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Witt group of hyperelliptic curves

R. Parimala and R. Sujatha

Introduction

Let k be a perfect field of characteristic #2. Let X be a smooth projective curve
over k. Let W(k(X), Qk(X)) dénote the Witt group of the function field of X with
values in the module of differentials Qk{X) of k(X). A residue homomorphism

Ô : W{k{X\ Qk{x)) -+ ® W(k(x))
xeX

was defined in [7], k(x) denoting the residue field at points x e X and a residue
theorem was proved; namely the composite

W(k(X), Qk{X)) -^ 0 W(k(x)) — W{k)
xeX

is zéro. Thus image d is contained in the subgroup (®xeX W{k{x)))° consisting of
tuples (jix) with ZxeX trace fix 0. The kernel and cokernel of d are well understood

if Ar P1 [13] or if A&quot; is an anisotropic conic over k [14]. To hâve an intrinsic
description of thèse groups for curves of higher genus is an interesting question
posed by Milnor in [13].

In this paper, we study this problem for smooth hyperelliptic curves X with a

rational point of ramification over P1. Let n : X-+F1 be a covering defined over A1

by the équation y2 =f(T). We exhibit an exact séquence (§3)

0 ^ W(X) - W(k(X)) &gt; © W(k(x)) -&gt; )^(1r, -+ W{X) -* 0.
\xeX \1, —/ ?W\K)

where ô° is simply the residue map d through an identification of W(k(X)9
with W(k(X)) for a suitable choice of a differential as basis for Qkm. We dérive, as

a corollary, that if ail the ramification points of n are fc-rational, W(X) is generated

by one-dimensional forms. This exact séquence may be viewed in two ways: Firstly
as characterising coker ô° as a subgroup of (BxeS W(k(x)), S denoting the set of
ramification points of n and secondly, as giving the defining relations for expressing

W{X) as a quotient of ®xeS W(k(x)).
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Using the exact séquence above, we give a more précise description of coker d°.

It contains a subgroup Vr which is a quotient of ®xeS W(k(x)), which we call the

ramifiedpart of coker ô°. Under the rationality assumption that 4Pic X 4Pic A^, k
denoting the algebraic closure of A:, the group Vr is zéro. We call Vnr — coker d°/Vr,
the unramified part of coker d°. This group is 2-torsion (§5). It can be computed in
terms of certain cohomology groups if 4Pic X 4Pic Xç, and supposing further that
the curve Y X or P1 has the following property: &apos;Graded Witt group of Y is

isomorphic to the cohomology ring&apos;; Curves over local and global fields hâve this

property [16]. We in fact show that under thèse assumptions on X, coker 3° is

isomorphic to (Pic X&apos;j2)®NH\X% where X&apos; X\S, S denoting the set of ramification

points of n and NHn(Xf) dénotes the kernel of the map H&quot;t(X\ /*2) ~*

Hnet(k{X&apos;)y /i2)- For a smooth projective hyperelliptic curve over a local field with
good réduction, if 4Pic X 4Pic A&quot;*, coker d is isomorphic to W(k) © (Z/2)4* where

g is the genus of the curve (Theorem 7.1). Further, W{X) is also isomorphic to the

group (Z/2)4*© W(k)\ (Theorem 7.6).
The computations yield, as a by-product, that for any smooth projective curve X

over a local field with good réduction, if 4Pic X 4Pic A^, the classical invariants
détermine the class of a quadratic space in W(X).

We record hère that J. E. Shick [19] has some independent computations of
coker d for power séries fields over IR and of C.

We thank D. S. Nagaraj for carefully going through the manuscript.

1. Kernel of the residue homomorphism

Let A: be a perfect field of characteristic #2. Let X be a smooth projective curve
defined over k. For a Une bundle &lt;£ on X, let W(X, S£) dénote the Witt group of
quadratic spaces on X with values in $£ [9]. Let W{X) W(X, 0x).

LEMMA 1.1. The group W(X, i?) dépends upto isomorphism, only on the class

of S£ in Pic X/2. In particular, W(X, &lt;£2) ^&gt; W(X).

Proof. Let M e Pic X and {S, q) be a quadratic space with values in j£? ® J{2,
i.e., q.S -+ê*®&lt;£ ® M1, where for any bundle #&quot;, .F* dénotes the dual of «F, is

an isomorphism such that qf®\^^ji2 q. The assignment

defines an isomorphism

W(X9 S£®J(2)-^ W(X,
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Let Qx dénote the sheaf of differentials on X. Let

Ô : W(k(X), QkiX)) -&gt; © W(k{x))
xeX

be the residue homomorphism defined in [7], k(x) denoting the residue field at the
closed point x of X. (Throughout, the notation x e X stands for the set of ail closed

points x in X).

LEMMA 1.2. The kernel of the residue map

Ô : W(k(X\ Qkix)) -&gt; © W{k{x))
xeX

is W{X,QX).

Proof. Let q be a quadratic space over k(X) with values in Qk{X), whose class

belongs to ker d. Let x be a closed point of X and nx a local parameter at x.
Identifying W(k{X)) with W(k(X)9 Qk{X)) through dnx, the residue map dx:

W(k(X)) -? W(k(x)) is simply the second residue homomorphism with respect to nx.
Thus q which maps to zéro under dx (cf. [17], p. 207) is isometric to qx ®®Xxk(X)
for some qx e W((9Xx). The spaces qx • dnx over (9Xx with values in QXx become
isometric to q over k(X). They patch up to yield a quadratic space qx over X with
values in Qx in view of the following

LEMMA 1.3. Let ï£ be a Une bundle on X, q a quadratic space over k(X) with
values in ^k(X)- Suppose, for every x e X, there exists a quadratic space qx over 0Xx
with value in 5£ (g) OXx such that qx ® k(X) -^&gt; q. Then there exists a quadratic space

qx over X with values in 5£ such that qx®k{X) ^u q.

