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Classes caractéristiques pour les cônes projectifs et
homologie d&apos;intersection

Jean-Paul Brasselet, Karl-Heinz Fieseler et Ludger Kaup

En hommage à Jean Louis Verdier

1. Le problème

L&apos;étude des variétés singulières a fait de récents progrès dans deux directions:
d&apos;une part les constructions, en homologie, des classes de Chern des ensembles

analytiques complexes, dues à M. H. Schwartz et à R. MacPherson; d&apos;autre part
la définition de l&apos;homologie d&apos;intersection (M. Goresky et R. MacPherson), dans

laquelle l&apos;intersection de deux cycles est encore un cycle. Ainsi, si on veut définir
des nombres de Chern pour des ensembles analytiques complexes, il faut pouvoir
relever les classes de Chern en homologie d&apos;intersection. Des résultats négatifs ont
été obtenus. Dans [BrGo2], on donne de tels exemples, inspirés de J. L. Verdier et
de M. Goresky, construits comme cônes projectifs sur une surface projective lisse,

donc comme espaces à singularités isolées. On considère, ici, ces constructions
d&apos;une manière plus systématique. Pour des exemples à singularités non isolées d&apos;un

côté, et des théorèmes de permanence d&apos;un autre côté, nous démontrons d&apos;abord

le résultat suivant permettant le calcul des classes de Chern des cônes projectifs
itérés pour l&apos;homologie à coefficients entiers:

(1.1) THÉORÈME. Soit Y c&gt; PN, variété projective, et i :Y c* KY V inclusion

canonique dans KY, le cône projectif sur Y, de sommet {s}. En notant également

K : H.(Y)-&gt;H. + 2(KY) le &quot;cône projectif homologique&quot; (2.1), on a

(1.2) c7(

où Kc_x(Y) désigne la classe [s] e Ho(KY).

Considérons maintenant l&apos;homologie d&apos;intersection IVH.(Y), définie comme
l&apos;hypercohomologie H2dim Y~\Y^\) du complexe de Deligne ^*. Pour deux
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perversités p et q on pose p cz q s&apos;il existe un diagramme commutatif

avec les morphismes canoniques de comparaison /*op et /xoq. Cette relation dépend
de la pseudovariété et des coefficients en question; pour les détails voir [FiKp 3, §2].
L&apos;ordre partiel p cz q est une extension naturelle de l&apos;ordre partiel p £q; il est

compatible avec l&apos;identification des perversités suivant &quot;quasi-isomorphie&quot;.

(1.3) THÉORÈME. Soit p une perversité telle que m c p. Si les classes de Chern
de Y sont dans Vimage de Vhomologie d&apos;intersection à coefficients rationnels pour la

perversité p, il en est de même des classes de Chern de KY.

Ce résultat sera démontré dans §6, dans une situation plus générale.

1.4) COROLLAIRE. Si Y est une variété homologique rationnelle, les classes

de Chern d&apos;un cône itéré de Y sont dans Vimage de Vhomologie d&apos;intersection à

coefficients rationnels pour chaque perversité p telle que m c p.1

Démonstration. Comme une variété homologique rationelle est irréductible en

chaque point, on a des isomorphismes

H2dim Y-J(Y, Q) ^hlfjiY, Q) s/piï,(r, Q) £/tfl,(r, Q)*Hj(Y9 Q).

Donc c.{Y) est dans l&apos;image de Fhomologie d&apos;intersection à coefficients rationnels,
quelque soit la perversité p, et le résultat découle de (1.3).

2. Le cône projectif homologique

Pour toute application de variétés projectives algébriques complexes f:X-+Y9
nous noterons /. l&apos;application induite en homologie et f+ l&apos;application induite sur

l) Ce résultat démontre, dans un cas particulier, la conjecture suivant laquelle, pour les coefficients
rationnels, les classes de Chern des variétés algébriques sont dans l&apos;image de l&apos;homologie d&apos;intersection.

D&apos;après Goresky et MacPherson, cette conjecture se ramène à la démonstration d&apos;un &quot;Moving Lemma&quot;

relatif au cycles d&apos;intersection.
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les fonctions constructibles. L&apos;application /„, est définie par la condition

pour toute fonction caractéristique 1 v d&apos;un sous-ensemble ouvert Fcl Dans
[MPh, Prop. 1], MacPherson démontre l&apos;existence d&apos;une unique transformation
naturelle c. du foncteur &quot;fonctions constructibles&quot; dans le foncteur &quot;homologie

entière&quot; telle que:

(1) c.(
(2)/.c.(a)=c.(/&gt;);
(3) c.(X)=P(X)(c\X))9

si X est une variété lisse de classe de Chern cohomologique c\X) et où P(X)
désigne la dualité de Poincaré sur X.

