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Classes caractéristiques pour les cones projectifs et
homologie d’intersection

JEAN-PAUL BRASSELET, KARL-HEINZ FIESELER et LUDGER KAUP

En hommage a Jean Louis Verdier

1. Le probléme

L’étude des variétés singuliéres a fait de récents progrés dans deux directions:
d’une part les constructions, en homologie, des classes de Chern des ensembles
analytiques complexes, dues a M. H. Schwartz et 4 R. MacPherson; d’autre part
la définition de ’'homologie d’intersection (M. Goresky et R. MacPherson), dans
laquelle I'intersection de deux cycles est encore un cycle. Ainsi, si on veut définir
des nombres de Chern pour des ensembles analytiques complexes, il faut pouvoir
relever les classes de Chern en homologie d’intersection. Des résultats négatifs ont
été obtenus. Dans [BrGo2], on donne de tels exemples, inspirés de J. L. Verdier et
de M. Goresky, construits comme cOnes projectifs sur une surface projective lisse,
donc comme espaces a singularités isolées. On considére, ici, ces constructions
d’une manicre plus systématique. Pour des exemples a singularités non isolées d’'un
coOté, et des théorémes de permanence d’un autre c6té, nous démontrons d’abord
le résultat suivant permettant le calcul des classes de Chern des cOnes projectifs
itérés pour I’homologie a coefficients entiers:

(1.1) THEOREME. Soit Y ¢ P, variété projective, et 1: Y & KY linclusion
canonique dans KY, le céne projectif sur Y, de sommet {s}. En notant également
K:H.(Y)-> H., ,(KY) le “cone projectif homologique’ (2.1), on a

(1.2) ¢;(KY) =1.¢;(Y) + Kc;_ (YY),
ou Kc_,(Y) désigne la classe [s] € Hy(KY).

Considérons maintenant ’homologie d’intersection I,H.(Y), définie comme
I'hypercohomologie H?%4™Y~"(Y, 2;) du complexe de Deligne #;. Pour deux
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perversités p et q on pose p < q s’il existe un diagramme commutatif

2,
N
2 2:

“up ”M

avec les morphismes canoniques de comparaison p,, et u,,. Cette relation dépend
de la pseudovariété et des coefficients en question; pour les détails voir [FiKp 3, §2].
L’ordre partiel p = q est une extension naturelle de I’ordre partiel p < gq; il est
compatible avec I'identification des perversités suivant ‘“quasi-isomorphie”.

(1.3) THEOREME. Soit p une perversité telle que m < p. Si les classes de Chern
de Y sont dans I’image de I’homologie d’intersection a coefficients rationnels pour la
perversité p, il en est de méme des classes de Chern de KY.

Ce résultat sera démontré dans §6, dans une situation plus générale.
(1.4) COROLLAIRE. Si Y est une variété homologique rationnelle, les classes
de Chern d’un céne itéré de Y sont dans I’image de I’homologie d’intersection a

coefficients rationnels pour chaque perversité p telle que m < p.!

Démonstration. Comme une variété homologique rationelle est irréductible en
chaque point, on a des isomorphismes

H?4mY-J(Y, Q) = I,H,(Y,Q) ~I,H(Y,Q) 2 ,H;(Y, Q) ~ H,(Y, Q).
Donc c.(Y) est dans I'image de ’homologie d’intersection a coefficients rationnels,
quelque soit la perversité p, et le résultat découle de (1.3). O
2. Le cone projectif homologique

Pour toute application de variétés projectives algébriques complexes f: X — Y,
nous noterons f. I'application induite en homologie et f, I'application induite sur

1) Ce résultat démontre, dans un cas particulier, la conjecture suivant laquelle, pour les coefficients
rationnels, les classes de Chern des variétés algébriques sont dans I'image de 'homologie d’intersection.
D’aprés Goresky et MacPherson, cette conjecture se raméne a la démonstration d’un “Moving Lemma”
relatif au cycles d’intersection.
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les fonctions constructibles. L’application f, est définie par la condition

Fe(L))) =2(f' ()" V)

pour toute fonction caractéristique 1, d’un sous-ensemble ouvert V & X. Dans
[MPh, Prop. 1], MacPherson démontre ’existence d’une unique transformation
naturelle ¢, du foncteur “fonctions constructibles” dans le foncteur ‘“homologie
entiére” telle que:

(1) co(ax + B) = co(a) + co(B);
(2) feca(@) = co(fy®);
(3) co(X) = P(X)(c*(X)),

si X est une variété lisse de classe de Chern cohomologique ¢*(X) et ou P(X)
désigne la dualité de Poincaré sur X.

