’une des conjectures d’Arnold, devenue un théoréme de M. Gromov en
1985, est la non-existence de sous-variétés lagrangiennes exactes dans R?”, pour la
structure symplectique habituelle.

En nous limitant au contexte du probléme d’existence d’immersions et de
plongements lagrangiens dans un espace euclidien, rappelons les principaux résul-
tats obtenus.

En dimension n # 3, si on exclut le cas trivial n = 1, des arguments de nature
homologique (R. Wells, [Wel]) ou homotopique (S. Smale [Sm], M. Gromov [G3],
T. Kawashima [Ka]), en fonction des dimensions considérees, permettent de
montrer qu’il n’existe pas de plongement lagrangien de S" dans I’espace euclidien, et
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ceci quelle que soit sa structure symplectique. Ces arguments s’appuient tous sur le
fait qu’une sous-variété lagrangienne est totalement réelle, pour une structure
presque complexe sur R*" adaptée a la structure symplectique. Ils ne donnent
aucune information sur le cas n = 3, et il y a une bonne raison a cela: M. Gromov
montre aussi, dans [G3], 'existence d’un plongement totalement réel de S* dans C3.
P. Ahern et W. Rudin en présentent d’ailleurs un exemple trés simple, graphe d’une
application a valeurs complexes sur S* = C? [A-R]. Le théoréme de Gromov—Lees
([G2], [L]) montre qu’il y a “beaucoup’ d’immersions lagrangiennes dans C” (muni
de la structure symplectique standard, qui est la partie imaginaire de la forme
hermitienne habituelle): il suffit que le complexifié du fibré tangent d’une variété V'
(de dimension n) soit trivial pour assurer I’existence d’une immersion lagrangienne
de ¥V dans C”. En particulier, la sphére S” admet une immersion lagrangienne dans
C". Elle n’y admet un plongement totalement réel que pour n =1 ou n=3. De
mani€re générale, pour une variété (fermée) V' de dimension n, I’existence d’un
plongement rotalement réel (et non pas lagrangien . ..) est pourtant liée naturelle-
ment a I’étude des immersions lagrangiennes. En effet, M. Gromov a montré que V
admet un plongement totalement réel dans C” si et seulement s’il existe une
immersion lagrangienne réguliérement homotope (comme immersion) & un plonge-
ment [G3]. Par ailleurs, M. Audin présente des conditions, portant sur la dimension
ou sur la topologie de ¥V, pour l’existence d’immersions lagrangiennes ou de
plongements, dans les classes d’homotopie réguliére d’immersions [Au].

Lorsque R® est muni de la structure symplectique standard (celle de C*. ..), M.
Gromov a résolu le probléme de I’existence d’un plongement lagrangien de S° et, la
encore, la réponse est négative: c’est un cas particulier de I’'un des théorémes qu’il
obtient par son étude des courbes pseudo-holomorphes dans les variétés symplec-
tiques, et qui affirme qu’aucune variété fermée n’admet de plongement lagrangien
exact dans R?" équipé de la structure symplectique standard [G4] (J. C. Sikorav
présente une démonstration détaillée de ce théoréme dans [Si]).

Malgré tous ces résultats de non-existence et dans une communauté symplec-
tique aux avis trés partagés sur la question, Gromov suspectait I’existence possible
d’un plongement lagrangien de S* pour une autre structure symplectique sur R®
([GS], p. 344). Le Théoréme A est une conséquence du

THEOREME B. Il existe une forme de contact o sur RS et une application
¢ : S*>R>, telles que la forme induite @*a soit complétement intégrable et ait
un facteur intégrant g qui permette de relever ¢ en un plongement (lagrangien)

® = (¢, 8).
Le théoréme de M. Gromov [G4] nous assure que la structure symplectique 2

du Théoréme A est exotique, plus précisément qu’elle ne se plonge pas dans la
structure symplectique standard. Sur R?, D. Bennequin a abouti i I’existence de
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structures de contact exotiques par une analyse fine des propriétés géométriques des
courbes intégrales que présente la structure de contact standard, avec des techniques
de la théorie des noeuds [B]. De maniére indépendante, Y. Eliashberg a démontré
également ce résultat [E]. En dimensions supérieures, M. Gromov annonce dans
[G4] des structures de contact exotiques sur R~ !, en se référant a [G6], et présente
aussi une construction de structures symplectiques exotiques sur R?"; récemment, L.
Bates et G. Peschke en ont donné un exemple explicite trés simple sur R* [B—P].
Remarquant que la structure symplectique standard sur R?* a un “bon” comporte-
ment a l'infini (elle a un champ de Liouville complet, et est associée a une métrique
compléte), A. Weinstein pose dans [Wei] la question de Dlexistence, sur R?", de
structures symplectiques exotiques complétes et/ou convexes a l'infini, au sens de
Gromov [G4]. Citons par exemple D. Mac Duff, qui utilise (entre autres choses)
I’existence d’un champ de Liouville complet, pour montrer que la forme de Kahler
associée 4 une métrique kdhlérienne compléte de courbure négative sur R** définit
une structure symplectique isomorphe a la structure standard [MD].

Le mode de construction, par le Théoréme B, de la structure symplectique 2 du
Théoréme A lui garantit I’existence d’un champ de Liouville complet, et le théoréme
de M. Gromov permet de compléter la description de la structure de contact définie
par a sur R>:

THEOREME C. La structure symplectique 2 ne se plonge pas dans la structure
symplectique standard. La structure de contact sur R® dont elle est issue par
symplectisation ne se plonge donc pas non plus dans la structure de contact standard.
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Plan de la construction

Au §1, nous montrons comment le Théoréme A se déduit, par symplectisation,
du Théoréme B.

On remarque que I'application ¢ du Théoréme B n’est certainement pas une
immersion. Nous la construirons de maniére a €tre la plus simple possible, c’est-a-
dire générique (§2.1), avec deux singularités.

Au §3, nous introduisons la notion de courbe d’holonomie, qui sert a interpréter
la condition d’injectivité de @ (et aussi a repérer ses éventuels points doubles). En
particulier, cette interprétation permet de montrer trés simplement que si @ est
injective, alors les courbes de points doubles de ¢ ne peuvent pas €tre transverses
au champ de contact.

Le §4 intégre la géométrie de contact aux singularités génériques des applica-
tions R"— R?"~! Nous obtenons ainsi un modéle “legendrien” du parapluie de
Whitney, dont le germe servira a construire la forme de contact a au voisinage des
deux points singuliers de ¢, avec 'assurance que @ sera bien un plongement au
voisinage de ces deux points.

Au §5, nous décrivons une famille de prolongements de cette forme de contact
a un voisinage de la courbe des points doubles de ¢.

Le feuilletage partiel qu’induit a la source (sur la sphére) I'’équation a =0 est
prolongé au §6, en tenant compte de I’analyse faite au §3. Au but (au-dessus de
I'image de la sphére), le prolongement du champ d’hyperplans défini par cette
équation devient alors une formalité.

Ceci achéve pratiquement la partie “différentielle” de la construction: a partir
du §7, les ingrédients sont essentiellement de nature homotopique.

Au voisinage de la courbe des points doubles, le champ d’hyperplans est de
contact; il est alors porteur de structures complexes, adaptées a la structure
symplectique da. Notre objectif est de prolonger une telle structure complexe sur
le champ d’hyperplans au-dessus de I'image ¢(S?) (le feuilletage induit doit étre
totalement réel) et, de plus, d’obtenir ainsi un fibré complexe trivial.

Tout d’abord, le feuilletage induit par la structure de contact permet de définir
un indice sur la courbe des points doubles, analogue a I'indice de Maslov classique
((M], [Arl]).
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Le calcul de cet indice est fait au §8, pour les prolongements du §5. Une
expression combinatoire de sa valeur est donnée pour la dimension trois.

Au §9, nous dégageons une condition de trivialité pour le fibré complexe, en
supposant prolongée une structure complexe adaptée. Cette condition porte sur
I'indice calculé au §8.

Le prolongement de la structure complexe est analysé au §10. Nous en tirons
une deuxiéme condition, qui, associée a la précédente, permet d’obtenir un fibré
complexe prolongé et trivial, au-dessus de ¢(S>), a partir de 'un des modéles du
§5.

Rappelons que le feuilletage induit sur ¢(S>) est totalement réel. 11 est alors
possible de construire, a partir de cette structure complexe, un prolongement de la
forme de contact 4 un voisinage de ¢(S?). Le h-principe de M. Gromov ([G1])
voir aussi [Ha]), permet de prolonger enfin cette forme de contact 4 R>, 4 partir
d’un prolongement du fibré complexe.

Les grandes lignes de la construction sont présentées de maniére plus détaillée
dans [Mul].

§1. Des lagrangiennes dans un symplectisé

Considérons une forme de contact a sur R*~!. Si p désigne de projection
de R~ ' x R sur le premier facteur, et si ¢ est une fonction coordonnée sur
le facteur R, la forme Q =d(t-p*ax) définit une structure symplectique sur
R>—! x (R, — {0}). Ceci est la description, appliquée au cas particulier qui nous
occupe, de I'opération de symplectisation [Ar2].

Remarquons que le champ de vecteurs ¢ = #(0/0t) est un champ de Liouville
pour la structure symplectique Q : d(i(£)Q2) = Q. Comme £ est fermee, d(i(£)Q2) =
0(&)2 (dérivée de Lie de Q dans la direction £); le flot du champ de Liouville est
conforme pour la structure symplectique.

