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Small eigenvalues on Y-pieces and on Riemann surfaces

PAUL ScHMUTZ

I. Introduction

We treat eigenvalues of the Laplacian on Riemann surfaces whose Gauss
curvature is identically —1. We label the eigenvalues in ascending order:

03113125133"'

Each eigenvalue is repeated according to its multiplicity.

We define as small eigenvalues those which are less than 1. In particular, 0 is
taken to be a small eigenvalue. An introduction to the subject is found, for example,
in Chapters 1 and 10 of [6].

The question of how many small eigenvalues can exist on closed Riemann
surfaces has been treated in two theorems of [3]:

THEOREM 1. Given any ¢ > 0 and integer g > 2, there exists a closed Riemann
surface of genus g with 2g — 2 eigenvalues smaller than e.

THEOREM 2. A4 closed Riemann surface of genus g =2 has at most 4g — 2
small eigenvalues.

In this article we present an improvement of Theorem 2:

THEOREM 3. A closed Riemann surface of genus g =2 has at most 4g — 4
small eigenvalues.

These theorems are proved using the principle of monotonicity. Cut the surface
M into pieces. Then:

(a) The number of all small eigenvalues of all pieces with respect to Neumann
boundary conditions is an upper bound for the number of small eigenvalues
on M.

(b) The number of all small eigenvalues of all pieces with respect to Dirichlet
boundary conditions is a lower bound for the number of small eigenvalues
on M.
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Thus, we must determine the number of small eigenvalues of the pieces.

Considering the fact that a closed Riemann surface of genus g can be cut into
2g —2 Y-pieces (these are Riemann surfaces of signature (0,3) with closed
geodesics as boundary components) or also into 4g — 2 geodesic triangles, the
propositions above follow as corollaries of the following more general theorems:

THEOREM 1'. Given any ¢ > 0, there exists a Y-piece which has an eigenvalue
smaller than & with respect to Dirichlet boundary conditions.

THEOREM 2'. A geodesic triangle has 0 as its only small eigenvalue with respect
to Neumann boundary conditions.

THEOREM 3. A Y-piece has at most two small eigenvalues with respect to
Neumann boundary conditions.

We proceed as follows with the proof of theorem 3’, our main theorem. In Section
II we provide the necessary base which includes information about the small
eigenvalues in the right-angled hexagon (hexagons in the hyperbolic plane H? with
six right angles), the Symmetry-Lemma and the Quadrilateral-Lemma. In Section
IIT we prove the main theorem with two different methods. We also prove that a
closed Riemann surface of genus g can be cut into 4g — 4 geodesic triangles. In
Section IV we classify the Y-pieces into four types. Finally, in Section V we add
some remarks concerning the number of small eigenvalues which can exist on
Riemann surfaces.

Notation:

(a) Let S be a Riemann surface. Then S(N) (respectively S(D)) denotes the
eigenvalue problem on S with respect to Neumann boundary conditions
(respectively with respect to Dirichlet boundary conditions). If we have an
eignevalue problem on S with respect to mixed boundary conditions (on one
portion D of the boundary we have Dirichlet boundary conditions, on the
other part we have Neumann boundary conditions), then we write S(M; D).

(b) Let H be a right-angled hexagon. Then there are three pairs of opposite sides
which we denote by a/x, b/y, c/z, such that among a, b, ¢ there are no
neighbors.

I1. Basic Lemmas

All domains are supposed to be in the hyperbolic plane H2. We refer the reader
to [1] or [5] for results concerning hyperbolic trigonometry.
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(a) Right-angled hexagons

We need two Lemmas from [4] and the Cheeger inequality. Proofs are found in
[4] or [9].

LEMMA a. Let D be a “triangle” of the following kind: two sides of D are
geodesic segments, the third one a piecewise smooth curve c. Then L(c) > Ar(D).
(L = length, Ar = area)

LEMMA b. Let Q be a “quadrilateral” of the following kind: three sides of Q
are geodesic segments, which enclose right angles. The fourth side is a piecewise
smooth curve c. Then

L(c) > Ar(Q)
This Lemma has the following generalization.

LEMMA b’. The claim of Lemma b holds if one replaces the two right angles of
Q by angles a and 6 with a + 6 = .

Proof. This change of Q affects neither L(c) nor Ar(Q).

THEOREM (Cheeger inequality). Let M be a Riemann surface and let A be the
smallest nonzero eigenvalue of M. Then A = 1h?, where h is the isoperimetric constant
of Cheeger.

