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Small eigenvalues on Y-pieces and on Riemann surfaces

Paul Schmutz

I. Introduction

We treat eigenvalues of the Laplacian on Riemann surfaces whose Gauss

curvature is identically -1. We label the eigenvalues in ascending order:

0 ^ Xx &lt;&gt; Â2 £ À3 £ • • •

Each eigenvalue is repeated according to its multiplicity.
We define as small eigenvalues those which are less than \. In particular, 0 is

taken to be a small eigenvalue. An introduction to the subject is found, for example,
in Chapters 1 and 10 of [6].

The question of how many small eigenvalues can exist on closed Riemann
surfaces has been treated in two theorems of [3]:

THEOREM 1. Given any e &gt; 0 and integer g ^ 2, there exists a closed Riemann

surface of genus g with 2g — 2 eigenvalues smaller than e.

THEOREM 2. A closed Riemann surface of genus g ^ 2 has at most 4g — 2

small eigenvalues.

In this article we présent an improvement of Theorem 2:

THEOREM 3. A closed Riemann surface of genus g ^ 2 has at most 4g — 4

small eigenvalues.

Thèse theorems are proved using the principle of monotonicity. Cut the surface

M into pièces. Then:

(a) The number of ail small eigenvalues of ail pièces with respect to Neumann

boundary conditions is an upper bound for the number of small eigenvalues

on M.
(b) The number of ail small eigenvalues of ail pièces with respect to Dirichlet

boundary conditions is a lower bound for the number of small eigenvalues

on M.
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Thus, we must détermine the number of small eigenvalues of the pièces.

Considering the fact that a closed Riemann surface of genus g can be eut into
2g — 2 Y-pieces (thèse are Riemann surfaces of signature (0,3) with closed

geodesics as boundary components) or also into 4g — 2 géodésie triangles, the

propositions above follow as corollaries of the following more gênerai theorems:

THEOREM T. Given any s &gt; 0, there exists a Y-pièce which has an eigenvalue
smaller thon e with respect to Dirichlet boundary conditions.

THEOREM 2&apos;. A géodésie triangle has 0 as its only small eigenvalue with respect
to Neumann boundary conditions.

THEOREM y. A Y-pièce has at most two small eigenvalues with respect to
Neumann boundary conditions.

We proceed as follows with the proof of theorem 3&apos;, our main theorem. In Section

II we provide the necessary base which includes information about the small

eigenvalues in the right-angled hexagon (hexagons in the hyperbolic plane H2 with
six right angles), the Symmetry-Lemma and the Quadrilateral-Lemma. In Section

III we prove the main theorem with two différent methods. We also prove that a

closed Riemann surface of genus g can be eut into 4g — 4 géodésie triangles. In
Section IV we classify the F-pieces into four types. Finally, in Section V we add

some remarks concerning the number of small eigenvalues which can exist on
Riemann surfaces.

Notation :

(a) Let 5 be a Riemann surface. Then S(N) (respectively S(D)) dénotes the

eigenvalue problem on S with respect to Neumann boundary conditions
(respectively with respect to Dirichlet boundary conditions). If we hâve an
eignevalue problem on S with respect to mixed boundary conditions (on one

portion D of the boundary we hâve Dirichlet boundary conditions, on the
other part we hâve Neumann boundary conditions), then we write S(M; D).

(b) Let H be a right-angled hexagon. Then there are three pairs of opposite sides

which we dénote by a/x, b/y, c/z, such that among a, b, c there are no
neighbors.

II. Basic Lemmas

Ail domains are supposed to be in the hyperbolic plane H2. We refer the reader

to [1] or [5] for results concerning hyperbolic trigonometry.
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(a) Right-angled hexagons

We need two Lemmas from [4] and the Cheeger inequality. Proofs are found in
[4] or [9].

LEMMA a. Let D be a &quot;triangle&quot; of the following kind: two sides of D are
géodésie segments, the third one a pieeewise smooth curve c. Then L(c) &gt; Ar(D).
(L length, Ar area)

LEMMA b. Let Q be a &quot;quadrilatéral&quot; of the following kind: three sides of Q
are géodésie segments, which enclose right angles. The fourth side is a pieeewise
smooth curve c. Then

L(c)&gt;Ar(Q)

This Lemma has the following generalization.

LEMMA b&apos;. The daim of Lemma b holds if one replaces the two right angles of
Q by angles a and à with a + ô n.

Proof This change of Q affects neither L(c) nor Ar(Q).

THEOREM (Cheeger inequality). Let M be a Riemann surface and let X be the

smallest nonzero eigenvalue of M. Then X^\h2, where h is the isoperimetric constant

of Cheeger.