PROPOSITION. Soient a une forme de contact sur R"~' et ¢ : M - R* !
une application, définie sur une variété fermée M de dimension n, telle que I’équation
@*a =0 définisse un feuilletage (avec singularités) ayant une intégrale premiére,
C’est-a-dire telle qu’il existe deux fonctions f:M —R (Pintégrale premiére) et
g : M —]0, + o[ (le facteur intégrant) vérifiant:

g ota=df
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On lui associe I’application
b =(p,8): M >R ' x]0, +o0[.

Soit Q = d(t - p*a) la forme symplectique sur R*" ~! x ]0, + oo[, associée & & comme
ci-dessus. Alors ®*Q = 0.

Démonstration. ®*(ta) =g - ¢*a =df. Donc #*Q =0. O

EXEMPLE. Toute immersion lagrangienne exacte, a valeurs dans R?*"~!x
10, + co[ muni d’une structure symplectisée d’une forme de contact sur R*” !, est de
la forme décrite par la proposition.

REMARQUE 1. Sil’application @ donnée par cette construction est un plonge-
ment, la structure symplectique £ est nécessairement exotique, et donc la forme de
contact a est exotique elle aussi. En effet, 'un des résultats de M. Gromov [G4]
assure la non-existence de sous-variétés lagrangiennes fermées exactes, plongées
dans R~ R” x R” muni de la structure symplectique

Q=Y du; Adx,.

i=1

REMARQUE 2. La question de I'injectivité et du rang de @ sera discutée en §2
et §3. Mais nous pouvons d’ores et déja affirmer que sous les hypothéses de la
proposition, ¢ ne peut pas étre une immersion. En effet, les points critiques de f
sont nécessairement des points singuliers de ¢, car

@*du =d-:: A df

ce qui signifie qu’en tout point p, I'image par I’application tangente T¢(p) du noyau
de df(p) est un sous-espace isotrope, pour la forme symplectique da définie sur
I’hyperplan de contact [« = 0] au point ¢(p). Sa dimension doit donc étre inférieure
ou égale a n — 1.

Nous traduisons maintenant, par des conditions portant sur (¢, «, f), le fait que
@ doit étre un plongement.
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§2. Parapluie de Whitney. Un exemple d’application ¢, : S” - (R*~1, ;)

Aprés avoir rappelé des résultats de H. Whitney [Wh], nous présentons en 2.2
un exemple du type décrit en §1 (mais I'application @ qui lui est associée ne pourra
pas €tre injective!) en superposant la forme de contact standard de R*~! i la
géométrie d’un exemple d’application générique, dans le cas de la sphére.

2.1. Le parapluie de Whitney est le germe en 0 € R® de I'application

W,:R"—- R*—!
(u, w) — (u, wu, w?)

ou R"=RI"'xR, et R 'R ! xR ' xR

z*

A

Soit M une variété¢ fermée de dimension n. Génériquement, une application
@ : M —>R>”"! a des points singuliers isolés, ou le rang est n — 1 et au voisinage
desquels ¢ est modelée sur le “parapluie de Whitney”, ainsi que des courbes de
points doubles, le long desquelles 'intersection se fait transversalement. Il n’y a pas
de points triples ni n > 3. Le choix d’une orientation de R**~! (et, si n est pair,
d’une orientation de I'axe des w dans R”) permet de distinguer deux parapluies de
Whitney orientés. Le deuxiéme parapluie de Whitney orienté peut s’écrire o o W,
ou ¢ désigne I'involution de changement de signe sur la dernieére coordonnée. Pour
une application générique ¢ : M — R?**~ !, les points singuliers de chacun des deux
types sont en nombre égal si la dimension n est impaire.

NOTATIONS. Dorénavant, S” désignera la sphére dont I’équation est
Jul> + w2+ t>=1 dans R2~! x R, x R,, et I' en sera le grand cercle [u = 0]. Sur
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S”", on notera respectivement S (Sud) et N (Nord) les points (0,0, —1) et
(0,0, +1).
L’espace euclidien R?* ! est identifi¢ 4 R?~! x R?~! x R,.

EXEMPLE. Nous nous bornerons ultérieurement a considérer des applications
¢ définies sur S”, avec deux singularités et une seule courbe de points doubles. Voici
un exemple simple d’une telle application:

(PO : SII__,R%—I
wu, w, t) — (u, wu, t).

Les points singuliers de ¢, sont S et N, et la courbe des points doubles 4 est
I'image du cercle I' privé des deux points S et N.

L’image ¥ = ¢,(S") peut se représenter par le dessin suivant, sur lequel on a
tracé les images de quelques sphéres [t = C**] de S".

z

A

-
-]

2.2. Voyons ce que devient la forme de contact standard ay= dz — x - du, sur
I'image 2

o3a,=dt —w(u -du) =dt + w(w - dw +t - dt)
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Comme cette 1-forme vérifie la condition de Frobenius (p¥a,) A d(pda,) =0,
I’équation ¢Ja, =0 définit un feuilletage (avec singularités) de S”. Il est facile de
voir que les seules singularités de ce feuilletage sont les points S et N, et toutes les
feuilles de S” — {S, N} sont (difffomorphes a) des sphéres.

La courbe des points doubles est transverse au champ des hyperplans de contact
[¢o = 0], et @, plonge chaque feuille dans R?" !,

NG

Nous allons voir maintenant qu’un tel exemple ne peut pas donner un plonge-
ment lagrangien ®.

§3. Etude de Pinjectivite de @. Holonomie

Revenons 4 la situation décrite en §1, pour une application ¢ générique comme
en §2.1.

3.1. Injectivité de ® ([Mu)).

L’injectivité de I'application ¢ est évidement assurée si g(p) #g(q) lorsque
#(p) = ¢(g). Cette condition peut se traduire de la mani€re suivante, 4 priori plus
compliquée, mais qui présente 'avantage de ne porter que sur Pintégrale premicre
f, ce qui permettra d’oublier la fonction g dés qu’on se sera assuré du rang de @ aux
points singuliers de ¢.
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Soit 4 une courbe de points doubles aboutissant aux images de deux points-
parapluie. Considérons des paramétrages y,, 7, : 10, 1[ = M des deux composantes
connexes de ¢ ~!(4) vérifiant la condition: ¢ oy, = @ © y,.

DEFINITION. La courbe H =(f°y,,f°7,), tracée dans le plan, est appelée
courbe d’holonomie associée a (4, ). Pour une courbe fermée de points doubles, la
définition est analogue (les y; et H sont alors des lacets).

PROPOSITION. Si les singularités de la fonction f o y, sont isolées pour toutes
les courbes de points doubles, I’injectivité de @ se lit sur la pente p de la tangente aux
courbes d’holonomie qui leur sont associées: la fonction p doit étre différente de 1 en
tout point (singularités comprises).

Démonstration. Les paramétrages y,, y, vérifient la condition ¢ oy, = ¢ o y,, et
@*x =(1/g) df. On en déduit que

p=om) _gom
(for) gem

O

L’image de H est en fait la réunion de graphes de diffé¢omorphismes définis sur
des intervalles (ce sont ces fonctions, ou plutot les classes de conjugaison de leurs
germes aux points f o y,(s) tels que y,(s) et y,(s) soient sur une méme feuille, qui
correspondent a la notion habituelle d’holonomie pour un feuilletage).

COROLLAIRE. Si @ est injective, alors ¢ n’a pas de courbe de points doubles
transverse (en tout point) au champ de contact [a = 0].

Démonstration. L’existence de I'intégrale premiére f interdit les courbes fermées

de points doubles transverses au champ de contact. Pour celles qui aboutissent aux
images de deux points-parapluie, appliquer le théoréme des accroissements finis!

foy, ]

W
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Remarquons que pour une courbe ayant des points stationnaires, le théoréme
des accroissements finis ne s’applique pas . ..comme lillustre de dessin suivant:

3

3.2. La nature des singularités présentées par les courbes d’holonomie peut étre
précisée, du fait que o est une forme de contact:

PROPOSITION [Mu]. Les points stationnaires des courbes d’holonomie sont des
points de premiére espéce (c’est-a-dire que la pente p est a dérivée non nulle aux
valeurs correspondantes du paramétre).

3.3. Cas particulier

L’application ¢ que nous construirons sur S” (pour n=3...) aura deux
singularités, les points S et N, et une (seule) courbe de points doubles 4, image du
cercle I' privé des deux points S et N. D’aprés §1. Remarque 2, S et N sont alors
les seuls points critiques de 'intégrale premiére f (qui sera en fait une fonction de
Morse), et le feuilletage défini par ’équation df = 0 sera un feuilletage en sphéres
sur $”—{S, N}. La forme de contact a est construite d’abord au voisinage des
points ¢(S) et @(N), ensuite au voisinage de 4.

§4. Parapluies de Whitney (orientés) legendriens. Rang de &
4.1. L’espace euclidien R>*~! est pourvu des coordonnées

Wy x,2) =Wy, .o Uy 1y Xpse ey X152,
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et est orienté par cet ordre. Il est muni de la forme de contact standard:

t=dz —x -du=dz - x,du,.

PROPOSITION. Le germe en 0eR'=R:~!'xR, de [Iapplication
W:R"—»R»!

u
(u,w) | x =wu W3
2= Jul?+w? -5

i) présente en 0 une singularité du type “parapluie de Whitney”
i) transforme les sphéres [ ||u|? + w? = C*] en legendriennes pour la structure de
contact a, = 0.