REMARK. With respect to Neumann boundary conditions, h(M) is defined as
follows:

L()

(M) =inf o (Ar(M,), Ar(M)}’

where the infimum is with respect to all piecewise smooth curves  which divide M
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into two disjoint subsurfaces M, and M, with Q as common boundary. With
respect to Dirichlet boundary conditions, A(M) is definded as follows:

L()

W(M) = inf S

where @ is as above with M, NOM = ¢. With respect to Neumann boundary
conditions, these results of [9] follow:

LEMMA c. A geodesic triangle has no nonzero small eigenvalue.

Proof. The Cheeger constant h is greater than 1, by Lemma a.
LEMMA d. A geodesic quadrilateral has at most two small eigenvalues.
Proof. Lemma ¢ and principle of monotonicity.

LEMMA e. A right-angled ‘pentagon has no nonzero small eigenvalue.
Proof. The Cheeger constant A is greater than 1, by Lemmas a and b.

LEMMA f. A right-angled hexagon H has at most two small eigenvalues.
Moreover, if H has two small eigenvalues, then the nodal line of an eigenfunction of
A, comnects two opposite sides of H.

Proof. Lemma e and principle of monotonicity.

(b) Symmetry-Lemma

SYMMETRY-LEMMA. Let M be a compact Riemann surface with a (nontriv-
ial) involution ¥ and a symmetrical axis t (composed by geodesic segments) which
divides M into two isometric parts A and B and which is composed by fixed points with
respect to Y. The eigenvalues on M(N) we denote by A,. The eigenvalues on A(N) and
the eigenvalues on A(M; t) we order in a list and label them u;. Then A; = y;, for every
i=1,2,3,... Moreover, every eigenfunction on A(N) or on A(M; t) is a restriction
of an eigenfunction on M(N).

Proof. 1t is easy to show ([9]) that every eigenspace on M(N) has an orthogonal
basis of eigenfunctions which are either symmetric or antisymmetric with respect to
¥. In the following, we suppose that we have on M(N) such an orthogonal basis
of eigenfunctions of this kind.

(i) Let ¢ be a symmetric eigenfunction on M(N). Then ¢ |4 is an eigen-
function on A(N). If ¢ is another symmetric eigenfunction on M(N), then
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(¢ | 4, ¢ | 4) =0. Similarly, antisymmetric eigenfunctions ¢* and ¢ * on M(N),
restricted to 4, are eigenfunctions on A(M; 1) and (¢*| A4, y*| 4) =0.

(i) Now let ¢,,...,¢, be an orthogonal basis of the eigenspace of an
eigenvalue 4 on A(N),n>1. Let ¢;,..., ¢, be the corresponding symmetric
functions on M which are produced by reflection with respect to ¢ of the ¢,. The ¢;
are pairwise orthogonal and are also orthogonal to all antisymmetric eigenfunctions
on M(N). Thus there are symmetric eigenfunctions /1, . .., ¥, on M(N), for which
(¢;,¥;) #0,j=1,...,n We define y;:=y | A. Then the y, are eigenfunctions on
A(N). Moreover, they are eigenfunctions of the eigenvalue A, since otherwise
(9,,¥;) =(¢;,¥;)=0,j=1,...,n Thus, the y, form an orthogonal basis of the
eigenspace of the eigenvalue 4 on A(N) and the ¢, can be represented in this basis.
It follows that the ¢; can be represented in the y; and are therefore eigenfunctions
on M(N).

The proof is analogous for eigenfunctions on A(M; ¢). O

COROLLARY. Let H be a right-angled hexagon and let H(N) have two small
eigenvalues. Let the nodal line t of an eigenfunction ¢ of A, connect the two opposite
sides ¢ and z of H. Reflect H with respect to one of the other four sides of H,
producing an octagon A. Then A(N) has three small eigenvalues.

Proof. A is composed of two isometric hexagons H and H’. Define the function
¢’ on H’ as the reflection of ¢. Define the function y on A4 as follows:
Y |H=¢,¢y |H =¢’' Then y is an eigenfunction on A4 with three nodal domains.
The corollary then follows by Courant’s Nodal Domain Theorem. a

(¢) Quadrilateral-Lemma

QUADRILATERAL-LEMMA. Let Q be a geodesic quadrilateral with three
right angles. Let a and be be neighbouring sides, each between two right angles. Let
L(a) 2 L(b). Then Q(M; a) has no small eigenvalue.