Considérons Y, variété projective de dimension (complexe) n, plongée dans Py
et notons L la restriction du fibré hyperplan de Py d4 Y. On appelle E le complété
projectif de ’espace total de L, c’est-a-dire P(L @ 1,) ou 1, est le fibré trivial de
rang (complexe) 1 sur Y. La projection canonique p : E — Y admet deux sections,
nulle et infinie, d’images Y, et Y. Le cOne projectif KY s’obtient par quotient de
E en contractant Y, en un point {s}. KY est ’espace de Thom associé au fibre L,
de base Y.

En regardant p : E— Y comme un fibré en sphéres S2, sous-fibré d’un fibré
p: E— Y en boules B, on a une classe de Thom 8 € H*(E, E) et une suite exacte
de Gysin

.
oo Hy ((Y) > Hy_5(Y) D H(E) S H(Y) >
dans laquelle le morphisme de Gysin y est la composition de

(P -2} (n8g)~1

H;_,(E)

H,_,(Y) H;.\(E, E) > H,(E)

et s’explicite comme suit: Si { est un cycle représentant une classe [{] de
H;_,(Y), y([¢]) est la classe du cycle p~'({) dans H,(E).
Soit 7 la projection canonique 7 : E — KY.

(2.1) DEFINITION. On appelle cone projectif homologique, et on note encore
K, Tlapplication composée K =m.y:H;, ,(Y)—->H;(KY) pour j=2. Pour
0= H_,(Y), on pose K(0) := [s] € Hy(KY).

Remarquons que K est homomorphisme, sauf pour j =0.
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Le Théoréme (1.1) est une conséquence directe de la proposition suivante
(démontrée au paragraphe 5):

(2.2) PROPOSITION. Les classes de Chern de E et de Y sont liées par la
relation

ce(E) = (1 +n9+1n5) Ny(ce(Y)),
ou n, := c'(0(Y;))) € HXE) pour j =0, oo, et N désigne le cap-produit usuel.

(2.3) REMARQUE. Si Y est irréductible en chaque point, et si ® désigne le
produit d’intersection entre les groupes d’homologie d’intersection I, H.(E) et
ILH.(E)~H.(E),on a

co(E) = ([E] + [Y)] + [Y()) ® y(ce(Y)).

Démonstration du Théoréme (1.1) a partir de la Proposition (2.2): Soit 1, la
fonction constructible, constante, égale a 1 sur E, alors on a

x(Y), six=s
1, sinon,

T (1p)(x) = {
c’est-a-dire
Ty(1g) =1y + (((Y) — D1.
Puisque
Tece(1p) = co(my (1))
on en deéduit
(2.4) meco(E) =co(KY) + (x(Y) — 1)[s].
D’autre part, I'image par n. de I’équation de la Proposition (2.2) s’écrit:

(2.5) TeCo(E) = ep(Cce—1(Y)) + (o N P(ce(Y))) + He(n, NP(ce(Y))).

Soient 15: Y ¢ Eeti,:Y o E les inclusions de Y comme sections nulle et infinie
de E, respectivement. Par définition de y, on a, pour tout cycle { de Y et pour j =0
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ou oo
n; v p(ICD = (1)« (D)
donc
Te(n; NY(ce(Y))) = Matjece(ly) = n.c.(lyw) = c.n*(lym).
"Sii1=moi1y: Y o KY désigne l'inclusion naturelle de Y dans KY, alors
Ta(lyy) =Ly et m,(1y ) =x(V)l.
Donc nous obtenons
(Mo N Y(ce(Y))) = co(L,(y)) = 1ece(Y),
et
Te(Nw NY(ce(Y))) = x(Y)ee(iy) = x(Y)s],

ou [s] est la classe du sommet s dans Hy(KY). La comparaison de (2.4) et de (2.5)
nous donne alors:

C(KY) =1ece(Y) + meyce _1(Y) + [5],

d’ou le Théoréme (1.1). O

3. Exemples de cdnes projectifs
(1) Espaces de Thom associés a des plongements.
La construction précédente associe, canoniquement, un espace de Thom au

plongement d’une variété lisse Y dans P,. A titre d’exemple considérons I'image du
plongement de Segre P, x P, ¢, P, défini en coordonées homogenes par

(X0 1 x1) X (Yo :31) > (Xo¥o : Xo¥1 : X1 Yot X1 1),
et 'image du plongement de Veronese P, ¢, P5 défini par

(X1 Xy 2 X5) > (X3 XX, XoXp 0 X3 2%, %, 1 X3).
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Avec la construction précédente, KY est I'espace de Thom associé au fibré L, de
rang (complexe) 1 et restriction & Y du fibré hyperplan de Py. Les classes de Chern
et ’homologie d’intersection de ces exemples ont été calculés dans [BrGo 1]: Dans
le cas du plongement de Segre, soient d, et d, deux droites fixées appartenant
chacune a un systéme de génératrices de la quadrique Y =P, x P,. Notons w le
générateur canonique de H*(P,), il vient ¢*(P,) =1+ 2w et

co(Y) =co(P, x Py) = (Y] + 2[d,]) ® ([Y] + 2[d,])
=[Y] +2(ld,] +[d,]) +4ld]

ou a est un point de Y et ou ® désigne l'intersection des cycles ou des classes
d’homologie. On a donc

K(co(Y)) =[KY] + 2(Kd,] + [Kd;f) + 4[Ka].

