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Witt group of hyperelliptic curves

R. PARIMALA and R. SUJATHA

Introduction

Let k be a perfect field of characteristic #2. Let X be a smooth projective curve
over k. Let W(k(X), 2,x,) denote the Witt group of the function field of X with
values in the module of differentials €, y, of k(X). A residue homomorphism

0 : Wk(X), Qicxy) = D Wik(x))

xeX

was defined in [7], k(x) denoting the residue field at points x € X and a residue
theorem was proved; namely the composite

W), Q) —— B W) —— W(k)
is zero. Thus image 0 is contained in the subgroup (@®,., W(k(x)))° consisting of
tuples (u, ) with X, trace u, = 0. The kernel and cokernel of d are well understood
if X =P' [13] or if X is an anisotropic conic over k [14]. To have an intrinsic
description of these groups for curves of higher genus is an interesting question
posed by Milnor in [13].

In this paper, we study this problem for smooth hyperelliptic curves X with a
rational point of ramification over P'. Let n : X - P! be a covering defined over A'
by the equation y? = f(T). We exhibit an exact sequence (§3)

o 0 ” (K[J ]f)

where 0° is simply the residue map J through an identification of W(k(X), 2,,)
with W(k(X)) for a suitable choice of a differential as basis for Q,,. We derive, as
a corollary, that if all the ramification points of = are k-rational, W(X) is generated
by one-dimensional forms. This exact sequence may be viewed in two ways: Firstly
as characterising coker 8° as a subgroup of @, s W(k(x)), S denoting the set of
ramification points of 7 and secondly, as giving the defining relations for expressing
W(X) as a quotient of @,.s W(k(x)).
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Using the exact sequence above, we give a more precise description of coker 9°.
It contains a subgroup V, which is a quotient of @,.g W(k(x)), which we call the
ramified part of coker 0°. Under the rationality assumption that ,Pic X = ,Pic X, k
denoting the algebraic closure of k, the group V, is zero. We call ¥,, = coker 0°/V,,
the unramified part of coker d°. This group is 2-torsion (§5). It can be computed in
terms of certain cohomology groups if ,Pic X = ,Pic X, and supposing further that
the curve Y = X or P! has the following property: ‘Graded Witt group of Y is
isomorphic to the cohomology ring’; Curves over local and global fields have this
property [16]. We in fact show that under these assumptions on X, coker ° is
isomorphic to (Pic X’/2) @ NH*(X’), where X’ = X\ S, S denoting the set of ramifi-
cation points of m and NH"(X’) denotes the kernel of the map H7,(X’, u,) —
H?,(k(X"), u,). For a smooth projective hyperelliptic curve over a local field with
good reduction, if ,Pic X = ,Pic X}, coker d is isomorphic to W(k) @ (Z/2)*¢ where
g is the genus of the curve (Theorem 7.1). Further, W(X) is also isomorphic to the
group (Z/2)* @ W(k)! (Theorem 7.6).

The computations yield, as a by-product, that for any smooth projective curve X
over a local field with good reduction, if ,Pic X = ,Pic X}, the classical invariants
determine the class of a quadratic space in W(X).

We record here that J. E. Shick [19] has some independent computations of
coker 0 for power series fields over R and of C.

We thank D. S. Nagaraj for carefully going through the manuscript.

1. Kernel of the residue homomorphism

Let k be a perfect field of characteristic #2. Let X be a smooth projective curve
defined over k. For a line bundle £ on X, let W(X, ) denote the Witt group of
quadratic spaces on X with values in £ [9]. Let W(X) = W(X, Oy).

LEMMA 1.1. The group W(X, ) depends upto isomorphism, only on the class
of & in Pic X/2. In particular, W(X, ¥?) =~ W(X).

Proof. Let # € Pic X and (&, q) be a quadratic space with values in ¥ ® .42,
ie,q:&->8*QR YL ® .#? where for any bundle F, # * denotes the dual of £F, is
an isomorphism such that ¢‘'® 14, g 42 =¢. The assignment

(C, 9> (ECQRMA* qB®]4.)
defines an isomorphism

WX, £ ® M) =~ WX, L)
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Let Q, denote the sheaf of differentials on X. Let
0 : Wk(X), Qx)) @X W(k(x))

be the residue homomorphism defined in [7], k(x) denoting the residue field at the
closed point x of X. (Throughout, the notation x € X stands for the set of all closed
points x in X).

LEMMA 1.2. The kernel of the residue map

0 : Wk(X), Qux)) = D Wik(x))

xeX

is W(X, Qy).

Proof. Let q be a quadratic space over k(X) with values in €,,,, whose class
belongs to ker 0. Let x be a closed point of X and =, a local parameter at x.
Identifying W(k(X)) with W(k(X), Q) through dn,, the residue map 0,:
W(k(X)) - W(k(x)) is simply the second residue homomorphism with respect to «,.
Thus g which maps to zero under 9, (cf. [17], p. 207) is isometric to ¢, ®o, k(X)
for some g, € W(0Oy ). The spaces g, - dn, over Oy, with values in Q, , become
isometric to g over k(X). They patch up to yield a quadratic space ¢, over X with
values in Q, in view of the following

LEMMA 1.3. Let £ be a line bundle on X, q a quadratic space over k(X) with
values in &L, x,. Suppose, for every x € X, there exists a quadratic space q, over Oy ,
with value in & @ Oy, such that q, @ k(X)) =~ q. Then there exists a quadratic space
qx over X with values in ¥ such that q, @ k(X) =~ gq.

