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Une structure symplectique sur M6 avec une sphère lagrangienne plongée
et un champ de Liouville complet

Marie-Paule Muller

On construit une sphère lagrangienne plongée dans R6, pour une structure
symplectique ayant un champ de Liouville complet. Cette structure est obtenue par
symplectisation, à partir d&apos;une forme de contact sur R5.

M. Gromov a montré que la structure symplectique habituelle sur R6 ne
contient pas de sphère lagrangienne plongée. En corollaire, nous obtenons l&apos;existence

d&apos;une structure symplectique exotique complète sur R6, et d&apos;une structure de

contact exotique sur R5.

Introduction

Dans ce travail, nous nous proposons de démontrer le

THEOREME A. // existe sur R6 une structure symplectique Q, possédant un

champ de Liouville complet, qui accepte un plongement Iagrangien de la sphère S3.

Les conjectures d&apos;Arnold, datant des années soixante, ont donné aux variétés

lagrangiennes un rôle central en géométrie symplectique globale. Sous l&apos;impulsion

de V. Arnold et de M. Gromov, de nombreux travaux one été consacrés à leur
étude. L&apos;une des conjectures d&apos;Arnold, devenue un théorème de M. Gromov en

1985, est la non-existence de sous-variétés lagrangiennes exactes dans R2&quot;, pour la

structure symplectique habituelle.
En nous limitant au contexte du problème d&apos;existence d&apos;immersions et de

plongements lagrangiens dans un espace euclidien, rappelons les principaux résultats

obtenus.
En dimension n ^ 3, si on exclut le cas trivial n 1, des arguments de nature

homologique (R. Wells, [Wel]) ou homotopique (S. Smale [Sm], M. Gromov [G3],
T. Kawashima [Ka]), en fonction des dimensions considérées, permettent de

montrer qu&apos;il n&apos;existe pas de plongement Iagrangien de Sn dans l&apos;espace euclidien, et
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ceci quelle que soit sa structure symplectique. Ces arguments s&apos;appuient tous sur le

fait qu&apos;une sous-variété lagrangienne est totalement réelle, pour une structure

presque complexe sur !R2rt adaptée à la structure symplectique. Ils ne donnent
aucune information sur le cas n 3, et il y a une bonne raison à cela: M. Gromov
montre aussi, dans [G3], l&apos;existence d&apos;un plongement totalement réel de S3 dans C3.

P. Ahern et W. Rudin en présentent d&apos;ailleurs un exemple très simple, graphe d&apos;une

application à valeurs complexes sur S3 c C2 [A-R]. Le théorème de Gromov-Lees
([G2], [L]) montre qu&apos;il y a &quot;beaucoup&quot; d&apos;immersions lagrangiennes dans Cn (muni
de la structure symplectique standard, qui est la partie imaginaire de la forme
hermitienne habituelle): il suffit que le complexifié du fibre tangent d&apos;une variété V
(de dimension n) soit trivial pour assurer l&apos;existence d&apos;une immersion lagrangienne
de V dans C&quot;. En particulier, la sphère S&quot; admet une immersion lagrangienne dans
C1. Elle n&apos;y admet un plongement totalement réel que pour n 1 ou n 3. De
manière générale, pour une variété (fermée) V de dimension n, l&apos;existence d&apos;un

plongement totalement réel (et non pas lagrangien. est pourtant liée naturellement

à l&apos;étude des immersions lagrangiennes. En effet, M. Gromov a montré que V
admet un plongement totalement réel dans C&quot; si et seulement s&apos;il existe une
immersion lagrangienne régulièrement homotope (comme immersion) à un plongement

[G3]. Par ailleurs, M. Audin présente des conditions, portant sur la dimension
ou sur la topologie de F, pour l&apos;existence d&apos;immersions lagrangiennes ou de

plongements, dans les classes d&apos;homotopie régulière d&apos;immersions [Au].
Lorsque IR6 est muni de la structure symplectique standard (celle de C3... M.

Gromov a résolu le problème de l&apos;existence d&apos;un plongement lagrangien de S3 et, là

encore, la réponse est négative: c&apos;est un cas particulier de l&apos;un des théorèmes qu&apos;il

obtient par son étude des courbes pseudo-holomorphes dans les variétés symplec-
tiques, et qui affirme qu&apos;aucune variété fermée n&apos;admet de plongement lagrangien
exact dans (R2w équipé de la structure symplectique standard [G4] (J. C. Sikorav
présente une démonstration détaillée de ce théorème dans [Si]).

Malgré tous ces résultats de non-existence et dans une communauté symplectique

aux avis très partagés sur la question, Gromov suspectait l&apos;existence possible
d&apos;un plongement lagrangien de S3 pour une autre structure symplectique sur IR6

([G5], p. 344). Le Théorème A est une conséquence du

THEOREME B. // existe une forme de contact &lt;x sur M5 et une application
q&gt; :S3-+R5, telles que la forme induite q&gt;*a soit complètement intégrable et ait
un facteur intégrant g qui permette de relever q&gt; en un plongement (lagrangien)
&amp; (&lt;P, g).

Le théorème de M. Gromov [G4] nous assure que la structure symplectique Q

du Théorème A est exotique, plus précisément qu&apos;elle ne se plonge pas dans la
structure symplectique standard. Sur R3, D. Bennequin a abouti à l&apos;existence de
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structures de contact exotiques par une analyse fine des propriétés géométriques des

courbes intégrales que présente la structure de contact standard, avec des techniques
de la théorie des noeuds [B]. De manière indépendante, Y. Eliashberg a démontré
également ce résultat [E]. En dimensions supérieures, M. Gromov annonce dans

[G4] des structures de contact exotiques sur M2&quot;&apos; \ en se référant à [G6], et présente
aussi une construction de structures symplectiques exotiques sur R2/I; récemment, L.
Bâtes et G. Peschke en ont donné un exemple explicite très simple sur R4 [B-P].
Remarquant que la structure symplectique standard sur R2&quot; a un &quot;bon&quot; comportement

à l&apos;infini (elle a un champ de Liouville complet, et est associée à une métrique
complète), A. Weinstein pose dans [Wei] la question de l&apos;existence, sur R2w, de

structures symplectiques exotiques complètes et/ou convexes à l&apos;infini, au sens de

Gromov [G4]. Citons par exemple D. Mac Duff, qui utilise (entre autres choses)
l&apos;existence d&apos;un champ de Liouville complet, pour montrer que la forme de Kàhler
associée à une métrique kâhlérienne complète de courbure négative sur U2n définit

une structure symplectique isomorphe à la structure standard [MD].
Le mode de construction, par le Théorème B, de la structure symplectique Q du

Théorème A lui garantit l&apos;existence d&apos;un champ de Liouville complet, et le théorème
de M. Gromov permet de compléter la description de la structure de contact définie

par a sur R5:

THEOREME C. La structure symplectique Q ne se plonge pas dans la structure

symplectique standard. La structure de contact sur R5 dont elle est issue par
symplectisation ne se plonge donc pas non plus dans la structure de contact standard.
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Plan de la construction

Au §1, nous montrons comment le Théorème A se déduit, par symplectisation,
du Théorème B.

On remarque que l&apos;application cp du Théorème B n&apos;est certainement pas une
immersion. Nous la construirons de manière à être la plus simple possible, c&apos;est-à-

dire générique (§2.1), avec deux singularités.
Au §3, nous introduisons la notion de courbe d&apos;holonomie, qui sert à interpréter

la condition d&apos;injectivité de # (et aussi à repérer ses éventuels points doubles). En

particulier, cette interprétation permet de montrer très simplement que si # est

injective, alors les courbes de points doubles de q&gt; ne peuvent pas être transverses

au champ de contact.
Le §4 intègre la géométrie de contact aux singularités génériques des applications

Rn-&gt;R2n~1. Nous obtenons ainsi un modèle &quot;legendrien&quot; du parapluie de

Whitney, dont le germe servira à construire la forme de contact a au voisinage des

deux points singuliers de &lt;p, avec l&apos;assurance que &lt;P sera bien un plongement au
voisinage de ces deux points.

Au §5, nous décrivons une famille de prolongements de cette forme de contact
à un voisinage de la courbe des points doubles de &lt;p.

Le feuilletage partiel qu&apos;induit à la source (sur la sphère) l&apos;équation a 0 est

prolongé au §6, en tenant compte de l&apos;analyse faite au §3. Au but (au-dessus de

l&apos;image de la sphère), le prolongement du champ d&apos;hyperplans défini par cette

équation devient alors une formalité.
Ceci achève pratiquement la partie &quot;différentielle&quot; de la construction: à partir

du §7, les ingrédients sont essentiellement de nature homotopique.
Au voisinage de la courbe des points doubles, le champ d&apos;hyperplans est de

contact; il est alors porteur de structures complexes, adaptées à la structure
symplectique du.. Notre objectif est de prolonger une telle structure complexe sur
le champ d&apos;hyperplans au-dessus de l&apos;image &lt;p(S3) (le feuilletage induit doit être

totalement réel) et, de plus, d&apos;obtenir ainsi un fibre complexe trivial.
Tout d&apos;abord, le feuilletage induit par la structure de contact permet de définir

un indice sur la courbe des points doubles, analogue à l&apos;indice de Maslov classique

([M], [Arl]).
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Le calcul de cet indice est fait au §8, pour les prolongements du §5. Une
expression combinatoire de sa valeur est donnée pour la dimension trois.

Au §9, nous dégageons une condition de trivialité pour le fibre complexe, en

supposant prolongée une structure complexe adaptée. Cette condition porte sur
l&apos;indice calculé au §8.

Le prolongement de la structure complexe est analysé au §10. Nous en tirons
une deuxième condition, qui, associée à la précédente, permet d&apos;obtenir un fibre
complexe prolongé et trivial, au-dessus de &lt;p(S3), à partir de l&apos;un des modèles du
§5.

Rappelons que le feuilletage induit sur ç(S3) est totalement réel. Il est alors

possible de construire, à partir de cette structure complexe, un prolongement de la
forme de contact à un voisinage de &lt;p(S3). Le A-principe de M. Gromov ([Gl])
voir aussi [Ha]), permet de prolonger enfin cette forme de contact à IR5, à partir
d&apos;un prolongement du fibre complexe.