Proof The proof of ([6], Corollary 2.7) in the case S£ 0x goes through
Verbatim for any line bundle &lt;£\

REMARK. If X P\ ker d -~&gt; W(X) ^ W{k). ([13], Proposition 5.3). If X is

an anisotropic conic, ker d W(X, Qx) is computed as ai? in ([14], Theorem 6.2).

PROPOSITION 1.4. Let X be a smooth hyperelliptic curve with a rational point
of ramification over P1. Then ker d -^ W{X).

Proof By (1.1) and (1.2), it suffices to show that Qx is the square of a line
bundle on X. Let n : X -*• P1 be a covering, defined over A1 by the équation
y2 =/(r), degree/= 2g + 1, g being the genus of X. The divisor of the differential
dT/y is (2g — 2)7^, P^ being the point of X lying over oo in P1. Let &amp; be the line
bundle corresponding to the divisor (g — l)/^. Then Qx jz&gt; 5£2.
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REMARK. As observed by M. Rost, one could define more generally, a residue

map

d* : W(k(X), J?km) -&gt; © (W(k(x))9 {2&gt;®Qx){x)\
xeX

where {&lt;£®G* )(*) dénotes the fibre of the Une bundle (&lt;£(g)Qx) at x. If X P1,

and S£ 0X9 diPx d is the residue homomorphism discussed above, since Qx is a

square. If if (9X(\)9 do ^ is an isomorphism. In the case of an anisotropic conic,
X we hâve ker dCx ^&gt; W(X) -~&gt; W(k)l(\9 -a, -b, ab}W(k)9 (cf. [1]), where X is

defined by the équation aX2 + bY2 — Z2 0. One can identify cokerd with a

subgroup of the Witt group of the residue field at the ramified point of the covering
JT--P1.

2. Some auxiliary results on trace, transfer and residue homomorphisms

Let n : X -?P1 be a double covering, defined over A1 by the équation y2 =f(T)9
degree /= 2g + 1, g being the genus of X. We identify W(k(X)) and W(fc(r)) with
W(k(X\ Qk(X)) and W(fc(r), O^y)) through the basis dTjly and dT respectively.
For y g A1, if p € fc|T] is the monic irreducible polynomial which gives a parameter
at y, the composite map

is the second residue homomorphism with respect to the parameter pp\ p&apos; denoting
the derivative ofp with respect to T. Similarly, one can verify that if jc e X lies over

y e P1 corresponding to p(T), and x unramified over y, on choosing p(T) again as

the parameter at y, the composite

W(k(X)) &gt; W(k(X), Qkix)) -^ W(k(x))

is the second residue homomorphism with respect to the parameter Ipp&apos;y. We again
dénote by d this residue map.

For any finite separable extension L/K9 let tr : W{L) -? W{K) be the map
induced by the linear map trace : L-+K and i : W(K) -? W(L) the map induced by
the inclusion of K in L. Let s : W(k(X)) -+ W(k(T)) be the transfer homomorphism
induced by the linear map s :k(X)-*k(T) defined by s(l) =0, s(y) 1 where
{!,&gt;&gt;} is a basis for k(X) over k(T) ([17], p. 47).
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LEMMA 2.1. The diagram

W(k(X)) -!H © W(k(x))
x/y

W(k(T))-^W(k(y))

is commutative.

Proof. Since the diagram

x/y

is commutative ([7], §1), it suffices to show that the diagram

dT/2y
W(k(X)) W(k(X), QHX))

¦I I»

W(k(T)) -^ W(k(T), QHT))

is commutative. It is enough to check that

tr((h0 + hty)- dT/2y) i«A0 + A,j» • dT,

for h0, A, e k(T). We hâve,

rr«/j0 + hty} dT/2y) &lt;fr((/j0 + hiy)/2y)&gt; • dT

\ho hj) a

LEMMA 2.2. The diagram

W(k(T)) ^ W(k{y))

•1 I&apos;

W{k{X)) —^ © W{k(x))
xly
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is commutative if y is an unramified point for n and V is the composite

W(k{y)) -U W(k(x)) 2-^W(k(x)).

If x is a ramified point for 7t, dx © / is zéro.

Proof Let &lt;/*&gt; e JF(/r(r)) and x e X such that jc is an unramified point for
n with 7c(x) j. Let p e fc(T] be the monic polynomial corresponding to y.
Suppose vy{h) 0. Then ôy({h » 0 and dx o i(&lt;/i » 5X( &lt;A» 0, since

vx(h) vy{h) 0. Suppose h=up with ^(m) 0. Since dx is the second residue map
with respect to the parameter Ipp&apos;y and dy the second residue map with respect to
pp\ we hâve

^ r o dy({uiP&apos;) - pp&apos;y i\u/P&apos;y

and

ôx(((u/2p&apos;y) • 2/&gt;/&gt;») &lt;w/

Suppose x 6 A&quot; is a ramified point, lying over y e P1. For h e k(T), vx(ih) 0 mod 2,

since x has ramification index 2, and we hâve dx o i(&lt;A» 0.

LEMMA 2.3. Lef jc/j&gt; be an unramified point for n. Then the diagram

W{k(T)) -^ W(k(y))

W(k(T)) -^ W(k(y))

is commutative.

Proof Clear.

We repeatedly use the following lemma which is a conséquence of the Lam&apos;s

exact triangle ([17], Chapter 2, 5.10).
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LEMMA 2.4. The following triangles are exact.