Démonstration. Les propriétés du 2-jet de W en 0 sont immédiates a vérifier, et:
W*ay=(2—w)(u - du +w - dw). O

11 suffit de changer de signe de la fonction z(u, w) dans I’expression de W pour
obtenir le deuxiéme parapluie de Whitney orienté, que I'on notera ¢ o W. Les
sphéres concentriques de R” centrées en 0 sont alors transformées en legendriennes
pour la structure de contact associée a la forme @, =dz + x - du.

REMARQUE. En gardant I'application W inchangée, on peut noter que la
structure de contact &, =0 induit aussi un feuilletage au voisinage de 0 (singulier
en 0, avec des feuilles diffeomorphes a des sphéres). Comme on le voit sur la
forme induite W*d,, cette structure a I'inconvénient de ne pas permettre le calcul
d’une intégrale premiére, et donc du facteur intégrant g qu’il est nécessaire
de contrdler pour s’assurer que @ sera de rang maximum aux points singuliers
de ¢.

4.2. L’application ¢ : S"—»R*"~!
Il existe une application globale ¢ : S"— R?"~! dont I’expression locale au

voisinage de S (resp. N) soit, & une translation verticale prés, egale a W (resp.
o o W). Plus précisément, soit g (resp. 7, ) la restriction a un voisinage de S (resp.
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N) de la projection S"— R, . Notons
Ws=(0,0, —2) + Wong (germe en §),
Wy=(0,0,2) +0 o Wom, (germeen N).

En suivant la démonstration de H. Whitney [Wh], on voit qu’il existe des
difffomorphismes globaux de R*~! et de $” qui, lorsqu’'on les compose avec
Ws et Wy, donnent les germes en S et N de ¢,:S"—>R*~! définie par
@, (u, w, t) = (u, wu, 2t), ce qui permet de prolonger W et W, (restreintes a des
voisinages convenables de S et N) en une application ¢ définie sur toute la sphére.

On peut aussi prolonger W et Wy, en construisant explicitement une application
@, par exemple de la maniére suivante. Partons de Wy; a 'aide d’une partition de
I'unité convenable, on prolonge d’abord Wj (restreinte a un voisinage de S (assez
petit) [z < ¢;,] (avec —1 < t, <0)) a un voisinage plus grand [t < t,] (¢, < ¢, < 0), par
une application dont P’expression contient un terme de la forme —A(¢) - w?/3, ou A
est une fonction identique a 1 (resp. 0) pour ¢ voisin de ¢, (resp. ¢,); une deuxiéme
partition de 'unité permet de prolonger encore I’application ainsi obtenue en ayant,
pour t >ty (t,<t;<0), I'expression de ¢,. On compléte la construction par
symeétrie, en exigeant que @ o 6 =g o @, ou désigne 'involution de changement de
signe sur la derniére coordonnée, de S”" < R"*! ou de R~ '.

Ces opérations de prolongement peuvent se faire en n’affectant, par les parti-
tions de I'unité, que la derniére fonction coordonnée z(u, w, f); la courbe 4 des
points doubles de ¢ est toujours I'image du cercle [u = 0], privé des points S et N.

NOTATIONS. On convient de noter I', (resp. I',) le demi-cercle [u = 0; w < 0]
(resp. [u = 0; w > 0]). Le germe de sous-variété (le long de 4) que I'on obtient en
prenant I'image par ¢ des voisinages de I', (j = 1, 2) est désigné par X,.

4.3. Rang de &

Aux points singuliers de ¢, le range de @ = (¢, g) est égal a n si dg n’est pas
nulle sur le noyau le 'application tangente To. Remarquons que ce rang dépend de
la structure de contact « = 0, et non pas de la forme a.

Le rang en 0 de I'application (W, g) : R* —» R*" définie par W*a, = (1/g)df, pour
Pintégrale premiére f(u, w) = |u||> + w?, est égal a n. En effet, le noyau de TW(0)
est engendré par 0/0w, et g(u, w) = 2/(2 — w). Il est facile de vérifier que ce rang ne
dépend pas du choix de 'intégrale premiére.

Avec la construction faite en 4.2, ¢ sera donc une immersion.
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§S. Prolongement de la structure de contact a un voisinage de la courbe des
points doubles

L’application ¢ construite en §4 est définie, au voisinage du point S, par
I’expression:

3
ou,w, t) = (u, wu, —2 + ||ul]* + w2 — -‘%—)

Pour { > 0 proche de zéro, la résolution de I’équation en w:
[ =w?—

donne deux fonctions w;({) (j=1,2;w; <0 <w,), définies pour { €]0, (o[, qui
permettent de décrire la nappe X, = R**~! par les n — 1 équations

x=wiz+2—|ul® u (E)

5.1. Premier prolongement
Les fonctions w;({) sont prolongées de manicre a rejoindre des constantes, avec
la condition w, <0 < w,; on peut par exemple astreindre w; a vérifier, pour { voisin

de {, ((o<{1<2):

wi() = =1 w({)=+1

-—
3
—
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Ceci permet de prolonger les nappes Z;: on définit ff, par les équations (E) avec
les fonctions w; prolongees. Notons que 5, et £, restent transverses, et que

Pintersection £, U £, est un segment vertical sur I’axe des z. La structure de contact
oo =0 induit un feuilletage sur fj, car w; est composée avec une fonction de

([Ju]?, 2).

5.2. Deuxieme prolongement

On fait “pivoter” les deux nappes autour de I’axe vertical, au-dessus d’un petit
segment, afin de rejoindre respectivement [x = 0] et [u = 0]: plus précisément, on
prolonge X, et 2, de maniére a ce qu’elles vérifient respectivement les systémes
d’équations:

F icosy(z) - x +sinyz) - u=0
L, —siny(z) - x +cosyz) - u=0

ou 7y est une fonction ayant I’allure suivante:

/4

~
N

7 Z

avec: y(z)=m/4 au voisinage de z, ={, —2
= {} au voisinage de z, (z, <z, <0).

La structure de contact o, = 0 induit toujours un feuilletage sur fj
Pour z > z,, nous avons maintenant

avec la forme de contact oy =dz — x - du.
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5.3. Troisiéme prolongement (Pour n impair)

Les équations de la nappe £, restent inchangées. La nappe £, est prolongée
en gardant ses équations: u,=---=u,_, =0, et en modifiant sa premiére équa-
tion par le choix, dans le 2-plan [x =0,u,='--=u,_,=0], d’'une courbe
4 = £,u%, ayant un nombre pair de points de contact avec le champ horizontal
[dz = 0], et d’une “inclinaison” de la nappe, de maniére a ce qu’elle reste trans-
verse a ce champ horizontal, et donc a la structure de contact: en effet, au
voisinage de chacune des “boucles” formées par la courbe 4, la forme de contact
est prolongée soit par a,, soit par &,. Le prolongement par &, se fera aprés avoir
effectué un demi-tour dans chaque 2-plan de coordonnées (x;, x;,,) (pour i
impair) au-dessus de petits segments verticaux encadrant la boucle concernée, afin
de passer de a, & &,, et de revenir ensuite a «,. Précisons les détails de cette
opération.

Soit 4 : RZ, , - R une fonction de rang 1, définie pour z, < z < z; (2, < 23 < 0),
telle que la courbe 4 d’équation h(u,, z) = 0 ait 'allure représentée sur la figure:

z
a T b
‘)ul
Z3
h<O z)’ h>0
A
[ 2

avec les propriétés suivantes:

i) la courbe 4 est transverse au feuilletage horizontal, sauf en deux points, ou
le contact est d’ordre un. En ces deux points de contact, C, et C,, les
abscisses a et b sont non nulles

ii) la fonction h est telle que A(u,, z) = u, lorsque z voisin de z, ou de z,, et
h(u,, z) = —u, sur un voisinage d’un point (0, z5) situé, sur 4, entre les deux
points de contact C, et C,.
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On considére dorénavant 4 dans R2%,'. En juxtaposant plusieurs exemplaires
de cette portion de courbe, nous obtenons une courbe 4 qui a un nombre pair
arbitraire de points de contact C,,..., C,, avec le feuilletage horizontal dz =0,
pour z, < z < z;. La numérotation des C, est faite dans I'ordre du parcours de 4,
de ¢(S) vers @(N).

Pour fixer les idées, on convient de choisir # de maniére & ce qu’en tout point
de contact Cy, on ait (0h/0z)(C,) <O0.

Chaque point de contact C, est situé sur une boucle de 4, et celle-ci est
encadrée par deux segments verticaux I, _, et [, au voisinage desquels
h(u,, z) = +u,. Choisissons une fonction ‘“inclinaison” k(u,, x,, z), strictement
positive en chaque point de contact (il sera expliqué en Remarque 1 pourquoi
cette condition de positivité .. .), définie sur un voisinage de 4, et décrivons la
deuxiéme nappe (pour z, < z < z;) par les équations:

h(ulaz —‘k(ul’xlsz) 'xl) =Os
Uuy=--=u,_,=0.

La structure de contact a,=0 induit encore un feuilletage sur elle. Il est
régulier du fait que k # 0 aux points de contact. La structure de contact &, =0
induit, elle aussi, un feuilletage. Au voisinage de chaque segment vertical de 4, la
nappe £, se définit par les équations: u =0, et ces deux structures de contact
induisent donc le méme feuilletage sur cette nappe (les feuilles sont les niveaux
7 = Csle).