REMARK. With respect to Neumann boundary conditions, h(M) is defined as

followsî

h(M) &apos;^

mn

where the infimum is with respect to ail pieeewise smooth curves Q which divide M
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into two disjoint subsurfaces M, and M2 with Q as common boundary. With
respect to Dirichlet boundary conditions, h(M) is definded as follows:

Ar(Mx)

where Q is as above with dMxndM $. With respect to Neumann boundary
conditions, thèse results of [9] follow:

LEMMA c. A géodésie triangle has no nonzero small eigenvalue.

Proof. The Cheeger constant h is greater than 1, by Lemma a.

LEMMA d. A géodésie quadrilatéral has at most two small eigenvalues.

Proof. Lemma c and principle of monotonicity.

LEMMA e. A right-angled pentagon has no nonzero small eigenvalue.

Proof The Cheeger constant h is greater than 1, by Lemmas a and b.

LEMMA f. A right-angled hexagon H has at most two small eigenvalues.

Moreover, if H has two small eigenvalues, then the nodal Une of an eigenfunction of
X2 connects two opposite sides of H.

Proof Lemma e and principle of monotonicity.

(b) Symmetry-Lemma

SYMMETRY-LEMMA. Let M be a compact Riemann surface with a (nontriv-
ial) involution W and a symmetrical axis t (composed by géodésie segments) which
divides M into two isometric parts A and B and which is composed by fixed points with

respect to *P. The eigenvalues on M(N) we dénote by Àt. The eigenvalues on A(N) and
the eigenvalues on A(M; t) we order in a list and label them /v Then kt finfor every
/ 1, 2, 3,... Moreover, every eigenfunction on A(N) or on A(M; t) is a restriction
of an eigenfunction on M(N).

Proof It is easy to show ([9]) that every eigenspace on M(N) has an orthogonal
basis of eigenfunctions which are either symmetric or antisymmetric with respect to
V. In the following, we suppose that we hâve on M(N) such an orthogonal basis

of eigenfunctions of this kind.

(i) Let &lt;j) be a symmetric eigenfunction on M(N). Then &lt;/&gt; | A is an
eigenfunction on A(N). If \j/ is another symmetric eigenfunction on M(N), then
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(&lt;f) \A,\j/ \A) =0. Similarly, antisymmetric eigenfunctions 0* and ij/* on M(N)y
restricted to A, are eigenfunctions on A(M; t) and (#* | A, ij/* | A) 0.

(ii) Now let &lt;£ lf..., &lt;f&gt;n be an orthogonal basis of the eigenspace of an
eigenvalue À on A(N)9n^\. Let ^&apos;,,..., ^ be the corresponding symmetric
functions on M which are produced by reflection with respect to t of the &lt;£,. The &lt;/&gt;,&apos;

are pairwise orthogonal and are also orthogonal to ail antisymmetric eigenfunctions
on M(N). Thus there are symmetric eigenfunctions {//[,.. i//&apos;n on M(N), for which
(&lt;t&gt;j

»
&lt;Ay # 0,y 1,. n. We define ^ := ^ | ^4. Then the ^ are eigenfunctions on

A(N). Moreover, they are eigenfunctions of the eigenvalue A, since otherwise

($,, ij/j) (&lt;£,&apos;, ^) 0, j 1,.. n. Thus, the ij/j form an orthogonal basis of the
eigenspace of the eigenvalue X on A(N) and the &lt;£, can be represented in this basis.

It follows that the &lt;f&gt;j can be represented in the ij/j and are therefore eigenfunctions
on M(N).

The proof is analogous for eigenfunctions on A(M; t).

COROLLARY. Let H be a right-angled hexagon and let H(N) hâve two small
eigenvalues. Let the nodal Une t of an eigenfunction &lt;j) of X2 connect the two opposite
sides c and z of H. Reflect H with respect to one of the other four sides of H,
producing an octagon A. Then A(N) has three small eigenvalues.

Proof A is composed of two isometric hexagons H and H&apos;. Define the function
$&apos; on H&apos; as the reflection of &lt;j&gt;. Define the function \f/ on A as follows:
\jt | H &lt;t&gt;9 ij/ | H&apos; $&apos;. Then ij/ is an eigenfunction on A with three nodal domains.
The corollary then follows by Courant&apos;s Nodal Domain Theorem.

(c) Quadrilatéral-Lemma

QUADRILATERAL-LEMMA. Let Q be a géodésie quadrilatéral with three

right angles. Let a and be be neighbouring sides, each between two right angles. Let
L(a) ^ L(b). Then Q(M; a) has no small eigenvalue.