Considérons Y, variété projective de dimension (complexe) w, plongée dans PN
et notons L la restriction du fibre hyperplan de PN à Y. On appelle E le complété
projectif de l&apos;espace total de L, c&apos;est-à-dire P(L © lr) où lr est le fibre trivial de

rang (complexe) 1 sur Y. La projection canonique p : E-*Y admet deux sections,
nulle et infinie, d&apos;images Yi0) et 7(00). Le cône projectif KY s&apos;obtient par quotient de

E en contractant 7(oo) en un point {s}. KY est l&apos;espace de Thom associé au fibre L,
de base Y.

En regardant p : E-+Y comme un fibre en sphères S2, sous-fibré d&apos;un fibre

p : E -*&gt; Y en boules B3, on a une classe de Thom 9E e H3(E, E) et une suite exacte
de Gysin

dans laquelle le morphisme de Gysin y est la composition de

et s&apos;explicite comme suit: Si C est un cycle représentant une classe [Ç] de

Hj-iiYl 7(KÏ) est la classe du cycle p~\Q dans #,(£*).
Soit n la projection canonique n : E-+KY.

(2.1) DÉFINITION. On appelle cône projectif homologique, et on note encore

K, l&apos;application composée K n.y : Hj_2(Y) -*Hj(KY) pour j ^ 2. Pour
0 H_2(Y), on pose #(0) := [s] e H0(KY).

Remarquons que K est homomorphisme, sauf pour j 0.
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Le Théorème (1.1) est une conséquence directe de la proposition suivante

(démontrée au paragraphe 5):

(2.2) PROPOSITION. Les classes de Chern de E et de Y sont liées par la
relation

où rjj := cï(O(Y^)) e H2(E) pour j 0, oo, et n désigne le cap-produit usuel.

(2.3) REMARQUE. Si Y est irréductible en chaque point, et si • désigne le

produit d&apos;intersection entre les groupes d&apos;homologie d&apos;intersection I0H.{E) et

ItH.(E)^H.(E), on a

c.(E) ([E] + [7(0)] + [Y(oo)]) • y(c.(y».

Démonstration du Théorème (1.1) à partir de la Proposition (2.2): Soit \E la

fonction constructible, constante, égale à 1 sur E, alors on a

i, si x s

sinon,

c&apos;est-à-dire

Puisque

7T.C.(1£)=C.(7C#(1E))

on en déduit

(2.4) n.c.(E) c.(KY) + (X(Y) - l)[s].

D&apos;autre part, l&apos;image par n. de l&apos;équation de la Proposition (2.2) s&apos;écrit:

(2.5) n.c.(E) =7i.Kc-,(Y)) -h n.(riony(c.(Y))) +^
Soient i0 : Y c&gt; E et i^ : Y c» E les inclusions de Y comme sections nulle et infinie
de E, respectivement. Par définition de y, on a, pour tout cycle £ de y et pour y&quot; 0
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OU 00

donc

Si i 71 o i0 : Y c+ KY désigne l&apos;inclusion naturelle de Y dans KY, alors

^?dr(0)) V) et 7r,(lr(oo))

Donc nous obtenons

n.(riony(c.(Y))) c.(lI(r)) uc.{Y\

et

où [5] est la classe du sommet s dans H0(KY). La comparaison de (2.4) et de (2.5)
nous donne alors:

c.(KY) i.c.(Y) -h 7i.yc._ X(Y) -h M,

d&apos;où le Théorème (1.1). D

3. Exemples de cônes projectifs

(1) Espaces de Thom associés à des plongements.
La construction précédente associe, canoniquement, un espace de Thom au

plongement d&apos;une variété lisse y dans PN. A titre d&apos;exemple considérons l&apos;image du

plongement de Segre Px x P, c* P3, défini en coordonées homogènes par

(x0 : xx) x (y0 : yx) h-&gt; (xoyo : xoyx : xxy0 :

