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Baumslag—Solitar groups and some other groups of cohomological
dimension two

P. H. KROPHOLLER

The purpose of this paper is to establish a common generalisation of the following
two results on finitely generated groups of cohomological dimension two. Let G be
such a group.

THEOREM A (Bieri [2], Corollaries 8.7 and 8.9). If G is non-abelian and has
non-trivial centre then its centre is infinite cyclic and its central factor group is
free-by-finite.

THEOREM B (Gildenhuys [6]). If G is soluble then it is isomorphic to
x, p5 x7 =x")
for some non-zero integer n.

Already common characteristics are apparent. In both cases G has an infinite
cyclic subgroup H which meets all of its conjugates non-trivially. In Theorem A one
takes H to be the centre, and in Theorem B, the group generated by x in the above
presentation. Quite generally, if H is infinite cyclic, the assertion that it meets all of
its conjugates can be expressed as

Commyg, (H) =G, | ™

in the notation of [10] or [11], (cf. especially the proof of Proposition 1 of [11]).
Perhaps the most famous groups satisfying this condition are the one-relator groups

(x, y; (x™) = x");

the so-called Baumslag—Solitar groups.
Let X denote the class of all finitely generated groups of cohomological
dimension two which have an infinite cyclic subgroup H such that (*) holds. We
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prove here that

THEOREM C. A4 non-cyclic group belongs to X if and only if it is the fundamen-
tal group of a finite graph of infinite cyclic groups.

One implication here is clear, for if G is the fundamental group of a finite graph
of infinite cyclic groups then it is certainly finitely generated of cohomological
dimension <2, and moreover any choice H of vertex or edge group satisfies (*). In
addition to Baumslag—Solitar groups, and the groups described in Theorems A and

B, some quite complicated looking presentations arise in this way. For example let
G be

uyo,wy x, y,z;w2=x3x* =2 u="22u=w3 x3=y3 0" y% = x%)

and let H be the subgroup generated by x. Plainly any such group has a
presentation with one fewer relator than generator. In particular it follows from
Theorem C that every X-group is finitely presented.

Theorem C can be rephrased. It shows that every X-group admits an action on
a tree so that the vertex and edge stabilisers are infinite cyclic. From this it follows
that every finitely generated subgroup of an X-group is a free product of an
X-group and a free group. Thus we have

COROLLARY 1. Every X-group is coherent, meaning that its finitely generated
subgroups are finitely presented.

Moreover, in the same spirit as Corollary 8.9 of [2] we can deduce

COROLLARY 2. If G is an X-group then its second derived group is free.

Proof. Let x generate an infinite cyclic subgroup of G for which (*) holds. Then
for any g in G there are non-zero integers p,q such that (x?)® = x?. Define
@ :G->0Q* by pg =¢q/p. As observed in lemma 0 of [11], ¢ is a well-defined
homomorphism from G to the multiplicative group of rational numbers. Further-
more any finitely generated subgroup K of Ker ¢ centralises x” for some positive n,
and (K, x™) is a group of cohomological dimension <2 with non-trivial centre.
Corollary 8.9 of [2] shows that K’ n{x) = 1. Since this is true of every choice of K
it follows that the derived subgroup of Ker ¢ does not meet (x). Since G’ < Ker ¢
we conclude that G"n{x) = 1. Now our proof of Theorem C actually shows that
there is a G-tree such that every vertex and edge stabiliser is infinite cyclic and
commensurable with {x). Therefore G” is free for it must act freely on this tree.
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There are two X-groups which often have to be treated as special cases, the free
abelian group of rank 2 and the Klein bottle group, and for convenience we shall
call them flat X-groups. 1 would like to thank Martin Roller for suggesting
Corollary 3(ii) here, which is analogous to the well-known theorem of Stallings and
Swan that every torsion-free free-by-finite group is free.

COROLLARY 3. (i) The infinite cyclic subgroups H of a non-flat X-group G
which satisfy Commg (H) = G are all commensurable.
(i) Every torsion-free finite extension of an X-group is again an X-group.