Il est possible de prolonger la forme de contact jusqu’au niveau [z =z;] en
choisissant arbitrairement a = &,, ou & = d,, au voisinage de chacune des boucles
de 4. Le raccord est effectué en faisant subir un demi-tour a la structure symplec-
tique définie par da sur [x = 0]: explicitons la forme de contact au voisinage I'un
segment vertical I, sur lequel z’ <z <z”, dans le cas ou a = a, (resp. &) pour z
voisin de z’ (resp. z"):

(n—1)2
a=dz — Z (cos u(2) * Xy 1+ sin p(2) * Xp;) dity;

i=1

+ (—sin p(z) * Xp 1 + €08 p(2) * X2;) dy;

ou u est une fonction nulle au voisinage de z’, et égale a un multiple d’ordre
impair de © au voisinage de z”:
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Si on a fait le choix a = &, (resp. a,) pour z voisin de z’ (resp. z"), il est facile
d’imaginer une fonction u convenable.

Pour fixer les idées, on termine ce troisiéme prolongement avec a = a, pour z
voisin de z;, en faisant encore un “demi-tour” au-dessus du segment vertical I,,,,, si
on a fait le choix a = &, sur la boucle contenant le dernier point de contact C,,,.

REMARQUE 1. 1l est possible aussi de faire le prolongement ci-dessus avec
une fonction k dont on exige seulement qu’elle soit non nulle aux points de contact.
Dans ce cas, considérons un difféomorphisme D d’un voisinage de 4 tel que
D(u, x, z) = (u, —x, z) au voisinage de chaque boucle contenant un point de contact
en lequel k <0, et égal a I'identité au voisinage des autres boucles ainsi que pour
z proche de z, ou z;. Un tel difféomorphisme existe: il suffit de faire un (nombre
impair de) demi-tour(s) dans chaque 2-plan de coordonnées (x;, x;,,) (pour i
impair), au-dessus de segments verticaux encadrant les points de contact ou k est
négative. Ce difftomorphisme D transforme la deuxiéme nappe en une nappe dont
'inclinaison est positive en tous les points de contact, et a, (resp. &,) en &, (resp.
a,) au voisinage des boucles ou I'inclinaison a changé de signe.

REMARQUE 2. Par une homotopie sur la fonction k a travers des fonctions
non nulles aux points de contact (de maniére a ce que la structure de contact
induise un feuilletage régulier sur les nappes a chaque instant), nous arrivons a une
inclinaison constante égale a +1. Cette homotopie peut s’interpréter, via une
isotopie de R?"~! ramenant les deux nappes a une position fixe et ne modifiant que
la région z, <z <z;, comme une homotopie sur la forme de contact, les deux
nappes restant fixées, a travers des formes de contact induisant un feuilletage
régulier sur les nappes.

REMARQUE 3. Deux points de contact consécutifs en lesquels on a fait le
méme choix pour la forme de contact peuvent étre supprimés par une homotopie.
Plus précisément, supposons par exemple que a = a, au voisinage de deux boucles
consécutives de 4 (le calcul avec &, est analogue). Par une premiére homotopie (cf.
Remarque 2), on arrive a une deuxiéme nappe dont I'inclinaison ne s’annule pas. Si
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la fonction k n’a pas de zéros, et si on fait une homotopie sur la fonction h (a
travers des fonctions de rang un) de maniére a effacer les deux points de contact, la
structure de contact a, =0 induit sur la deuxiéme nappe un feuilletage régulier a
chaque instant. Comme précédemment, cette déformation de la deuxiéme nappe
peut se traduire, via une isotopie, par une homotopie sur la forme de contact.

5.4. Quatriéme prolongement

Rappelons que n est impair dorénavant.
Pour z; <z <z, (avec z; < z, = —2z,), les équations des deux nappes restent

F:x=0 F:u=0

mais la structure symplectique subit un dernier demi-tour: on prolonge la forme de
contact a en utilisant la formule donnée dans le “troisiéme prolongement’, avec une
fonction u égale a 0 (resp. m) au voisinage de z, (resp. z,). Dorénavant, a = d,.
Pour z 2 z,= —z,, les deux nappes ainsi que la structure de contact sont
complétées avec I'image, par la symétrie o(u, x, z) = (4, x, —z), de la partie déja
construite, restreinte a z < z,. La forme de contact est donc prolongée par &,.

5.5. 11 reste a choisir un difffomorphisme de R*"~!, égal a I'identité pour z
voisin de +2, qui transforme X, (cf. §4, Notations) en ffj (j =1, 2). Les choix faits
dans la partie “troisiéme prolongement” déterminent alors une forme de contact,
que nous noterons encore o, au voisinage de la courbe des points doubles de ¢.

L’équation a =0 définit un feuilletage (singulier en S et N) au voisinage du
cercle I' dans S”. Les feuilles proches de S et N sont les niveaux [r = C**].

L’étape suivante (§6) consiste a prolonger correctement le feuilletage a la sphere:
il faut qu’il ait une intégrale premiére telle que la courbe d’holonomie associee soit
de pente #1 (cf. §3).

5.6. Nota

Il est possible de reconnaitre a la source (sur la sphere) le choix qui a été fait
pour le forme de contact (&, ou d,) au voisinage d’un point de contact C, de 4 (cf.
§5.3, troisiéme prolongement), en examinant les paramétrages y, et y, (choisis tels
que @ oy, =@ o7,) dans la variété feuilletée, au voisinage des points ¢ ~'(Cy).
Lorsque k est impair, le choix de a, donne un feuilletage dans lequel les courbes y,
et y, peuvent se représenter, par rapport aux feuilles, de la mani€re suivante (qui se
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traduit, sur la courbe d’holonomie associée a une intégrale premiére (du feuilletage
partiel) ayant son minimum en S, par une pente décroissante au voisinage du point
stationnaire associé€; voir §3.3.):

holonomie

Des points identifiés par ¢ sont marqueés:

o(M;) = ¢(M,),

@(Ny) = o(N).

Pour le choix de &, (avec k impair), le parcours de I', est accelére, au lieu d’étre
ralenti: la pente de la courbe d’holonomie est croissante au voisinage du point
stationnaire.

Lorsque k est pair, la description correspondante est facile a déduire de ce qui
précede.

6. Prolongements du feuilletage a S” et du fibré F au-dessus de ¢(S")

6.1. Prolongement du feuilletage

6.1.1. Nous tordons d’abord I" de maniére a faire coincider les feuilles, définies
a son voisinage, avec les niveaux [t = C**]: il existe un difféomorphisme (global) é
de S”, égal a l'identité au voisinage de S et de N, tel que I’équation é* dt =0
définisse le feuilletage donné sur un voisinage de I'.
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A un tel difféomorphisme 6 correspond une courbe d’holonomie, associée a
I'intégrale premiére ¢, par exemple (cf. §2).

6.1.2. PROPOSITION. Le difféomorphisme 6 peut étre choisi de maniére a
obtenir une courbe d’holonomie dont la pente est strictement supérieure a un.

Démonstration. Remarquons d’abord que cette pente est >1 au voisinage des
deux extrémités. En effet, si

(¢ o6 H*a =1dt
g
(ou « est choisie comme en §5), le rang de (¢ o d !, g) est égal & n aux points S et
N (cf. §4), ce qui nous assure que la pente de la courbe d’holonomie ne prend pas
la valeur 1 au voisinage des deux extrémités (cf. §3). De plus, I’équation (pour
w, <0 < w, proches de zéro)

3

2 W2

wi—-—=w
3

, Wi
=3
montre que w, > —w,. C’est I’équation des points doubles de ¢ au voisinage de S
et N: les points (0, w;) et (0, w,) ont la méme image par le modéle local W décrit
au §4.

L’intégrale premiére ¢ a un minimum au point S. Pour des paramétrages y, et 7,
de I', (w <0) et de I',(w > 0) comme au §3, nous obtenons ¢ oy, >t o7, (pour 7,
proche de S)

u

T

/any

)
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En revanche, comme la fonction 7 a un maximum au point N,
t oy, <toy, (pour y, proche de N).

La courbe d’holonomie H =(t-y,,t°y,) a donc, prés de ses extrémités,
I’allure suivante:

Etant donné un difféomorphisme 6 comme en 6.1.1, nous pouvons maintenant
modifier le feuilletage [t = C**] en “comprimant” suffisamment les feuilles dans
des cylindres D"~! x [0, 1] feuilletés par les D"~! x {point}, ce qui revient (mod-
ulo un difffomorphisme de la sphére) a modifier 6 en gardant le feuilletage
inchangé, de maniére a obtenir une courbe d’holonomie dont la pente est stricte-
ment supérieure a en tout point:

o

mn

Le feuilletage donné au voisinage de I'" est ainsi prolongé a toute la sphére S”,
la fonction f=t-4 en est une intégrale premiére, et la courbe d’holonomie
associée a les propriétés voulues (cf. §3).
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6.2. Prolongement du fibré

Considérons une structure de contact a =0 (comme au §5) définie sur un
voisinage (tubulaire, assez petit) » de 4 = ¢(I'), et un feuilletage df =0 sur S”,
singulier en N et S seulement, qui prolonge le feuilletage ¢*ax =0. L’equation
a = 0 définit, dans le fibré tangent TR>*~' restreint a4 », un sous-fibré F de rang
2n — 2, transverse 2 2 = ¢(S”) au-dessus du bord d(» nZX). Il se prolonge donc
au-dessus de X\«, de maniére a ce que FN T2 soit le fibré tangent aux feuilles
(vues dans X). Il suffit de prolonger un sous-fibré supplémentaire de TX (dans
TR2"~') que F contient au-dessus du bord (v N X).