Proof. The proof of ([6], Corollary 2.7) in the case £ = (0, goes through
verbatim for any line bundle #.

REMARK. If X = P!, ker 0 ~ W(X) =~ W(k). ([{13], Proposition 5.3). If X is
an anisotropic conic, ker d = W(X, Q) is computed as %, in ([14], Theorem 6.2).

PROPOSITION 1.4. Let X be a smooth hyperelliptic curve with a rational point
of ramification over P'. Then ker d =~ W(X).

Proof. By (1.1) and (1.2), it suffices to show that Q, is the square of a line
bundle on X. Let n : X ->P' be a covering, defined over A' by the equation
y2=f(T), degree f = 2g + 1, g being the genus of X. The divisor of the differential
dT|/y is (2g — 2)P,,, P,, being the point of X lying over o in P!. Let % be the line
bundle corresponding to the divisor (g — 1)P,,. Then Q, ~, ¥2.
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REMARK. As observed by M. Rost, one could define more generally, a residue
map

O : W(X), L) = D (W(k(0)), (£ @ 2)()),

where (¥ ® Q, )(x) denotes the fibre of the line bundle (£ ® Q) at x. If X =P,
and & =0y, 0,_= 0 is the residue homomorphism discussed above, since Qy is a
square. If & = 0x(1), 0o_q) is an isomorphism. In the case of an anisotropic conic,
X we have ker 0o = W(X) =~ W(k)/{1, —a, —b, ab)W(k), (cf. [1]), where X is
defined by the equation aX2+bY?—Z%=0. One can identify cokerd with a
subgroup of the Witt group of the residue field at the ramified point of the covering
X -P.

2. Some auxiliary results on trace, transfer and residue homomorphisms

Let n : X — P! be a double covering, defined over A' by the equation y2 = f(T),
degree f = 2g + 1, g being the genus of X. We identify W(k(X)) and W(k(T)) with
W(k(X), Qix)) and W(k(T), Q) through the basis d7/2y and dT respectively.
For y € A, if p € k[T is the monic irreducible polynomial which gives a parameter
at y, the composite map

W(T)) > Wk(T), Qucry) ~2> Wk(y)

is the second residue homomorphism with respect to the parameter pp’, p’ denoting
the derivative of p with respect to T. Similarly, one can verify that if x € X lies over
y € P! corresponding to p(T), and x unramified over y, on choosing p(T) again as
the parameter at y, the composite

W)~ WR(X), Qecey) —> W)

is the second residue homomorphism with respect to the parameter 2pp’y. We again
denote by 0 this residue map.

For any finite separable extension L/K, let tr: W(L) » W(K) be the map
induced by the linear map trace : L — K and i : W(K) — W(L) the map induced by
the inclusion of Kin L. Let s : W(k(X)) —» W(k(T)) be the transfer homomorphism
induced by the linear map s : k(X)) = k(T) defined by s(1) =0, s(y) =1 where
{1, y} is a basis for k(X) over k(T) ([17], p. 47).
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LEMMA 2.1. The diagram

Wk(X) 25 @ Wik(x))

x/y

g |-

5y
W(k(T)) — W(k(y)
is commutative.
Proof. Since the diagram
‘6
W(Qx)) — 6/3 W(k(x))
x/y
a
W(Qkry) — W(k(y))
is commutative ([7], §1), it suffices to show that the diagram
dT/2y
W(k(X)) — W(k(X), Qk(X))
drT
W(k(T)) — W(k(T), L))
is commutative. It is enough to check that
tr(<ho + hyy) - dT/[2y) = s(<ho + hyy)) - dT,
for hy, h, € k(T'). We have,

tr(Cho + by dT2y) = (tr((ho + hy¥)[29) - dT
B (ho h,f) a
= 5(Cho + hyy) - dT.
LEMMA 2.2. The diagram
Wk(T)) — Wk()

T

Wk(X)) — @ Wikix))

x/y
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is commutative if y is an unramified point for n and i’ is the composite
i 2y—1
W(k(y)) — W(k(x)) — W(k(x)).
If x is a ramified point for mn, 0, o i is zero.

Proof. Let <h) e W(k(T)) and x € X such that x is an unramified point for
n with 7n(x) =y. Let p e k[T] be the monic polynomial corresponding to y.
Suppose v,(h) =0. Then 4,(<h))=0 and 0, i(<h)) =0,(<h)) =0, since
v.(h) =v,(h) = 0. Suppose h = up with v,(u) = 0. Since d, is the second residue map
with respect to the parameter 2pp’y and 0, the second residue map with respect to
pp’, we have

i"00,(Kup)) =i'20,{(ulp’) - pp’> =i’ ulp’) =<u/p2y)
and
Oy 0 i(<h)) = 0,(K(u/2p"y) - 2pp’y ) = <u/2p’y)

Suppose x € X is a ramified point, lying over y € P'. For h € k(T), v,(ih) =0 mod 2,
since x has ramification index 2, and we have 0, - i(<h)) =0.

LEMMA 2.3. Let x/y be an unramified point for n. Then the diagram

Wk(T)) —2 W(k())

- 1 l a, -f>

ay
W(k(T)) — W(k(»)
is commutative.
Proof. Clear.

We repeatedly use the following lemma which is a consequence of the Lam’s
exact triangle ([17], Chapter 2, 5.10).
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LEMMA 2.4. The following triangles are exact.