Les grandes lignes de la construction sont présentées de manière plus détaillée
dans [Mu].

§1. Des lagrangiennes dans un symplectisé

Considérons une forme de contact a sur IR2&quot;&quot;1. Si p désigne de projection
de IR2w ~l x IR sur le premier facteur, et si t est une fonction coordonnée sur
le facteur IR, la forme Q=d(tp*&lt;x) définit une structure symplectique sur
p2n-i x ^ _ jQj) Çççj est ja description, appliquée au cas particulier qui nous

occupe, de l&apos;opération de symplectisation [Ar2].
Remarquons que le champ de vecteurs Ç t(d/dt) est un champ de Liouville

pour la structure symplectique Q : d(i(Ç)Q) Q. Comme Q est fermée, d(i(Ç)Q)
0(Ç)Q (dérivée de Lie de Q dans la direction Ç)l le flot du champ de Liouville est

conforme pour la structure symplectique.

PROPOSITION. Soient a une forme de contact sur (R2&quot;&quot;1, et cpiM-^U2&quot;&apos;1

une application, définie sur une variété fermée M de dimension n, telle que l&apos;équation

&lt;p*a=0 définisse un feuilletage (avec singularités) ayant une intégrale première,
c&apos;est-à-dire telle qu&apos;il existe deux fonctions f:M-&gt;M (l&apos;intégrale première) et

g : M -*]0, +oo[ (le facteur intégrant) vérifiant:

g (p*a=df
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On lui associe Vapplication

4&gt; (&lt;p,g) : M^U2&quot;-1 x ]0, + oo[.

Soit Q d(t - p*a) la forme symplectique sur U2n~l x ]0, + oo[, associée à a comme
ci-dessus. Alors &lt;P*Q 0.

Démonstration. $*(t(x) g • &lt;p*a # Donc #*G 0. 0

EXEMPLE. Toute immersion lagrangienne exacte, à valeurs dans R2/I &quot;* x
]0, -h oo [ muni d&apos;une structure symplectisée d&apos;une fonne de contact sur IR2&quot;&quot; \ est de

la fonne décrite par la proposition.

REMARQUE 1. Si l&apos;application # donnée par cette construction est un plonge-
ment, la structure symplectique Q est nécessairement exotique, et donc la forme de

contact a est exotique elle aussi. En effet, l&apos;un des résultats de M. Gromov [G4]
assure la non-existence de sous-variétés lagrangiennes fermées exactes, plongées
dans IR2n s Ml x U&quot; muni de la structure symplectique

n

Qo £ dut a dxt.

REMARQUE 2. La question de l&apos;injectivité et du rang de 0 sera discutée en §2

et §3. Mais nous pouvons d&apos;ores et déjà affirmer que sous les hypothèses de la

proposition, ç ne peut pas être une immersion. En effet, les points critiques de /
sont nécessairement des points singuliers de &lt;p, car

&lt;p*da —d~/\df
g

ce qui signifie qu&apos;en tout point/?, l&apos;image par l&apos;application tangente Tq&gt;(p) du noyau
de df(p) est un sous-espace isotrope, pour la forme symplectique da définie sur
Phyperplan de contact [a 0] au point cp(p). Sa dimension doit donc être inférieure

ou égale à n — 1.

Nous traduisons maintenant, par des conditions portant sur (&lt;p, a,/), le fait que
&lt;P doit être un plongement.
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§2. Parapluie de Whitney. Un exemple d&apos;application &lt;po:Sm-^(U2m-\(x9)

Après avoir rappelé des résultats de H. Whitney [Wh], nous présentons en 2.2
un exemple du type décrit en §1 (mais l&apos;application # qui lui est associée ne pourra
pas être injective!) en superposant la forme de contact standard de M2&quot;-1 à la
géométrie d&apos;un exemple d&apos;application générique, dans le cas de la sphère.

2.1. Le parapluie de Whitney est le germe en 0 e Rn de l&apos;application

(w, W) h+ (w, WU, W2)

où HT s K~l x Uw et I xUnx~l x Uz

Soit M une variété fermée de dimension n. Génétiquement, une application
q&gt; : M -+ U2n ~x a des points singuliers isolés, où le rang est n — 1 et au voisinage
desquels &lt;p est modelée sur le &quot;parapluie de Whitney&quot;, ainsi que des courbes de

points doubles, le long desquelles l&apos;intersection se fait transversalement. Il n&apos;y a pas
de points triples ni n ^3. Le choix d&apos;une orientation de IR2&quot;&quot;1 (et, si n est pair,
d&apos;une orientation de l&apos;axe des w dans W) permet de distinguer deux parapluies de

Whitney orientés. Le deuxième parapluie de Whitney orienté peut s&apos;écrire a ° Wo,

où a désigne Pinvolution de changement de signe sur la dernière coordonnée. Pour

une application générique q&gt; : M -+ U2n~!, les points singuliers de chacun des deux

types sont en nombre égal si la dimension n est impaire.

NOTATIONS. Dorénavant,
||2 + W2 + t2 i dans un-1 x

S&quot; désignera la sphère dont l&apos;équation est

rw x Un et r en sera le grand cercle [u 0]. Sur
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S&quot;, on notera respectivement S (Sud) et N (Nord) les points (0,0,-1) et

(0,0,+1).
L&apos;espace euclidien U2&quot;&apos;1 est identifié à R&quot;&quot;1 x IR;&quot;1 x Uz.

EXEMPLE. Nous nous bornerons ultérieurement à considérer des applications
q&gt; définies sur Sn, avec deux singularités et une seule courbe de points doubles. Voici
un exemple simple d&apos;une telle application:

(w, w, i) h-&gt; (w, wu, i).

Les points singuliers de &lt;p0 sont S et N, et la courbe des points doubles A est
l&apos;image du cercle F privé des deux points S et N.

L&apos;image I — &lt;po(Sn) peut se représenter par le dessin suivant, sur lequel on a

tracé les images de quelques sphères [/ Cste] de Sn.

¦¥ U

2.2. Voyons ce que devient la forme de contact standard
l&apos;image E:

*OLQ dt — w(u • du) =*dt + w(w - dw -f / di)

— dz—x- du, sur
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Comme cette 1-forme vérifie la condition de Frobenius (&lt;pjao) a d((p$&lt;x0) 0,
l&apos;équation (jpJao 0 définit un feuilletage (avec singularités) de Sn. Il est facile de

voir que les seules singularités de ce feuilletage sont les points S et N, et toutes les

feuilles de Sn - {S, N} sont (difféomorphes à) des sphères.

La courbe des points doubles est transverse au champ des hyperplans de contact
[a0 0], et &lt;p0 plonge chaque feuille dans U2n~l.

Nous allons voir maintenant qu&apos;un tel exemple ne peut pas donner un plonge-

ment lagrangien #.

§3. Etude de Finjectivite de $. Holonomie

Revenons à la situation décrite en §1, pour une application cp générique comme

en §2.1.

3.1. Injectivité de &lt;P ([Mu]).

L&apos;injectivité de l&apos;application $ est évidement assurée si g(p) # g(q) lorsque

(p(p) q&gt;(q). Cette condition peut se traduire de la manière suivante, à priori plus

compliquée, mais qui présente l&apos;avantage de ne porter que sur l&apos;intégrale première

/, ce qui permettra d&apos;oublier la fonction g dès qu&apos;on se sera assuré du rang de $ aux

points singuliers de q&gt;.
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Soit A une courbe de points doubles aboutissant aux images de deux points-
parapluie. Considérons des paramétrages yl9 y2 : ]0, \[-+M des deux composantes
connexes de &lt;p~l(A) vérifiant la condition: q&gt; o yx &lt;p o y2.

DEFINITION. La courbe H (/oy,,/oy2), tracée dans le plan, est appelée
courbe cTholonomie associée à (A9f). Pour une courbe fermée de points doubles, la
définition est analogue (les yt et H sont alors des lacets).

PROPOSITION. Si les singularités de la fonction f °yx sont isolées pour toutes
les courbes de points doubles, Vinjectivité de # se lit sur la pente p de la tangente aux
courbes d&apos;holonomie qui leur sont associées: la fonction p doit être différente de 1 en

tout point (singularités comprises).

Démonstration. Les paramétrages yu y2 vérifient la condition q&gt;

(p*0L (l/g) df On en déduit que

&lt;p o y29 et

(/°y,)&apos;
0

L&apos;image de H est en fait la réunion de graphes de difféomorphismes définis sur
des intervalles (ce sont ces fonctions, ou plutôt les classes de conjugaison de leurs

germes aux points f°y\(s) tels que ^(s) et y2(s) soient sur une même feuille, qui
correspondent à la notion habituelle d&apos;holonomie pour un feuilletage).

COROLLAIRE. Si 0 est injective, alors q&gt;
n&apos;a pas de courbe de points doubles

transverse (en tout point) au champ de contact [a 0].

Démonstration. L&apos;existence de l&apos;intégrale première / interdit les courbes fermées

de points doubles transverses au champ de contact. Pour celles qui aboutissent aux
images de deux points-parapluie, appliquer le théorème des accroissements finis!
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Remarquons que pour une courbe ayant des points stationnaires, le théorème
des accroissements finis ne s&apos;applique pas... comme l&apos;illustre de dessin suivant:

3.2. La nature des singularités présentées par les courbes d&apos;holonomie peut être
précisée, du fait que a est une forme de contact:

PROPOSITION [Mu]. Les points stationnaires des courbes d&apos;holonomie sont des

points de première espèce {c&apos;est-à-dire que la pente p est à dérivée non nulle aux
valeurs correspondantes du paramètre).

3.3. Cas particulier

L&apos;application q&gt; que nous construirons sur Sn (pour n 3 aura deux

singularités, les points S et N9 et une (seule) courbe de points doubles A, image du
cercle T privé des deux points 5 et N. D&apos;après §1. Remarque 2, S et N sont alors
les seuls points critiques de l&apos;intégrale première / (qui sera en fait une fonction de

Morse), et le feuilletage défini par l&apos;équation df=0 sera un feuilletage en sphères

sur Sn — {5, N}. La forme de contact a est construite d&apos;abord au voisinage des

points (p(S) et &lt;p(N)9 ensuite au voisinage de J.