§7. “Indice de Maslov” sur la courbe des points doubles

Revenons a la situation générale présentée en §1, pour une application génér-
ique comme en §2, ¢ : M">R>"~!. Soient 4 une courbe de points doubles
aboutissant aux images de deux points-parapluie S et N, et I}, I, les deux
composantes connexes de ¢ ~!(4). Le feuilletage ¢ *a = 0 est régulier au-dessus de
ryur, (cf. §1 Remarque 2). Sa restriction aux deux courbes I'; et I', fournit
au-dessus de A deux sous-fibrés de rang n — 1, T, et T,, du fibré F défini par
a=0.

7.1. Prolongement aux extremités

Supposons qu’au voisinage de S et N, 'angle entre les feuilles et I'; reste
supérieur a une constante >0 (j =1, 2). C’est toujours le cas, par exemple, si le
feuilletage a un centre non dégénéré en S et N, en particulier pour les construc-
tions de §5. Sous cette hypothése, les champs de (n — 1)-plans T, et 7, ont une
limite commune en ¢(S) (resp. @(N)): 'image de T¢(S) (resp. To(N)). Comme la
forme ¢*o est complétement intégrable, do est nulle sur T, et T, (au-dessus de
I’adhérence 4, par continuité). On peut donc calculer 'indice de Maslov de T, par
rapport 4 T,, sur 4, de maniére analogue a ce qui se fait d’habitude au-dessus
d’une courbe fermée, pour deux sous-fibrés lagrangiens d’un fibré muni d’une
structure symplectique ([Ma], voir aussi [Arl]).

Supposons, de plus, que M soit orientable. Le choix d’une orientation du
feuilletage définit une orientation de T, et T,. Si les singularités du feuilletage en S
et N sont non dégénérées (ce qui est le cas en §5), alors les orientations de T, et
T, sont opposées en ¢(S), ainsi qu’en @(N).
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7.2. Indice de Maslov

Rappelons (dans le cas orienté) comment le calcul d I'indice de Maslov peut se
faire, en I’adaptant a la situation décrite en 7.1.

Soit J une structure complexe sur le fibré F (au-dessus d’un voisinage de A),
adaptée a la structure symplectique da sur F, c’est-a-dire telle que

du(X,JX)>0si X #0

([G4]). D’aprés le théoréme de Frobenius, les sous-fibrés T, et T, sont lagrangiens
pour da, et donc totalement réels pour J.

Sur un espace vectoriel F (de dimension paire 2p) muni d’une structure
complexe J, identifions deux bases (complexes) de F si la matrice de changement de
base est réelle et de déterminant positif. Un p-plan réel orienté T s’identifie
naturellement a une telle classe d’équivalence. Si T, et T, sont peux p-plans réels
orientés, représentés chacun par une base, le déterminant de la matrice M € G/
(p, ©) de changement de base (complexe) de F, projeté sur le cercle S' par la
projection radiale “argument”, ne dépend plus des bases de T, et T, choisies.

En revenant aux deux sous-fibrés réels (de rang n — 1) T, et T,, au-dessus de 4,
nous obtenons ainsi une application

Dét,(T,/T,): A - S

qui prend la valeur —1 aux points @(S) et ¢(N).

L’espace des structures complexes adaptées a du est contractile [G4]. Le degré de
’application Dét, (T,/T,) est donc indépendant du choix de J. C’est ce nombre que
nous appellerons indice de T, par rapport a T, le long de 4 (on convient que 4 est
parcouru de ¢(S) vers @(N)).

7.3. La projection p : T, = JT),

Comme T, est un sous-fibré totalement réel de F (au-dessus de A), il est
transverse a son image JT,. Considérons la projection p : T, —» JT, parallélement a
T,. Comme les deux nappes X, et X, sont transverses, le rang de p sur 4 égal a
n — 1, sauf aux points de contact, ou il est égal a n — 2.

On suppose que les points de contacts C,,...,C;,... de F avec 4 sont en
nombre fini, et d’ordre un.

Les composantes connexes obtenues en enlevant ces points de contact de 4 (des
arcs ouverts. . .) sont appelées segments transverses et seront notées gy, . .., O, . . .
(toutes les numérotations sont faites dans I’ordre du parcours de 4, de ¢(S) vers @(N)).
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Au-dessus de g, T, est transverse & T, et p est donc un isomorphisme.

Convenons d’orienter le fibré JT, en transportant par J l'orientation de T;.
L’isomorphisme p respecte -ou inverse- I’orientation de maniére constante au-dessus
de o;. Au point de contact entre g, et ;. ,, le rang de p est égal a n — 2, son
déterminant (relativement a des repéres trivialisant les fibrés T, et JT,) change de
signe en passant au-dessus de o, ,.

§8. Calcul de Pindice sur 4 pour les exemples du §5

Dans les exemples du §5, on convient que T, (resp. T,) s’obtient en restreignant
le feuilletage (orienté) de S” — {S, N} au demi-cercle I'; (sur lequel w <0) (resp.
r, (w>0)).

8.1. Partons du point ¢(S). Il est facile de voir que p inverse I'orientation
au-dessus du premier segment transverse o,: I’expression explicite de ¢ au voisinage
de S (cf. §4) permet d’en faire le calcul.

En fait, il y a une raison plus générale a ce qu’il en soit ainsi: par la projection
n sur R?"~2 qui oublie a coordonnée z, les feuilles de 2 proches de ¢(S) se projettent
sur des sphéres immergées a un seul point double, qui sont lagrangiennes dans R?"—2
pourvu de la structure symplectique du A dx (la forme induite par da = do, =
du A dx est nulle sur chaque feuille, par le théoréme de Frobenius). Ainsi, la
restriction de © o ¢ a chaque sphére S7~! d’équation

lu|>+w2=r*=1-1¢

(r petit) est une immersion lagrangienne (a un point double, ce qui est immédiat a
vérifier).

Rappelons que la dimension » est impaire, dans la construction de §5. L’intersec-
tion en un tel point double est négative, lorsque R*~?2 est orienté par I'ordre
Up, ooy Uy 1, X1, ..., X,_1: SiT,(r) et T,(r) sont les images orientées, par 'immersion
lagrangienne, des plans tangents 4 la sphére orientée S7~' aux points w = —retw =
+r, alors P'orientation donnée par t,(r) ®1,(r) est 'opposée de celle de R*~2,
Remarquant que t,(r) est transverse a 7,(s) quels que soient r, s voisins de zéro, on
en déduit que si w,w, (W <0<w,) sont tels que o@(0,w,t)=
¢(0, w,, t,), lorientation donnée par t,( — w,) @ 1,(w,) est encore I'opposée de celle
de R*—2,

La structure complexe J,, définie sur R?"~2 par

Jy =-_—5- (1<is<n-1)
0x;

9
Ju;
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se reléve en une structure complexe, qui sera encore notée J,, sur le fibré F
au-dessus d’un voisinage de ¢(S) (sur lequel F est defini par a, = 0); cette structure
complexe est évidlemment adaptée a da,. Elle se prolonge en une structure complexe
J adaptée a da, au-dessus de 4. A cause de la connexité de I’espace des structures
complexes adaptées a une 2-forme symplectique (algébrique) sur un espace vectoriel
([G4)), nous pouvons supposer qu’au voisinage de ¢(N), J est le relévement sur F
de —Jj, qui est adaptée a dx A du (au voisinage de @(N), a = dy =dz + x - du).

Au point de 4 (proche de ¢(S)) considéré, I’orientation de F donnée par 7', @ T,
est donc 'opposée de celle donnée par T, @ J,T,. Ceci signifie que p inverse
l'orientation, au-dessus de ce point du segment transverse g,. La encore, la
connexité de I’espace des structures complexes adaptées a une 2-forme symplectique
donnée montre que cette propriété est indépendante du choix de la structure
complexe adaptee.

On déduit de ce qui précéde et de §7.3 le

LEMME. L’application p : T, - JT, inverse I’orientation au-dessus des segments
transverses d’indice pair, et la respecte au-dessus des autres. O

82. Lecasn=3

LEMME 1. (Pour n = 3). Aux points de contact de A avec les feuilletages des
nappes X;, Dét,(T,/T,) ¢R. De plus, le signe de la partie imaginaire de Dét,(T,/T,)
en ces points est indépendant du choix de J.

Démonstration. Choisissons des repéres (U', V") pour T, (U?, V?) pour T,, tels
qu’au point de contact considéré, on ait U' = U2. En ce point de contact, la matrice
M exprimant (U?, V?) en fonction de (U!, V'), comme bases complexes de F (pour
la structure adaptée J) est de la forme

(1 c+iy
M——(O d+i5) (©7.d,6 €R)

avec V2 =cU'+yJU' +dV' +6JV.
Comme T, et T, sont lagrangiens, et comme U?= U":

0=dw(U* V) =y -da(U', JU") + 6 - da(U", JV").

Or: du(U!, JUY) > 0. Donc 6 =0 implique y = 0; mais ceci est exclu car V2¢T,
(Pintersection T, T, est de dimension un).
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Le signe de la partie imaginaire im Dét,(T,/T,) au point de contact considéré est
indépendant du choix de J, du fait de la connexité de I’espace des structures
complexes adaptées a do.

LEMME 2. (Pour n = 3). Sur le segment transverse o, Dét,(T,/T,) ne prend pas
la valeur (—1)*+1.

(Rappel: T, et T, sont orientés par une orientation du feuilletage de la sphére).

Démonstration. Choisissons un repére (orienté) (U7, V) pour T, (j =1, 2). Soit
M la matrice exprimant (U2, V?) en fonction de (U!, V'), comme bases complexes
de F. Alors la matrice P de p (cf. §7.3), relativement aux repéres (U?, V?) de T, et
(JUY, JV"Y) de JT, est la partie imaginaire de M.