WkT) — W(k(X))
RPN /s
W(k(T))
Wk(y)y — W(k(x))
a -\ i
W(k(y))

where, in the second triangle, y is unramified for = and n(x) = y; if y splits in X, we
mean by W(k(x)), the direct sum W(k(x,)) ® W(k(x,)) with n(x;) = y.

3. An exact sequence

Let n:X—>P' be a hyperelliptic curve defined over A' by the equation
y2=f(T), degree f = 2g + 1, g being the genus of X. Let

3% W(k(X)) - ( 62 W(k(x)))°

be the residue homomorphism as defined in §2, identifying W(k(X)) with
W(k(X), Qu,) through the basis dT/2y, (®,.x W(k(x)))° denoting the kernel of
the trace map @ ..,y W(k(x)) -, W(k). We fix the following notation: S = set of
ramification points for n, X’ = X\S, Y =P!, Y’ = Y\n(S). We have the following
commutative diagram with exact rows and columns, in view of (2.1), (2.3).and (2.4)
and ([13], Theorem 5.3).

W(lk(X)) 2, (—DX W[k(x))

0— W(k) — WE(T) — @ Wk(y) ® Wk(y) —> W(k) — 0

yeY’ yen(S)

l A ~f> 1 1 L o

0
0— W(Y') — W(K(T)) — D Wk(»)).

yeY’

We define a homomorphism a : (@, x W(k(x)))°— W(A)/<1, —f) - W(k), where
A =Kk[T], as follows. Let 6 € (®,x W(k(x)))°. Then there exists ¢ € W(kT)) with
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0(q) = tr 6. We have for yeY’

0,(<1, =f> - @) =<1, =f>0,(9)
=<1a —]>tr(0x)
=0.

Hence {1, —f)>qe W(Y’) = W(A). Let a(0) denote its class in W(A4)/{1, —f) - W(k).
If q,, ¢, and two lifts of trf in W(k(T)), q, — q, € W(k) and {1, —f)q, and {1, —f)q,
define the same class in W(A)/{1, —f)W(k). Thus « is well-defined.

LEMMA 3.1. ker a = 0%(W(k(X))).
Proof. Since d os =tro0 and {1, —f) o s =0, we have

(W (k(X))) < ker a.

Let 0 € @,y W(k(x))°® with a(6) =0. Let g, € W(k(T)) be such that d(q,) = tré.
Then {1, —f)q, € {1, —f>W(k). Replacing ¢q, by ¢, — g, for a suitable g, € W(k),
we assume that {1, —f)>q, =0. Thus, by (2.4), there exists g, € W(k(X)) such
that s(q,) =q,. We have tr(0 — dq,) =tr@ — 0sq, = tr@ — dq, =0. The fact that
0 — 0q, € IW(k(X)) follows from the following

LEMMA 3.2. Let 0 € (@ ,.x W(k(x)))® with tr =0 in (@, W(k(»)))°. Then
0 €0 o i(W(k(T))).

SUBLEMMA 3.3. Let (u,) € @ cx W(k(x)) be such that tr(u,)=0 in
®,cy W(k()). Then there exists q € W(k(T)) such that 0,.(i(q)) = ., for x € X'.

Proof. By (2.4), there exists (v,) € @,cy W(k(y)) such that i'(v,) = u,.
Since Y’ < A!, the residue map 0: W(k(T)) - ®,.» W(k(y)) is surjective. Let
ge W(k(T)) be such that d,(q)=v, for yeY. Then, by (2.2),
dci(g) =i"20,(q) = u, for x e X',

Proof of 3.2. By (3.3), there exists g € W(k(T)) such that 0, - i(q) =0, for
x € X’. Further, by (2.2), 0,°i(q) =0 for xeS=X\X". Since for x €S,
0. =16, =0, we have, d(i(q)) =0.

Let 4 =k[T),, B=(k[T,y)/(y*—f)), be the co-ordinate rings of Y’ and X’
respectively. Since for x €S, ge W(4), 0,-i(q) =0 by (2.2), the natural
map W(A) —— W(B) has its image contained in W(X). This map vanishes on
{1, —f> - W(k) and induces a map f : W(A4)/{1, —f>W(k) - W(X).
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THEOREM 3.4. The sequence

i 0
0 — W(X) — W(k(X)) — (eax W(k(x)))
2 W(A) K1, —f>W(k) —— W(X) — 0

is exact.

Proof. Exactness at W(X) (left) and W(k(X)) are proved in ([10], p. 277) noting
that 0° is the second residue homomorphism at all points x € X. The exactness at
(B, cx W(k(x)))? is proved in (3.1). That foa =0 follows from the fact that
io{l, —f>=0, (2.4). We now prove the surjectivity of f. We identify W(X) with
the subgroup of W(k(X)) which is the kernel of 0° Let g € W(X). Then
0 os(q) =tr odq =0 so that s(q) € W(k). Further <1, —f)>s(q) =0(2.4). This im-
plies that s(q) = 0 in view of the fact that for any anisotropic quadratic space g over
k,q %% g - q for any odd degree polynomial g. Thus, there exists g, € W(k(T)) with
i(g;) =q. We have i’ 0,(q,) =0, o i(q,) =0 for y € Y’. There exists u, € W(k(y))
such that (1, —f >(u,) =0,(q,). Since 0 : W(k(T)) - @,y W(k(y)) is surjective,
there exists ¢, € W(k(T)) such that 0,(q,) =pn, for every ye Y. We have
0,(q1 — <1, =f>¢:) =<1, =fin, =<1, =f>0,(q,) =0 for yeY so that
g — <1, —f>q, € W(A) and maps to g under f. We now prove exactness at
W(A)/{1, —f> - W(k). Let g € W(A) be such that f(q) =0 in W(k(X)). By (2.4),
there exists g, € W(k(T)) such that {1, —f) - ¢, = q. Since <1, —f) 0,(q,) =0 for
y € Y’, there exists u, € W(k(x)), x/y such that tr(u,) =0,(q,). For x € S, we set
pe = 0,(q,). Clearly (u,) € (@ rcx W(k(x)))® and a((n,)) =g¢.