et l&apos;image du plongement de Veronese P2 ^ P*5 défini par

\Xq &apos;. X\ &apos;. X2) •—? (^0 • •^^ * ^^ ^ *^^ ^
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Avec la construction précédente, KY est l&apos;espace de Thom associé au fibre L, de

rang (complexe) 1 et restriction à y du fibre hyperplan de PN. Les classes de Chern
et l&apos;homologie d&apos;intersection de ces exemples ont été calculés dans [BrGo 1]: Dans
le cas du plongement de Segre, soient dx et d2 deux droites fixées appartenant
chacune à un système de génératrices de la quadrique Y Px x Px. Notons co le

générateur canonique de H2(PX), il vient c9(P{) 1 + 2œ et

c.(Y) c.(Pl x P.) ([Y] + 2[dx}) • ([Y] + 2[d2])

[Y]+2([dx]+[d2])+4[a]

où a est un point de Y et où • désigne l&apos;intersection des cycles ou des classes

d&apos;homologie. On a donc

K(c.(Y)) [KY] + 2([Kdx] + [Kd2]) + 4[Ka],

Notons ~ l&apos;homologie des cycles. Dans KY, on a [BrGo 1, §3] Y ~Kdx + Kd2,

dx~d2~Ka ti a ~s, d&apos;où avec (1.1)

c.(KY) [KY] + 3([Kdx] -h [Kd2]) + %[Ka] + 5[s]

H6(KY) H4(KY) H2(KY) H0(KY)

ce qui est conforme au résultat de [BrGo 1].

Dans le cas du plongement de Veronese, soit d une droite projective (hyper-
plan) de Y : P2, on a: c*(P2) \ + 3a&gt; + 3œ2 où a&gt; est le générateur canonique de

if2(P2), dual par isomorphisme de Poincaré de la classe [d] e H2(P2). Il vient, par
dualité de Poincaré

où a est un point de Y. On a donc

K(c.(Y)) [KY] + 3[Kd] + 3[Ka]

avec, dans KY, [BrGo 1, §3.b] F - 2*tf, d - 2£a et a-5. Donc

[KY] + 5[Kd]+9[Ka]+4[s]. D

H6{KY) H4(KY) H2(KY) H0(KY)
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(2) Cônes projectifs itérés.

Notons K2Y le cône sur KY9 de sommet s. Il vient, dans le cas du plongement
de Segre

K(c.(KY)) [K2Y] + 3([K2dx) + [K2d2]) + %{K2a] + 5[Ks]

et donc

c.(K2Y) [K2Y] + 4([K2d{] + [K2d2]) + U[K2a] -h U[Ks]

Dans le cas du plongement de Veronese, on a

K(c.(KY)) [K2Y] + 5[K2d] + 9[K2a] + 4[£y]

et donc

c.(K2Y) [^27] -f 7[^2rf] -f 19[#2a] -h 13[X5] -h S[s]

etc...
(3) Considérons une variété algébrique projective X de dimension w, homéo-

morphe à un cône itéré sur une hypersurface lisse de degré g dans Pd [FiKp 1]. On
sait que X est homéomorphe à la variété

:= j[z]6Pw + 1: Zo^f=oi

et que le lieu singulier de mXgd est {[z]; (0,...,0, zd+19...,zm+l)} s IPm_rf.

Le calcul des groupes d&apos;homologie d&apos;intersection de mXgd a été fait dans

[FiKp 1, (2.1)]. Ici, on s&apos;intéresse aux classes caractéristiques de mXd\
Si d m + 1, alors, Z : mXfn+l est lisse. On a pour les fibres tangents

où le fibre normal N est isomorphe à L®g\z (L est la restriction à Z du fibre

hyperplan de Pm + i). Soient œ le générateur canonique de H2(Pm+l) et c» son

image dans H2(Z) par l&apos;inclusion Zc^Pm+1;ona

Les classes de Chern cohomologiques de mXgm + x s&apos;expriment en fonction de &amp; et de

ses puissances, c&apos;est-à-dire qu&apos;en homologie, et en notant H un hyperplan générique,
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elles s&apos;expriment en fonction de la classe duale \j,,Xgm+ir,H] de &lt;ô, de la classe

duale \mXgt +\nHnHr\ de &lt;52, où H&apos; est un autre hyperplan générique transverse
à H, etc...