W(k(T)) -U W{k{X))

W{k{T))

W(k{y)) -U W{k{x))

a -/&gt;\ .A

where, in the second triangle, y is unramified for n and tt(x) y; if &gt;&gt; splits in X, we

mean by W(A:(;c)), the direct sum W(k(xx)) © W(k(x2)) with n(xt) =y.

3. An exact séquence

Let 7t:Ar-*P1 be a hyperelliptic curve defined over A1 by the équation
y2 =f(T\ degree/= 2g -h 1, g being the genus of X. Let

a0 : W(k(X))
xeX

be the residue homomorphism as defined in §2, identifying W(k{X)) with
W(k(X\ Qkm) through the basis dT/2y, (@xeX W(k(x)))° denoting the kernel of
the trace map © xeX W{k(x)) -^ W(k). We fix the following notation: S set of
ramification points for n, X&apos; X\S9 Y P\ Y&apos;= Y\n(S). We hâve the following
commutative diagram with exact rows and columns, in view of (2.1), (2.3) and (2.4)
and ([13], Theorem 5.3).

— © W(k(x))
I xeX I

0 »• W(k) W(k(T)) -i* © !?(*( ;&gt;)) © ff(Ar(j)) -^ W(Jfc) 0
ye Y1 yen(.S)

0 ^(r) &gt; ^(fc(D) -^ © W(k(y)).
yeY&apos;

We define a homomorphism a : (©*&lt;=* l^(Jt(jc)))0-^ W(A)K\, -/&gt; • W(A:), where

as follows. Let 0 € (®xeX W(k(x)))°. Then there exists q g W{kT)) with
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d(q) tr 6. We hâve for yzY&apos;

&lt;1, -f&gt;tr(0x)

0.

Hence &lt;1, -f}qe W(Y&apos;) W(A). Let a(0) dénote its class in W(A)Kl9 -/&gt; • W(k).
If ql9 q2 and two lifts oîtrd in *F(fc(r)), qx - q2 e W(k) and &lt;1, -f}qx and &lt;1, ~
define the same class in W(A)/{\, -f}W(k). Thus a is well-defined.

LEMMA 3.1. kera d°(W(k(X))).

Proof. Since d o s tr o d and &lt;1, -/&gt; o s 0, we hâve

Let 0 € ®xeX W(k(x))° with a(0) 0. Let qx € W(k(T)) be such that d(qx) tr6.
Then &lt;1, —/&gt;^! e &lt;1, —f}W(k). Replacing qx by ^, - q0 for a suitable q0 e W(k\
we assume that &lt;1, -f}ql 0. Thus, by (2.4), there exists q2e W(k(X)) such

that s(?2) q\ - We hâve tr(0 - ôq2) trO ~ 5^2 trQ - dqx 0. The fact that

d-ôq2e dW{k(X)) follows from the following

LEMMA 3.2. Let 6 e (®xeX W(k(x)))° with trQ 0 in (®yeY W(k(y)))°. Then

6 e e o i(W(k(T))).

SUBLEMMA 3.3. Let (fix) € ®xeXW(k(x)) be such that tr(jix)=O in

®yer W{k(y)). Then there exists q € W{k{T)) such that dx(i(q)) nx9 for x € X&apos;.

Proof. By (2.4), there exists (v,) € ®yeY&gt; W(k(y)) such that i&apos;(yy) fix.
Since FcA1, the residue map d : W(k(T))^&gt;®yeT W(k(y)) is surjective. Let

q g W(k(T)) be such that dy(q) v, for y e F. Then, by (2.2),
d o i(q) V o dy(q) nx for x e X&apos;.

Proof of 3.2. By (3.3), there exists q e W{k{T)) such that dx o i(q) 6X for
x 6 X&apos;. Further, by (2.2), dx o i(q) =0 for x e S A^JT. Since for x e 5,
0x trdx 0, we hâve, d(i(?)) 9.

Let ^ =fc[^]/? ^ (M^&gt;;]/(&gt;&apos;2-/))/ be the co-ordinate rings of Y&apos; and X&apos;

respectively. Since for x g S, qe W(A), ôx o i(q) 0 by (2.2), the natural

map W{A) —^-&gt; W{E) has its image contained in W(X). This map vanishes on
&lt;1, -/&gt; • W{k) and induces a map p : ^)/&lt;l, -fW(h)
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THEOREM 3.4. The séquence

0 W(X) &gt; W(k{X)) —

-^* W(A)/O, -f&gt;W{k) -^&gt; W(X) &gt; 0

is exact.

Proof Exactness at W(X) (left) and W(k(X)) are proved in ([10], p. 277) noting
that d° is the second residue homomorphism at ail points x g X. The exactness at
(®xexW(k(x)))° is proved in (3.1). That j?o&lt;x=0 follows from the fact that
* ° &lt;1, -/&gt; 0, (2.4). We now prove the surjectivity of p. We identify W(X) with
the subgroup of W(k(X)) which is the kernel of ô°. Let q g W(X). Then
d o s(q) tr o dq 0 so that s(q) e W{k). Further &lt;1, -f}s(q) 0(2.4). This
implies that s(q) 0 in view of the fact that for any anisotropic quadratic space q over
k, q j£+ g - q for any odd degree polynomial g. Thus, there exists qx g W(k(T)) with
%i) #• We hâve i&quot; o dy(qx) ôxo i{qx) 0 for y g F. There exists ^ g W(fc(&gt;0)

such that &lt;1, —f}(iiy) =dy(qx). Since d : H^(A:(r))-? 0^^ ^W^)) is surjective,
there exists q2 g W(k(T)) such that 3^(^2) l*&gt;y for every yef. We hâve

dy(&lt;7i — &lt;1, —f^qi) &lt;U —f)l*y — O» —/&gt;^(^2) =0 for j&apos;ef so that
&lt;?! — &lt;1, —f}q2€ W(A) and maps to ^ under j?. We now prove exactness at

HWO, -/&gt; * W(k). Let ^ g W(A) be such that jS(^) =0 in W(k(X)). By (2.4),
there exists qx g FT(fc(r)) such that &lt;1, —/&gt; • qx q. Since &lt;1, —/&gt; ^(^^ 0 for
y g Y\ there exists ^x g W{k(x)), x/y such that /r(^) dy(qx). For x g S, we set

lix ^(?1). Clearly (/ix) g (®xeX W(k(x)))° and a((/xj) q.