Notons ~ I'homologie des cycles. Dans KY, on a [BrGo 1, §3] Y ~ Kd, + Kd,,
di~d,~Ka et a~s, d’ou avec (1.1)

c.(KY) =[KY] + 3([Kd,] + [Kd,]) + 8[Ka] + 5[s] ,
\ ) ~— J o —
Hg(KY) H4(KY) H,(KY) Hy(KY)

ce qui est conforme au résultat de [BrGo 1].

Dans le cas du plongement de Veronese, soit d une droite projective (hyper-
plan) de Y := P,, on a: ¢*(P,) = 1 + 3w + 3w? ou w est le générateur canonique de
H?*(P,), dual par isomorphisme de Poincaré de la classe [d] € H,(P,). 11 vient, par
dualité de Poincaré

co(Y) =[Y] + 3[d] + 3[a]
ou a est un point de Y. On a donc
K(c.(Y)) = [KY] + 3[Kd] + 3[Ka]
avec, dans KY, .[BrGo 1,83.b] Y~2Kd, d ~2Ka et a~s. Donc
co(KY) = [KY] + 5[Kd] + 9[Ka] + 4s]. O

\_V—J L_..V_J \._V_J (8 —
Hg(KY)  H4KY) Hy(KY) Hy(KY)
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(2) Cones projectifs itérés.
Notons K?Y le cone sur KY, de sommet §. Il vient, dans le cas du plongement
de Segre

K(c.(KY)) = [K2Y] + 3(Kd,] + [Kd,]) + 8[K?a] + 5[Ks]
et donc

c.(K2Y) = [K?Y] + 4(K?d,] + [K*d;]) + 14[K?a) + 13[Ks] + 6[3).
Dans le cas du plongement de Veronese, on a

K(c.(KY)) = [K2Y] + S[K?d] + 9[Ka] + 4[Ks]
et donc

c.(K2Y) = [K?Y] + T[Kd] + 19[Ka) + 13[Ks] + 5[§]

etc...

(3) Considérons une variété algébrique projective X de dimension m, homéo-
morphe & un cone itéré sur une hypersurface lisse de degré g dans P, [FiKp 1]. On
sait que X est homéomorphe a la variété

d
de:={[Z]EPm+l: Z Z;‘=O},
i =0

i=

et que le lieu singulier de ,, X% est {[z];(0,...,0,2z4,s...32n 1)} =P, _a
Le calcul des groupes d’homologie d’intersection de ,, X% a été fait dans
[FiKp 1, (2.1)]. Ici, on s’intéresse aux classes caractéristiques de ,,X%:
Sid=m+1, alors, Z := ,, X%, ., est lisse. On a pour les fibrés tangents

TPm-{-llZ:TZ@N

ou le fibré normal N est isomorphe & L®%|, (L est la restriction a Z du fibré
hyperplan de P, ;). Soient w le générateur canonique de H*(P, ) et & son
image dans H*(Z) par l'inclusion Z ¢ P, ,; on a

X% 41) =1°¢(Ppy 1)/ (gH) = (1 + &)™ *+2/(1 + gd).

Les classes de Chern cohomologiques de ,, X2, . ; s’expriment en fonction de & et de
ses puissances, c’est-a-dire qu’en homologie, et en notant H un hyperplan générique,
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elles s’expriment en fonction de la classe duale [,X%3,,,nH] de &, de la classe
duale [,X2, . ,nHN H’] de @2, ou H’ est un autre hyperplan générique transverse
a Hetc...

Si d =m, alors, ,, X% est un cone projectif sur la variété lisse ,,_,X%,. On
est dans la situation du Théoréme (1.1). Pour calculer les classes de Chern homo-
logiques de ,, X% =~ K(,,_,X%), il faut donc déterminer les relations liant, en
homologie, [,_,X%] et [K(,_ X% nH)] ainsi que celles liant [, _,X% nH] et
[K(,_ X5, "nHNH)) etc. ..