Proof. Let Q(M; a) hâve a small eigenvalue A.

(i) Suppose that L(a) L(b). We reflect Q with respect to the side a, defining a

new quadrilatéral Q&apos; which we reflect with respect to the prolongated side b,

defining a quadrilatéral A. A(N) has two small eigenvalues (because we hâve also

reflected the eigenfunctions). Then, since A has différent axes of symmetry, A(N)
has three small eigenvalues, contradicting Lemma d in Ha.
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C I

I
I

«¦ b

(ii) Now suppose that L(a) &gt; L(b). We symmetrize Q into a quadrilatéral g&apos; as

in the figure: (?&apos; has two sides c and c&apos; with L(c) L(c&apos;)- Q is divided by g&apos; into
two parts A and B. Side « is divided by Q&apos; into two parts a&apos; a A and b&apos; a B. Either
v4(M; a&apos;) or jB(M; è&apos;) must hâve a small eigenvalue. This is impossible for B(M; b&apos;)

because of Lemma b of Ha: B(M; b&apos;) has Cheeger constant h &gt; 1. Thus A(M; a&apos;)

has a small eigenvalue with eigenfunction 0.
Define a function &lt;£&apos; on g7 by continuing &lt;f&gt; on £?&apos;\Q by 0. The Rayleigh-

Quotient of $&apos; is less than \ and thus there is a small eigenvalue on Q\M\ c&apos;),

contradicting part (i) of this proof.

REMARK. The Rayleigh-Quotient of/(on a surface M) is defined as

(grad/, grad/)

where dénotes the inner product on the Hilbert space L2(M).

REMARK. The Quadrilateral-Lemma has the following generalization. Its
claim holds if the right angle between the sides a and b is replaced by another angle.
The proof is similar.

COROLLARY 1. Let Q be an &quot;infinité&quot; quadrilatéral, that is, a quadrilatéral
with four vertices on d H2. Let a and b be the common orthogonals between opposite
sides of Q. Let be L(a) &gt; L(b), Let Q(N) hâve two small eigenvalues. Then the nodal
Une t of an eigenfunction of X2 lies on b. Moreover L(b) &lt; 2 sinh&quot;1 (1).

Proof. It follows from hyperbolic trigonometry that a and b are orthogonal and

are symmetrical axes of Q; moreover L(b) &lt;2sinh~! (1). The Symmetry-Lemma
asserts that t lies either on a or on b. The Quadrilateral-Lemma now proves the
claim.
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COROLLARY 2. Let Q be a quadrilatéral with two right angles, with a side c
between thèse two angles and with two vertices on dH2. Let L(c) ^ 2 sinh&quot;1 (1). Then
Q(N) has no nonzero small eigenvalue.

COROLLARY 3. Let H be a right-angled hexagon. Let H(M; a, b, c) hâve a
small eigenvalue k. Let H&apos; be another right-angled hexagon with sides

a\ b\ c\ x&apos;, y&apos;, z&apos;. Let a =a\ b &gt; b\ c&gt; c\ y&apos; y. Then H\M\ a\ b\ c&apos;) has a
small eigenvalue k&apos; &lt;L

Proof. Superimpose the two hexagons as shown in the figure. The proof is now
the same as the proof of the Quadrilateral-Lemma.

PENTAGON-LEMMA. Let P be a right-angled pentagon. Let a be a side of P.
Let P(M; a) hâve a small eigenvalue. Then L(a) &lt; sinh&quot;1 (1). (Proof [9].)

III. Proof of the main theorem

Every F-piece M is composed of two isometric right-angled hexagons HM. The

symmetrical axis (composed by three géodésie segments a, b, c which are each a

common orthogonal between two boundary components of M) induces an involu-
tion V on M.

Proof of the main theorem. Let M be a 7-piece and assume that M(N) hâve
three small eigenvalues.
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Let H&apos;=HM. Let &lt;f&gt; and ij/ be (mutually orthogonal) eigenfunctions of the two
nonzero small eigenvalues of M and suppose that &lt;f&gt; and ^ are symmetric or
antisymmetric with respect to the involution ¥*.

(i) &lt;f&gt; and \jj cannot both be symmetric with respect to W. Otherwise, by the

Symmetry-Lemma, the hexagon H would hâve three small eigenvalues (with respect
to Neumann boundary conditions), contradicting Lemma f of lia.