Proof. (i) Suppose that H, and H, are two such subgroups which are not
commensurable, and let ¢, and ¢, be the corresponding homomorphisms from G to
Q*, as in the proof of Corollary 2. Let K be the subgroup generated by H, and H,.
Suppose first that under ¢, the image of K in Q* is infinite. Then H, meets K’, for
if x is a generator of H, and p,q are distinct non-zero integers such that
y ~'xPy = x4 for some y € K then [x?, y] = x? 7 is a non-trivial element of K’ " H,.
Clearly H, < Ker ¢,, and since K/Ker ¢, is infinite, it follows that K’ n H, is trivial.

If, on the other hand, ¢, carries K to an infinite subgroup of Q> then K'n H,
is non-trivial while K’ n H, is trivial. The conclusion is that at least one of the ¢,
carries K into the subgroup {+1} of Q*. Consequently one of the H; is normal in
K and KX is either abelian or isomorphic to the Klein bottle group. If K is infinite
cyclic then H, and H, are commensurable, contrary to assumption. Therefore K has
a free abelian subgroup of rank two of finite index. Let 4 be a maximal abelian
subgroup of G meeting K in a subgroup of finite index. Since Comm, (H;) = G for
i=1,2, we have Commg (4) = G. Now for any g € G, A " A% is central in {4, A%),
both groups have cohomological dimension two, and by Bieri’s Theorem A,
(A, A%) must be abelian. By choice of 4, it contains A% for all g. Thus A is normal
and by Theorem 8.2 of [2], A has finite index in G. Therefore G is flat.

(i1) Let G be a torsion-free group with a normal X-subgroup N of finite index.
Certainly G is finitely generated and of cohomological dimension two. Let H
be an infinite cyclic subgroup of N with Comm, (H) = N. For any g in G,
Comm, (H®) = N. Therefore by (i), either N is abelian, or H and H® are commen-
surable. Since this holds for all g, either G belongs to X, or it is abelian-by-finite. In
the latter case, G is either free abelian of rank two or isomorphic to the Klein bottle
group. In any case, G belongs to X.

The proof of Theorem C itself proceeds in a series of steps. In the first, it is
shown that every X-group is of type (FP),. For this we use Strebel’s clever finiteness
criterion [13]. It leads at once to the observation that every G in X is a two-dimen-
sional duality group. The next step is to show that if H is an infinite cyclic subgroup
of G satisfying (*) then é(G, H) = 2. Here, ¢ is the end invariant for pairs of groups
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introduced in [10]. There are convenient methods for computing &G, H) when
G and H are duality groups which are described in [10] and which fit rather
well with this application. Knowing that ¢ =2 shows that there is a proper
H-almost invariant subset B of G: our third step is to apply Dunwoody’s
work, [5] to use the subset B to cut up a certain graph associated to (G, H) and
so to construct a G-tree which yields a splitting of G as an amalgam or HNN-
extension over a subgroup commensurable with H. I would like to thank Martin
Dunwoody for suggesting the method used in this step. Finally it becomes possible
to deduce Theorem C by using a recent result of Bestvina and Feighn [1] which
generalises the idea of accessibility (cf. Dunwoody’s [4]). These steps are carried
out in §§2-4.

What use is Theorem C? It should help to understand how Baumslag—Solitar
relators can arise in groups of low cohomological dimension. Proposition 1 of
[11] asserts that if x is an element of infinite order in a 3-manifold group and
p, q are non-zero integers such that x” and x? are conjugate then p = +¢q. At
the heart of this is the work [8] of Jaco and Shalen. In [8] the result is proved
for Haken manifolds, and as they remark on p. 176, “this is essentially stronger
than the result . .. that the Baumslag—Solitar group G,, =<a, b :abfa~' =b9) is
not a 3-manifold group for |p|#|q|”. On the other hand, if y ~'x?y =x9 then
typically x and y generate a group G of cohomological dimension two (in a
3-manifold group) and certainly G belongs to X. Theorem C therefore permits an
alternative approach to Theorem VI.2.1 of [8] by allowing a reduction to the
case of a Baumslag—Solitar group. This proves nothing new about 3-manifold
groups, but possibly Theorem C may be useful in helping to decide whether the
Baumslag—Solitar relator car hold in an abstract 3-dimensional Poincaré duality
group.

Conceivably Theorem C may be a starting point for an abstract theory of
groups of cohomological dimension two. As a step towards this we mention one
further corollary.