COROLLARY 3.5. If all ramification points of X are defined over k, then W(X)
is generated by discriminants.

Proof. Suppose f =11, (T — a;), a;, € k. An immediate consequence of the Mil-
nor sequence ([13] Theorem 5.3) is that W(k[T],) is generated by (A(T —«;)) and
{u), pnek* 1<i<2g+1. Since f is surjective, their images under B, which are
precisely the discriminants of W(X), generate W(X).

4. Some computations for hyperelliptic curves

Let X be a smooth hyperelliptic curve defined over k. We assume throughout
that X has a rational point of ramification. Let n : X - P! be a double covering as
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in §3. If genus X > 1, since any two double coverings =,, 7, : X —» P! differ by an
automorphism of X, the space X’ = X\S§, S denoting the set of ramification points
of the covering n : X - P! determines and is determined by X. Following notations
of §3, let A =k[T],and B = ([T, y]/(y* — 1)), be the co-ordinate rings of Y’ and
X’ respectively.

LEMMA 4.1. The unit group U(B) is generated by k*, y, and divisors of f. If f
splits into linear factors over k, U(B) =~ k* x Z*#+!,

Proof. Let h € U(B). Then div h = Z n;x;, x; € S, div h denoting the divisor of A.
Let o denote the nontrivial automorphism of k(X) over k(T'). Then ox; = x;, so that
div 6h =div h. Thus h = Ach, A € k*. We have, h? = A(hoh) € U(A). Thus hoh is
upto a scalar from k*, a power product of divisors of f. On the other hand, the only
non-square in k(7)) which becomes a square in k(X) is f. It follows that
hr=p?II, h?™f or h*=u?I1,h?>™, m,eZ, h; divisors of f in k[T]. Thus,
h = +u(IT A7)y or h = +u(IT A7), Further, if f =11, ;< 50 41 (T —a;), a; € k*, the
homomorphism k* x Z*#¥*! - U(B), defined by

(A (1)) = AT — )" - - (T — oy) ey 1
is surjective, by the above remarks. Suppose
A’(T_.. al)”l oo (T — azg)ZZg . y"28+1 =1

is a relation. Then the divisor
Y 2n,.x,-+nzg+,( Y x,~)-—<z 2n,+ny, (28 + 1))xw=0,
1<is2g 1si<2g+1

where x, €S lie over T—a;, and x, lies over oo. This implies that n, =0,
1<i<2g+1and A=1. Thus we have an isomorphism k* x Z%2+!_~, U(B).

LEMMA 4.2. Suppose f splits into linear factors over k. Then the map
Pic X’ - Pic X} is injective.

Proof. Since the divisor classes of degree zero supported on the ramification
locus § are precisely the elements of ,Pic X, we have the following commutative
diagram with exact rows

0— ,Pic X — Pic® X — Pic X' — 0

| | l

0 — ,Pic X; — Pic® X; — Pic X; — 0.
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Here Pic® X is the group of divisor classes of degree zero. The first two vertical
maps are natural injections. Since f splits into a product of linear factors,
,Pic X =,Pic X;. Since Pic’X o Pic® X; is an injection, it follows that
Pic X’ — Pic X} is injective.

LEMMA 4.3. The group ,Pic X’ =~, (Z/2)' where | < 2g and | = 2g if and only if

Proof. We have an exact sequence

0—-,Pic X - ,Pic X - ,Pic X' - 0.
Let ,Pic X ~, (Z/2)!, ] < 2g. Let m elements in ,Pic X admit a square root over k.
Then |,Pic X| =m - 2/, with m < 2' < 2% Therefore |,Pic X’| = m < 2 and equality

holds if and only if m = 2'=2%; i.e., if and only if ,Pic X = ,Pic X}.

PROPOSITION 4.4. Let Disc denote the discriminant group of a scheme. Let f

. N .
split into linear factors over k. Then the composite map Disc X' — Disc Y’ -
Disc Y’/Disc k is surjective if and only if ,Pic X = ,Pic Xi, N denoting the norm map.

Proof. Since X’/Y’ is étale quadratic, we have an exact sequence in étale
cohomology groups with u, coefficients ([12], p. 92),

00— H(Y")—5 HY(Y')— H'(X') —— H'(Y")

Here, H(—) denotes H:,(—, u,). The group H'(—) is simply the discriminant
group so that we have an exact sequence

1— Disc Y’/<f>— Disc X’ —— Disc "

Since the only square class in k(7') which becomes trivial in k(X) is {f), this
sequence yields the following exact sequence

1 - Disc Y’/{f>Disc k — Disc X’/Disc k — Disc Y’/Disc k.
We denote U(B) and U(A4) by U(X’) and U(Y") respectively. By our hypothesis on
f, Disc Y =~ U(Y)/[2 >~ (Z/2)**' x Disck so that Disc Y'/{f)Disck =~
(Z/2)% and Disc Y’/Disc k =, (Z/2)**!. Further, the exact sequence

1 » U(X")/2 - Disc X’ - ,Pic X’ -0
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gives, by (4.1) and (4.3) that DiscX'/Disck =~ (Z/2)*%+'*!  where
,(Pic X’) = (Z/2)". Clearly, the map Disc X’/Disc k — Disc Y’/Disc k is surjective
if and only if / =2g; i.e., if and only if ,Pic X = ,Pic XE.