Si d m, alors, mXgm est un cône projectif sur la variété lisse m-.xXgm. On
est dans la situation du Théorème (1.1). Pour calculer les classes de Chern homo-

logiques de mXgm^K(m_yXgm), il faut donc déterminer les relations liant, en

homologie, L-i^m] et [K(m_xXgmnH)] ainsi que celles liant L-i*m^#] et

Par exemple, si Z &lt;+ P3 est lisse et de degré g, il vient, à l&apos;aide de (4.3):

¦HA(Z) 7 6 H4(Z) j 8

H2(Z) 7 6

et H,(K2Z)s&lt;H0(Z) 7 4

Z 7 2

.1 7=0

modulo ces isomorphismes, les classes de Chern des cônes KZ et K2Z sont données

par:

g(s - 5g +
7=4

5g+ 10)^} 7 2
Ct

[Z] 7 8

7=6
7=4
7=2

• 7=0

4. Autre expression du Théorème (1.1)

Notons U L\Y(0), le fibre en droites complexes L privé de la section nulle. Si

9£ e H2{L, L&apos;) désigne la classe de Thom de L, et q : p\L : L -» F la projection de

L sur y, on a une composition d&apos;isomorphismes notée K&apos;, pour i S 2

KY\Ym) lH,(KY, s)^

où a est l&apos;isomorphisme d&apos;excision et fi est induit par l&apos;inclusion

(KY,{s})c:(KY,KY\Ym).

(4.1) PROPOSITION. Le morphisme composé K&apos; s&apos;identifie à K.

Cela vient, essentiellement, de ce que 9E est image de 9L par l&apos;application

composée:

H\L, L&apos;) s H\L u F(oo)&gt; U u y(0O)) ^ H\L u F(oo)) D
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(4.2) COROLLAIRE. Soit Ç un cycle de dimension au moins deux de Y,

sous-variété de PN. Son image i.(Ç) dans le cône projectif KY est homologue à

Démonstration. Grâce à (4.1), il suffit de vérifier que le diagramme

&lt;^-HJ(L)=HJ(KY\s)

Hj-2(Y) ^ H^KY)

commute.

II est facile de calculer Fhomologie de KY: Etant donnée une décomposition
cellulaire de Y, on en déduit une décomposition cellulaire de KY en faisant
correspondre à chaque cellule a de F la cellule Ko, cône sur &lt;r, et en ajoutant le

sommet s comme cellule de dimension 0. En homologie, il vient

(4.3) PROPOSITION

On en déduit à l&apos;aide du Théorème (1.1):

(4.4) PROPOSITION. Les classes de Chern du cône KY sont égales à

Cj{KY) K(cJ(Y)nc\L) + c,_ X(Y)) pour j &gt; 0

et

Dans le cas des variétés qui sont irréductibles en chaque point, on peut
remplacer le cap-produit entre Fhomologie et la cohomologie par le produit
d&apos;intersection, en homologie, plus géométrique:

(4.5) REMARQUE. Soit Y c&gt; PN irréductible en chaque point et H un hyper-
plan générique de PN.
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(1) Soit Ç un cycle de dimension ^2 de F, et i.(Ç) son image dans le cône

projectif KY c* IPN +1# Alors *•(£) est homologue à K(Ç nH) dans KY.
(2) Pour les classes de Chern, il vient

Cj(KY) K(Cj(Y) • H + c,_ ,(7)) pour ; &gt; 0

et

5. Démonstration de la Proposition (2.2)

(a) Cas où Y est lisse.

Supposons Y lisse, de dimension complexe n. Le fibre tangent vertical Tv de

p \ E-+ Y est défini par la suite exacte:

0-+Tv-&gt;TE-+p*TY-+0.

On en déduit, dans H\E)

(5.1) c\E)=c\T9)vc\p+(TY)).

Le faisceau des sections du fibre Tv est le faisceau canoniquement associé au
diviseur 7(0) 4- Y(ao), noté OE(Y(0) + F(oo)). Par isomorphisme de Poincaré, dans F,
le diviseur [FO)] € H2n(E) s&apos;identifie à la classe rjj e H2(E). La classe de Chern de Tv

est donc

c\Tv) 1+^0 + ^00.

D&apos;après la définition de Fhomomorphisme de Gysin y, on a un diagramme
commutatif

D&apos;où, par dualité de Poincaré
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(5.2) c&apos;(p*(TY))n[E] =p\c&apos;(TY))n[E]

y(c&apos;(TY)n[Y])

y(c(Y)).