Supposons qu’en un point du segment transverse g,, on ait Dét,(T,/T,) = 1.
Alors M est de la forme:

A -B
M=<B j) (4, BeC)

et donc la matrice P est de la forme:

a b
P=(b —a) (a, b € R).

Son déterminant est négatif, ce qui signifie que p inverse 'orientation. D’apres
le Lemme 8.1, I'indice k est alors pair.

De méme, si Dét,(T,/T,;) = —1 en un point du segment transverse o, alors p
respecte I'orientation, et k est impair. &

PROPOSITION (n =3). Le degré de Dét,(T,|T,) sur A est déterminé par le
signe de sa partie imaginaire aux points de contact et au voisinage des extrémités
de A.

Démonstration. 11 suffit d’appliquer les deux lemmes précédents, en se souvenant
que Dét,(T,/T,) = —1 aux points ¢(S) et o(N) (cf. §7.1, 7.2).

LEMME 3. (en dimension générale n). Avec la construction de §5, la partie
imaginaire de Dét,(T,/T,) est négative au voisinage de ¢(S) (ou o = o), et positive
au voisinage de @(N) (ou a = &,).
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Démonstration. Avec les notations de §5, choisissons un repére (orienté)
(V4,...,U0,_)) de T; (j=1,2) tel qu’au point ¢(0, w,, t,) = @(0, w,, t,) (avec
w, < 0 < w,) proche de ¢(S):

) 0 0 0
) = 1) — = — i
Ul TqD(O! w_p t_]) aui aui + wj axi
pour tout (j, i) #(2, 1), et:
0 0 0
2= T —=——— W,
Uy (0, wy, 1) B By W, o,

Les orientations de T, et T, sont ainsi induites par une orientation du feuilletage.
La structure complexe J, (§8.1) est adaptée a do =da, au voisinage de @(S).
Au-dessus des points de 4, elle vérifie

0 0
o %~ o,

La matrice M € Gl (n —1,C), exprimant (U?),.,_, dans la base complexe
(U1)isn—1, Sécrit:

~1 0
(L= iw))(1 + iwy) 1

M
1+ w?

0 T
\. J

Comme w, <0 <w,, la partie imaginaire du déterminant de M est négative
lorsque w, et w, sont assez petits.

Au voisinage de ¢@(N), nous pouvons reprendre les mémes expressions pour les
U;. Mais la forme de contact est &,, a laquelle est adaptée —J,. Le germe de
Dét_,; (T,/T,) en @(N) s’obtient donc par conjugaison a partir du germe de
Dét; (T,/T,) en ¢(S), ce qui donne un partie imaginaire positive.

COROLLAIRE. Pour les exemples de §5 dans le cas n = 3, soit ¢, € { — 1, + 1}

le signe de la partie imaginaire de Dét,(T,/T,) au point de contact
Citk=1,...,2m). Le degré de Dét,(T,/T,) sur A est égal a

1 2m
1 “+ - Z ("'1)k+18k.
2454
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8.3. REMARQUE. Dans le cas d’'une dimension impaire n > 3, le calcul com-
binatoire du degré ne peut plus se faire comme en 8.2. En choisissant des repéres
convenables pour T, et T,, l'indice de T, par rapport a T, sur 4 se calcule
néanmoins, et sa valeur est

1 2m
5 Z 1)k+18k

ou g = +1 (resp. —1) si a =a, (resp. &) au point de contact C,.

§9. Etude de la trivalité d’un fibre complexe (F, J)

La dimension n est impaire.

Partons d’une forme de contact «, définie au voisinage de 4 comme au §5, égale
a a, pres de ¢(S) et a @, prés de @(N). Soit J une structure complexe adaptée a du;
nous pouvons la choisir égale a J, (resp. —J,) au voisinage de ¢(S) (resp. @(N)).

Supposons, pour le moment, que J se prolonge a tout le fibré F de maniére a ce
que le feuilletage soit totalement réel en tout point. Le fibré T “des (n — 1)-plans
tangents aux feuilles” est un sous-fibré (totalement réel) du fibré ¢ *F au-dessus de
S™\{S, N}. Nous discutons maintenant la trivialitt de F, comme fibré complexe,
au-dessus de X = ¢(S").

La base X est, homotopiquement, un bouquet de sphéres S” v S?: la sphére S?
correspond a I'image ¢(D) d’'un disque D, dans S”, dont le bord est le cercle I'.
Comme 7,_(U(n — 1)) =0 et n,(U(n — 1)) = Z, il suffit d’analyser F au-dessus de
(D).

LEMME. Soit F un fibré complexe de rang réel 2q au-dessus de S*. Si F contient
un sous-fibré totalement réel R de rang q, alors F est trivial.

Démonstration. Le groupe structural de F se réduit alors a SO(q) = SU(q). Or
m,(SU(q)) =0. %

Au-dessus de 4 = ¢(I'), nous disposons d’un sous-fibré totalement réel de F: le
sous-fibré T, par exemple. Nous étudions la possibilité de prolonger une telle donnée
au-dessus de toute la sphére @(D), en la comparant a un autre sous-fibré réel connu,
T, qui a ’avantage d’étre prolongé, mais qui a aussi I'inconvénient d’étre “multi-
valué” au-dessus de 4, et, de plus, d’étre non défini au-dessus des points ¢(S) et p(N).

Prenons par exemple pour D le disque [u,=:':=u, =0; u; 20] dans
S"=[[u]|®>+w?+t>=1]. La “donnée au bord” choisie est le sous-fibré (orienté)
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R =T,, au-dessus de 4. On prolonge d’abord le fibré R 4 des voisinages de
@(S) et de ¢(N) dans X, afin de pouvoir le comparer au fibré T au-dessus du
bord d’un disque D’ un peu plus petit que D, ne contenant pas S et N. Pour
cela, il suffit de procéder par translation horizontale puis relévement vertical dans
F, car au voisinage de ¢(S) (resp. @(N)), F est transverse a d/0z, et la projection
verticale sur R?2? de la structure complexe J, (resp. —J,) est invariante par
translation.

Plus concrétement, le fibré T, peut étre trivialis¢é par un repére (orienté)
W;,...,U,_,) tel qu’au point @(0,w,,t,) (ou ¢, est voisin de +1, w, <0,
wi+ t} = 1) ce soit I'image par T¢ du repére (0/0u,, ..., d/0u,_,):

0 0 )
U,-=5;i+w,~6—£ i=1...,n=1).

Le fibré R qui prolonge 7, au voisinage de ¢(S) a pour repére
(UR, ..., UR_)), ou UR (prolongeant U,) est défini au point (u, x, z) de I'hyper-
plan [z = C**] contenant ¢(0, w,, t,) par

d o @
S _ \ —
Ur=gu ™o 55,

Revenons sur le disque D, dans S”. En enlévant de D les points tels que
u?+w?<eg? (e <0 petit), on obtient une surface D’, bordée par un lacet 7, et
au-dessus de laquelle T est défini. On calcule maintenant 'indice de Maslov de
@*R par rapport a T sur le lacet T =0D’. Il est formé de quatre chemins, notés
Ty, Ty T2y Tt

— 1 est tracé sur I'; (j=1,2)
— 15 (resp. ty) est tracé prés de S (resp. N), sur [u? + w? =¢?
— le sens de parcours de 7, est choisi de S vers N, ce qui détermine celui de .

On note de la méme mani€re ces chemins et leurs images par ¢. L’orientation
de T coincide avec celle de ¢*T,, au-dessus de t,.

— Lelong de 1;, ona T =¢*T, = ¢*R, et donc Dét,(¢*R/T) = 1.

— Le long de 7,, on a T=¢*T, et R=T,. Donc Dét,(¢*R/T) est le con-
jugué de Dét,(T,/T,) = Dét,(T/p*R) (restreint a t,). Remarquons que 7, est
parcouru de N vers S.
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— Le long de 7y, il faut faire un petit calcul. Dans S”, au-dessus de tg, le fibré
T a pour repére (U7, ..., UT_)), avec:

d d
T -
Ur= wau,+u'i)w
U?:—@— (i 2 2).

Ju;

La matrice M qui exprime (To - -UT,...,To -UT ) en fonction de
(UF, ..., UR_)) (comme bases complexes) au point ¢((u;,0, . .., 0), w, ) s'écrit:

r—w+i(uf—w2) 0 )
1 +iw

L 0 1+lW)

Dans 'expression du déterminant de M, le facteur (1 —iw,)"*~' (1 + iw)"~2
dépend de (u,, w); mais, sur le chemin 75, son argument reste petit (de 'ordre de
(2n — 3)g¢). Par ailleurs, le facteur —w + i(u? — w?) est imaginaire pur seulement si
w = 0; mais il est alors égal 4 i - u3. La projection radiale de dét M sur S! évite donc
la valeur —i, quand on parcourt t5. Elle trace sur le cercle un chemin allant d’'un
point proche de —1 jusqu’au point +1.

Ainsi, sur le chemin tg, la variation de I’argument de Dét,(T/@*R) est proche
de —1/2 tour. Comme Dét,;(¢*R/T) parcourt le chemin conjugué, sa variation est
(d’un peu plus) de +1/2 tour.

— Le long du chemin 7,, on peut prendre les mémes expressions pour les
repéres que sur Tg, mais la structure complexe est —J,. La matrice obtenue est donc
la conjuguée de la matrice sur 15, et Dét,(¢*R/T) décrit le chemin conjugué du
chemin correspondant a tg; il faut encore en inverser le sens de parcours, car sur
Ty, W varie de —¢ a + &.