5. Ramified and unramified parts of coker 0°

Let (®,cs W(k(x)))° denote the subgroup of (@ ,x W(k(x)))° with non-zero
entries only at x € S. Let V, be the subgroup of coker 0°, defined by

V,= (@ W(k(X))) / (3 W(k(X)) ﬂ(@ W(k(x))> )

x€eS xeS

= ( XC-?S W(k(x)))0 / (6 /40,4 ’))

We define V,;, =coker 0°/V,. If p : (®,cx W(k(x)))° > ®,cx W(k(x)) denotes the
restriction of the projection, p is surjective, since S = X\X’ contains a rational
point. Thus,

Vor 25 @ W(k(x))/(p o D)W (K(X)).

LEMMA 5.1. The map o :coker d°— W(A)/{1, —>W(k) maps V, onto
L, = WA K1, —fHW(K).

Proof. Let 0 € (®,.s W(k(x))°. Let g € W(k(T)) be such that d(q) = tr 0.
Since 0,((q) =(0,) =0 for y¢n(S), ge W(4) and af) =<1, —f)q¢€
A, =fO>W(A) 1, =f>W(k).

We now show that a(V,) =1, —fOW(A)/{1, —f)W(k). Let g e W(A). Let
g = (1) € (B ex W(k(X)))° be defined by u, =0 for x € X', u, =0,(q), for x € S,

n(x) =y. Then pe (@ es Wkx)° and (i) =<1, —f>q in <1, —=fHW(A4)/
{1, —f>W(k). We thus have an exact sequence

0=V, —— W(A)/{1, —f>W(A) —— W(X) 0.

PROPOSITION 5.2. The group V,, is 2-torsion.

Proof. Let 0 € @,.x W(k(x)). Since n(S) has a rational point of ramification,
there exists g € W(k(T)) such that d(q) = tr 6. We have, {1, —f>({1,f>q) =0 so
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that there exists g, € W(k(X)) with s(q,) = ({1, f)q). Since for x € X’ with n(x) =
0,(<1, =f>q) =<1, =f>d,(g) =<1, = Htr(6,) =

we have tr(20) = d(<1,f)q) = d(s(q,)) =tr(0(q,)). Thus, by (3.3), there exists
q, € W(k(T)) such that 0, -i(q,) =20, —0,q, for x e X’ and 0, - i(g,) =0 for
x € S. Thus 26 — d(q, — i(q,)) € (D s W(k(x)))? and its image under the projection
map p is zero. Thus the class of 20 in V,, is zero.

Therefore coker d° is an extension of ¥V, by the 2-torsion group V,,. We now
show that under the rationality assumption ,Pic X = ,Pic Xj, V, =0. We observe
that ,Pic X; being a finite group, there exists a finite separable extension //k such
that V, =0 for X,.

PROPOSITION 5.3. Suppose ,Pic X =,Pic X;. Then the group V, =0 if and
only if ,Pic X = ,Pic Xj.

Proof. We show that the map 0 : W(X") = (®,.s W(k(x)))° is surjective if and
only if ,Pic X = ,Pic X;. In view of the commutative diagram

0
W(X') — (@ W(k(x)))

x€S
g | :
0 — W(k) — W(Y") —q( @ W(k(y))) —0 (%%)
yen(s)

with (**) exact, we need to show that s : W(X") - W(Y")/W(k) is surjective if and
only if ,Pic X = ,Pic X;. By our assumption ,Pic X = ,Pic X, f splits as a product
I, ci<cog+1 (T —a;) over k. Suppose ,Pic X = ,Pic X;. The exact sequence (**)
with each W(k(y)) =~ W(k) for y € n(S) implies that W(Y’) is generated by Disc k
and (T —a;)),Aek* 1<i<2g+1. Itis therefore enough to show that given
(MT —a;)>, A e k*, there exists u € k* such that {u, (T —a;)) € s(W(X")). By
(4.4), there exists Z € Disc X’ such that N() = (W(T — «;)) for some v € k*. We
have, s(Z) =z, {1, —vW(T — a;)) for some z, € k(T'). Thus,

s(—zy'w 1 A2 ={—v 4, AT —a;)).

Conversely, suppose W(X’) — W(Y")/W(k) is surjective. Then the map restricted to
the ideal I(X’) of even dimensional forms surjects onto I(Y’)/I(k). In view of the
commutative diagram

I(X") —— I(Y")/I(k)

1 1

Disc X’ —— Disc ¥’/Disc k
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with the vertical maps surjective, it follows that N : Disc X’ — Disc Y’/Disc k is
surjective. This implies, by (4.4) that ,Pic X = ,Pic X}.

In the next section, under certain assumptions on k and X, we describe the
unramified part V,, of coker d° cohomologically.

6. The unramified part of coker 0°

Let Y be any scheme over k. Let the properties PQ(1), PQ(2) for Y be the
following.

PQ(1): For every geometric point y € Y, the invariant theorem for quadratic
spaces, I"(k(y))/1"* '(k(y)) = H".(k(y), u,) holds for all n 2 0.