COROLLARY 3.5. Ifail ramification points ofX are defined over k, then W(X)
is generated by discriminants.

Proof Suppose /= II, (T - a,), a, g k. An immédiate conséquence of the Mil-
nor séquence ([13] Theorem 5.3) is that W(k[T]f) is generated by &lt;A(r~a,)&gt; and
&lt;/i&gt;, fi e fc*, 1 &lt; / &lt; 2g + 1. Since j? is surjective, their images under /?, which are

precisely the discriminants of W(X), generate W(X).

4. Some compilations for hyperelliptic curves

Let X be a smooth hyperelliptic curve defined over k. We assume throughout
that X has a rational point of ramification. Let n : ^-?P1 be a double covering as
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in §3. If genus X &gt; 1, since any two double coverings nu n2 : Ar-»P1 differ by an

automorphism of X, the space X&apos; X\S9 S denoting the set of ramification points
of the covering n : X -+ P1 détermines and is determined by X. Following notations
of §3, let A k[T]f and B (k[T, y]/(y2 -/))/ be the co-ordinate rings of Y&apos; and
X&apos; respectively.

LEMMA 4.1. The unit group U(B) is gênerated by k*, y, and divisors off. Iff
splits into linear factors over k, U(B) -~» k* x 7?g+1.

Proof. Let h g U(B). Then div h Z ntxl9 xt e S, div h denoting the divisor of h.

Let a dénote the nontrivial automorphism of k{X) over k(T). Then &lt;rx, xn so that
div ah div h. Thus h kah9 k g fc*. We hâve, h2 kQioh) e U(A). Thus hoh is

upto a scalar from fc*, a power product of divisors of/. On the other hand, the only
non-square in k(T) which becomes a square in k(X) is /. It follows that
A2 ^11, A?&quot;1/ or P^^^h^ m,eZ, ht divisors of / in k[T]. Thus,
h ±fi(U h?&gt;)y orh ±/i(n Af11). Further, iff=nl^l^2g+{(T- a,), a, g k*9 the

homomorphism A:* x Z2g+1 -+ U(B), defined by

is surjective, by the above remarks. Suppose

k(T - a,)&apos;11 &apos; * * (T - 0L2g)2* • yn* + » 1

is a relation. Then the divisor

1( X *i )-(X2n, + «2*+,(2g + 1)

\ 1 s i ^ 2g + 1 / \ /
=0,

where jc, g S lie over T — ol, and jc^ lies over oo. This implies that «f=0,
1 &lt;&gt; i &lt;, 2g + 1 and A 1. Thus we hâve an isomorphism t*xZ2*+1A U(B).

LEMMA 4.2. Suppose f splits into linear factors over k. Then the map
Pic X&apos; -* Pic A^ is injective.

Proof. Since the divisor classes of degree zéro supported on the ramification
locus S are precisely the éléments of 2Pic X, we hâve the following commutative

diagram with exact rows

0 &gt;

0 &gt;

2?^^ —

I
2PicZ.-

-?Pic0* —

—?Mc^At-

-&gt; Pic X&apos; —
I

—?Pic^i--

+ 0

—&gt;0.
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Hère Pic0 X is the group of divisor classes of degree zéro. The first two vertical

maps are natural injections. Since / splits into a product of linear factors,
2PicAr 2PicAr^. Since Pic0 X c&gt; Pic0 X^ is an injection, it follows that
Pic X&apos; -&gt; Pic X&apos;k is injective.

LEMMA 4.3. The group 2Pic X&apos; ^&gt; (Z/2)7 where l&lt;&gt;2gandl 2g if and only if

Proof We hâve an exact séquence

0 -&gt; 2Pic X - 4Pic X -* 2Pic X&apos; -&gt; 0.

Let 2Pic X -^&gt; (Z/2)1, l ^ 2g. Let m éléments in 2Pic X admit a square root over k.
Then |4Pic X\ m • 27, with m &lt;&gt;2l &lt;&gt; 22g. Therefore |2Pic X&apos;\ w ^ 22* and equality
holds if and only if m 2l 22*; i.e., if and only if 4Pic A&quot; 4Pic X^.

PROPOSITION 4.4. Let Disc cfewote rte discriminant group of a scheme. Letf
split into linear factors over k. Then the composite map Disc X&apos; Disc Y&apos; -?
Disc Y&apos;/Disc k is surjective if and only if4Pic X 4Pic A^, N denoting the norm map.

Proof Since X&apos;jY&apos; is étale quadratic, we hâve an exact séquence in étale

cohomology groups with \i2 coefficients ([12], p. 92),

0 &gt;H°(Y&apos;)—Ï+ H\Y&apos;)-^-+ H\Xf) -^-&gt; H1 (Y*)

Hère, //&apos;(—) dénotes Hlet( — ,n2). The group Hx(—) is simply the discriminant

group so that we hâve an exact séquence

1 &gt;Disc r/&lt;/&gt; &gt;Disc X&apos; -^ Disc T.