Des formules (5.1) et (5.2), on déduit

ce qui est la Propositon (2.2)

(b) Démonstration dans le cas où Y est singulier.
Considérons une résolution des singularités

et supposons données des stratifications Y de Y:

et F de F telles que pY soit une application stratifiée. Chaque strate Sj Yj\Yj_x
de Y se décompose sous la forme Sj U* 1 Sjk en composantes connexes. On pose
Yjk • Sjk et on note °jk l&apos;inclusion de Yjk dans Y. On pose

E:=(py)*(E) et Ejk:=(ajk)*(E),

ce qui fournit deux diagrammes de fibres image réciproque:

[p [p et \p* \p

(5.3) LEMME. // existe des entiers iijk tels que

j&lt;nk=1

j &lt; n k

Démonstration. Pour la fonction constructible If, égale à 1 sur F, on peut
définir les entiers fijk satisfaisant (*), par récurrence décroissante sur j, de la façon
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suivante. Posons \ink 1 quelque soit k. On a

(Pr)*(l?)(y) X(prl(y)) 1 Pour y e 5^,

et, pour j &lt; n et y e Sjk9 on pose:

j &lt;y &lt;ï njk&apos;

où la sommation est étendue aux strates S/k- telles que Sjk c Syk,.—Si e ep~x(y\
on trouve

=X(PÊl(e)) =x(P

d&apos;où la formule (**).

Soit Z une variété projective et q&gt; : Z -? 7 une application (continue). On note
le fibre image réciproque de E par (p. On a un diagramme commutatif

(p*E -?-&gt;E

Comme les fibres du fibre cp*E sur Z sont des sphères S2, on a un morphisme de

Gysin

satisfaisant

(5.4) (p.y=ycp.;

on en déduit le lemme:

(5.5) LEMME. Soit a e H\E) et b e #.(Z), on a,

&lt;?.(&lt;? \a) n y(è)) a n7(&lt;]P.(è)).

Nous utiliserons ce lemme dans deux cas particuliers:
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(1) si q&gt; est l&apos;application pY : F-* Y, a := (1 + f?0+ */«&gt;) et * :=

(5.6) (p£).((l

avec (pour j 0, 1)

rjf := cl(&lt;9(?(j))) (p*)

(2) si q&gt; est l&apos;application ex,* : Yjk c+ Y, a := (H-^o + ^oo) et b :=

(5.7) (t^),((1 -f ^ + r\*&gt;

où (par exemple)

Fin de la démonstration de la Proposition (2.2):
La proposition se démontre par récurrence croissante sur n. Si n 0,

elle est évidente. Supposons la formule vraie pour toute variété (singulière)
de dimension strictement inférieure à n dim Y et montrons qu&apos;elle est vraie

pour Y:

Comme Ë est lisse, on a d&apos;après le cas (a)

c.(E) 1 + rio + */oo) ny(c.(f

En prenant les images par (p^)., et en utilisant la Formule (5.6), il vient

(5.8) (pE).c.(E) =(1

où

et

f (pY).c.(lr)
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Donc, d&apos;après le Lemme (5.3), la Formule (5.8) devient:

c(E) +11 ixjk(Tjk).{c.{Ejk))
j &lt; n k 1

«(l+iJo + i»ao)n/c.(r)+ £ £ lijk(ojk).{c(Yjk))\
\ j&lt;nk=\ J

Par hypothèse de récurrence, pour j &lt; n, on a

d&apos;où la proposition, en utilisant (5.7).

6. Théorèmes de permanence

Soit Y une variété projective algébrique de dimension complexe n et R un
anneau principal de caractéristique nulle (on considérera, en fait, les cas R Z ou
Q). La formule de la Proposition (4.3) donnant Fhomologie de KY reste valable

pour l&apos;anneau R. La situation est plus compliquée pour Phomologie d&apos;intersection.

Pour un plongement Y c» PN donné, soit cl(L) g H2(Y, R) la classe d&apos;Euler du fibre

L, restriction du fibre L, restriction du fibre hyperplan de PN à F. Elle définit une
classe d&apos;homologie d&apos;intersection dans I0H2n-2(Y,R), encore notée cl(L). Pour
chaque perversité p, posons

v : 2 dim (KY) - 1 - p(2 dim (#F)).