(ii) &lt;j&gt; and i// cannot both be antisymmetric. Otherwise, (f&gt; and \\f would hâve an
even number of nodal domains, by antisymmetry, and hence two nodal domains, by
Courant&apos;s Nodal Domain Theorem. Then the nodal Unes of &lt;f&gt; and ^ would be

identically the symmetrical axis of M and (f&gt; and \f/ could not be orthogonal.
It follows that we may assume that &lt;j) is symmetric and {j/ antisymmetric.
(iii) Claim. We can assume without loss of generality that two sides of S are

arbitrary small.

Proof. The Symmetry-Lemma says that H(N) has two small eigenvalues and
that H(M; a, b, c) has one small eigenvalue. Thèse two conditions we dénote by
condition N and condition M for H. Let the nodal line of &lt;f&gt; on M connect the sides

c and z of H. We now reflect H with respect to the side a, the resuit being an

octagon A (figure). This we eut along the common orthogonal between the sides c
and b&apos; (the reflected b) and the resuit is two right-angled hexagons, H{ and H2. By
Corollary 3 of Ile, condition M holds for thèse two hexagons. By the corollary of
Ilb, A(N) has three small eigenvalues. Thus, condition N holds for one of the two
hexagons by the principle of monotonicity. We now sélect that hexagon for which
the conditions M and N both hold and repeat the process. Thereby, two of the three
sides a, b, c are reduced each time. It is easy to show ([9]) that in this way one can
make two of the three sides arbitrarily small.

(iv) Thus, supposing the sides a and b of H to be very small, we reflect H with
respect to the side c, defining an octagon Q. By the Symmetry-Lemma Q(N) has

three small eigenvalues. Q has four very small sides a,b,a\b&apos; where a&apos;,bf are
reflected sides a, b. We eut Q along the common orthogonal between a and b&apos;,
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defining two right-angled hexagons. Both hâve three very small sides, so that their
Cheeger constant h satisfies h &gt; 1, by Ha. Thus the hexagons hâve no nonzero small
eigenvalue with respect to Neumann boundary conditions. It follows by the

principle of monotonicity that Q(N) has at most two small eigenvalues, contradicting
the conclusion of the Symmetry-Lemma of above. So the 7-piece M has at most
two small eigenvalues. D

COROLLARY 1. Let H be a right-angled hexagon and let H(N) hâve two small
eigenvalues. Then H has a pair of opposite sides which are both strictly longer than

2sinh-!(l).

Proof We iterate the process of the above proof. During this, the three sides

a, b, c of H do not get longer. Repeating the process arbitrarily often, the hexagon
H converges into a quadrilatéral Q with two vertices on d H2, as the quadrilatéral
in Corollary 2 of Ile. By [7], the small eigenvalues of H converge into small

eigenvalues of Q, so by the mentioned corollary, the basic side of Q must be longer
than 2 sinh&quot;1 (1). Thus one of the three sides a, b, c is longer than 2 sinh&quot;1 (1).

Analogously, we show that one of the sides x, y, z of H must be longer than
2 sinh~l 1). The claim follows now by hyperbolic trigonometry which states that in

H the longest side of the triple a, b, c is opposite the longest side of the triple x, y, z.

Second proof of the main theorem. Let M be a 7-piece with boundary compo-
nents x&apos;,y&apos;,z&apos;. Let P be the center of the common orthogonal between x&apos; and y&apos;.

Let s(x\ y\ a) be a non self-intersecting géodésie on M passing through P such that
one end point lies on x&apos; and the other lies on y\ and this géodésie intersects x&apos; and
y&apos; by an angle a g [0,7i/2]. If a tc/2, then s(x\ y\ ce) is the common orthogonal
between x&apos; and y&apos; and is unique. In the other cases, there are two différent geodesics

both of which we dénote by s(x\ y&apos;, a) and which are symmetric with respect to the

involution V of M. If a 0, we call s(x\ y\ a) the common asymptotic géodésie of
x&apos; and y\ In this case, of course, ^(jc&apos;, y\ 0) does not intersect x&apos; or y\ We now fix
a e [0, n/2] and eut M along a géodésie s{x\y\ a). Dénote the new surface by M&apos;

and eut M&apos; along the géodésie s(y\ z\ a), producing an octagon A with four angles

a and four angles ô n - a such that a and ô are always neighbouring angles.

Now, of course, s(y&apos;, z\ a) is unique on M&apos;. The géodésie y&apos; has been eut into two

parts yx and y2 which are both sides of A. The other sides of A are x&apos; and z&apos;, twice

s(x\ y\ a) and twice s(y\ z&apos;, a).

We now eut A along the géodésie s(x\ z&apos;, a) into two hexagons Hx and H2.