Since the only square class in k(T) which becomes trivial in k(X) is &lt;/&gt;, this

séquence yields the following exact séquence

1 -* Disc r/&lt;/&gt;Disc k -+ Disc JT/Disc fc -? Disc F&apos;/Disc k.

We dénote C/(£) and U(A) by (/(^O and ^7(7&apos;) respectively. By our hypothesis on

/, Disc Y&apos; jz&gt; U(Y&apos;)/2 -^ (Z/2)2gJh l x Disc k so that Disc F/&lt;/&gt;Disc k ^&gt;

(Z/2)2g and Disc y/Dise k -~&gt; (Z/2)2g+ &apos;. Further, the exact séquence

1 -? U(X&apos;)/2 -? Disc X&apos; -? 2Pic ^r -&gt; 0
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gives, by (4.1) and (4.3) that Disc JT/Disc k ^&gt; (Z/2)2*+1 + /, where

2(Pic X&apos;) ^&gt; (Z/2)&apos;. Clearly, the map Disc Z&apos;/Disc k -&gt;Disc F/Dise fc is surjective
if and only if / 2g; i.e., if and only if 4Pic X 4Pic Xç.

5. Ramified and unramified parts of coker d°

Let (®xeS W(k(x)))° dénote the subgroup of (®xeX W(k(x)))° with non-zero
entries only at x e S. Let Vr be the subgroup of coker d°, defined by

7r (© W(k(x))Jl(dW(k(X))n(® »W*))Y)

We define Vnr =cokera°/Fr. lî p : (0^ ^(^(a:)))0-^©^^. H^(At(jc)) dénotes the

restriction of the projection, p is surjective, since 5 X\X&apos; contains a rational
point. Thus,

Vnr^ ® W(k(x))/(pod)W(k(X)).
xeX&apos;

LEMMA 5.1. The map a : coker d°-+ W(A)/0, -&gt;W(k) maps Vr onto

l, -fW(k).

Proof. Let 9 g (®xeS W(k(x))°. Let q g W(k(T)) be such that 3(^) tr0.
Since 5/(^) rr(^) 0 for yt*(S), q e W(A) and a(ff) &lt;1, -/&gt;^ g

We now show that a(Fr) &lt;1, -f)W(A)/(\, -f)W(k). Let q e W(A). Let

^ (^x) G (®xeX W(k(X)))° be defined by \ix 0 for x g X\ \ix 3y(^), for x e S,

n(x)=y. Then » e(®xeSW(k(x)))Q and a(/i) &lt;1, -f&gt;q in &lt;1, -f&gt;W(A)/
&lt;1, —/&gt;PF(fc). We thus hâve an exact séquence

Vn

PROPOSITION 5.2. 77ie grow/? Vnr is 2-torsion.

Proof. Let 0 g ©X6A- W^(A:(x)). Since n(S) has a rational point of ramification,
there exists q g W{k{T)) such that %) tr0. We have, &lt;1, -/&gt;«!,/&gt;?) =0 so
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that there exists qx e W(k(X)) with s(qx) (&lt;l,/&gt;?). Since for x e X&apos; with n(x) y,

dy«h ~f&gt;q) &lt;1, ~f&gt;dy(q) &lt;1, ~f)tr(6x) 0,

we hâve tr(20) d((\J}q) =d(s(q{)) tr(d(qx)). Thus, by (3.3), there exists

q2 e W(k(T)) such that dx o i(q2) 26x - dxqi for xeX&apos; and 5X ° i(q2) 0 for
jc e 5. Thus 26 — 3(#j — /(^2)) € (©x65 PF(/c(x)))° and its image under the projection
map p is zéro. Thus the class of 26 in Vnr is zéro.

Therefore cokerd0 is an extension of Vr by the 2-torsion group Vnr. We now
show that under the rationality assumption 4Pic X 4Pic X^9 Vr 0. We observe

that 4 Pic Xç being a finite group, there exists a fini te separable extension l/k such

that Vr 0 for JT,.

PROPOSITION 5.3. Suppose 2Pic ^ 2Pic Xç. Then the group Vr=0 if and

only if4Pic X 4Pic X*.

Proof. We show that the map d : W(X&apos;)-&gt;(®xeS W(k(x)))° is surjective if and

only if 4Pic X 4Pic X^. In view of the commutative diagram

W(X&apos;)

0 &gt; W{k) W(Y&apos;) &gt; 0 W(k(y))) 0 (**)
\yen(S)

with (**) exact, we need to show that s : W(X&apos;) -&gt; W(Y&apos;)/W(k) is surjective if and

only if 4Pic X 4Pic Xç. By our assumption 2Pic X 2Pic À^,/splits as a product

nliIiîf+1 (7 — at) over A:. Suppose 4PicX 4PicA^. The exact séquence
with each JT(fc(.)&gt;)) -^ W^(*) for ^ e 7r(S) implies that ^(F&apos;) is generated by Disc k
and &lt;A(7 — af)&gt;, A e A:*, 1 £ i £ 2g + 1. It is therefore enough to show that given

^(r-a^XAeik*, there exists juefc* such that ^ k(T - (xt)y £ s{W{Xf)). By
(4.4), there exists z g Disc X&apos; such that N(z) &lt;v(r-a,)&gt; for some v e fc*. We

hâve, 5(2) =2i&lt;l, -v(r-at)&gt; for some zx ek(T). Thus,

Conversely, suppose ^(^0 -&gt; W{Yf)jW(k) is surjective. Then the map restricted to
the idéal I(X&apos;) of even dimensional forms surjects onto I(Y&apos;)/I(k). In view of the

commutative diagram

1

Disc X&apos; &gt; Disc Y&apos;/Disc k
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with the vertical maps surjective, it follows that N : Disc X&apos; -? Disc Y&apos;/Disc k is

surjective. This implies, by (4.4) that 4Pic X 4Pic Xç.
In the next section, under certain assumptions on k and X, we describe the

unramified part Vnr of coker ô° cohomologically.