Par exemple, si Z ¢, P, est lisse et de degre g, il vient, a 'aide de (4.3):

"

H(Z) j=6 K o
Hkz)= B2 J=4 o pzy=dH2Z) j=4
/ HO(Z) j=2 ! Z ]_2

Vi i =0 =

J .z j=0

modulo ces isomorphismes, les classes de Chern des cones KZ et K?Z sont données

par: e .
_ [Z] j=38
l§1 J =g (6 — H] j=6
A2y = ;(g_zf)[sl;] P 10)pr) o2 o G2 =8 —6g+159(pr} j=4
2 . 1+g(2g2—9g+16) j=2

1+g(g°—4g+6) j=0 2 :
k2+g(g —4g+6). j=0

4. Autre expression du Théoréme (1.1)

Notons L’ = L\ Y g, le fibré en droites complexes L privé de la section nulle. Si
8, € H¥(L, L") désigne la classe de Thom de L, et ¢ := p|, : L - Y la projection de
L sur Y, on a une composition d’isomorphismes notée K’, pour i > 2

i — ol o
H,_»(Y) < H,_o(L) = H,(L, L') > H/(KY, KY\Y)) & H(KY, 5) « H,(KY)

ou a est lisomorphisme d’excision et f est induit par [Pinclusion
(KY, {s}) = (KY, KY\Yq).

(4.1) PROPOSITION. Le morphisme composé K’ s’identifie a K.

Cela vient, essentiellement, de ce que 3y est image de 3, par I'application
composée:

HXL,L') xHXLUY,,, L' UY,) »HYLUYy,) = H(E) S HXE,E). O
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(4.2) COROLLAIRE. Soit { un cycle de dimension au moins deux de Y,

sous-variéte de Py. Son image 1.({) dans le cone projectif KY est homologue a
K( nc'(L)).

Démonstration. Grace a (4.1), il suffit de vérifier que le diagramme

H(Y) < H(L) = H;(KY\s)

1 ncl(L) 1 y

H;_5(Y) H,(KY)

| =

commute. Oa

Il est facile de calculer I'homologie de KY: Etant donnée une décomposition
cellulaire de Y, on en déduit une décomposition cellulaire de KY en faisant
correspondre & chaque cellule ¢ de Y la cellule Ko, cone sur o, et en ajoutant le
sommet s comme cellule de dimension 0. En homologie, il vient

(4.3) PROPOSITION

H; ,(Y), j=22
H/(KY) {0, =1
R, j=0.

On en déduit a I’'aide du Théoréme (1.1):
(4.4) PROPOSITION. Les classes de Chern du cone KY sont égales a
¢;(KY) =K(c;(Y)ne'(L) +¢;_(Y)) pour j>0
et
co(KY) = 1.¢4(Y) + [5].
Dans le cas des variétés qui sont irréductibles en chaque point, on peut

remplacer le cap-produit entre I’homologie et la cohomologie par le produit
d’intersection, en homologie, plus géométrique:

(4.5) REMARQUE. Soit Y ¢ P, irréductible en chaque point et H un hyper-
plan générique de Py.
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(1) Soit { un cycle de dimension 22 de Y, et 1.({) son image dans le cone

projectif KY o Py, ;. Alors 1.({) est homologue a K({ n H) dans KY.
(2) Pour les classes de Chern, il vient

¢;(KY) = K(c;(Y)® H +c;_,(Y)) pour j >0
et

co(KY) = 1.¢o(Y) + [s].

5. Démonstration de la Proposition (2.2)

(a) Cas ou Y est lisse.
Supposons Y lisse, de dimension complexe n. Le fibré tangent vertical T, de
p: E— Y est défini par la suite exacte:

0-T,>TE->p*TY —0.
On en déduit, dans H*(E)
(5.1) ¢*(E) =c*(T,)vc*(p*(TY)).

Le faisceau des sections du fibré T, est le faisceau canoniquement associ¢ au
diviseur Yo + Y, noté Og(Y4 + ¥ (). Par isomorphisme de Poincaré, dans Y,
le diviseur [Y;,] € H,,(E) s’identifie a la classe ; € H*(E). La classe de Chern de T,
est donc

¢(T,)=14n+ M.
D’aprés la définition de ’homomorphisme de Gysin y, on a un diagramme

commutatif

Nn[Y]

H(Y) — H,, _(Y)

RO
N[E]

HY(E) — Hj, ;> {(E).

D’ou, par dualité de Poincaré
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(5.2) c*(p*(TY)) n[E] = p*(c*(TY)) n[E]
=(c*(TY)n[Y))
=y(c.(Y)).