On sait [FiKp2, 3.5]:

(6.1) PROPOSITION. Uhomologie d&apos;intersection du cône KY se calcule comme
ci-dessous:

flp(HJ_2(Y,R), j&gt;v

R) S &lt; Im (I.HjiY, R) &gt; IVH}_2{Y, R)), j v

Pour toute perversité p on a un homomorphisme de comparaison naturel

co\ : /p/f,(F, R) -&gt;/,//,(r, *) -//,(F, R);
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il est surjectif pour y 0 et dans ce cas, le Théorème (1.3) est évident. Il suffit donc
de considérer les degrés j ^ 1.

Dans tout ce qui suit, nous fixons un entier j&apos; ^ 1.

(6.2) LEMME. Supposons qu&apos;il existe, pour 1=7— 1 et j, des éléments

{, e IpH2l(Y) tels que a&gt;Wt) ct(Y). Alors, on a

Cj(KY) KœWjnc&apos;iL) + Çj.i) elmKco*Y.

Démonstration. On a un diagramme commutatif à coefficients dans R

IpH2j(Y) ^H

d&apos;où, dans H2j__2(Y),

D&apos;autre part, on utilise le résultat (4.4) pour j &gt; 0:

c1(L) + ^-i).
Les résultats de permanence pour la classe de Chern cy dépendent de la relation

entre j et v:

(a) Si 2/ &gt; v, on a l&apos;égalité Ko)pY &lt;ovKYK. En effet, la Proposition (6.1) induit
un isomorphisme encore noté K (toujours à coefficients dans R),

K:IPH2J_2(Y)^IPH2J(KY)

et un diagramme commutatif

1*

IPH2J(KY) -^ H2J(KY).

On en déduit à l&apos;aide de (6.2):
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(6.3) PROPOSITION. Si 2/ &gt;v et si Cj_ X(Y)9 Cj(Y) g Im co*Y9 alors

Cj(KY) Glm co%Y. D

Notons a l&apos;homomorphisme

a:IvH2j{Y) &gt;IvH2j_2{Y).

(b) Si 2/ v, alors (6.1) induit un isomorphisme K : Im a -+IpH2j(Y) et un
diagramme commutatif

Im(7 &gt;H2j_2(Y)

^ H2J(KY).

Pour ÇJ_l,ÇJ comme dans (6.2), si on suppose ^_ e Im &lt;r, alors

est dans Im a. Dans ce cas, le Lemme (6.2) et l&apos;égalité Kœ\ Q)pKrK pour
les éléments de Im a montrent que c,(ÀT) e Im cu^r.

(c) Si 2/ &lt; v, la Proposition (6.1) fournit un diagramme commutatif

IPH2J(Y) &gt; IPH2J_2(Y) -^ H2J_2(Y)

IVH2J{KY) ~ &gt; H2J(KY).

Supposons qu&apos;il existe un r\j g IpH2j(Y) tel que r\3 ncl(L) Çj_ {. Alors,

Cj(KY) K(cqpy((Çj + rjj)ncl(L)) ©^(^(^ 4- &gt;/,)).

Donc nous avons montré, par les deux derniers cas:

(6.4) PROPOSITION. Pour 2/ ^ v, si Cj_x(Y) e Im (œ*Y o a) er c,(7) g Imcopr,

^(a:f) Gimct)^. a
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La Proposition (6.3) s&apos;applique aux cônes projectifs itérés KmY. A titre d&apos;exemple

nous montrons:

(6.5) COROLLAIRE. Si la variété Y est une R-variété homologique, m^Oetj
tel que 2/ &gt; 2(n + m) — 1 — p(2n + 2), alors il vient

Cj(KmY) elmco*KmY.

Nous faisons la démonstration par récurrence sur m. L&apos;énoncé est évident pour
m 0, puisque copY est un isomorphisme pour la variété homologique Y K°Y. Soit
m ^ 1 et supposons le résultat déjà établi pour m — 1. Par hypothèse de récurrence,
les classes cJ_l(Km~lY) et Cj(Km~lY) sont dans lmo)pKm-\Y pour tout y tel que
2(j - 1) &gt; 2(n -h m - 1) - 1 - p(2/i -h 2); alors, la Proposition (6.3) montre que

cJ(KmY)elmœpKmY

pour tout j tel que

2/ &gt; max (2(n + m) - 1 - p(2n + 2), v) 2(«+m)-l- p(2(« + 2)),

puisque

v=2(«+/n)- l-p(2(n+w)) £ 2(n -hm) - 1 -p(2w + 2).