6. The unramified part of coker d°

Let Y be any scheme over k. Let the properties PQ(l), PQ(2) for Y be the

following.

PQ(1): For every géométrie point y e Y, the invariant theorem for quadratic
spaces, In(k(y))/In+l(k(y)) -^ Hnet(k(y)9 /i2) holds for ail n £ 0.

PQ(2): Ysatisfies PQ(\) and the maps en : In{Y) -+r(Y, Jf &quot;) defined in ([15, §1)

are surjective for n ^ 0.

Hère, Jfn dénotes the Zariski sheaf associated to the presheaf U -+H&quot;t(U, /i2).
The class of schemes which satisfy PQ(2) include ail smooth quasi projective curves

over local fields, in view of [2] and [16]. Conjecturally, ail smooth projective curves

over any field satisfy PQ(2).
We follow the same notations as in §4 and dénote by n : X-+P1 a double cover,

X being a smooth hyperelliptic curve with a rational point of ramification. Under
the assumptions that X&apos; X\S, Y&apos; Y\n(S) satisfy PQ{2\ we shall describe Vnr as

a certain cohomology group.

LEMMA 6.1. Let Y ^Pl be any subscheme. Then Y satisfies PQ{2) if Y satisfies

Proof. We hâve the following commutative diagram (cf. [5], [10])

In+1(k(T))

0

1

IÀY) &gt;

1

r(k(T)) —»

0

1

r(Y, jf
1

H&quot;(k(T))

o/© nk(y)))°—4© /- l(k(y)))°—+(© H&apos;
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Hère (®yeYIm(k(y)))0 (resp. (®yeYHm(k(y)))° dénotes the subgroup consisting
of trace zéro éléments. The two vertical columns are exact, by ([10], p. 277)
and [5]. By the assumption on Y, the two rows are exact. The surjectivity
of en: In(Y)-+r(Y, Jfn) follows from the surjectivity of the residue map
d : In + \k{T)) -&gt;(®yeyF(k(y)))° [13], Theorem 5.3).

LEMMA 6.2. Suppose P1 and X satisfy PQ(l). Then the séquence

In(A)-^ In(B) ^In(A)

is exact for n ^ 0.

Proof Since B/A is unramified, by (2.1), (2.2) and (2.3), we hâve the following
commutative diagram:

0 0 0

•[
V)

(k(x))

» /&quot;

© /&quot;

yeY

&lt;(k(T))

&apos;ï

-l(k(y)).
yeY yeY

The vertical columns are exact by ([10], p. 277). Exactness of the rows is a

conséquence of the assumption PQ(l) for X and P1 [3]. Exactness of the top row
follows from the surjectivity of d : In~\k(T)) -&gt;(ByeY In~2(k(y)\ Y&apos; being con-
tained in A1.

LEMMA 6.3. Suppose X\ and Y&apos; satisfy PQ{2). Then

(&lt;15 -f}W(A))nIn(A)-^(\9 -f)In-i(A).

Proof We assume, by induction, that

«1, -fyW(A))nIm(A) O, -J

for m£n — \. Let q e(&lt;l, -f)W(A)) nIn(A). By induction, we may write

q &lt;1, -f}ql,ql g /n_2(^)- Since X\ Y&apos; satisfy PQ(l), and B/A is étale quadratic,
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we have the following commutative diagram

Hn ~ \B) -^ Hn ~ \A) -^&gt; Hn ~ \A)

with the bottom row exact. Since

&lt;1, -/&gt;&lt;7i q e IH{A), en_ ,(&lt;?) 0; i.e., xfuen^2{qx) 0.

Therefore, there exists 0 e Hn~2(B) such that tr0 en_2(ql). Let ff e T(B, Jfn~2)
be the image of 0 in Hn ~2(k(X)). By the assumption that X&apos; satisfies PQ(2), there
exists q2€ln-2(B) such that en_2(#2) =^- The diagram

j?n -2 n-2) Hn- 2(A)

can be verified to be commutative, so that en_2(q\ — sq2) =0. Thus ^ — 5g2e

^.-i(^) and &lt;1,-/&gt;(^-^2) &lt;l,-/&gt;^€&lt;1,-Z)/,,.,^). This proves the
lemma.

We now assume that X&apos; and Yf satisfy PQ(2). The group Vnr kcr (W(A)/
&lt;1, -f}W(A) ^ W(X)) has a filtration induced by the filtration {Im(A)} on W(A).
Since the map W(X) ~&gt; W^(iî) is injective and since i préserves filtration, by (6.3), we
have,

-fW(A)nIm(A)) -U(Vnr)m ker (I
ker (/m

We now define a map f/m : (Vnr)m -? NHm(B) ker (#
Consider the following commutative diagram:

m)) as follows.