PQ(2): Y satisfies PQ(1) and the maps e, : I,(Y) = I'(Y, 5 ") defined in ([15, §1)
are surjective for n = 0.

Here, " denotes the Zariski sheaf associated to the presheaf U — H%,(U, u,).
The class of schemes which satisfy PQ(2) include all smooth quasi projective curves
over local fields, in view of [2] and [16]. Conjecturally, all smooth projective curves
over any field satisfy PQ(2).

We follow the same notations as in §4 and denote by n : X — P! a double cover,
X being a smooth hyperelliptic curve with a rational point of ramification. Under
the assumptions that X’ = X\§, Y’ = Y\n(S) satisfy PQ(2), we shall describe V,, as
a certain cohomology group.

LEMMA 6.1. Let Y < P! be any subscheme. Then Y satisfies PQ(2) if Y satisfies
PQ(1).

Proof. We have the following commutative diagram (cf. [5], [10])

0 0

| . |
L(Y) — Iy, ")

l 1

0— I""'(KT) —  I'(KT)) — H"(k(T)) —0

TR |

0-—~(® 1"(k(y))) ———»(@Y I"- '(k(y))) ———»(@Y H"- ‘(k(y))) :

yeY
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Here (@, y I"(k(»)))° (resp. (@, y H™(k(y)))° denotes the subgroup consisting
of trace zero elements. The two vertical columns are exact, by ([10], p. 277)
and [5]. By the assumption on Y, the two rows are exact. The surjectivity
of e,:1(Y)->I(Y, #") follows from the surjectivity of the residue map
0 : 1" '(k(T)) = (D, I"(k(»))° [13], Theorem 5.3).

LEMMA 6.2. Suppose P! and X satisfy PO(1). Then the sequence
L(A)—> L,(B) —1,(A)
is exact for n = 0..

Proof. Since B/A is unramified, by (2.1), (2.2) and (2.3), we have the following
commutative diagram:

v L 4 v

T S rT)  — PRX)  — (T

g g g ']

y@r "= 2(k(y)) i y?y I k() — QI Yk(x)) — y?y I (K( ).

The vertical columns are exact by ([10], p. 277). Exactness of the rows is a
consequence of the assumption PQ(1) for X and P! [3]. Exactness of the top row
follows from the surjectivity of 0 : I"~'(k(T)) > @,y I"~*(k(y)), Y’ being con-
tained in Al

LEMMA 6.3. Suppose X', and Y’ satisfy PQ(2). Then
(K1, =fOW(A) n1,(4) = 1, =f)1, (4.

Proof. We assume, by induction, that

K1, =OWA) N1, (4) =1, =71, _,(4)

for m<n—1. Let qe (1, —f>W(A))nI,(4). By induction, we may write
q=-_, —>q,q, €I,_,(A). Since X', Y’ satisfy PQ(1), and B/A is étale quadratic,
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we have the following commutative diagram

s <L =N
In—Z(B) —_— In—Z(A) —_— In— l(A)

le,._z le"_.

H"~%(B) —— H"~(4) =L H"~(4)
with the bottom row exact. Since

<19 —f>q1 =4 € In(A)9 €, l(q) = 0; i-e-9 Xfuen—-2(ql) = 0'

Therefore, there exists § € H" ~%(B) such that trf =e,_,(q,). Let § € I'(B, 5"~ ?)
be the image of 6 in H" ~?(k(X)). By the assumption that X’ satisfies PQ(2), there
exists ¢, € I, _,(B) such that e, ,(g,) = . The diagram

I,_»(B) — I,_,(A)

1.;,#, le,._z

['(B, #"~ %) — I'(4, #"~2) = H"~%(4)

can be verified to be commutative, so that e,_,(q, —sq,) =0. Thus ¢, —sq, €

I,_,(4) and <1, —fX(q, —sq.) =<1, —=f)>q,€<1, —f>1,_,(4). This proves the
lemma.

We now assume that X’ and Y’ satisfy PQ(2). The group V,, = ker (W(A)/
{1, =f>W(A) - W(X)) has a filtration induced by the filtration {I,,(4)} on W(A).
Since the map W(X) — W(B) is injective and since i preserves filtration, by (6.3), we
have,

(Vi) = ker (L, (A) ({1, —f>W(A) A I,,(4)) — I,,(B))
= ker (I(4) /<1, —f I, _1(A) — ,,(B)).

We now define a map n,, : (V,,),, = NH™(B) = ker (H™(B) — I'(B, ™)) as follows.
Consider the following commutative diagram:

In(A) Im(B)
0
NH™(B)
em \ em
‘ H™(B)
|
H™(A) \ITB,'H"‘L



Witt group of hyperelliptic curves 575

Let x € I,,(4) be such that i(x) =0. Then the element i(e,(x)) € H™(B) maps to
zero in I'(B,#™), by the commutativity of the above diagram. Hence
i(e,,(x)) € NH™(B). We define 1,,(X) =i o e,,(x). To show that n,, is well-defined, we
need to check that for xe(l, —f)I,_(A4), n,(x)=0. Let x=1, —f)x’,
x" €1, _,(A). We have, i(e,,(x)) = i(x,ve,_ (X)) = tiryVioe,_(x) =0since f
is a square in B. Thus we have a well-defined homomorphism

N = (Vir)m = NH™(B).
LEMMA 6.4. Kern,, = (Vo) o1-

Proof. Let 1,,(x) =0 with x € I,,(A4). Then ie,,(x) =0 and the exactness of the
sequence

H™'(4) 2 H™(4) —— H,(B) —— H™(4) (++%)

implies that there exists y € H™~ '(4) such that y,uy =e,,(x). By (6.1), there exists
zel,_,(A) such that e, _,(z) =y. We have, e,(x — ({1, —f>-2z) =0 so that
x—=Ll,—~f>-zel,,  (A) and its class in (V,,),, ., is simply the class of x.