Select a very small. Then, the two hexagons Hx and H2 hâve three (pairwise

non-neighbouring) sides which are very small. It follows that the Cheeger constant
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h for Hx(N) and for H2(N) is gréater than 1 (compare with Lemma b&apos; of Ha). Thus
thèse hexagons hâve no nonzero small eigenvalues. Then by the principle of
monotonicity, M has at most two small eigenvalues.

REMARK. Let a converge to 0. Then the octagon A in the proof above

converges to an &quot;infinité&quot; quadrilatéral Q. By [7] the small eigenvalues of A tend to
small eigenvalues of Q. Since a quadrilatéral has at most two small eigenvalues, by
Corollary d of Ha, the claim of the main theorem follows once more.

COROLLARY 2. A closed Riemann surface M ofgenus g can be eut into 4g — 4

géodésie triangles.

Proof. We eut M into 2g — 2 F-pieces. Each F-piece we eut by asymptotic
geodesics s(x&apos;,y\0), s(y\ z\ 0) and ^(jc&apos;, z&apos;, 0) into two géodésie triangles (notation

as above). Of course, the vertices of thèse triangles ail lie on d H2.

REMARK. The number 4g — 4 in Corollary 2 is minimal; a closed Riemann
surface M of genus g cannot be eut into less than 4g — 4 géodésie triangles since the
volume of M is (4g — 4)n and the volume of a géodésie triangle is at most n.

IV. Classification of the F-pieces

DEFINITION. Let M be a F-piece with hexagon H-=HM and involution W.

We define the following classification:

TYPE S. M(N) has two small eigenvalues. The eigenfunctions of k2(M(N)) are

symmetric with respect to W.
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TYPE A. M(N) has two small eigenvalues. The eigenfunctions of X2{M(N)) are
antisymmetric with respec to W.

TYPE D. M(D) has a small eigenvalue.

TYPE K. M(D) has no small eigenvalue, M(N) has no nonzero small

eigenvalue.

PROPOSITION. Every Y-pièce M belongs to exactly one of the four types, and
there exist Y-pièces of each type.

Proof Let x\ y&apos;, z&apos; be the boundary components of M and let H&gt;=HM be the

hexagon of M such that the sides x, y, z are half of x&apos;,y&apos;,z&apos;.

(i) H(a, b, c) and H(x, y, z) cannot both hâve a small eigenvalue. If the Cheeger
constant of H(a, b, c) is &lt; 1, then a + b + c &lt; n.

But also a + b + c + x +y + z &gt;2n, and the claim follows.

(ii) The following relations hold:

M is of type S o H(N) has two small eigenvalues.

M is of type A o H(a, b, c) has a small eigenvalue.

M is of type D o H{x, y, z) has a small eigenvalue.

By the main theorem and by part (i), it follows that M belongs to exactly one of
the four types.

(iii) Let £&gt;0. As a,b,c (respectively x,y,z) can be made arbitrarily small,
there are right-angled hexagons H such that the lowest eigenvalue of H(a, b, c)

(respectively of H(x, y, z)) is less than e.

Furthermore, one of the common orthogonals between two opposite sides of a

right-angled hexagon can be made arbitrary small, and thus there are hexagons H
such that the smallest nonzero eigenvalue of H(N) is lesser than e.

As an example of type K, we may take a right-angled hexagon H such that ail
six sides of H hâve the same length.

The following is a criterion for distinguishing between type S and type A.

LEMMA. Let M be a Y-pièce with hexagon H-=HM and let M(N) hâve two

small eigenvalues. IfH has a pair of opposite sides which are both strictly longer than

2 sinh-1 (1), then M is of type S.

Otherwise, M is of type A.

Proof Compare with Corollary 1 of III.
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V. Outlook

The question of the existence of closed Riemann surfaces of genus g with more
than 2g — 2 small eigenvalues is still an open question. To this, we will add a few
remarks.

(a) In the proof of Theorem 1 of the introduction, if the required surface is

constructed of 7-pieces of type Z), it follows by the proposition of IV that this
surface has no more than 2g — 2 small eigenvalues.

(b) Naturally, one tries to eut a closed Riemann surface into F-pieces of type
D or of type K. To do so, one needs criteria which indicate when a T-piece is of one
of thèse types. Hence the following is crucial. Let Q be an &quot;infinité&quot; quadrilatéral
with symmetrical axes a and b and L(b) &lt; L(a). Let Q(N) hâve two small
eigenvalues. What is the upper bound for the length of bl

Corollary 1 of Ha says that L(b) &lt; 2 sinh&quot;1 (1) 1, 76 but this reflects only
the fact L(b) &lt; L{a). On the other hand, our numerical experiments indicate that
L(b) &lt; 0, 9. It should be possible to improve theoretically the upper bound for the

length of b.
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