Hm{A)
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Let x e Im(A) be such that i(x) 0 Then the élément i(em(x)) g Hm(B) maps to
zéro in F(B, 3tfm\ by the commutativity of the above diagram Hence

i(em(x)) e NHm(B) We define rjm(x) i o em(x) To show that r\m îs well-defined, we
need to check that for x g &lt;1, -f&gt;Im-i(A), rçm(*)=0 Let x &lt;l, -/&gt;*&apos;,

x&apos; e Im-X(A) We hâve, i(em(x)) i(xfvem_x(x&apos;)) *I(/) vt ° em_x(x&apos;) 0 since/
îs a square in B Thus we hâve a well-defined homomorphism

1m (Vnr)m

LEMMA6 4 Kernm (Vnr)m+X

Proof Let rçm(Jc) 0 with x e Im(A) Then ^m(x) 0 and the exactness of the

séquence

imphes that there exists y e Hm~x(A) such that /y-uy em(x) By (6 1), there exists

z€lm_{(A) such that em_x(z)=y We hâve, em(x~(\, -/&gt; z)=0 so that
jc — &lt;1, —/&gt; z g /m +1(^4) and îts class in (Vnr)m + l îs simply the class of jc

We thus hâve a filtration {{Vnr)m} on Vnr with successive quotients (Vnr)m/

(VnX+i mjecting into NH*»{B)

THEOREM 6 5 Under the assumptwn that X&apos; and Y&apos; hâve PQ(2),

Proof Since by (5 2), Vnr îs a 2-torsion group, ît îs enough to show that rjm

maps (Vnr)m onto NHm(B) Let x e NHm(B) Since NHn(A) 0 Vn, rrx 0, and the
exact séquence (*?*) imphes that there exists y e Hm(A) with i(y) =jc By (6 1),
there exists z e Im(A) with em(z) y Then em o i(z) class of x m F(B, J(fm) which
îs zéro since x g NHm{B) Thus *(*) g /m+1(5) and s o i(z) =0 By (6 2), there exists
*&apos; € Im+1(^) Wlt^ K^&apos;) K^) Replacing zbyz-z&apos; which again maps to y under

em9 we hâve *(z) 0, i e, z g (Vnr)m with f/mC^) x

7. An example

THEOREM 7 1 Lef X be a smooth projectwe hyperelhptic curve defined over a

local field k with residue field charactenstic # 2 Suppose X has a ratwnal point of
ramification, X has good réduction and 4Pic X 4Pic Xç Then

coker d -^&gt; W(k)® (Z/2)4g9

g being the genus of X
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In view of results of [2], any curve over a local field satisfies PQ( 1). It is shown
in [16] that any such curve also satisfies PQ(2). Therefore by our assumption
4Pic X 4Pic Xi, we hâve, coker d -~» W(k) © ©m * 2 NHm(X&apos;)). Let G

G(k/k), k denoting the algebraic closure of A:. Then cd2k £ 2 [18] and cd2X&apos;j- ^\,X^
being affine. The spectral séquence ([12], p. 105)

Hl(G, Hj(X&apos;ï)) =&gt; Hn(Xf)

yields Hn(X&apos;) 0 for n ^4. Thus cokerô°-^ NH2(X)©NH\X). We shall now
compute thèse groups.

LEMMA 7.2. Let X be any smooth projective curve of genus g (not necessarily

hyperelliptic) over a local field k with residue field characteristic ¥&quot; 2 and such that

X{k) # 0 and 2Pic X 2Pic X^ Then H\X) _~&gt; (Z/2)2g + 2 and r(X, Jf3) 0.

Proof. The only two non-zero terms in the above spectral séquence contributing
to H\X) are Hl(G, H2(Xj;)) and H2(G,Hl(X^). The only possible non-zero
differential H°(G, H2(Xj;)) -+H2(G, Hl(X^)) is zéro, X(k) being non-empty, since

H2(X)^H°(G, H2(Xî)) is surjective. Therefore

H\X) ^ H2(G,

In fact the action of G on H\Xk) -^ 2Pic A&gt;-^&gt; (Z/2)2^ is trivial by our assumption

and H\X£) -^ Pic Xç/2 ~^&gt; Z/2 with trivial action again. Further, k being a

local field, H2(G, Z/2) -~&gt; 2^r(A:) ^&gt; Z/2 and if \G9 Z/2) ^&gt; A:*/A:*2 -^&gt; Z/2 x Z/2.
In view of [4], NH\X) -^ k*/k*2 x J(k)/2J(k). Since A: is a local field, by [ 11], J(k)
contains a subgroup Jt isomorphic to copies of the valuation ring such that J{k)IJi
is finite. The 2-primary part of J(k)jJt is isomorphic to nl ^j^i(Z/21j), where

/ dimz/2(2Pic X) 2g by our assumption. Therefore J(k)/2J(k) ^+(Z/2)2g, so

that NH\X) -~&gt; (Z/2)2g+2. Thus NH\X) H\X) and r(X, Jf3) 0.

COROLLARY 7.3. Let X be a smooth projective curve over a local field k with
residue field characteristic =#2. Suppose X has good réduction and 2Pic X 2Pic X^.
Then the classical invariants uniquely détermine the class of a quadratic space in

W{X).

Proof. In view of ([15], §1), we hâve injections rk : W(X)/I(X) o&gt; Z/2,
dise : I(X)/I2(X) c, H\X), c : I2(X)/Ij(X) c» 2Br(X) r(X, Jf2), where rk, dise
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and c stand for rank, discriminant and Hasse-Witt invariant maps. Since

I4(X) c* I\k{X)) 0 [2] and I3(X) injects into r(X9 Jf3) =0 by (7.2), we hâve,
rfc, dise and c uniquely détermine an élément in W(X).

LEMMA 7.4. Let X be a hyperelliptic curve. Then NH2{X&apos;) -~&gt; (Z/2)2*, under
the assumptions of (7.1) on X.

Proof. We hâve NH\X) -^ Pic JT/2. The exact séquence

yields the following long exact séquence

0 - 2Pic X- 2Pic° X- 2Pic JT -&gt; 2Pic JT/2 - Pic0 JT/2 - Pic JT/2 - 0.