§4. Parapluies de Whitney (orientés) legendriens. Rang de &lt;P

4.1. L&apos;espace euclidien IR2&quot;&quot;1 est pourvu des coordonnées
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et est orienté par cet ordre. Il est muni de la forme de contact standard:

olq dz — x - du dz -~Yjxid^&apos;

PROPOSITION. Le germe en 0 € Un s K~ * R* de Vapplication

(m, w)

u

x wu
w3

i) présente en 0 une singularité du type &quot;parapluie de Whitney&quot;

iï) transforme les sphères [ ||u ||2 + w2 Cste] en legendriennes pour la structure de

contact a0 0.

Démonstration. Les propriétés du 2-jet de W en 0 sont immédiates à vérifier, et:

W*olq (2 - w)(u du + w dw). O

II suffit de changer de signe de la fonction z(w, w) dans l&apos;expression de W pour
obtenir le deuxième parapluie de Whitney orienté, que l&apos;on notera a o W. Les

sphères concentriques de Un centrées en 0 sont alors transformées en legendriennes

pour la structure de contact associée à la forme âo dz + x • du.

REMARQUE. En gardant l&apos;application W inchangée, on peut noter que la
structure de contact â0 0 induit aussi un feuilletage au voisinage de 0 (singulier
en 0, avec des feuilles difféomorphes à des sphères). Comme on le voit sur la
forme induite W*â0, cette structure a l&apos;inconvénient de ne pas permettre le calcul
d&apos;une intégrale première, et donc du facteur intégrant g qu&apos;il est nécessaire

de contrôler pour s&apos;assurer que 0 sera de rang maximum aux points singuliers
de q&gt;.

4.2. L&apos;application q&gt; : Sn-*R2n~l

II existe une application globale q&gt; : Sn -? U2n ~l dont l&apos;expression locale au

voisinage de S (resp. N) soit, à une translation verticale près, égale à W (resp.
a o W). Plus précisément, soit ns (resp. nN) la restriction à un voisinage de S (resp.
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N) de la projection Sn^U%. Notons

Ws (0, 0, - 2) -h W o %s (germe en S),

WN (0, 0, 2) + a o W o nN (germe en N).

En suivant la démonstration de H. Whitney [Wh], on voit qu&apos;il existe des

difféomorphismes globaux de IR2&quot;&quot;1 et de S&quot; qui, lorsqu&apos;on les compose avec
Ws et WN, donnent les germes en 5 et iV de cpx : Sn-+U2n~l définie par
(px(u, w, t) (w, wu9 2f), ce qui permet de prolonger Ws et WN (restreintes à des

voisinages convenables de S et N) en une application &lt;p définie sur toute la sphère.
On peut aussi prolonger Ws et WN en construisant explicitement une application

(p, par exemple de la manière suivante. Partons de Ws ; à l&apos;aide d&apos;une partition de
l&apos;unité convenable, on prolonge d&apos;abord Ws (restreinte à un voisinage de S (assez

petit) [/ &lt; /,] (avec — 1 &lt; tx &lt; 0)) à un voisinage plus grand [t &lt; t2] (tx &lt;t2&lt; 0), par
une application dont l&apos;expression contient un terme de la forme — k(t) • w3/3, où A

est une fonction identique à 1 (resp. 0) pour t voisin de tx (resp. t2); une deuxième

partition de l&apos;unité permet de prolonger encore l&apos;application ainsi obtenue en ayant,

pour t &gt; t3 (t2&lt;t3&lt;0), l&apos;expression de q&gt;x. On complète la construction par
symétrie, en exigeant que cp o a a o q&gt;, où désigne Finvolution de changement de

signe sur la dernière coordonnée, de Sn a Un+l ou de U2n~l.

Ces opérations de prolongement peuvent se faire en n&apos;affectant, par les partitions

de l&apos;unité, que la dernière fonction coordonnée z(w, w, /); la courbe A des

points doubles de q&gt; est toujours l&apos;image du cercle [u 0], privé des points S et N.

NOTATIONS. On convient de noter T, (resp. f2) le demi-cercle [u 0; w &lt; 0]

(resp. [m 0; w &gt; 0]). Le germe de sous-variété (le long de A) que l&apos;on obtient en

prenant l&apos;image par &lt;p des voisinages de F, (j 1, 2) est désigné par Er

4.3. Rang de $

Aux points singuliers de cp, le range de # (ç, g) est égal à n si dg n&apos;est pas

nulle sur le noyau le l&apos;application tangente Tcp. Remarquons que ce rang dépend de

la structure de contact a 0, et non pas de la forme a.

Le rang en 0 de l&apos;application (W,g) : U&quot;-+ U2n définie par W*a0 (l/g)df, pour
l&apos;intégrale première/(w, w) ||w||2 + w2, est égal à n. En effet, le noyau de TW(0)
est engendré par d/dw9 et g(w, w) 2/(2 - w). Il est facile de vérifier que ce rang ne

dépend pas du choix de l&apos;intégrale première.

Avec la construction faite en 4.2, &lt;P sera donc une immersion.
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§5. Prolongement de la structure de contact a un voisinage de la courbe des

points doubles

L&apos;application q&gt; construite en §4 est définie, au voisinage du point S, par
l&apos;expression:

/ w3\
(p(u, w, i) 1 m, wu, -2 + ||w||2 + w2- — J.

Pour £ &gt; 0 proche de zéro, la résolution de l&apos;équation en w:

w3

donne deux fonctions w}{Q (j 1, 2; w, &lt;0&lt; vv2), définies pour C^]0, CoL Qui

permettent de décrire la nappe I} a U2n ~l par les n — 1 équations

5.1. Premier prolongement

Les fonctions w, (Q sont prolongées de manière à rejoindre des constantes, avec
la condition w, &lt; 0 &lt;w2; on peut par exemple astreindre Wj à vérifier, pour Ç voisin
de Ci (Co&lt;Ci&lt;2):

-1
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Ceci permet de prolonger les nappes Z/. on définit £, par les équations (E) avec
les fonctions w, prolongées. Notons que ïx et ï2 restent transverses, et que
l&apos;intersection ïx u £2 est un segment vertical sur l&apos;axe des z. La structure de contact
&lt;xo 0 induit un feuilletage sur £J9 car w est composée avec une fonction de

H2

5.2. Deuxième prolongement

On fait &quot;pivoter&quot; les deux nappes autour de l&apos;axe vertical, au-dessus d&apos;un petit
segment, afin de rejoindre respectivement [x 0] et [u =0]: plus précisément, on
prolonge Ex et I2 de manière à ce qu&apos;elles vérifient respectivement les systèmes

d&apos;équations:

Sx : cos y(z) • x -h sin y(z) • u 0

S2 : -sin y(z) • x + cos y(z) • m 0

où y est une fonction ayant l&apos;allure suivante:

avec: y(z) tc/4 au voisinage de z1 Ci — 2

0 au voisinage de z2 (Zi &lt; z2 &lt; 0).

La structure de contact ao 0 induit toujours un feuilletage sur

Pour z ^z2, nous avons maintenant

Si : x 0 ï2 : m 0

avec la forme de contact (xo dz — x - du.
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5.3. Troisième prolongement (Pour n impair)

Les équations de la nappe £x restent inchangées. La nappe £2 est prolongée
en gardant ses équations: u2 • • • un _, 0, et en modifiant sa première équation

par le choix, dans le 2-plan [x 0, u2 • • • un _, 0], d&apos;une courbe
A =£x\j£2 ayant un nombre pair de points de contact avec le champ horizontal
[dz 0], et d&apos;une &quot;inclinaison&quot; de la nappe, de manière à ce qu&apos;elle reste transverse

à ce champ horizontal, et donc à la structure de contact: en effet, au
voisinage de chacune des &quot;boucles&quot; formées par la courbe A, la forme de contact
est prolongée soit par Oq, soit par â0. Le prolongement par â0 se fera après avoir
effectué un demi-tour dans chaque 2-plan de coordonnées (x,,xl+l) (pour i
impair) au-dessus de petits segments verticaux encadrant la boucle concernée, afin
de passer de a0 à &lt;z0, et de revenir ensuite à a0. Précisons les détails de cette

opération.
Soit h : Ul{ fZ

-&gt; IR une fonction de rang 1, définie pour z2 ^ z ^ z3 (z2 &lt; z3 &lt; 0),
telle que la courbe A d&apos;équation h(ux, z) 0 ait l&apos;allure représentée sur la figure:

h&lt;0 h&gt;0

avec les propriétés suivantes:

i) la courbe A est transverse au feuilletage horizontal, sauf en deux points, où
le contact est d&apos;ordre un. En ces deux points de contact, Cx et C2, les

abscisses a et b sont non nulles

ii) la fonction h est telle que h(ux,z) ux lorsque z voisin de z2 ou de z3, et
h(ux, z) —ux sur un voisinage d&apos;un point (0, z2) situé, sur A, entre les deux

points de contact Cx et C2.
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On considère dorénavant A dans Rj^-l. En juxtaposant plusieurs exemplaires
de cette portion de courbe, nous obtenons une courbe A qui a un nombre pair
arbitraire de points de contact C,,..., C2m avec le feuilletage horizontal dz 0,

pour z2 &lt;&gt; z &lt;&gt; z3. La numérotation des Ck est faite dans l&apos;ordre du parcours de A,
de &lt;p(S) vers cp(N).

Pour fixer les idées, on convient de choisir h de manière à ce qu&apos;en tout point
de contact Q, on ait (dh/dz)(Ck) &lt;0.

Chaque point de contact Ck est situé sur une boucle de A, et celle-ci est

encadrée par deux segments verticaux Ik_l et Ik9 au voisinage desquels

h(uï9z) ±ux. Choisissons une fonction &quot;inclinaison&quot; k(uuxlyz\ strictement

positive en chaque point de contact (il sera expliqué en Remarque 1 pourquoi
cette condition de positivité.. définie sur un voisinage de A, et décrivons la

deuxième nappe (pour z2&lt;*z ^ z3) par les équations:

h{uuz -k(uuxuz) Xj) =0,

w2 •• !/„ _, =0.