En conclusion, nous pouvons énoncer la

PROPOSITION. Si le degré de Dét,(T,/T,) sur 4 est égal @ —1 (en orientant A
de @(S) vers @(N)), alors 'indice de Maslov du sous-fibré réel *R par rapport a T
est nul sur 0D’, et donc @*R se prolonge au-dessus de D’. O
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D’aprés 'expression de ce degré donnée a la fin du §8, le prolongement est
possible si et seulement si

2m
kz (—Dk+lg = —n—1.
=1

Il faut donc au minimum 2m =n + 1 points de contact. De plus, avec n + 1
points de contact, la solution est unique: nécessairement, g, = (—1)*,

§10. Prolongement de la structure complexe
10.1 Etat des lieux

Nous avons donc un fibré F au-dessus de ¢(S”) =2X (n impair), construit
comme en §5 et §6, pour une forme de contact a au voisinage de A4 telle
que 27, ( — 1)*¢, = n + 1. Il s’agit de prolonger une structure complexe adaptée J
(définie au-dessus d’un voisinage de 4) a tout le fibré F, de maniére a laisser T
réel.

Le complémentaire, dans S”, d’un voisinage tubulaire de I' est difféomorphe a
D? x $"~2; son image (plongée) par ¢ dans R>*~! est encore notée D? x S"~2. De
méme, on identifie T au-dessus de D? x $"~2 et son image, en les notant de la
méme maniere.

Soit (U, ..., U,_,) une trivialisation de T au-dessus de D? x $"~2 il suffit
par exemple de paralléliser les feuilles de S™\I' qui sonit proches de S (elles sont
difftfomorphes 4 $"~2 x ]0, 1[), et de procéder par homotopie.

On considére le fibré ¢, au-dessus de D? x §"~2, dont la fibre au-dessus d’un
point est I’espace des structures complexes sur F qui laissent 7 réel en ce point, et
qui donnent 4 F une orientation compatible avec celle que donne J,, prés de S.
Homotopiquement, c’est un fibré principal de groupe SO(n.— 1). Plus précisément,
pour la structure complexe J que nous voulons prolonger, il existe une métrique
sur F, au-dessus de D? x §"~2, telle qu’au-dessus du bord dD?* x S"~2

TLJT et |JX|=|X| pour tout X € F. (1)

On considére le sous-fibré #’ de # des structures complexes qui vérifient (1)
dans chaque fibre de F au-dessus de D? x S"~2; c’est un fibré principal de groupe
SO(n —1): une structure complex j étant donnée, on obtient les autres “en
tournant” dans le sous-espace j7T. L’action du groupe SO(n — 1) est bien définie

car T est trivialise. L’inclusion #'c, ¢ est une équivalence d’homotopie.
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Pour n =3, #’ est un fibré en cercles au-dessus de D? x S', et ¢ est donc
trivial. Mais il est aussi trivial en dimension générale n impaire, en particulier parce
qu’il est homotope au fibré #, des structures complexes sur le fibré trivial
horizontal F,, défini par dz =0 dans R,,_,, qui laissent réel le sous-fibré T, associé
par @, au feuilletage dr =0; en effet, les images @,([t = C**]) sont des sphéres
lagrangiennes dans RZ".? x {t}, et la structure complexe J, (remontée sur Fy) est
donc une section de ¢, au-dessus de D? x $"~2,

La donnée de J est une section du fibré # au-dessus du bord 0D? x $"~2. Nous
comparons cette section J a une section globale J, de #, que nous décrivons
maintenant:

1) On part du fibré complexe (F,, J;) au-dessus de ¢,(S™), et on le restreint
a D?x 8" 2 < @y(S"). Le fibré ¢, associé au feuilletage de D% x S"~2, image par
¢, du feuilletage dr = 0, admet la section globale J, relevée dans F,, qu’on note
encore J,.

2) Il existe une homotopie qui ameéne (F;, T,) jusqu’a (F, T), et telle qu'au-
dessus du bord dD? x S$"~2, cette homotopie induise une homotopie sur la structure
complexe: la section J, de #, se déforme en une section J, de #, adaptée a la forme
de contact égale a a, sur rout le voisinage de la courbe des points doubles, dans la
construction de §5 (voir a ce sujet §4.1 Remarque, en appliquant la symétrie o qui
change z en —2z). En effet, dans le “troisieme prolongement”, les points de contact
peuvent étre effacés par homotopie, si on a choisi a = a, sur toutes les boucles (§5.3,
Remarque 3). L’homotopie inverse introduit donc les points de contact voulus, et
peut se prolonger en une homotopie globale sur le couple (fibré, feuilletage). Par
relévement d’homotopie, la structure complexe J, se prolonge en une section
globale de # au-dessus de D? x §" 2.

3) La section J (définie au-dessus du bord dD? x $"~?), s’obtient 4 partir de J,
“en faisant des demi-tours”. Plus précisément, sur chaque boucle de 4 ou ¢, = —1
au point de contact C,, nous avons remplacé a, par d,, en faisant un ‘“demi-tour”
(en fait, un demi-tour sur la structure symplectique da,) au-dessus d’un petit
intervalle I, _, contenu dans le segment transverse o, _,, puis un deuxiéme demi-
tour au-dessus de I, < o, pour revenir a la forme de contact «,. Il faut encore un
ultime demi-tour sur le dernier segment transverse o,,, afin d’obtenir &, au
voisinage du point @(N) (c’est le “quatriéme prolongement”). Dans le cas ou
2m =n + 1 par exemple, avec g = (—1)* (C’est la solution obtenue en §9) nous
avons a faire un (et un seul) demi-tour sur chacun des intervalles transverses:

-1 +1 -1 +1

¥ A 20 < 20 !
oS Iy ¢ L G L G L G I M)
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Chaque demi-tour sur la forme symplectique s’accompagne d’un demi-tour sur
les structures complexes adaptées, et, en fait, de deux demi-tours sur la section de
F# au-dessus de dD? x S"~2, comme nous allons le voir.

En trivialisant # par la section (globale) J,, la section J correspond a une
application J : dD? x $"~?— SO(n — 1). Nous pouvons décrire D? x $"~2? dans S”
en faisant “tourner” la surface D’ bordée par t (voir §9) autour du grand cercle I
éclaté: on identifie S"~2 a la sphére [|u| =¢, w =0}, et D? x {(¢,0,...,0)} d la
surface D’ de §9.

A chaque intervalle I, = o, correspondent deux intervalles I et I? sur le bord
disque D? x {u} (u € S"?)

Le bord du disque est orientt comme t=0D’. Sur I, lapplication
J :0D* x {u} - SO(n — 1) décrit un chemin de Id (identité) & —Id si k est pair, et
de —1Id a Id si k est impair. Les valeurs de J sur IZ sont alors déterminées. En
dehors des I, I'application est constante.

La classe d’homotopie de la restriction de J a dD? x {u}, dans =,(SO(n — 1)),
est bien sir indépendante de u.

10.2 Calcul de la classe d’homotopie de J|;p> ()

Un repere (U, ..., U,_,) trivialisant T au-dessus de S"\I" fournit, par restric-
tion a I'; = D% x {u} (le cercle T est éclaté. . .), un repére (orienté) (U4, ..., U;_,)
de T; (pour j=1,2). Nous pouvons supposer qu'au-dessus des I, J,T,=
JT, = + T,; l'orientation est la méme si k est impair, et est inversée si k est pair (cf.
§8.1 lemme).

Techniquement, le probléme est le suivant: étant donnée la matrice R, exprimant
JUul,...,JUL_)) dans la base (J; U}, ...,J,UL_)), il faut calculer la matrice S,
de (JU?,...,JU2_)) dans la base (J,U3,...,J,U2_,), pour un paramétre ¢ sur
Pintervalle I,.
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10.2.1. Au-dessus d’un intervalle I, avec k pair, 'orientation de T, est 'opposée
de celle de JT,. La matrice A, exprimant (J,U},...,J;UL_,) dans la base
(U3, ..., U_)) est donc de déterminant négatif. En revanche, lorsque k est impair,
détA, est positif au-dessus de I'intervalle I,.

Soit R, la matrice de (JU}), dans la base (J,U}),. Alors R, A, exprime (JU!), dans
la base (U?),, et donc (— U} ), dans la base (JU?), (par linéarité de J). Finalement,
la matrice S, = A, 'R, ' A, exprime (JU?), dans la base (J, U?),.

REMARQUE. Il est possible de modifier le repére de T au voisinage de
I; < 0D? x {u} de maniére a avoir, si k est pair:

JWUi=-Ui, LW U;=U; (iz22)

au-dessus de I, = A. Alors

et, si k est impair, 4, = Id.

10.2.2. Le cas n = 3.

LEMME (n =3). Si la classe de J:0D? x {u}— SO(2) dans mn,(SO(2)) est
nulle, alors J se prolonge a tout D* x S'.

Démonstration. On procéde par relévement d’homotopie, en remarquant que
n,(SO(2)) = 0. O

On a SO(2) = S!, et n,(SO(2)) = Z. Par construction (§5, troisiéme prolonge-
ment), R, décrit un demi-cercle de +1d a —Id (resp. —Id a + Id) sur SO(2) quand
on parcout I}, si k est pair (resp. impair). Mais alors, R;”' décrit ’autre demi-
cercle. 11 faut encore conjuguer R, ' par la matrice 4,. Si k est impair, alors
A, € SO(2). Par conséquent, le chemin 4, 'R, '4, est homotope (2 extrémités
fixées) au chemin R, !, dans SO(2), et il doit étre parcouru de —Id a +1d.