We thus have a filtration {(V,,),,} on V,, with successive quotients (V,,),,/
(Vur)m + 1 injecting into NH™(B).

THEOREM 6.5. Under the assumption that X' and Y have PQ(2),
Vnr = @mZZNHm(B)'

Proof. Since by (5.2), V,, is a 2-torsion group, it is enough to show that #,,
maps (V,,),, onto NH™(B). Let x € NH™(B). Since NH"(A) =0 Vn, trx =0, and the
exact sequence (*#x) implies that there exists y € H™(A) with i(y) = x. By. (6.1),
there exists z € I,,(A4) with e,,(z) = y. Then e,, o i(z) = class of x in I'(B, # ™) which
is zero since x € NH™(B). Thus i(z) € I,,, ,(B) and s - i(z) = 0. By (6.2), there exists
z’el, . (A) with i(z') =i(z). Replacing z by z — z’ which again maps to y under
e, we have i(z) =0; i.e., Z € (V,,),, with n,,(2) = x.

7. An example

THEOREM 7.1. Let X be a smooth projective hyperelliptic curve defined over a
local field k with residue field characteristic #2. Suppose X has a rational point of
ramification, X has good reduction and ,Pic X = ,Pic X;. Then

coker 0 ~, W(k) ®(Z/2)*,

g being the genus of X.
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In view of results of [2], any curve over a local field satisfies PQ(1). It is shown
in [16] that any such curve also satisfies PQ(2). Therefore by our assumption
+Pic X =,Pic X;, we have, cokerd =~ W(k)®D(D,,-, NH"(X’)). Let G =
G(k k), k denoting the algebraic closure of k. Then cd,k < 2[18] and c¢d, X} < 1, X}
being affine. The spectral sequence ([12], p. 105)

H'(G, H(X})) = H"(X")

yields H"(X”) =0 for n = 4. Thus coker 0° ~ NH*(X') @ NH3*(X’). We shall now
compute these groups.

LEMMA 7.2. Let X be any smooth projective curve of genus g (not necessarily
hyperelliptic) over a local field k with residue field characteristic #2 and such that
X(k) # & and ,Pic X = ,Pic X;. Then H¥(X) =~ (Z/2)*¢*? and I'(X, #*) = 0.

Proof. The only two non-zero terms in the above spectral sequence contributing
to H*(X) are HY(G, H¥(X;)) and H*G, H'(X;)). The only possible non-zero
differential H%G, H* (X)) - HXG, H'(X})) is zero, X(k) being non-empty, since
H*(X) - H%G, H¥(X})) is surjective. Therefore

H(X) =~ H*G, H'(Xy)) ® H'(G, H*(X))
= (Z/2)* D (Z/2)*.

In fact the action of G on H'(X;) = ,Pic X; = (Z/2)* is trivial by our assump-
tion and H*(X;) = Pic X;/2 ~, Z/2 with trivial action again. Further, k being a
local field, HXG, Z/2) =~ ,Br(k) ~ Z/2 and H (G, Z/2) = k*/k** ~, Z/2 x Z)2.
In view of [4], NH3(X) =~ k*/k*? x J(k)/2J(k). Since k is a local field, by [11], J(k)
contains a subgroup .# isomorphic to copies of the valuation ring such that J(k)/.#
is finite. The 2-primary part of J(k)/.# is isomorphic to II, ;. ,(Z/2%), where
I = dimg,,(,Pic X) =2g by our assumption. Therefore J(k)/2J(k) = (Z/2)*, so
that NH*(X) =~ (Z/2)*+2. Thus NH*(X) = H*(X) and I'(X, #°) =0.

COROLLARY 7.3. Let X be a smooth projective curve over a local field k with
residue field characteristic #2. Suppose X has good reduction and ,Pic X = ,Pic Xj.

Then the classical invariants uniquely determine the class of a quadratic space in
W(X).

Proof. In view of ([15], §1), we have injections rk: W(X)/I(X) o Z/2,
disc: I(X)/I(X) o H'(X), ¢:L(X)/L(X) o ,Br(X) =I'(X, #?), where rk, disc
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and ¢ stand for rank, discriminant and Hasse—Witt invariant maps. Since

L(X) o I*k(X)) =0 [2] and I;(X) injects into I'(X, #3) =0 by (7.2), we have,
rk, disc and ¢ uniquely determine an element in W(X).

LEMMA 7.4. Let X be a hyperelliptic curve. Then NH*(X’) =~ (Z/2)*, under
the assumptions of (7.1) on X.

Proof. We have NH*(X’) ~, Pic X’/2. The exact sequence

0-,Pic X 5 Pic® X - Pic X' -0
yields the following long exact sequence

0 — ,Pic X —»,Pic®’ X - ,Pic X’ — ,Pic X/2—>Pic® X/2 > Pic X’/2-0.
We have ,Pic X =,Pic® X, ,Pic X' -~ (Z/2)* (4.3), ,Pic X/2 =~ (Z/2)*® and
Pic® X/2 = J(k)/2J(k) =~ (Z/2)*, in view of (7.2). We therefore have

Pic X'/2 ~, (Z/2)*.