La structure de contact ao 0 induit encore un feuilletage sur elle. Il est

régulier du fait que k ^ 0 aux points de contact. La structure de contact â0 0

induit, elle aussi, un feuilletage. Au voisinage de chaque segment vertical de A, la

nappe S2 se définit par les équations: u 0, et ces deux structures de contact

induisent donc le même feuilletage sur cette nappe (les feuilles sont les niveaux

z C5te).

Il est possible de prolonger la forme de contact jusqu&apos;au niveau [z z3] en

choisissant arbitrairement a a0, ou a â0, au voisinage de chacune des boucles

de A. Le raccord est effectué en faisant subir un demi-tour à la structure symplectique

définie par d&lt;x sur [a =0]: explicitons la forme de contact au voisinage l&apos;un

segment vertical 4, sur lequel z&apos; £ z ^ z&quot;, dans le cas où a a0 (resp. â0) pour z

voisin de z&apos; (resp. z&quot;):

(n-O/2
a dz - Ya (cos ^(z) &apos; *2, -1 + sin MO) • *2«) du2l _

+ - sin n(z) • x2l _ + cos /x(z) • x2l) du2l

où pi est une fonction nulle au voisinage de z&apos;, et égale à un multiple d&apos;ordre

impair de n au voisinage de z&quot;:
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Si on a fait le choix a â0 (resp. Oq) pour z voisin de z&apos; (resp. z&quot;), il est facile
d&apos;imaginer une fonction \i convenable.

Pour fixer les idées, on termine ce troisième prolongement avec a a0 pour z

voisin de z3, en faisant encore un &quot;demi-tour&quot; au-dessus du segment vertical Ilm, si

on a fait le choix a â0 sur la boucle contenant le dernier point de contact C2m.

REMARQUE 1. Il est possible aussi de faire le prolongement ci-dessus avec

une fonction k dont on exige seulement qu&apos;elle soit non nulle aux points de contact.
Dans ce cas, considérons un difféomorphisme D d&apos;un voisinage de A tel que
D(u, x, z) (w, — jc, z) au voisinage de chaque boucle contenant un point de contact
en lequel k &lt; 0, et égal à l&apos;identité au voisinage des autres boucles ainsi que pour
z proche de z2 ou z3. Un tel difféomorphisme existe: il suffit de faire un (nombre
impair de) demi-tour(s) dans chaque 2-plan de coordonnées (xnx, + x) (pour i
impair), au-dessus de segments verticaux encadrant les points de contact où k est

négative. Ce difféomorphisme D transforme la deuxième nappe en une nappe dont
l&apos;inclinaison est positive en tous les points de contact, et a0 (resp. â0) en &lt;x0 (resp.
a0) au voisinage des boudes où l&apos;inclinaison a changé de signe.

REMARQUE 2. Par une homotopie sur la fonction k à travers des fonctions
non nulles aux points de contact (de manière à ce que la structure de contact
induise un feuilletage régulier sur les nappes à chaque instant), nous arrivons à une
inclinaison constante égale à +1. Cette homotopie peut s&apos;interpréter, via une

isotopie de U2n ~l ramenant les deux nappes à une position fixe et ne modifiant que
la région z2&lt;z&lt;z3, comme une homotopie sur la forme de contact, les deux

nappes restant fixées, à travers des formes de contact induisant un feuilletage
régulier sur les nappes.

REMARQUE 3. Deux points de contact consécutifs en lesquels on a fait le

même choix pour la forme de contact peuvent être supprimés par une homotopie.
Plus précisément, supposons par exemple que a a0 au voisinage de deux boucles

consécutives de A (le calcul avec dë0 est analogue). Par une première homotopie (cf.
Remarque 2), on arrive à une deuxième nappe dont l&apos;inclinaison ne s&apos;annule pas. Si
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la fonction k n&apos;a pas de zéros, et si on fait une homotopie sur la fonction h (à
travers des fonctions de rang un) de manière à effacer les deux points de contact, la
structure de contact a0 0 induit sur la deuxième nappe un feuilletage régulier à

chaque instant. Comme précédemment, cette déformation de la deuxième nappe
peut se traduire, via une isotopie, par une homotopie sur la forme de contact.

5.4. Quatrième prolongement

Rappelons que n est impair dorénavant.
Pour z3 ^ z ^ z4 (avec z3&lt;z4= -z2), les équations des deux nappes restent

ïx : x 0 £2 : u 0

mais la structure symplectique subit un dernier demi-tour: on prolonge la forme de

contact a en utilisant la formule donnée dans le &quot;troisième prolongement&quot;, avec une
fonction \i égale à 0 (resp. n) au voisinage de z3 (resp. z4). Dorénavant, a =â0.

Pour z ^ z4= —z2, les deux nappes ainsi que la structure de contact sont
complétées avec l&apos;image, par la symétrie &lt;j(u9x,z) =(m, jc, — z), de la partie déjà
construite, restreinte à z &lt;&gt; z2. La forme de contact est donc prolongée par â0.

5.5. Il reste à choisir un difféomorphisme de R2&quot;&quot;1, égal à l&apos;identité pour z
voisin de ±2, qui transforme I} (cf. §4, Notations) en £3 (7 1, 2). Les choix faits
dans la partie &quot;troisième prolongement&quot; déterminent alors une forme de contact,

que nous noterons encore a, au voisinage de la courbe des points doubles de (p.

L&apos;équation a 0 définit un feuilletage (singulier en S et N) au voisinage du
cercle F dans Sn. Les feuilles proches de S et N sont les niveaux [t Cste\

L&apos;étape suivante (§6) consiste à prolonger correctement le feuilletage à la sphère:

il faut qu&apos;il ait une intégrale première telle que la courbe d&apos;holonomie associée soit
de pente ^ 1 (cf. §3).

5.6. Nota

II est possible de reconnaître à la source (sur la sphère) le choix qui a été fait

pour le forme de contact (a0 ou â0) au voisinage d&apos;un point de contact Ck de A (cf.
§5.3, troisième prolongement), en examinant les paramétrages y, et y2 (choisis tels

que q&gt; oyx (p oy2) dans la variété feuilletée, au voisinage des points &lt;p~l(Ck).

Lorsque k est impair, le choix de a0 donne un feuilletage dans lequel les courbes y,
et y2 peuvent se représenter, par rapport aux feuilles, de la manière suivante (qui se
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traduit, sur la courbe d&apos;holonomie associée à une intégrale première (du feuilletage
partiel) ayant son minimum en S, par une pente décroissante au voisinage du point
stationnaire associé; voir §3.3.):

-N2

holonomie

Des points identifiés par &lt;p sont marqués:

Pour le choix de â0 (avec k impair), le parcours de F2 est accéléré, au lieu d&apos;être

ralenti: la pente de la courbe d&apos;holonomie est croissante au voisinage du point
stationnaire.

Lorsque k est pair, la description correspondante est facile à déduire de ce qui
précède.

6. Prolongements du feuilletage à S&quot; et du fibre F au-dessus de &lt;p{Sn)

6.1. Prolongement du feuilletage
6.1.1. Nous tordons d&apos;abord F de manière à faire coïncider les feuilles, définies

à son voisinage, avec les niveaux [t Cste]: il existe un difféomorphisme (global) S

de Sn, égal à l&apos;identité au voisinage de S et de N, tel que l&apos;équation S* dt 0

définisse le feuilletage donné sur un voisinage de F.
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8(D

A un tel difféomorphisme ô correspond une courbe d&apos;holonomie, associée à

l&apos;intégrale première t, par exemple (cf. §2).

6.1.2. PROPOSITION. Le difféomorphisme ô peut être choisi de manière à

obtenir une courbe d&apos;holonomie dont la pente est strictement supérieure à un.

Démonstration. Remarquons d&apos;abord que cette pente est &gt; 1 au voisinage des

deux extrémités. En effet, si

(&lt;p o^-1)*a =-dt
g

(où a est choisie comme en §5), le rang de (&lt;p ° ô~\g) est égal à n aux points S et

N (cf. §4), ce qui nous assure que la pente de la courbe d&apos;holonomie ne prend pas
la valeur 1 au voisinage des deux extrémités (cf. §3). De plus, l&apos;équation (pour
h&gt;! &lt; 0 &lt; w2 proches de zéro)

W*
H&gt;9

-y Wï

montre que w2&gt; -Wj. C&apos;est l&apos;équation des points doubles de cp au voisinage de S

et N: les points (0, wx) et (0, w2) ont la même image par le modèle local W décrit

au §4.

L&apos;intégrale première / a un minimum au point S. Pour des paramétrages yx et y2

de T, (w &lt; 0) et de T2(w &gt; 0) comme au §3, nous obtenons toy2&gt;toyx (pour y,

proche de S)
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En revanche, comme la fonction t a un maximum au point N,

t o y2 &lt; t © y, (pour y, proche de N).