Des formules (5.1) et (5.2), on déduit

co(E) = (1 + 10+ 1n5) ny(ca(Y))
ce qui est la Propositon (2.2)

(b) Démonstration dans le cas ou Y est singulier.
Considérons une résolution des singularités

py: Y-V
et supposons données des stratifications ¥ de Y:

Yyco--cY, =Y

591

et ¥ de ¥ telles que p, soit une application stratifiée. Chaque strate S; = ¥;\¥;_,
de Y se décompose sous la forme S, = J7_, S;. en composantes connexes. On pose

Y, := S, et on note g, 'inclusion de Y, dans Y. On pose
E:= (py)*E) et Ey:= (04)*(E),

ce qui fournit deux diagrammes de fibrés image réciproque:

EEE E, 2 E
lp‘ lp et lp,-k lp
yF 2y Yy —% Y.

(5.3) LEMME. 1l existe des entiers p; tels que

s
(*) (py)dp=1,+ Z Z l‘jklyjk,

j<nk=1

Tj
(%) (e le=1c+ Y Y tulg,.

j<nk=1

Démonstration. Pour la fonction constructible 15, égale a 1 sur ¥, on peut
définir les entiers p, satisfaisant (+), par récurrence décroissante sur j, de la facon
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suivante. Posons u,, =1 quelque soit k. On a

Py)(1p)(¥) =2(p¥'(») =1 pour y € S,

et, pour j <n et y € Sy, on pose:

e =1y ON— Y

Ji<j snk’

ou la sommation est étendue aux strates S;,.- telles que S; < S;;..—Si e € p~'(y),
on trouve

(Pe)«(10)e) = x(pE' (@) = x(p ¥ '(»))s

d’ou la formule (*=*). O

Soit Z une variété projective et ¢ : Z — Y une application (continue). On note
@ *E le fibré image réciproque de E par ¢. On a un diagramme commutatif

(p*E—?——»E

>l

z 2,y

Comme les fibres du fibré ¢ *E sur Z sont des sphéres S2, on a un morphisme de
Gysin

7 Hj—z(z) “*Hj(‘P*E)

satisfaisant

(5.4) 9.7 =v9.;
on en déduit le lemme:
(5.5) LEMME. Soit a € H'(E) et b € H«(Z), on a, dans H.(E)
$+(@ (@) N7(b)) = any(p.(d)). O

Nous utiliserons ce lemme dans deux cas particuliers:
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(1) si ¢ est I'application py: ¥ =Y, a:= (1+n,+1,) et b := c.(¥):

(5-6) (p£)o((1+ g+ i) NF(co(T)))
= (1+ 10+ 11:5) 0 ¥((py)s(co(T)))
avec (pour j =0, 1)
i = " (O(F) = (p£) ((O(Y ) = (p£)*(m;);
(2) si o est application o : Yy & Y, a:= (1 + 19+ 14) et b := co(¥y):

(5.7) (T:fk)'((l + N + Noojic) N Vi (€e(Y i)
=(14+no+ 1) NY((Tj)e(ce(Yi)),

ou (par exemple)
Mo 1= (Ti) (o) = (T) *(c'(O(¥))) = ¢ (O(Yo N Yy)).

Fin de la démonstration de la Proposition (2.2):
La proposition se démontre par récurrence croissante sur n. Si n =0,

elle est évidente. Supposons la formule vraie pour toute variété (singuliére)
de dimension strictement inférieure & n =dim Y et montrons qu’elle est vraie
pour Y:

Comme E est lisse, on a d’aprés le cas (a)

co(E) = (1 4 fig + fie) n(ca(T)).

En prenant les images par (pg)., et en utilisant la Formule (5.6), il vient

(5.8) (P£)eco(E) = (1 415+ 1) N Y((py)e(co(T)))

(p£)ece(E) = (pp)ece(1g) = co((pE) ,1£)

(py)ece(T) = (py)ece(1p) = col(py)u1p).
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Donc, d’aprés le Lemme (5.3), la Formule (5.8) devient:

CEV+Y Y melte)e(ce(E))

j<nk=1

=(1+no+ﬂw)ﬁv<co(l’)+ ) i ujk(djk)-(C-(ij)))-

j<nk=1

Par hypothése de récurrence, pour j <n, on a

co(Ejx) = (1 + Moje + Noojic) N Vi(ce(Y i),

d’ou la proposition, en utilisant (5.7). O

6. Théorémes de permanence

Soit Y une variété projective algébrique de dimension complexe n et R un
anneau principal de caractéristique nulle (on considérera, en fait, les cas R =Z ou
Q). La formule de la Proposition (4.3) donnant ’homologie de KY reste valable
pour ’anneau R. La situation est plus compliquée pour ’homologie d’intersection.
Pour un plongement Y ¢ P, donné, soit ¢'(L) € H*(Y, R) la classe d’Euler du fibré
L, restriction du fibré L, restriction du fibré hyperplan de P, a Y. Elle définit une
classe d’homologie d’intersection dans I,H,,_ ,(Y, R), encore notée c!(L). Pour
chaque perversité p, posons

y 1= 2 dim (KY) — 1 — p(2 dim (KY)).
On sait [FiKp 2, 3.5:

(6.1) PROPOSITION. L’homologie d’intersection du cone KY se calcule comme
ci-dessous:

Ip(}Ij——2(Y’ R)a .l >V

ncl(L)
IH(KY, R)y=< Im (I, H,(Y, R) — LH,_,(Y, R)), j=v
LH/(Y, R), j<v.