Proof. Let Q(M; a) have a small eigenvalue A.

(i) Suppose that L(a) = L(b). We reflect Q with respect to the side a, defining a
new quadrilateral Q’ which we reflect with respect to the prolongated side b,
defining a quadrilateral 4. 4(N) has two small eigenvalues (because we have also
reflected the eigenfunctions). Then, since 4 has different axes of symmetry, A(N)
has three small eigenvalues, contradicting Lemma d in Ila.
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(i) Now suppose that L(a) > L(b). We symmetrize Q into a quadrilateral Q' as
in the figure: Q’ has two sides ¢ and ¢’ with L(c) = L(c’). Q is divided by Q' into
two parts 4 and B. Side a is divided by Q’ into two parts a’ = 4 and b’ < B. Either
A(M; a’) or B(M; b’) must have a small eigenvalue. This is impossible for B(M; b’)
because of Lemma b of Ila: B(M, b’) has Cheeger constant & > 1. Thus A(M; a’)
has a small eigenvalue with eigenfunction ¢.

Define a function ¢’ on Q’ by continuing ¢ on Q'\Q by 0. The Rayleigh-
Quotient of ¢’ is less than 3 and thus there is a small eigenvalue on Q’(M;c’),
contradicting part (i) of this proof. O

REMARK. The Rayleigh-Quotient of f (on a surface M) is defined as

(grad f, grad f)
(£.f) ’

where (,) denotes the inner product on the Hilbert space L*(M).

REMARK. The Quadrilateral-Lemma has the following generalization. Its
claim holds if the right angle between the sides a and b is replaced by another angle.
The proof is similar.

COROLLARY 1. Let Q be an “infinite” quadrilateral, that is, a quadrilateral
with four vertices on 0H?. Let a and b be the common orthogonals between opposite
sides of Q. Let be L(a) > L(b). Let Q(N) have two small eigenvalues. Then the nodal
line t of an eigenfunction of A, lies on b. Moreover L(b) <2 sinh~! (1).

Proof. 1t follows from hyperbolic trigonometry that a and b are orthogonal and
are symmetrical axes of Q; moreover L(b) <2sinh~'(1). The Symmetry-Lemma
asserts that ¢ lies either on a or on b. The Quadrilateral-Lemma now proves the
claim. d
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COROLLARY 2. Let Q be a quadrilateral with two right angles, with a side c
between these two angles and with two vertices on 0H?. Let L(c) < 2 sinh~! (1). Then
Q(N) has no nonzero small eigenvalue.

COROLLARY 3. Let H be a right-angled hexagon. Let H(M; a, b, ¢) have a
small eigenvalue A. Let H’' be another right-angled hexagon with sides
a,b',c',x’,y',z’. Let a=a’, b>b', c>c’, y'=y. Then H(M;a', b, ¢’) has a
small eigenvalue A’ < A.

Proof. Superimpose the two hexagons as shown in the figure. The proof is now
the same as the proof of the Quadrilateral-Lemma. O

PENTAGON-LEMMA. Let P be a right-angled pentagon. Let a be a side of P.
Let P(M; a) have a small eigenvalue. Then L(a) < sinh~! (1). (Proof [9].)

II1. Proof of the main theorem

Every Y-piece M is composed of two isometric right-angled hexagons H,,. The
symmetrical axis (composed by three geodesic segments a, b, c which are each a
common orthogonal between two boundary components of M) induces an involu-
tion ¥ on M.

Proof of the main theorem. Let M be a Y-piece and assume that M(N) have
three small eigenvalues.
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Let H:=H,,. Let ¢ and ¥ be (mutually orthogonal) eigenfunctions of the two
nonzero small eigenvalues of M and suppose that ¢ and Y are symmetric or
antisymmetric with respect to the involution V.

(i) ¢ and ¥ cannot both be symmetric with respect to ¥. Otherwise, by the
Symmetry-Lemma, the hexagon H would have three small eigenvalues (with respect
to Neumann boundary conditions), contradicting Lemma f of Ila.

(ii) ¢ and ¥ cannot both be antisymmetric. Otherwise, ¢ and y would have an
even number of nodal domains, by antisymmetry, and hence two nodal domains, by
Courant’s Nodal Domain Theorem. Then the nodal lines of ¢ and ¥ would be
identically the symmetrical axis of M and ¢ and ¥ could not be orthogonal.