La courbe d&apos;holonomie H (t °yl9t °y2) a donc, près de ses extrémités,
l&apos;allure suivante:

Etant donné un difféomorphisme ô comme en 6.1.1, nous pouvons maintenant
modifier le feuilletage [t Cste] en &quot;comprimant&quot; suffisamment les feuilles dans
des cylindres Dnl x [0, 1] feuilletés par les Dnl x {point}, ce qui revient (mod-
ulo un difféomorphisme de la sphère) à modifier ô en gardant le feuilletage
inchangé, de manière à obtenir une courbe d&apos;holonomie dont la pente est strictement

supérieure à en tout point:

Le feuilletage donné au voisinage de F est ainsi prolongé à toute la sphère S&quot;,

la fonction f=t&lt;&gt;ô en est une intégrale première, et la courbe d&apos;holonomie

associée a les propriétés voulues (cf. §3).
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6.2. Prolongement du fibre

Considérons une structure de contact a 0 (comme au §5) définie sur un
voisinage (tubulaire, assez petit) v- de J &lt;p(F), et un feuilletage df=0 sur S&quot;1,

singulier en N et S seulement, qui prolonge le feuilletage &lt;p*a=0. L&apos;équation

a =0 définit, dans le fibre tangent TU2n~l restreint à v-, un sous-fibré F de rang
In —2, transverse à I q&gt;(Sn) au-dessus du bord d{vc\Z). Il se prolonge donc
au-dessus de £\t&gt;, de manière à ce que FnTI soit le fibre tangent aux feuilles

(vues dans I). 111 suffit de prolonger un sous-fibré supplémentaire de TE (dans
riR2&quot;&quot;1) que F contient au-dessus du bord

§7. &quot;Indice de Maslov&quot; sur la courbe des points doubles

Revenons à la situation générale présentée en §1, pour une application générique

comme en §2, q&gt; : Mn-+M2n~l. Soient A une courbe de points doubles
aboutissant aux images de deux points-parapluie S et N, et Fl9 F2 les deux

composantes connexes de cp~\A). Le feuilletage q&gt;*a 0 est régulier au-dessus de

FxuF2 (cf. §1 Remarque 2). Sa restriction aux deux courbes Fx et F2 fournit
au-dessus de A deux sous-fibrés de rang n — 1, Tx et T2, du fibre F défini par
oc=0.

7.1. Prolongement aux extrémités

Supposons qu&apos;au voisinage de S et AT, l&apos;angle entre les feuilles et F} reste

supérieur à une constante &gt;0 (j 1, 2). C&apos;est toujours le cas, par exemple, si le

feuilletage a un centre non dégénéré en S et iV, en particulier pour les constructions

de §5. Sous cette hypothèse, les champs de (n — 1)-plans 7\ et T2 ont une

limite commune en cp(S) (resp. &lt;p(A0): l&apos;image de Tq&gt;(S) (resp. Tcp(N)). Comme la
forme &lt;p*&lt;x est complètement intégrable, da est nulle sur Tx et T2 (au-dessus de

l&apos;adhérence J, par continuité). On peut donc calculer Yindice de Maslov de T2 par
rapport à Tu sur J, de manière analogue à ce qui se fait d&apos;habitude au-dessus
d&apos;une courbe fermée, pour deux sous-fibrés lagrangiens d&apos;un fibre muni d&apos;une

structure symplectique ([Ma], voir aussi [Arl]).
Supposons, de plus, que M soit orientable. Le choix d&apos;une orientation du

feuilletage définit une orientation de T, et T2. Si les singularités du feuilletage en 5
et N sont non dégénérées (ce qui est le cas en §5), alors les orientations de Tx et

T2 sont opposées en q&gt;(S), ainsi qu&apos;en q&gt;(N).
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7.2. Indice de Maslov

Rappelons (dans le cas orienté) comment le calcul d l&apos;indice de Maslov peut se

faire, en l&apos;adaptant à la situation décrite en 7.1.

Soit J une structure complexe sur le fibre F (au-dessus d&apos;un voisinage de J),
adaptée à la structure symplectique dot. sur F, c&apos;est-à-dire telle que

dtx(X, JX) &gt;0siX*0

([G4]). D&apos;après le théorème de Frobenius, les sous-fibrés Tx et T2 sont lagrangiens

pour da, et donc totalement réels pour J.
Sur un espace vectoriel F (de dimension paire 2p) muni d&apos;une structure

complexe J, identifions deux bases (complexes) de F si la matrice de changement de

base est réelle et de déterminant positif. Un p-plan réel orienté T s&apos;identifie

naturellement à une telle classe d&apos;équivalence. Si Tx et T2 sont peux p -plans réels

orientés, représentés chacun par une base, le déterminant de la matrice M eGl
(p, C) de changement de base (complexe) de F, projeté sur le cercle S1 par la

projection radiale &quot;argument&quot;, ne dépend plus des bases de Tx et T2 choisies.

En revenant aux deux sous-fibrés réels (de rang n — 1) Tx et T2, au-dessus de J,
nous obtenons ainsi une application

Détj(T2/Tx):Â-+Sl

qui prend la valeur — 1 aux points cp(S) et cp(N).
L&apos;espace des structures complexes adaptées à da est contractile [G4]. Le degré de

l&apos;application Détj (T2/Tx) est donc indépendant du choix de /. C&apos;est ce nombre que
nous appellerons indice de T2 par rapport à Tx le long de J (on convient que Â est

parcouru de q&gt;(S) vers (p(N)).

7.3. La projection p : T2-+JTX

Comme Tx est un sous-fibré totalement réel de F (au-dessus de J), il est

transverse à son image JTX. Considérons la projection/? : T2-+JTX parallèlement à

Tx. Comme les deux nappes Ix et I2 sont transverses, le rang de p sur A égal à

n — 1, sauf aux points de contact, où il est égal à n — 2.

On suppose que les points de contacts C,,..., Ck9... de F avec A sont en

nombre fini, et d&apos;ordre un.
Les composantes connexes obtenues en enlevant ces points de contact de A (des

arcs ouverts...) sont appelées segments transverses et seront notées &lt;t0, &lt;rk9...

(toutes les numérotations sont faites dans l&apos;ordre du parcours de A, de (p(S) vers cp(N)).
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Au-dessus de ak, Tx est transverse à r2, et p est donc un isomorphisme.
Convenons d&apos;orienter le fibre JTX en transportant par / l&apos;orientation de 7\.

L&apos;isomorphisme p respecte -ou inverse- l&apos;orientation de manière constante au-dessus
de ok. Au point de contact entre ak et ak+u le rang de p est égal àw-2, son
déterminant (relativement à des repères trivialisant les fibres T2 et JTX) change de

signe en passant au-dessus de ok+\.

§8. Calcul de l&apos;indice sur J pour les exemples du §5

Dans les exemples du §5, on convient que Tx (resp. T2) s&apos;obtient en restreignant
le feuilletage (orienté) de Sn — {S, N} au demi-cercle rx (sur lequel w &lt;0) (resp.
r2(w&gt;0)).

8.1. Partons du point cp(S). Il est facile de voir que p inverse l&apos;orientation

au-dessus du premier segment transverse c0: l&apos;expression explicite de q&gt; au voisinage
de S (cf. §4) permet d&apos;en faire le calcul.

En fait, il y a une raison plus générale à ce qu&apos;il en soit ainsi: par la projection
tu sur M2n~2 qui oublie a coordonnée z, les feuilles de I proches de &lt;p(S) se projettent
sur des sphères immergées à un seul point double, qui sont lagrangiennes dans U2n~2

pourvu de la structure symplectique du a dx (la forme induite par dot doco

du a dx est nulle sur chaque feuille, par le théorème de Frobenius). Ainsi, la

restriction de n o &lt;p à chaque sphère S&quot;~l d&apos;équation

||M||2 + w2 r2= 1 -t2

(r petit) est une immersion lagrangienne (à un point double, ce qui est immédiat à

vérifier).
Rappelons que la dimension n est impaire, dans la construction de §5. L&apos;intersection

en un tel point double est négative, lorsque U2n~2 est orienté par l&apos;ordre

&quot;î &gt;••&gt; ww_ X! ,...,*„_,: si TJ (r) et T2(r) sont les images orientées, par l&apos;immersion

lagrangienne, des plans tangents à la sphère orientée S&quot;~l aux points w —r et w

+ r, alors l&apos;orientation donnée par rl(r)®x2(r) est l&apos;opposée de celle de R2n~2.

Remarquant que ^(r) est transverse à t2(^) quels que soient r, s voisins de zéro, on

en déduit que si wx ,w2 (wx &lt; 0 &lt; w2) sont tels que &lt;p(0, wx, r,
&lt;p(0, w2, t2\ l&apos;orientation donnée par t,( - wx) ©t2(w2) est encore l&apos;opposée de celle

de R2&quot;-2.

La structure complexe Jo, définie sur U2n~2 par
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se relève en une structure complexe, qui sera encore notée Jo, sur le fibre F
au-dessus d&apos;un voisinage de cp(S) (sur lequel F est défini par &lt;x0 0); cette structure
complexe est évidemment adaptée à da0. Elle se prolonge en une structure complexe

/ adaptée à da, au-dessus de A. A cause de la connexité de l&apos;espace des structures
complexes adaptées à une 2-forme symplectique (algébrique) sur un espace vectoriel
([G4]), nous pouvons supposer qu&apos;au voisinage de q&gt;(N), J est le relèvement sur F
de -Jo, qui est adaptée à dx a du (au voisinage de cp(N), a &lt;x0 dz + x • du).

Au point de A (proche de cp(S)) considéré, l&apos;orientation de F donnée par Tx © T2

est donc l&apos;opposée de celle donnée par Tx @JQTX. Ceci signifie que p inverse
l&apos;orientation, au-dessus de ce point du segment transverse a0. Là encore, la
connexité de l&apos;espace des structures complexes adaptées à une 2-forme symplectique
donnée montre que cette propriété est indépendante du choix de la structure
complexe adaptée.

On déduit de ce qui précède et de §7.3 le

LEMME. L&apos;application p : T2-+JTX inverse l&apos;orientation au-dessus des segments
transverses d&apos;indice pair, et la respecte au-dessus des autres. O

8.2. Le cas n 3

LEMME 1. (Pour n 3). Aux points de contact de A avec les feuilletages des

nappes lp DétJ(T2/Tl)$R. De plus, le signe de la partie imaginaire de DétJ(T2/Tl)
en ces points est indépendant du choix de J.

Démonstration. Choisissons des repères (U\ V1) pour Tl9 (U2, V2) pour T2, tels
qu&apos;au point de contact considéré, on ait Ul U2. En ce point de contact, la matrice

M exprimant (U2, V2) en fonction de (Ul, F1), comme bases complexes de F (pour
la structure adaptée /) est de la forme

G

avec V2 cUl + yJU1 + dVl -h àJVK
Comme Tx et T2 sont lagrangiens, et comme U2= Ul:

0 d(x(U2, V2)=y - d(x(U\ JUl) + ô • d(x(U\ JVl).