LEMMA 7.5. Let X be a hyperelliptic curve. Then NH*(X') =~ (Z/2)*, under
the assumptions of (7.1) on X.

Proof. We have an exact sequence

0-UXp)/2->»H'(X}) = ,Pic X;-0.
By (4.1) and (4.3), U(X})/2> (Z/2)*®**' and ,Pic X; =~ (Z/2)*. Therefore
H'(X7) =~ (Z/2)***"'. Further, since U(X})/2 is generated by {y,T —a,},
1 <i < 2g, which are defined over k, and ,Pic X is also defined over k under the

assumption ,Pic X’ = ,Pic X}, the action of G on H'(X}) is trivial. The only
non-zero terms in the spectral sequence

H(G, H(X})) = H'(X")

contributing to H3(X’) is H*G, H'(X%)) with all the differentials vanishing, as
before. We therefore have

H(X') = HXG, H'(X})) = (Z/2)* .
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We shall now compute I'(X”, »#%). The sequence
H3 k(X)) —— H*((T)) —> H*(K(T))

is exact and since cd,(k) < 2, cd,(k(T)) <3, HYk(T)) = 0. Thus
tr : H3k(X)) - H*(k(T))

is surjective. It induces a map
tr: (X', #3>T(Y, #3%> HN(Y).

We show that this map is surjective. Let A € H>(Y’) and u € H3(k(X)) be such that
tr u = 4, identifying H*(Y’) with a subgroup of H*(k(T)). In view of the commuta-
tive diagram

HKT) — H®kX) —  HKT)
‘| ’| ’|

@ HYk(y) — @ Hk(x) — D H*k(y)

yeyY’ xeX’ yeY’
with exact rows, trodu=0otru=0(A)=0 and hence there exists
v € @,y HX(k(y)) with i(v) = d(u). Since Y’ < A, 0 : H*k(T)) - @,y H*(K())
is surjective and hence there exists ¥ e H*(k(T)) with 4(F) =v. We have
o(u — iv) =0 so that (u —iv) e I'(X”, #*) and maps to 4 € I'(Y’, o#3) = H*(4). We
thus have a surjection tr : I'(X’, #3) - T'(Y’, #*). We now compute its kernel.
Since H(k) = 0, the map 0 : H*(A) = (@, cs) H*(k()))° is an isomorphism. Since
the square

[, #% — (G—) HZ(k(x))o

x€S

‘| ll

0
HY4) = ( @D Hz(k(y))

yen(S)

is commutative, we have, ker tr = ker 0 = I'(X, X3 =0, by [5] and (7.2). Thus,
I'X’, #3% ~ H¥A) = (Z/2)**'. Therefore NH3(X') = (Z/2)*.

This completes the proof of Theorem 7.1. Finally, we use the exact sequence (§3)
to compute the defining relations for W(X) as a quotient of @,.s W(k(x)). More
precisely, we have the following
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THEOREM 7.6. Under the same hypothesis as in (7.1),

W(X) = (Z/2)* ® W(k).

Proof. In view of (3.4) and (7.1), we have an exact sequence

0 (Z/2)* - W(A)/(K1, —f>W(k)) > W(X) -0 (%)
The residue map d : W(A) > @, <<+ 1 W(k) is surjective, with kernel W(k).
We have, in W(k(T)), (W(k)n<{l, —f>  W(k)) =0. In fact, for g e W(k)n

1, —f> - W(k), q extends to zero in W(X). Since X (k) is non-empty, specialising at
a rational point yields ¢ =0 in W(k). We thus have an exact sequence

0 W(k) -» W(A4)/(<1, =f) - W(k)) *291 W(k)[o(<1, —f>W(k)) —0.
The image of the map n : W(k) » @, . W(k) defined by

n(q) = (—f'()g, —f'(a)g, .. ., “f’(“zg+ 1)q)
is precisely d({1, —f) - W(k)). The map n is injective, since for q € W(k), n(q) =0
implies that o(<{1, —f>q) =0; ie, {1,—f>ge Wk)n{l, —f>W(k)=0 and

q = fq. Since degree fis odd, ¢ = 0. Clearly n is a split injection, a section ¢ being
given by #(q;, 95, ...,9+1) = —f'(®;) - ¢,. We thus have an isomorphism

i s WAL, —fSWE)) » W) @(@9 W(k))

given by #(§) = (4, (0,,9)), 2 <i <2g +1, x; € §, § denoting specialisation at co. If
g e W(A)/ < 1, —f)>W(k), maps to zero in W(X), specialising at oo, we see that § =0,
so that in the sequence (), (Z/2)* injects into the factor @,, W(k) = @, W(F)
where F denotes the residue field of k. If —1 is a square in F, W(F) =~ (Z/2)?* and
if —1 is not a square in F, W(F) =~ Z/4. Therefore,

W(X) = W(k) @ W(F)*/(Z/2)*
=~ W(k) ®(Z)2)%.

The above theorem leads one to the following natural questions.

QUESTION 1. For a smooth hyperelliptic curve X over an arbitrary ground field
k, (with ,Pic X = ,Pic X}), is W(X) isomorphic to W(k) ® (Z/2)*s?



580 R. PARIMALA AND R. SUJATHA

A positive answer to this question will also provide evidence to an affirmative
answer to the following more general

QUESTION. (Scharlau) Let X be a smooth projective curve over a field k. If
W(k) is finitely generated, is W(X) finitely generated?

QUESTION 2. For a smooth projective curve X over k with X(k) # &, is
coker 0 =~ W(X)?
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