It follows that we may assume that ¢ is symmetric and { antisymmetric.

(iii) Claim. We can assume without loss of generality that two sides of S are
arbitrary small.

Proof. The Symmetry-Lemma says that H(N) has two small eigenvalues and
that H(M; a, b, c) has one small eigenvalue. These two conditions we denote by
condition N and condition M for H. Let the nodal line of ¢ on M connect the sides
c and z of H. We now reflect H with respect to the side a, the result being an
octagon A (figure). This we cut along the common orthogonal between the sides ¢
and b’ (the reflected b) and the result is two right-angled hexagons, H, and H,. By
Corollary 3 of Ilc, condition M holds for these two hexagons. By the corollary of
ITb, A(N) has three small eigenvalues. Thus, condition N holds for one of the two
hexagons by the principle of monotonicity. We now select that hexagon for which
the conditions M and N both hold and repeat the process. Thereby, two of the three
sides a, b, ¢ are reduced each time. It is easy to show ([9]) that in this way one can
make two of the three sides arbitrarily small.

(iv) Thus, supposing the sides a and b of H to be very small, we reflect H with
respect to the side ¢, defining an octagon Q. By the Symmetry-Lemma Q(N) has
three small eigenvalues. Q has four very small sides a, b, a’, b* where a’, b’ are
reflected sides a, 5. We cut Q along the common orthogonal between a and b/,
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defining two right-angled hexagons. Both have three very small sides, so that their
Cheeger constant 4 satisfies # > 1, by I1a. Thus the hexagons have no nonzero small
eigenvalue with respect to Neumann boundary conditions. It follows by the
principle of monotonicity that Q(N) has at most two small eigenvalues, contradicting
the conclusion of the Symmetry-Lemma of above. So the Y-piece M has at most
two small eigenvalues. O

COROLLARY 1. Let H be a right-angled hexagon and let H(N) have two small

eigenvalues. Then H has a pair of opposite sides which are both strictly longer than
2sinh~! (1).

Proof. We iterate the process of the above proof. During this, the three sides

a, b, c of H do not get longer. Repeating the process arbitrarily often, the hexagon

H converges into a quadrilateral Q with two vertices on dH?, as the quadrilateral

in Corollary 2 of Ilc. By [7], the small eigenvalues of H converge into small

eigenvalues of Q, so by the mentioned corollary, the basic side of Q must be longer
than 2 sinh~' (1). Thus one of the three sides a, b, ¢ is longer than 2 sinh~' (1).

Analogously, we show that one of the sides x, y, z of H must be longer than

2 sinh~! (1). The claim follows now by hyperbolic trigonometry which states that in

H the longest side of the triple a, b, c is opposite the longest side of the triple x, y, z.

O

Second proof of the main theorem. Let M be a Y-piece with boundary compo-
nents x’, y’, z’. Let P be the center of the common orthogonal between x’ and y’.
Let s(x’, y’, «) be a non self-intersecting geodesic on M passing through P such that
one end point lies on x” and the other lies on y’, and this geodesic intersects x” and
y’ by an angle a € [0, n/2]. If « ==®/2, then s(x’, y’, ) is the common orthogonal
between x” and y’ and is unique. In the other cases, there are two different geodesics
both of which we denote by s(x’, y’, «) and which are symmetric with respect to the
involution ¥ of M. If « =0, we call s(x’, y’, «) the common asymptotic geodesic of
x” and y’. In this case, of course, s(x’, y’, 0) does not intersect x” or y’. We now fix
a € [0, #/2] and cut M along a geodesic s(x’, y’, a). Denote the new surface by M’
and cut M’ along the geodesic s(y’, z’, @), producing an octagon A4 with four angles
« and four angles § = — o such that a and & are always neighbouring angles.
Now, of course, s(y’, z’, «) is unique on M’. The geodesic y’ has been cut into two
parts y, and y, which are both sides of 4. The other sides of 4 are x’ and z’, twice
s(x’,y’, «) and twice s(y’, z’, a).

We now cut A4 along the geodesic s(x’, z’, «) into two hexagons H, and H,.