Pour toute perversité p on a un homomorphisme de comparaison naturel

Y : I,H,(Y, R) > LH,(Y, R) - H/(Y, R);
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il est surjectif pour j = 0 et dans ce cas, le Théoréme (1.3) est évident. 1l suffit donc
de considérer les degrés j = 1.
Dans tout ce qui suit, nous fixons un entier j > 1.

(6.2) LEMME. Supposons qu’il existe, pour i=j—1 et j, des éléments
¢ € ILH,(Y) tels que w% (&) = c;(Y). Alors, on a

¢;(KY) = Ko%(&ne'(L) +¢&_ ) € Im Kw¥,.
Démonstration. On a un diagramme commutatif a coefficients dans R

w®
LH(Y) — Hy(Y)
1 ncl(L) l ncl(L)

IHy_,(Y) ﬁ-» H, ,(Y)
d’ou, dans H,; ,(Y),
¢(Y)ne'(L) = 0% (&) ne'(L) = 0% (& ncl(L)).
D’autre part, on utilise le résultat (4.4) pour j > 0:
¢;(KY) =K(c;(Y)nc'(L) +¢;_,(Y))

- K((o‘,’,(éjﬁcl(L)) +w% (1))
=Kw°y(€,-r\cl(L) +é}'—‘)' .

Les résultats de permanence pour la classe de Chern c; dépendent de la relation
entre j et v: )

(a) Si 2j >v, on a I’égalité Kw¥% = w%yK. En effet, la Proposition (6.1) induit
un isomorphisme encore noté K (toujours a coefficients dans R),

K:IHy ,(Y)-I,H)(KY)
et un diagramme commutatif
I, Hy_o(Y) — Hy_5(Y)
K K
o
IH,(KY) — H,(KY).

On en déduit a 'aide de (6.2):



596 JEAN-PAUL BRASSELET, KARL-HEINZ FIESELER ET LUDGER KAUP

(6.3) PROPOSITION. Si 2j>v et si ¢c;_((Y), ¢;(Y) € Im w¥%, alors
¢;(KY) € Im wk,. O
Notons ¢ ’homomorphisme

nel(L)

6 : I,Hy(Y) —> I, Hy_5(Y).

(b) Si 2j=v, alors (6.1) induit un isomorphisme K :Imo — I Hy;(Y) et un
diagramme commutatif

Imo —ainj_z(Y)
lx .lx

wP
I,H(KY) =5 H,(KY).
Pour ¢;_,, {; comme dans (6.2), si on suppose &;_; € Im g, alors
éjncl(L) +¢,_1el,Hy_»(Y)

est dans Im 6. Dans ce cas, le Lemme (6.2) et 1’égalite Kw% = w%,K pour
les éléments de Im ¢ montrent que ¢;(KY) € Im wky. a

(¢) Si 2j <v, la Proposition (6.1) fournit un diagramme commutatif

ncl(L) ¥
IpH2j(Y) —_ IpH2j—2(Y) L sz—z(Y)

I I

o®
I,H,(KY) ————  H,( KY).

Supposons qu’il existe un n; € I, Hy(Y) tel que n;nc'(L) =¢&;_,. Alors,

¢;(KY) = K(@%((&; + ;) nc'(L)) = o%ky (15, + n)).
Donc nous avons montré, par les deux derniers cas:

(6.4) PROPOSITION. Pour 2j <v, si c;_(Y) € Im (@% o g) et ¢;(Y) € Im 0},
alors c;(KY) € Im wky. O
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La Proposition (6.3) s’applique aux cones projectifs itérés K™Y. A titre d’exem-
ple nous montrons:

(6.5) COROLLAIRE. Si la variété Y est une R-variété homologique, m 2 0 et j
tel que 2j > 2(n +m) — 1 — p(2n + 2), alors il vient

¢;(K"Y) e Imwkmy.