Or: doc(U\JUl) &gt;0. Donc ô =0 implique y =0; mais ceci est exclu car V2$TX

(l&apos;intersection Tx n T2 est de dimension un).
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Le signe de la partie imaginaire im Détj(T2/Tx) au point de contact considéré est

indépendant du choix de /, du fait de la connexité de l&apos;espace des structures
complexes adaptées à d&lt;x.

LEMME 2. (Pour n 3). Sur le segment transverse ak9 Détj(T2/Tx) ne prend pas
la valeur (-1)*+1.

(Rappel: Tx et T2 sont orientés par une orientation du feuilletage de la sphère).

Démonstration. Choisissons un repère (orienté) (U\ VJ) pour T} (j 1, 2). Soit
M la matrice exprimant (U2, V2) en fonction de (U\ F1), comme bases complexes
de F. Alors la matrice P de p (cf. §7.3), relativement aux repères (U2, V2) de T2 et

(JU\ JVX) de JTX, est la partie imaginaire de M.
Supposons qu&apos;en un point du segment transverse ak, on ait DètJ(T2ITl) 1.

Alors M est de la forme:

{A&apos;BeC)

et donc la matrice P est de la forme:

-a

Son déterminant est négatif, ce qui signifie que p inverse l&apos;orientation. D&apos;après

le Lemme 8.1, l&apos;indice h est alors pair.
De même, si Dètj(J2\Tx) -1 en un point du segment transverse ak, alors p

respecte l&apos;orientation, et k est impair. O

PROPOSITION (n =3). Le degré de Détj^/T^ sur À est déterminé par le

signe de sa partie imaginaire aux points de contact et au voisinage des extrémités

de Â.

Démonstration. Il suffit d&apos;appliquer les deux lemmes précédents, en se souvenant

que Détj(T2/Tx) -1 aux points cp(S) et cp(N) (cf. §§7.1, 7.2).

LEMME 3. (en dimension générale n). Avec la construction de §5, la partie

imaginaire de Détj(T2/Tx) est négative au voisinage de cp(S) (où oc &lt;x0), et positive

au voisinage de (p(N) (où a â0).
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Démonstration. Avec les notations de §5, choisissons un repère (orienté)
(UJl9...,UJH_l) de Tj (y l,2) tel qu&apos;au point &lt;p(0, wu /,) q&gt;(0, w2, t2) (avec

wx &lt; 0 &lt; w2) proche de cp(S):

9wJ9tJ)—= — + wJ —J ou, ôut oxt

pour tout (y, i) # (2, 1), et:

Les orientations de Tx et T2 sont ainsi induites par une orientation du feuilletage.
La structure complexe /0 (§8.1) est adaptée à da d&lt;x0 au voisinage de

Au-dessus des points de A, elle vérifie

J0
ôut dxt

La matrice M e Gl (n — 1, C), exprimant
{U))^n_u s&apos;écrit:

M=-

I

0 1

n_i dans la base complexe

Comme w, &lt;0&lt;w2, la partie imaginaire du déterminant de M est négative

lorsque wx et h&gt;2 sont assez petits.
Au voisinage de q&gt;(N), nous pouvons reprendre les mêmes expressions pour les

Uj. Mais la forme de contact est â0, à laquelle est adaptée -/0. Le germe de

Dét_Jo(T2/Tl) en &lt;p(N) s&apos;obtient donc par conjugaison à partir du germe de

DétjQ{T2ITx) en &lt;p(S), ce qui donne un partie imaginaire positive.

COROLLAIRE. Pour les exemples de §5 dans le cas n 3, soit ek e { - 1, + 1}

le signe de la partie imaginaire de Détj(T2/Ti) au point de contact

Ck(k 1,..., 2m). Le degré de Détj(T2/Tx) sur A est égal à
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8.3. REMARQUE. Dans le cas d&apos;une dimension impaire n &gt; 3, le calcul com-
binatoire du degré ne peut plus se faire comme en 8.2. En choisissant des repères
convenables pour Tx et T29 l&apos;indice de T2 par rapport à Tx sur A se calcule
néanmoins, et sa valeur est

où ek +1 (resp. — 1) si a a0 (resp. â0) au point de contact Ck.

§9. Etude de la trivalité d&apos;un fibre complexe (F, J)

La dimension n est impaire.
Partons d&apos;une forme de contact a, définie au voisinage de Â comme au §5, égale

à a0 près de q&gt;{S) et à â0 près de (p(N). Soit J une structure complexe adaptée à doc;

nous pouvons la choisir égale à JQ (resp. —Jo) au voisinage de q&gt;(S) (resp. (p(N)).
Supposons, pour le moment, que / se prolonge à tout le fibre F de manière à ce

que le feuilletage soit totalement réel en tout point. Le fibre T &quot;des (n — 1)-plans

tangents aux feuilles&quot; est un sous-fibré (totalement réel) du fibre cp*F au-dessus de

S^XIS, TV}. Nous discutons maintenant la trivialité de F, comme fibre complexe,
au-dessus de E &lt;p(Sn).

La base I est, homotopiquement, un bouquet de sphères Sn v S2: la sphère S2

correspond â l&apos;image (p(D) d&apos;un disque Z), dans S&quot;, dont le bord est le cercle F.
Comme nn_x{U{n — 1)) 0 et nx(U{n — 1)) Z, il suffit d&apos;analyser F au-dessus de

LEMME. Soit F un fibre complexe de rang réel 2q au-dessus de S2. Si F contient

un sous-fibré totalement réel R de rang q, alors F est trivial.

Démonstration. Le groupe structural de F se réduit alors à SO(q) c SU(q). Or
0. O

Au-dessus de Â &lt;p(F), nous disposons d&apos;un sous-fibré totalement réel de F: le

sous-fibré Tx par exemple. Nous étudions la possibilité de prolonger une telle donnée

au-dessus de toute la sphère q&gt;(D), en la comparant à un autre sous-fibré réel connu,
T, qui a l&apos;avantage d&apos;être prolongé, mais qui a aussi l&apos;inconvénient d&apos;être &quot;multi-

valué&quot; au-dessus de A, et, de plus, d&apos;être non défini au-dessus des points &lt;p(S) et (p(N).
Prenons par exemple pour D le disque [u2 • •• un_x =0; ux ^ 0] dans

S&quot;I [||M||2 + w2 + t2- 1]. La &quot;donnée au bord&quot; choisie est le sous-fibré (orienté)
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R TU au-dessus de Â. On prolonge d&apos;abord le fibre R à des voisinages de

(p(S) et de cp(N) dans Z, afin de pouvoir le comparer au fibre T au-dessus du
bord d&apos;un disque D&apos; un peu plus petit que D, ne contenant pas S et N. Pour
cela, il suffit de procéder par translation horizontale puis relèvement vertical dans

F, car au voisinage de &lt;p(S) (resp. &lt;p(N)\ F est transverse à d/dz, et la projection
verticale sur Mî&quot;~2 de la structure complexe Jo (resp. — Jo) est invariante par
translation.

Plus concrètement, le fibre Tx peut être trivialisé par un repère (orienté)
(Uï9..., Un_x) tel qu&apos;au point &lt;p(0, wu tx) (où tx est voisin de ±1, w^O,
w\ + i\ 1) ce soit l&apos;image par Tq&gt; du repère (d/dux, d/dun_x):

d dU=+w (/ !,...,/ï-1).
du, ôxË

Le fibre R qui prolonge Tx au voisinage de cp(S) a pour repère

(Uf,..., t/£_i), où f/f (prolongeant Ut) est défini au point (w, jc, z) de l&apos;hyper-

plan [z Cste] contenant &lt;p(0, wx,tx) par

Uf — -h W, — + x, —
5w 5jc 5z

Revenons sur le disque Z), dans 5W. En enlevant de D les points tels que
Mi + w2&lt;e2 (e&lt;0 petit), on obtient une surface D\ bordée par un lacet t, et
au-dessus de laquelle T est défini. On calcule maintenant l&apos;indice de Maslov de

q&gt;*R par rapport à T sur le lacet t dD\ II est formé de quatre chemins, notés

- t7 est tracé sur F, (y 1, 2)

- Ts (resp. Tjy) est tracé près de S (resp. AT), sur [u\ + w2 e2]

- le sens de parcours de t, est choisi de 5 vers N, ce qui détermine celui de t.

On note de la même manière ces chemins et leurs images par q&gt;. L&apos;orientation

de T coïncide avec celle de &lt;p*Tx, au-dessus de rl.

- Le long de xl9 on a T &lt;p*Tx cp*R9 et donc Dètj((p*RIT) 1.

- Le long de t2, on a T q&gt;*T2 et R 7\. Donc Détj(q&gt;*R/T) est le

conjugué de Détj(T2/Tx) =Détj(T/q&gt;*R) (restreint à t2). Remarquons que t2 est

parcouru de N vers 5.



Une structure symplectique sur IR6 653

- Le long de xS9 il faut faire un petit calcul. Dans Sn9 au-dessus de xS9 le fibre
T a pour repère (U{,.. !/£_,), avec:

dw

La matrice M qui exprime (Tcp - U{9... 9Tq&gt; - £/J_,) en fonction de

(J7f,..., £/£_!&gt; (comme bases complexes) au point q&gt;((ul9 0,..., 0), w, f) s&apos;écrit:

— w 4- i(«î — w2)

0

1 + nv

iw

Dans l&apos;expression du déterminant de M, le facteur (l—iwx)n~l (1 + âv)&quot;&quot;2

dépend de (ux, w); mais, sur le chemin xS9 son argument reste petit (de l&apos;ordre de

(In — 3)e). Par ailleurs, le facteur — w + /(w2 — w2) est imaginaire pur seulement si

w 0; mais il est alors égal à i • u\. La projection radiale de dé/ M sur S1 évite donc
la valeur — i, quand on parcourt t5. Elle trace sur le cercle un chemin allant d&apos;un

point proche de —1 jusqu&apos;au point +1.
Ainsi, sur le chemin xS9 la variation de l&apos;argument de Détj(T/&lt;p*R) est proche

de —1/2 tour. Comme Détj((p*R/T) parcourt le chemin conjugué, sa variation est
(d&apos;un peu plus) de +1/2 tour.