Select « very small. Then, the two hexagons H, and H, have three (pairwise
non-neighbouring) sides which are very small. It follows that the Cheeger constant
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S(x'l v'l 0()

sy, 2'x)

h for H,(N) and for H,(N) is greater than 1 (compare with Lemma b’ of IIa). Thus
these hexagons have no nonzero small eigenvalues. Then by the principle of
monotonicity, M has at most two small eigenvalues. O

REMARK. Let a converge to 0. Then the octagon A4 in the proof above
converges to an “infinite’’ quadrilateral Q. By [7] the small eigenvalues of A4 tend to
small eigenvalues of Q. Since a quadrilateral has at most two small eigenvalues, by
Corollary d of Ila, the claim of the main theorem follows once more.

COROLLARY 2. A closed Riemann surface M of genus g can be cut into 4g — 4
geodesic triangles.

Proof. We cut M into 2g — 2 Y-pieces. Each Y-piece we cut by asymptotic
geodesics s(x’, y’,0), s(y’, z’,0) and s(x’, z’, 0) into two geodesic triangles (nota-
tion as above). Of course, the vertices of these triangles all lie on dH?. O

REMARK. The number 4g — 4 in Corollary 2 is minimal; a closed Riemann
surface M of genus g cannot be cut into less than 4g — 4 geodesic triangles since the
volume of M is (4g — 4)n and the volume of a geodesic triangle is at most =.

IV. Classification of the Y-pieces

DEFINITION. Let M be a Y-piece with hexagon H:= H,, and involution Y.
We define the following classification:

TYPE S. M(N) has two small eigenvalues. The eigenfunctions of 1,(M(N)) are
symmetric with respect to V.
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TYPE A. M(N) has two small eigenvalues. The eigenfunctions of A,(M(N)) are
antisymmetric with respec to V.

TYPE D. M(D) has a small eigenvalue.

TYPE K. M(D) has no small eigenvalue, M(N) has no nonzero small
eigenvalue.

PROPOSITION. Every Y-piece M belongs to exactly one of the four types, and
there exist Y-pieces of each type.

Proof. Let x’, y’, z’ be the boundary components of M and let H:= H,, be the
hexagon of M such that the sides x, y, z are half of x’, y’, z’.

(1) H(a, b, ¢) and H(x, y, z) cannot both have a small eigenvalue. If the Cheeger
constant of H(a,b,c)is <1, thena+b+c <m.

But also a+b +c+ x +y+z>2n and the claim follows.

(ii) The following relations hold:

M is of type S <+ H(N) has two small eigenvalues.
M is of type A <> H(a, b, ¢) has a small eigenvalue.

M is of type D <> H(x, y, z) has a small eigenvalue.

By the main theorem and by part (i), it follows that M belongs to exactly one of
the four types.

(iii) Let € > 0. As a, b, ¢ (respectively x, y, z) can be made arbitrarily small,
there are right-angled hexagons H such that the lowest eigenvalue of H(a, b, c)
(respectively of H(x, y, z)) is less than e.

Furthermore, one of the common orthogonals between two opposite sides of a
right-angled hexagon can be made arbitrary small, and thus there are hexagons H
such that the smallest nonzero eigenvalue of H(N) is lesser than e.

As an example of type K, we may take a right-angled hexagon H such that all
six sides of H have the same length. O

The following is a criterion for distinguishing between type S and type A.

LEMMA. Let M be a Y-piece with hexagon H:=H,, and let M(N) have two
small eigenvalues. If H has a pair of opposite sides which are both strictly longer than
2sinh~' (1), then M is of type S.

Otherwise, M is of type A.

Proof. Compare with Corollary 1 of IIL
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V. Outlook

The question of the existence of closed Riemann surfaces of genus g with more
than 2g — 2 small eigenvalues is still an open question. To this, we will add a few
remarks.

(a) In the proof of Theorem 1 of the introduction, if the required surface is
constructed of Y-pieces of type D, it follows by the proposition of IV that this
surface has no more than 2g — 2 small eigenvalues.

(b) Naturally, one tries to cut a closed Riemann surface into Y-pieces of type
D or of type K. To do so, one needs criteria which indicate when a Y-piece is of one
of these types. Hence the following is crucial. Let Q be an “infinite” quadrilateral
with symmetrical axes a and b and L(b) < L(a). Let Q(N) have two small eigen-
values. What is the upper bound for the length of 5?

Corollary 1 of Ila says that L(b) <2sinh~! (1) =1,76. .., but this reflects only
the fact L(b) < L(a). On the other hand, our numerical experiments indicate that
L(b) <0,9. It should be possible to improve theoretically the upper bound for the
length of b.
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