Nous faisons la démonstration par récurrence sur m. L’énoncé est évident pour
m = 0, puisque w¥% est un isomorphisme pour la variété homologique Y = K°Y. Soit
m 2 ] et supposons le résultat déja établi pour m — 1. Par hypothése de récurrence,

les classes ¢;_; (K™~ 'Y) et ¢;(K”~'Y) sont dans Im w%m-1y pour tout j tel que
2(j—1)>2(n+m—1) —1—p(2n + 2); alors, la Proposition (6.3) montre que

¢;(K"Y) € Im wkmy
pour tout j tel que
2i>max(2(n+m)—1—p(2n +2),v) =2(n + m) — 1 — p(2(n + 2)),
puisque
v=2mn+m)—1—pR2n+m)) <2(n+m) — 1 —p(2n +2). O
Les Propositions (6.3) et (6.4) et le corollaire montrent, que, si o est surjectif et

si ¢;(Y) € Im w%, alors ¢;(KY) € Im wky. Il nous reste donc a énoncer des condi-
tions, pour que ’homomorphisme

ncl(L)

g. IpHZJ(Y) h— Iszj__z(Y)

soit surjectif. Ceci est vrai, par exemple, dans la situation du Théoréme (1.3),
comme le montre la

Démonstration du Théoréme (1.3): Soient p et q deux perversités telles que
q < p, on a une factorisation

(6.6) wky : IH(KY) 22 I Ho(KY) —2 H.(KY);

Donc, pour m < p, il suffit de considérer le cas p=m, ou I'on a v =n + 1. Pour
2j > n + 1 la Proposition (6.3) montre ¢;(KY) € Im w¥y. Pour 2j <n + 1 on vérifie
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’hypothése ¢;_,eImo de (6.4) a l'aide du théoréme de Lefschetz difficile
[BeBeDe]:

(6.7) THEOREME. Pour k > 1 I’homomorphisme
nc‘(L)k : ImHn+k(Y’ Q) - ImHn—k(Ya d:D)
est un isomorphisme.
En particulier, pour 2j < n + 1 la décomposition
ImHzn —2j+ 2(Y, D) —’Imsz(Y, Q) - Imsz_ Z(Y’ Q)
de ’homomorphisme Nnc'(L)”*2~% montre que ’homomorphisme
ncl(L)
0. ImHZj(Y) D Imsz-—2(Y)

est surjectif. O

Le Théoréme (1.3) ne traite pas les petites perversités. On peut, cependant,
réduire ce cas aux propriétés d’'un homomorphisme, appelé encore homomorphisme
de Gysin [FiKp 2]

7? =9 : IpHi(Y’ R) "’IpHi—Z(A9 R)

qui, pour une section hyperplane générique A d’une variété Yc, P,, associe a
chaque classe { I'intersection { N 4.

(6.8) REMARQUE. Soit pcm+1 et tel que 2j <min (v, n +1). Si ¢;_,(Y),
¢;(Y) e Im % et si 'homomorphisme de Gysin y,;: [LH,(Y) > I, Hy_,(A) est
surjectif, alors

¢;(KY) e Imwky.

Démonstration. On a une factorisation de ¢ dans le diagramme commutatif

n[A4]

IpH2j( Y)— Iszj—z(Y)

l Y25 I Azj—2

IpH2j~ 2(A) = IpHZj- 2(A)
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ou 4, , =4}, , désigne ’homomorphisme de Lefschetz en homologie d’intersec-
tion associé a l'inclusion A ¢, Y. Comme pcm+1 et Y\A est un espace de Stein,
le Théoréme (2.1). de [FiKp 2] montre que 4, est surjectif pour i <n — 1, donc en

particulier pour i =2j—2. Le résultat est alors une conséquence directe de
(6.4) O

En échangeant les roles de A et de y, on trouve d’une maniére tout a fait
analogue:

(6.9) REMARQUE. Soit m—1cp et j tel que n+2<2j. Si ¢;_,(Y),
¢;(Y) € Im w% et si ’homomorphisme de Lefschetz

)~2j—2 . IpHZj—Z(A) —’Iszj—z(Y)
est surjectif, alors ¢;(KY) € Im w¥%,. U

A titre d’exemple, nous appliquons ces remarques a ’homomorphisme (de
dualité singuliére) de Poincaré:

P.(Y):H*" (Y)—> H.(Y).

(6.10) COROLLAIRE. Supposons que Y soit en chaque point irréductible et
topologiquement intersection compléte; soit c.(Y) € Im P.(Y). Si les homomorphis-
mes y5; sont surjectif pour 2j <n <1, et si A, est surjectif (pourvu que n soit un
nombre pair), alors c.(KY) € Im P.(KY).