- Le long du chemin xN9 on peut prendre les mêmes expressions pour les

repères que sur t5, mais la structure complexe est -/0- La matrice obtenue est donc
la conjuguée de la matrice sur t5, et Détj(cp*R/T) décrit le chemin conjugué du
chemin correspondant à xs; il faut encore en inverser le sens de parcours, car sur

tn, w varie de -eà + e.

En conclusion, nous pouvons énoncer la

PROPOSITION. Si le degré de Détj{T2lTx) sur A est égal à -1 (en orientant A

de q&gt;(S) vers q&gt;(N))9 alors l&apos;indice de Maslov du sous-fibre réel &lt;p*R par rapport à T
est nul sur ÔD\ et donc cp*R se prolonge au-dessus de D&apos;. O
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D&apos;après l&apos;expression de ce degré donnée à la fin du §8, le prolongement est

possible si et seulement si

E (-l)*+16*=-n-l.

II faut donc au minimum 2m n + 1 points de contact. De plus, avec n + 1

points de contact, la solution est unique: nécessairement, ek — 1)*.

§10. Prolongement de la structure complexe

10.1 Etat des lieux

Nous avons donc un fibre F au-dessus de cp(Sn) I (n impair), construit
comme en §5 et §6, pour une forme de contact a au voisinage de Â telle

que 2*lii — l)*e* n + 1. Il s&apos;agit de prolonger une structure complexe adaptée /
(définie au-dessus d&apos;un voisinage de S) à tout le fibre F, de manière à laisser T
réel.

Le complémentaire, dans Sn9 d&apos;un voisinage tubulaire de F est difféomorphe à

D2 x Sn~2; son image (plongée) par q&gt; dans R2*&quot;1 est encore notée D2 x Sw~2. De

même, on identifie T au-dessus de D2 x Sn~2 et son image, en les notant de la
même manière.

Soit (Ul9..., Un_i) une trivialisation de T au-dessus de D2 x Sn~2: il suffit

par exemple de paralléliser les feuilles de Sn\F qui sonit proches de S (elles sont
difféomorphes à Sn~2 x ]0, 1[), et de procéder par homotopie.

On considère le fibre /, au-dessus de D2 x S&quot;1&quot;2, dont la fibre au-dessus d&apos;un

point est l&apos;espace des structures complexes sur F qui laissent T réel en ce point, et

qui donnent à F une orientation compatible avec celle que donne /0, près de 5.

Homotopiquement, c&apos;est un fibre principal de groupe SO(n — 1). Plus précisément,

pour la structure complexe / que nous voulons prolonger, il existe une métrique
sur F, au-dessus de D2 x Sn~2, telle qu&apos;au-dessus du bord dD2 x Sn~2:

TUT et IJX|| ||Jir|| pour tout XeF. (1)

On considère le sous-fibré f de $ des structures complexes qui vérifient (1)
dans chaque fibre de F au-dessus de D2 x Sn~2; c&apos;est un fibre principal de groupe
SO(n — 1): une structure complex j étant donnée, on obtient les autres &quot;en

tournant&quot; dans le sous-espace jT. L&apos;action du groupe SO(n — 1) est bien définie

car Test trivialisé. L&apos;inclusion /&apos;&lt;+/ est une équivalence d&apos;homotopie.
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Pour n 3, /&apos; est un fibre en cercles au-dessus de D2 x S1, et / est donc
trivial. Mais il est aussi trivial en dimension générale n impaire, en particulier parce
qu&apos;il est homotope au fibre /0 des structures complexes sur le fibre trivial
horizontal Fo, défini par dz 0 dans IR2«-i» qui laissent réel le sous-fibré To associé

par &lt;p0 au feuilletage dt 0; en effet, les images &lt;po([&apos; Cste\) sont des sphères
lagrangiennes dans Rj1*&quot;2 x {/}, et la structure complexe Jo (remontée sur Fo) est
donc une section de /0 au-dessus de D2 x Sn~2.

La donnée de /est une section du fibre # au-dessus du bord ôD2 x Sn~2. Nous
comparons cette section J à une section globale /, de /, que nous décrivons
maintenant:

1) On part du fibre complexe (Fo, Jo) au-dessus de (po(Sn), et on le restreint
à D2 x Sn~2 c cpo(Sn). Le fibre /0 associé au feuilletage de D2 x Sn~2, image par
ç0 du feuilletage dt 0, admet la section globale Jo relevée dans Fo, qu&apos;on note
encore JQ.

2) II existe une homotopie qui amène (Fo, To) jusqu&apos;à (F, T\ et telle qu&apos;au-

dessus du bord ôD2 x Sn~2, cette homotopie induise une homotopie sur la structure
complexe: la section Jo de f0 se déforme en une section Jx de /, adaptée à la forme
de contact égale à a0 sur tout le voisinage de la courbe des points doubles, dans la
construction de §5 (voir à ce sujet §4.1 Remarque, en appliquant la symétrie a qui
change z en — z). En effet, dans le &quot;troisième prolongement&quot;, les points de contact
peuvent être effacés par homotopie, si on a choisi a a0 sur toutes les boucles (§5.3,

Remarque 3). L&apos;homotopie inverse introduit donc les points de contact voulus, et

peut se prolonger en une homotopie globale sur le couple (fibre, feuilletage). Par
relèvement d&apos;homotopie, la structure complexe Jx se prolonge en une section

globale de / au-dessus de D2 x Sn~2.

3) La section J (définie au-dessus du bord ÔD2 x Sn~2), s&apos;obtient à partir de /,
&quot;en faisant des demi-tours&quot;. Plus précisément, sur chaque boucle de A où ek — 1

au point de contact Ck9 nous avons remplacé a0 par &lt;x0, en faisant un &quot;demi-tour&quot;

(en fait, un demi-tour sur la structure symplectique da0) au-dessus d&apos;un petit
intervalle /*_, contenu dans le segment transverse Gk_x, puis un deuxième demi-

tour au-dessus de Ik c= &lt;jk pour revenir à la forme de contact a0. Il faut encore un
ultime demi-tour sur le dernier segment transverse (x2m, afin d&apos;obtenir â0 au

voisinage du point &lt;p(N) (c&apos;est le &quot;quatrième prolongement&quot;). Dans le cas où
2m =n + 1 par exemple, avec sk =(-1)* (c&apos;est la solution obtenue en §9) nous

avons à faire un (et un seul) demi-tour sur chacun des intervalles transverses:

-1 +1 -1 +1

cp(S) Io Cj lx C2 I2 C3 I3 C4 I4 cp(N)
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Chaque demi-tour sur la forme symplectique s&apos;accompagne d&apos;un demi-tour sur
les structures complexes adaptées, et, en fait, de deux demi-tours sur la section de

/ au-dessus de dD2 x Sn~2, comme nous allons le voir.
En trivialisant # par la section (globale) Ju la section J correspond à une

application J :dD2x Sn2-+SO(n - 1). Nous pouvons décrire D2 x Sn~2 dans Sn

en faisant &quot;tourner&quot; la surface D&apos; bordée par t (voir §9) autour du grand cercle F
éclaté: on identifie Sn~2 à la sphère [||m|| e, w 0], et D2 x {(e, 0,..., 0)} à la
surface Z&gt;&apos; de §9.

A chaque intervalle Ik c ok correspondent deux intervalles I\ et I\ sur le bord
disque D2 x {u} (u e Sn~2)

M r2

Le bord du disque est orienté comme t=dD&apos;. Sur /£, l&apos;application

J :dD2 x {u} -+SO(n — 1) décrit un chemin de Id (identité) à — Id si k est pair, et
de —Id à Id si k est impair. Les valeurs de / sur II sont alors déterminées. En
dehors des Fk, l&apos;application est constante.

La classe d&apos;homotopie de la restriction de / à dD2 x {w}, dans nx{SO(n — 1)),

est bien sûr indépendante de u.

10.2 Calcul de la classe d&apos;homotopie de J\eD2x{u}

Un repère (Ul9..., Un_x) trivialisant T au-dessus de Sn\T fournit, par restriction

àTjcD2 x {u} (le cercle F est éclaté...), un repère (orienté) (t/7,,..., UJn_l)
de Tj (pour y =1,2). Nous pouvons supposer qu&apos;au-dessus des Ik, J\TX
JTX ± T2; l&apos;orientation est la même si k est impair, et est inversée si k est pair (cf.
§8.1 lemme).

Techniquement, le problème est le suivant: étant donnée la matrice Rt exprimant
(JU\,..., JUln_x) dans la base (JxU\,...9Jl Uxn_x\ il faut calculer la matrice St

de (JU2,..., JU2n__x) dans la base (Jx U2,..., Jx Ul_x), pour un paramètre t sur
l&apos;intervalle Ik.
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10.2.1. Au-dessus d&apos;un intervalle Ik avec k pair, l&apos;orientation de T2 est l&apos;opposée

de celle de JTX. La matrice At exprimant (JXU\,... ,J\U]t_l) dans la base

(U2,..., t/n-i) est donc de déterminant négatif. En revanche, lorsque k est impair,
détA, est positif au-dessus de l&apos;intervalle Ik.

Soit Rt la matrice de {JU) )t dans la base (/, U) Alors RtAt exprime (JU) dans
la base (U2)n et donc - U) dans la base (JU2), (par linéarité de /). Finalement,
la matrice St=A~lR-lAt exprime (JU2\ dans la base (/i£/?),.

REMARQUE. Il est possible de modifier le repère de T au voisinage de

II c dD2 x {u} de manière à avoir, si A: est pair:

au-dessus de 4 c A. Alors

-1

1

et, si k est impair, At Id.

10.2.2. Le /* 3.

LEMME (n 3). Si la classe de J:dD2x{u}-
nulle, alors J se prolonge à tout D2 x S1.