Les Propositions (6.3) et (6.4) et le corollaire montrent, que, si a est surjectif et
si Cj(Y) e Im copY, alors Cj(KY) e Im ct&gt;^r. Il nous reste donc à énoncer des conditions,

pour que Fhomomorphisme

oc»(L)
o:l,H2j{Y) &gt;IPH2J_2(Y)

soit surjectif. Ceci est vrai, par exemple, dans la situation du Théorème (1.3),
comme le montre la

Démonstration du Théorème (1.3): Soient p et q deux perversités telles que
q c p, on a une factorisation

(6.6) œ%Y : IqH.(KY) -^ IpH.(KY) —^ H.(KY);

Donc, pour m c p, il suffit de considérer le cas p m, où l&apos;on a v n -f 1. Pour
2/ &gt; n + 1 la Proposition (6.3) montre Cj(KY) g Im co^Y. Pour 2/ £ n + 1 on vérifie
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Thypothèse ^.jgIiïkt de (6.4) à l&apos;aide du théorème de Lefschetz difficile
[BeBeDe]:

(6.7) THÉORÈME. Pour k £ 1 Vhomomorphisme

ncl(L)k : ImHn + k(Y, Q)-+ImHn_k(Y, Q)

est un isomorphisme.

En particulier, pour 2/&apos; £ n + 1 la décomposition

/«#2-* + 2(r, Û) ^ImH2j(Y, Q) -+lmH2j_2(Y, Q)

de l&apos;homomorphisme ncx(L)n + 2~2j montre que Thomomorphisme

est surjectif.

Le Théorème (1.3) ne traite pas les petites perversités. On peut, cependant,
réduire ce cas aux propriétés d&apos;un homomorphisme, appelé encore homomorphisme
de Gysin [FiKp 2]

qui, pour une section hyperplane générique A d&apos;une variété Yc+ PN, associe à

chaque classe l&apos;intersection

(6.8) REMARQUE. Soit p c m + 1 et y tel que 2/ ^ min (v, n -h 1). Si c;_ ,(7),
^(FJelmco^ et si l&apos;homomorphisme de Gysin y2j : IpH2j(Y)-&gt;IpH2j_2(A) est

surjectif, alors

Démonstration. On a une factorisation de a dans le diagramme commutatif

72J
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où X2j_2 k\j-2 désigne l&apos;homomorphisme de Lefschetz en homologie d&apos;intersection

associé à l&apos;inclusion A c* Y. Comme p c m + 1 et Y\A est un espace de Stein,
le Théorème (2.1). de [FiKp 2] montre que A, est surjectif pour i ^ n — 1, donc en

particulier pour i 2/ — 2. Le résultat est alors une conséquence directe de

(6.4)

En échangeant les rôles de À et de y, on trouve d&apos;une manière tout à fait
analogue:

(6.9) REMARQUE. Soit m-lcp et j tel que w + 2 &lt;£ 2/ Si c^
Cj(Y) e Im œvY et si l&apos;homomorphisme de Lefschetz

est surjectif, alors Cj(KY) g Im œvKY.

A titre d&apos;exemple, nous appliquons ces remarques à l&apos;homomorphisme (de
dualité singulière) de Poincaré:

P.(Y):H2n&apos;(Y)^H.(Y).

(6.10) COROLLAIRE. Supposons que Y soit en chaque point irréductible et

topologiquement intersection complète&apos;, soit c.(Y) GlmP.(F). Si les homomorphis-
mes y2j sont surjectif pour 2j1 ^ n + 1, et si X°n est surjectif {pourvu que n soit un
nombre pair), alors c.(KY) g Im P.(KY).