Si k est pair, détd, <0, et le chemin 4, 'R; ' 4, est le demi-tour non homotope
a celui de R;'; il est parcouru de +Id a —1Id.
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k impair k pair

Rappelons que le sens de parcours de I, coincide avec celui de I} et est 'opposé
de celui de I2.
En conclusion, nous pouvons énoncer le

LEMME (n = 3). Dans le décompte final des demi-tours sur SO(2) = S', ’ap-
port de I UI? est nul si k est pair, et égal a +1 générateur de n,(SO(2)) si k est
impair.

Considérons un exemple de §5 avec 2m points de contact, qui vérifie la condition
de §9 (avec n = 3):

g, —&+& —&y, =—4

Le nombre des points de contact C, tels que ¢, = —1 est alors pair, et donc le
nombre de demi-tours effectués sur un segment I, d’indice £ impair est pair aussi.
La construction de §5 peut donc étre faite de maniére a4 ce que le degré de
J :0D? x {u} = SO(2) soit nul: if suffit que les deux demi-cercles de SO(2) soient
décrits le méme nombre de fois par R,, su la réunion des I} d’indice impair.

Exemple. Avec la construction a quatre points de contact, il faut que g, = (—1)*
(§9). On fait un demi-tour sur chacun des cinq segments transverses gy, ..., 0,.
Deux d’entre eux sont d’indice impair. Pour pouvoir prolonger J, les deux demi-
tours sur I, = g, et sur I, = g; doivent étre faits en sens opposé¢ 'un de 'autre.

10.2.3. Remarque, en dimension (impaire) n >3

Faisons le paralléle de la discussion précédente en dimension n > 3. On a, cette
fois, m,(SO(n — 1)) = Z/,.
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Comme SO(n — 1) est connexe, nous pouvons supposer (pour simplifier 1’ex-

posé) que le repére (U,,...,U,_,) de T est choisi tel que, au-dessus de ’un des
disques D? x {u} (u € S"2), la matrice R, soit de la forme
frt 0 A
rt
R, =
L0 r,)

. cosf, —sin6,
our = (sin 6, cos6, > €50(2)

Le lacet (R,); - (R; "), obtenu en suivant le chemin R, sur I}, puis le chemin R’
sur /%, est homotope a (n — 1)/2 générateurs de =,(SO(n — 1)) (quel que soit k).

Si k est impair, 4, € SO(n —1). Donc les chemins R;! et A, 'R, 'A, sont
homotopes (a extrémites fixées) lorsqu’on parcourt Iz. En revanche, si k est pair, ils
ne sont pas homotopes.

La contribution de I,ulZ, dans le calcul de la classe d’homotopie de
J:0D? x {u} - SO(n — 1), est résumée dans le tableau suivant:

n=1 (mod. 4) n =3 (mod. 4)

k pair 1 0
k impair 0 1

Pour les exemples de §5, la condition de trivialité de §9 impose
&§—&+ée- - —&,=—1—n

Pour n =1 (mod. 4) on a donc Z( — 1)*¢, =2 (mod. 4). Le nombre des points
de contact C, tels que ¢ = —1 est alors impair. En tenant compte du dernier
demi-tour (sur ¢,,) pour avoir &, prés de ¢(N), on a au total un nombre pair de
demi-tours sur des segments transverses d’indice pair.

Pour n = 3 (mod. 4), Z( — 1)*¢, =0 (mod. 4). Le nombre des points de contact
C, tels que ¢ = —1 est alors pair. D’ou un nombre pair de demi-tours sur des
segments transverses d’indice impair.

Nous en concluons que dans tous les cas, la classe d’homotopie de
J :0D? x {u} > SO(n — 1) est nulle dans =,(SO(n — 1)). Par relévement d’homo-
topie et comme m,(SO(n — 1)) =0, I'application J se prolonge aux tores pleins de
dimension trois D? x S', ot S'¢ 8" 2. Les groupes d’homotopie =,(SO(n — 1)),
pour i > 3, donnent des obstructions au prolongement de J. En effet, supposons J
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prolongée a un tore D? x S', et considérons un disque D¢, S"2 tel que 0D = S'.
Comme J est imposée sur le bord dD? x D (par la donnée au bord dD? x S$"~?),
on obtient une application J définie sur (D? x dD) u(0D? x D), a laquelle est
associée un élément de n,(SO(n — 1)).

§11. Cas n =3. Prolongement de la structure de contact

Nous nous plagons dans le cadre décrit en §5 et 6, pour une forme de contact
a vérifiant la condition établie en §10: une structure complexe J sur le fibré [o = 0],
adaptée a da, est prolongée a tout le fibré F en laissant le sous-fibré T totalement
réel.

11.1. Nous pourvons supposer que J est calibrée par da, au voisinage de la
courbe 4, c’est-a-dire que la forme bilinéaire (X, Y) > da(X,JY) est symétrique
(définie positive) sur chaque fibre.

Soit N le complémentaire d’un voisinage tubulaire de 4 dans ¢(S?), tel que la
structure de contact a =0 définisse F et tel que J soit calibrée par da, au-dessus
d’un voisinage du bord JN.

La structure complexe J permet de prolonger da (éventuellement restreinte a
un voisinage plus petit de N ...) et une 2-forme différentielle B, définie en tout
point de N, symplectique sur le fibré F et telle que le sous-fibré T soit lagrangien:
concrétement, il suffit de choisir une trivialisation de 7 (au-dessus de N) par un
repére (U, V), orthonormé pour la métrique du(. , J.), et un champ de vecteurs Z
(sans zéros) transverse a F et prolongeant le champ de Reeb de la forme de
contact a (défini par: aZ =1,i(Z)dx =0), puis de définir f sur le repére
(U, V,JU,JV, Z) de TR restreint 4 N par les conditions:

i(Z)B =0

B(U, V) = BUU,JV) =0
B(U, JV) = BUU, V) =0
B(U, JU) = BV, JV) =1

(rappelons que da(U, V) =0, du fait que T est un feuilletage . . .).

11.2. REMARQUE. Nous pouvons supposer que le champ de vecteurs Z est
tangent a N, parce que la forme de contact a peut €tre choisic de manicre a
induire une forme fermée sur N. En effet, le feuilletage défini au voisinage de N
dans ¢(S*) par Péquation « =0 a une intégrale premiére. Pour [I’inclusion
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i: N o R’ écrivons

Comme 0N est loin de A, dans R>, il existe une fonction G > 0 définie sur R’
telle que i*(Ga) = df. Le champ de Reeb de Gua est tangent a N. Comme l'intégrale
premiére f est définie globalement sur N, et n’y a pas de points critiques (§6), le
champ de vecteurs Z peut étre choisi tel que df -+ Z = 1. Ainsi, quitte a remplacer «
par Ga:

i*B =0.

11.3 LEMME 1. Au voisinage de tout point de N, il existe une 1-forme y telle que
i*y = df et B =dy|y. De plus, la forme y est une forme de contact.

Démonstration. Choisissons, au voisinage du point considéré, des coordonnées
locales (u, v, x, y, 1) telles que x|y =y|y =0, t|y =fet

La 2-forme f s’écrit:
B=dun(Adx +Bdy)+dv A(Cdx+Ddy)+Edx ndy

ou A, B, C, D, E sont des fonctions de (u, v, f). Soient x° = Ax + By, y° = Cx + Dy.

Alors f=du ndx°+dv Ady°+ Edx ndy. Comme B AB#0, du AndvAdx® A

dy°|y #0, et donc (u,v, x°, y°, t) sont des coordonnées locales, dans lesquelles S

s’écrit: B =du A dx° + (dv + F dx°) A dy°, pour une fonction F(u, v, f) convenable.
La forme y = u dx° + v dy° + Fx° dy° + dt vérifie les propriétée suivantes:

dle':ﬂ’
i*y = i*dt = df,
Y AdY y=7p|v ABP=dt ndundx®Adv Ady®#0. o

Remarquons que y|y n’est pas définie de maniere unique: si 0 est une 1-forme
telle que dd|y =0 et i*6 =0, alors y + ¢ est aussi solution.
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LEMME 2. Soient (u, v, x, y,t) des coordonnés locales comme dans la démonstra-
tion du Lemme 1. On peut imposer a la forme y de prendre des valeurs données sur
0/0x et 0/0y, le long de N.

Démonstration. D’aprés la remarque précédente, il suffit de trouver une 1-forme
d telle que dé|y =0, i*s =0, avec

0 0

ou h et k sont deux fonctions, imposées, de (u,v, ). Il suffit de prendre
6 =d(hx + ky).

LEMME 3. Au voisinage de tout point de N, il existe une forme de contact y telle
que i*y = df, dy|y = B, y|v(JU) =y|x(IV) = 0.

Démonstration. C’est un corollaire immeédiat des Lemmes 1 et 2.

Evidemment, la forme a vérifie les propriétés du Lemme 3 sur un voisinage de
ON, si on tient compte de la Remarque 11.2.

On peut assembler des formes de contact locales données par le Lemme 3, a
I’aide d’une partition de I'unité subordonnée a un recouvrement (fini) de N par des
ouverts (de I’espace ambiant) convenables. La forme de contact a (éventuellement
restreinte 4 un voisinage plus petit de 4) peut ainsi se prolonger a un voisinage de
¢(S?), avec toutes les propriétés voulues pour la forme induite sur S>. Si, de plus,
la condition de trivialité du fibré complexe (F, J) est satisfaite (cf. §9), cette forme
de contact peut étre prolongée 4 R® par le A-principe de M. Gromov [GS5].
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