We hâve 2Pic Jf 2Pic° X, 2Pic ^&apos;-^(Z^)2* (4.3), 2Pic XJ2j^{ZI2)2* and

7(Â:)/2J(A:)-^(Z/2)^, in view of (7.2). We therefore hâve

LEMMA 7.5. Let X be a hyperelliptic curve. Then NH\X&apos;) -~&gt; (Z/2)2^, under
the assumptions of (l.\) on X.

Proof. We hâve an exact séquence

0 -&gt; U(XÏ)/2 -+ Hl(XÏ) - 2Pic Xi -+ 0.

By (4.1) and (4.3), U(Xi)/2j^ (Z/2)2^+1 and 2PicXi-** (Z/2)2*. Therefore

//^^-^(Z^)^^1. Further, since U(Xi)/2 is generated by {^, T-aJ,
1 ^ i ^ 2g, which are defined over A:, and 2Pic Xi is also defined over k under the

assumption 4Pic X&apos; 4Pic X^ the action of G on H\Xi) is trivial. The only
non-zero ternis in the spectral séquence

contributing to H\X&apos;) is H2(G,Hl(Xi)) with ail the differentials vanishing, as

before. We therefore hâve

H\X) j^ H2(G, H\Xi)) -
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We shall now compute F{X\ Jf3). The séquence

H\k{X)) -^ H\k{T))^ H\k(T))

is exact and since cd2(k) &lt;&gt; 2, cd2{k{T)) £ 3, H\k{T)) 0. Thus

tr:H\k{X))^H\k{T))

is surjective. It induces a map

tr : r(x\ jr3)-*r(Y\ jf3) -^

We show that this map is surjective. Let À g H3{Y&apos;) and /* € H3(k(X)) be such that
tr \i A, identifying /f3(F&apos;) with a subgroup of H\k(T)). In view of the commuta-
tive diagram

H\k(T)) -U H\k(X)) -^ i/3(fc(r»

aj aj aj
© H2(k(y)) © #2()t(x)) © H2(k{y))
yeV xeX&apos; yeY&apos;

with exact rows, tr o du d o trfi d{k) 0 and hence there exists

v e ®yeY&gt; H2{k{y)) with i(v) %). Since F c A1, a : if\k(T)) -&gt; 0^r //2(A:(7))
is surjective and hence there exists v € H3(k(T)) with d(v) v. We hâve

^ - rv) 0 so that (ji - /v) € r(X\ Jf3) and maps to A g T(F, Jf3) /f3(^). We

thus hâve a surjection rr : r(X\ Jf3)-+r{Y\ 3?3). We now compute its kernel.
Since H3(Je) 0, the map d : H\A) -&gt;(®yen(S) H\Ky)))° is an isomorphism. Since

the square

/ \0
© H\k(x)

I

is commutative, we hâve, ker tr ker ô JT(A&quot;, Jf3) 0, by [5] and (7.2). Thus,
r(X&apos;, JtT3) -^ H\A) ^&gt; (Z/2)2g + l. Therefore NH\X&apos;) -^ (Z/2)2^.

This complètes the proof of Theorem 7.1. Finally, we use the exact séquence (§3)

to compute the defining relations for W(X) as a quotient of ©xeS W(k(x)). More
precisely, we hâve the following
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THEOREM 7.6. Under the same hypothesis as in (7.1),

W(X) j^, (ZI2)4g ® W(k).

Proof. In view of (3.4) and (7.1), we hâve an exact séquence

The residue map d : W(A) -? ®l ^t^2g+\ W(k) is surjective, with kernel W(k).
We hâve, in W(k(T% (lV(k)n(l, -/&gt; - W(k)) 0. In fact, for qeW(k)n
&lt;1, —/&gt; • W(k), q extends to zéro in W(X). Since X(k) is non-empty, specialising at
a rational point yields q 0 in W(k). We thus hâve an exact séquence

0-+ W(k) -&gt; W(.4)/«l, -/&gt; • *F(*)) -&gt; ©
2g+\

The image of the map r\ : W^(A:) -+®2g + x W(k) defined by

(-f&apos;(*\)q, -f\
is precisely 5(&lt;1, —/&gt; • W(fc)). The map r\ is injective, since for q g W(fc), ?/(^) 0

implies that d(&lt;l, -f}q) =0; Le., &lt;1, -/&gt;g e W{k)n(l, ~fW(k) =0 and

^r J^fq. Since degree/is odd, # 0. Clearly rj is a split injection, a section t being
given by r(çl5 q2,..., #2*+1) —/&apos;(ai) * ^i- We thus hâve an isomorphism

qf :

given by //(£) (q, (dxq)), 2 ^ i ^ 2g -f 1, x, g 5, ^ denoting spécialisation at oo. If
^ g W(A)/ &lt; 1, —/&gt; W(fc), maps to zéro in W(X), specialising at oo, we see that q 0,

so that in the séquence (Z/2)4* injects into the factor ®2g w(k) -^&gt; ®4gW(F)
where F dénotes the residue field of k. If -1 is a square in F, W(F) -^&gt; (Z/2)2 and

if -1 is not a square in F, W(F) -^ Z/4. Therefore,

W{X) j^ W(k) 0 W(F)4g/(Z/2)4g

The above theorem leads one to the following natural questions.

QUESTION 1. For a smooth hyperelliptic curve X over an arbitrary groundfield
k, (with 4PicJr 4Pic^-), is W(X) isomorphic to W(k) ©(Z/2)4*?
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A positive answer to this question will also provide évidence to an affirmative
answer to the following more gênerai

QUESTION. (Scharlau) Let X be a smooth projective curve over a field k. If
W(k) is finitely generated, is W(X) finitely generated?

QUESTION 2. For a smooth projective curve X over k with X{k) # 0, is

coker d -~&gt; W(X)1
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