Démonstration. Comme Y est topologiquement normal, pour Z := Y ou KY
I’homomorphisme de comparaison

w% :ILH(Z)—> H.(Z)
n’est rien d’autre que ’homomorphisme (de dualité) de Poincaré
P.(Z):H*~(Z)-> H.(2),

donc, c.(Y) € Im w?% quelque soit p. D’autre part, pour les intersections localement
topologiquement complétes, les perversités o et m—1 sont quasi-isomorphes
[FiKp 1, 1.4]. Donc on peut choisir p:= m — 1, de sorte que v =n + 2. D’apres
(6.3) le résultat est acquis pour 2j > v. Si 2j =v, on applique le Remarque (6.9) a
¢;(KY). Enfin, pour 2j <v le résultat découle de (6.8). O
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(6.11) EXEMPLE. Soit Y une intersection compléte dans P,, et R-variété
homologique a un nombre fini de singularités irreductibles prés. Alors ¢;(KY) €
Im w¥%y pour 2j ¢ [n — 1, n + 2], quelque soit la perversité p.

Démonstration. Comme Y est une intersection compleéte, il en est de méme de KY.
En particulier, les perversités o et m — 1 sont quasi-isomorphes pour Y de méme que
pour KY, donc m — 1 c p. D’aprés le Main Lemma [FiKp 3, 3.1], les homomorphis-
mes w%; sont surjectifs pour 2n — i < a®(p,t) et 2n —i 2 2n — 1 — bR(p, t), ou les
invariants a®(p,t) et b®(p,t) sont au moins égaux & n —2, puisque Y est une
intersection compléte a singularités isolées [FiKp 1, 1.2]. Donc ¢;(Y) € Im 0% pour
2j#n,n+1.

D’aprés la preuve de (6.10), il suffit de considérer le cas ou 2j <n — 2.

Pour pouvoir utiliser la Remarque (6.8) (avec p = 0), il faut vérifier que y,; est
surjectif. Dans notre situation on peut interpréter cet homomorphisme comme celui
associ€é a l'inclusion 4 ¢ Y

.yZn—-Zj: H2"_2j(Y)—->H2"—2j(A).

L’inclusion 1, : Y ¢ P, induit un diagramme commutatif

(6.12) H*~%(Py) —— H*~¥(Py_))

2n—2j 2n —2j
lly - lt“ -/
y2n—2

H2n - 2j( Y) ) H2n — 2j(A)’

ou il faut analyser les homomorphismes 1>’~% On a un deuxiéme diagramme
commutatif

21 —2

(6.13) H*=%(P,) —— H*~%(Y)

l Y] l ALY]

vy, 2j

HZj( Py) «——— sz( Y),

ou la premiére fléche verticale est la multiplication par g:=deg Y, puisque [Y] est
homologue g.[P,] dans P, et ou la deuxiéme fléche verticale est ’homomorphisme
de Poincaré et donc un isomorphisme pour 2j <n — 1 [Kp, 1.1]. D’aprés le théoréme
de Lefschetz facile, ’homomorphisme 1,; est bijectif pour 2j <n — 2. En particulier,
12" — ¥ est la multiplication par g pour 2j < dim Y — 2. La situation est plus facile pour
12* —%:]a variété 4 est une intersection compléte de degré g dans P, _, et une R-variété
homologique; donc 1%~ % est la multiplication par g, y compris pour 2j < n. Par
conséquent, ’homomorphisme y2* ~¥ est une surjection. O
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Méme pour une surface normale Y ¢ P, le classe de Chern c.(Y) n’est pas
forcément dans I'image de w¥% pour p=m, cf. [Fi]. Nous considérons pour les
valeurs 2;j restantes le cas le plus simple:

(6.14) EXEMPLE. Soit Y une intersection compléte dans P,, qui est une
R-variet¢ homologique et telle que pour

n pair: H,(A) - H,(Y) est surjectif,
H"(Y) —» H"(A) est surjectif si b,(Y,R) #1,

n impair: H"~'(Y) - H"~'(A) est surjectif.
Alors c.(KY) € Im w¥%, quelque soit la perversité p.

Démonstration. D’apres I'exemple précédent il suffit de considérer les valeurs j
telles que 2j € [n — 1, n + 2]. Pour 2j =n + 2, on peut appliquer la Remarque (6.9)
grice a py =t,, tandis que, si 2j=n+1, on se sert de la Remarque (6.8).
Supposons maintenant que 2j < n. Dans le Diagramme (6.13) ’homomorphisme
N[Y]: H*"~3(Y) - Hy(Y) est bijectif. Donc, 13"~ est la multiplication par g,
pour 2j=n—1; si b,(Y) <1, ce résultat s’é¢tend a 1%, puisque 1, est toujours
surjectif. On a donc vérifié que y2* ~ ¥ est surjectif, et la Proposition (6.8) avec p = o

donne le résultat. O
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