?50(2) dans est

Démonstration. On procède par relèvement d&apos;homotopie, en remarquant que

ti2(SO(2))=0. O

On a 50(2) ^5!, et 7i,(50(2)) sZ. Par construction (§5, troisième prolongement),

Rt décrit un demi-cercle de +Wà -Id (resp. ~Wà -hId) sur 50(2) quand
on parcout /*, si k est pair (resp. impair). Mais alors, R~l décrit l&apos;autre demi-
cercle. Il faut encore conjuguer R~l par la matrice At. Si k est impair, alors

;4, e 50(2). Par conséquent, le chemin A^lR^lAt est homotope (à extrémités

fixées) au chemin J?&quot;1, dans 50(2), et il doit être parcouru de -Id à +W.
Si k est pair, dêtAt &lt; 0, et le chemin A~lR^1 At est le demi-tour non homotope

à celui de R~x ; il est parcouru de +Id à -Id.
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k impair k pair

Rappelons que le sens de parcours de Ik coïncide avec celui de I\ et est l&apos;opposé

de celui de I\.
En conclusion, nous pouvons énoncer le

LEMME (n 3). Dans le décompte final des demi-tours sur 50(2) s S\ Vapport

de Ilull est nul si k est pair, et égal à ± 1 générateur de nx(SO(2)) si k est

impair.

Considérons un exemple de §5 avec 2m points de contact, qui vérifie la condition
de §9 (avec n =3):

£1-£2H-€3- • • -e2m -4

Le nombre des points de contact Ck tels que sk — 1 est alors pair, et donc le

nombre de demi-tours effectués sur un segment Ik d&apos;indice k impair est pair aussi.

La construction de §5 peut donc être faite de manière à ce que le degré de

J : dD2 x {u}-+SO(2) soit nul: if suffit que les deux demi-cercles de SO(2) soient
décrits le même nombre de fois par Rt, su la réunion des Ik d&apos;indice impair.

Exemple. Avec la construction à quatre points de contact, il faut que ek — 1)*

(§9). On fait un demi-tour sur chacun des cinq segments transverses &lt;x0,..., &lt;r4.

Deux d&apos;entre eux sont d&apos;indice impair. Pour pouvoir prolonger /, les deux demi-

tours sur Ix c ax et sur /3 c &lt;r3 doivent être faits en sens opposé l&apos;un de l&apos;autre.

10.2.3. Remarque, en dimension {impaire) n&gt;3

Faisons le parallèle de la discussion précédente en dimension n &gt; 3. On a, cette

fois, nx(SO(n-\))=ZI2.
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Comme SO(n — 1) est connexe, nous pouvons supposer (pour simplifier
l&apos;exposé) que le repère (C/,, ...,£/„_,) de T est choisi tel que, au-dessus de l&apos;un des

disques D2 x {u} (u g Sn~2), la matrice Rt soit de la forme
&gt; 0

~

/cos0, — sin 0A
oùr,=

&apos; &apos;

)eSO(2)
\sin0, cosdt j

Le lacet (Rt)k - (Rt l)k obtenu en suivant le chemin Rt sur /£, puis le chemin R~l
sur /£, est homotope à (n - l)/2 générateurs de ?c,(S0(fi — 1)) (quel que soit k).

Si k est impair, ^4, g SO(n — 1). Donc les chemins R^1 et ,4/~1/Ê;~1v4, sont
homotopes (à extrémités fixées) lorsqu&apos;on parcourt II. En revanche, si k est pair, ils
ne sont pas homotopes.

La contribution de IxkKjI2k9 dans le calcul de la classe d&apos;homotopie de

/ : ôD2 x {m} -+SO(n — 1), est résumée dans le tableau suivant:

n 1 (mod. 4) n 3 (mod. 4)

k pair
k impair

1

0

0
1

Pour les exemples de §5, la condition de trivialité de §9 impose

e, -e2 • • • -s2m -1 -n
Pour n 1 (mod. 4) on a donc I( - l)kek 2 (mod. 4). Le nombre des points

de contact Ck tels que ek — 1 est alors impair. En tenant compte du dernier
demi-tour (sur alm) pour avoir â0 près de q&gt;{N), on a au total un nombre pair de

demi-tours sur des segments transverses d&apos;indice pair.
Pour n 3 (mod. 4), I( — l)ksk 0 (mod. 4). Le nombre des points de contact

Ck tels que ek — 1 est alors pair. D&apos;où un nombre pair de demi-tours sur des

segments transverses d&apos;indice impair.
Nous en concluons que dans tous les cas, la classe d&apos;homotopie de

/ : dD2 x {u} -+SO(n — 1) est nulle dans 7t,(SO(« - 1)). Par relèvement d&apos;homotopie

et comme n2(SO(n - 1)) =0, l&apos;application / se prolonge aux tores pleins de

dimension trois D2 x S\ où Slc,Sn~2. Les groupes d&apos;homotopie nt{SO{n - 1)),

pour i £ 3, donnent des obstructions au prolongement de J. En effet, supposons /
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prolongée à un tore D2 x S1, et considérons un disque Dc+Sn~2 tel que dD S1.

Comme J est imposée sur le bord dD2 x D (par la donnée au bord dD2 x S&quot;1&quot;2),

on obtient une application J définie sur (D2 x dD)u(dD2 x D), à laquelle est

associée un élément de n3(SO(n — 1)).

§11. Cas n =3. Prolongement de la structure de contact

Nous nous plaçons dans le cadre décrit en §§5 et 6, pour une forme de contact
a vérifiant la condition établie en §10: une structure complexe J sur le fibre [a 0],

adaptée à d&lt;x9 est prolongée à tout le fibre F en laissant le sous-fibré T totalement
réel.

11.1. Nous pourvons supposer que J est calibrée par rfa, au voisinage de la
courbe J, c&apos;est-à-dire que la forme bilinéaire (X, Y) *-» da(X, JY) est symétrique
(définie positive) sur chaque fibre.

Soit N le complémentaire d&apos;un voisinage tubulaire de Â dans (p(S3), tel que la

structure de contact a 0 définisse F et tel que / soit calibrée par dot, au-dessus
d&apos;un voisinage du bord dN.

La structure complexe / permet de prolonger doc (éventuellement restreinte à

un voisinage plus petit de ôN...) et une 2-forme différentielle /}, définie en tout
point de N, symplectique sur le fibre F et telle que le sous-fibré T soit lagrangien:
concrètement, il suffît de choisir une trivialisation de T (au-dessus de N) par un
repère (U, V), orthonormé pour la métrique da(., /.), et un champ de vecteurs Z
(sans zéros) transverse à F et prolongeant le champ de Reeb de la forme de

contact a (défini par: olZ 1, i(Z)d(x =0), puis de définir fS sur le repère

(U, V, JU, JV, Z) de TU5 restreint à N par les conditions:

(rappelons que d&lt;x(U, V) 0, du fait que T est un feuilletage

11.2. REMARQUE. Nous pouvons supposer que le champ de vecteurs Z est

tangent à N, parce que la forme de contact a peut être choisie de manière à

induire une forme fermée sur N. En effet, le feuilletage défini au voisinage de dN
dans cp(S3) par l&apos;équation a 0 a une intégrale première. Pour l&apos;inclusion
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i : N c+ M5, écrivons

/?a =-&lt;//.
g

Comme dN est loin de A, dans R5, il existe une fonction G &gt; 0 définie sur U5

telle que i*(G(x) df Le champ de Reeb de Gol est tangent à N. Comme l&apos;intégrale

première/est définie globalement sur N, et n&apos;y a. pas de points critiques (§6), le

champ de vecteurs Z peut être choisi tel que df-Z l. Ainsi, quitte à remplacer a

par Gol:

i*P 0.

11.3 LEMME 1. Au voisinage de tout point de N, il existe une 1 -forme y telle que

i*y df et p dy\N. De plus, la forme y est une forme de contact.

Démonstration. Choisissons, au voisinage du point considéré, des coordonnées

locales (w, v, x, y, t) telles que x\N y\N 0, t\N =/et

La 2-forme P s&apos;écrit:

P =du A(Adx+Bdy)+dv A(Cdx + D dy) + E dx a dy

où A, B, C, D, E sont des fonctions de (m, v, t). Soient jc° Ax -h By, y° Cx + Dy.
Alors p du a dx° + dv a dy° -h E dx a dy. Comme p a p # 0, du a dv a dx° a

dy°\N #0, et donc (m, v, x°,y°, t) sont des coordonnées locales, dans lesquelles P

s&apos;écrit: p du a dx° -h (dv + Fdx°) a dy°, pour une fonction F(m, v, t) convenable.

La forme y u dx° + v dy° + Fx° dy° + dt vérifie les propriétée suivantes:

i+y i*dt df

y A rfy2^ y\N a p2 rf/ a du a dx° a dv a dy° #0. O

Remarquons que y\N n&apos;est pas définie de manière unique: si S est une 1-forme

telle que dô\N 0 et i*ô 0, alors y -h S est aussi solution.
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LEMME 2. Soient (u, v, x, y, t) des coordonnés locales comme dans la démonstration

du Lemme 1. On peut imposer à la forme y de prendre des valeurs données sur
d/ôx et d/dy, le long de N.

Démonstration. D&apos;après la remarque précédente, il suffit de trouver une 1-forme
ô telle que dô\N 0, i*ô 0, avec

où h et k sont deux fonctions, imposées, de (w, v, t). Il suffit de prendre
ô=d(hx + ky).

LEMME 3. Au voisinage de tout point de N, il existe une forme de contact y telle

que i*y df dy\N fi, y\N(JU) =y\N(JV) 0.

Démonstration. C&apos;est un corollaire immédiat des Lemmes 1 et 2.

Evidemment, la forme a vérifie les propriétés du Lemme 3 sur un voisinage de

dN, si on tient compte de la Remarque 11.2.

On peut assembler des formes de contact locales données par le Lemme 3, à
l&apos;aide d&apos;une partition de l&apos;unité subordonnée à un recouvrement (fini) de N par des

ouverts (de l&apos;espace ambiant) convenables. La forme de contact a (éventuellement
restreinte à un voisinage plus petit de S) peut ainsi se prolonger à un voisinage de

(p(S3)9 avec toutes les propriétés voulues pour la forme induite sur S3. Si, de plus,
la condition de trivialité du fibre complexe (F, J) est satisfaite (cf. §9), cette forme
de contact peut être prolongée à IR5 par le A-principe de M. Gromov [G5].
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