Démonstration. Comme Y est topologiquement normal, pour Z : Y ou KY
l&apos;homomorphisme de comparaison

œ°z:I0H.{Z)-+H.(Z)

n&apos;est rien d&apos;autre que l&apos;homomorphisme (de dualité) de Poincaré

P.{Z):H2n~\Z)^H.(Z\

donc, c.(Y) e Im œ\ quelque soit p. D&apos;autre part, pour les intersections localement

topologiquement complètes, les perversités o et m — 1 sont quasi-isomorphes

[FiKp 1, 1.4]. Donc on peut choisir p := m -1, de sorte que v n + 2. D&apos;après

(6.3) le résultat est acquis pour 2/ &gt; v. Si 2/ v, on applique le Remarque (6.9) à

Cj(KY). Enfin, pour 2/ &lt; v le résultat découle de (6.8).
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(6.11) EXEMPLE. Soit Y une intersection complète dans PN9 et R-variété
homologique à un nombre fini de singularités irréductibles près. Alors Cj(KY) e
Im œvKY pour 2/&apos; $ [n — 1, n + 2], quelque soit la perversité p.

Démonstration. Comme F est une intersection complète, il en est de même de KY.
En particulier, les perversités o et m — 1 sont quasi-isomorphes pour Y de même que

pour KY, donc m — 1 c p. D&apos;après le Main Lemma [FiKp 3, 3.1], les homomorphis-
mes co^ sont surjectifs pour 2n — i ^ aR(p, t) et 2n — i ^ 2n — 1 — bR(p, t), où les

invariants aR(p,t) et bR(p,t) sont au moins égaux à n —2, puisque Y est une
intersection complète à singularités isolées [FiKp 1, 1.2]. Donc Cj(Y) e Im copY pour

D&apos;après la preuve de (6.10), il suffit de considérer le cas où 2/&apos; &lt;. n — 2.

Pour pouvoir utiliser la Remarque (6.8) (avec p o), il faut vérifier que y2j est

surjectif. Dans notre situation on peut interpréter cet homomorphisme comme celui
associé à l&apos;inclusion A c* Y

L&apos;inclusion ir : Y c+ PN induit un diagramme commutatif

(6.12) ^

—&gt;H2n-2j(A),

où il faut analyser les homomorphismes i2n~2J, On a un deuxième diagramme
commutatif

(6.13) H2n~2j(PN) -^—1 H2n-2\Y)

H2J(PN) ~ H2J(Y\

où la première flèche verticale est la multiplication par g*=deg Y, puisque [Y] est

homologue g»[PJ dans P^, et où la deuxième flèche verticale est l&apos;homomorphisme

de Poincaré et donc un isomorphisme pour 2/ £ n — 1 [Kp, 1.1]. D&apos;après le théorème
de Lefschetz facile, l&apos;homomorphisme i2j est bijectif pour 2j &lt;&gt;n — 2. En particulier,
12Ç -2j est la multiplication par g pour 2/ ^ dim Y — 2. La situation est plus facile pour
i J1 -2j : la variété ^4 est une intersection complète de degré g dans P^ _ j et une i?-variété

homologique; donc i2!~2j est la multiplication par g, y compris pour 2j &lt;&gt;n. Par

conséquent, l&apos;homomorphisme yln~2j est une surjection.
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Même pour une surface normale Y c» P3 le classe de Chern c.(Y) n&apos;est pas
forcément dans l&apos;image de œpY pour p m, cf. [Fi]. Nous considérons pour les

valeurs 2/ restantes le cas le plus simple:

(6.14) EXEMPLE. Soit Y une intersection complète dans PN9 qui est une
R -variété homologique et telle que pour

n pair: Hn(A)-+Hn(Y) est surjectif,

Hn(Y)-+Hn(A) est surjectif si bn(Y, R) # 1,

n impair: Hn ~ \Y) -» H&quot; ~ \A) est surjectif.

Alors c.(KY) e Im o)vKY quelque soit la perversité p.

Démonstration. D&apos;après l&apos;exemple précédent il suffit de considérer les valeurs j
telles que 2/ € [n — 1, n + 2]. Pour 2/ n + 2, on peut appliquer la Remarque (6.9)
grâce à pr^tr, tandis que, si 2/ w + l, on se sert de la Remarque (6.8).
Supposons maintenant que 2j&lt;&gt;n. Dans le Diagramme (6.13) Fhomomorphisme
n[Y] ://2w-2&apos;(y)-&gt;//2/(y) est bijectif. Donc, i2?&apos;2&apos; est la multiplication par g,

pour 2j n — 1; si 6W(F) ^ 1, ce résultat s&apos;étend à inY, puisque in est toujours
surjectif. On a donc vérifié que y2n~2j est surjectif, et la Proposition (6.8) avec p o

donne le résultat.
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