COROLLARY 4. Let G be any group of cohomological dimension two, let H be
an infinite cyclic subgroup and let C = Commg (H). Then for all g not in C, CnC?
is either locally free or flat.

Proof. If Hy= H n C¥ is trivial then, by the argument used to prove Corollary
2, every finitely generated subgroup of C nC? is free. On the other hand, if H,
is non-trivial then both H, and H? are commensurised by C nC# and hence, by
Corollary 3, either H, and H® are commensurable or C nC# is flat. However,
it cannot happen that H, and H? are commensurable because g was chosen
outside C.
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1. Influence of torsion-free abelian subgroups on cohomology

In this section we establish two results needed to begin the proof of Theorem C,
based on a simple observation: if 4 is a torsion-free abelian normal subgroup of a
group G and F is a free G-module then H(G, F) =0 for each i less than the rank
of A. This follows from an application of the Lyndon—Hochschild—Serre spectral
sequence since it is quite easy to see that H(4, F) =0 for all these i. If 4 is not
normal then nothing like this can be said: for example, if G is a free product 4 * B
then H'(G, F) is non-zero no matter what. In Lemma 1.1 we show that something
can be recovered provided A is close to normal.

If H is a subgroup of G and X a subset, we write core, (H) for the intersection

N He.

geX

and H* for the subgroup generated by H*, x € X. For the sake of brevity we shall
say that an abelian subgroup A of G is n-large if and only if core, (4) has
torsion-free rank at least n for each finite subset X.

LEMMA 1.1. Let A be an n-large abelian subgroup of a countable group G, and
F a free G-module. Then

(i) H(G,F) =0 for i <n, and

(i) H™(G, F) is non-zero if and only if G is (free abelian of rank n)-by-finite.

Proof. Choose a finite subset X of G. Let Z be a free abelian subgroup of
core, (A) of rank n, and note that Z is central in A*. Then H(Z, F) =0 for i <n,
and H"(Z, F) is a free AX/Z-module. Thus H(4*, F) vanishes for i <n and when
i =n it can be identified with the subgroup of A*-fixed points in the free 4*/Z-
module H"(Z, F), so is non-zero only if Z has finite index in 4*. Now, regard the
normal closure N of A4 as the (countable) direct limit of the 4%, where X varies
through the finite subsets of G. Using the short exact sequence

lim' H' = (4%, F) » H(N, F) - lim H'(4*, F)

one sees that H(N, F) is zero for i <n. Moreover, for H*(N, F) to be non-zero one
needs A* to be centre-by-finite for all choices of X, so N must be locally (free
abelian of rank n)-by-finite, and for such an N, H*(N, F) vanishes unless N is
actually finitely generated, by Theorem 3.3 of [7]. The lemma now follows by
applying the Lyndon-Hochschild—Serre spectral sequence to the group extension
N -G - G/N.
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As an amusing digression I want to point out how Lemma 1.1 can be used to
establish the vanishing of cohomology for the group discussed by Brown and
Geoghegan [3]. Their group, which I shall call G, has presentation

. —1 — ;
(Xgs X135 Xpy oo o 3 X7 ' Xy X; =X, fori<nm).

It is a remarkable discovery, being the first known example of a group of type
(FP),, which has free abelian subgroups of infinite rank. Indeed the subgroup

—_ —1 —1 —1
A-<x0xl y X2X3 , XgXs 9"'>

is clearly abelian and is in fact free on the displayed generators. Moreover if w is
any word in the x! of zero exponent sum then x,x, !, commutes with w for all
sufficiently large n, and consequently if X is any finite set of such words then
corey (A) has infinite rank. Therefore, using Lemma 1.1, it follows that H(G,, ZG)
vanishes for all i, where G, is the subgroup comprising words of zero exponent sum.
As G, is normal in G, we can recover one of the properties which Brown and
Geoghegan proved by rather more topological methods; namely H'(G, ZG) = 0 for
all i.

LEMMA 1.2. Let G be an X-group, H an infinite cyclic group satisfying (*), k a
field and let V be a kG-module which is torsion-free and divisible qua kH-module.
Then H(G, V) =0 for all i.

Proof. In effect H is a 1-large subgroup, and the Lemma is proved in a similar
way to Lemma 1.1. Here one uses the fact that V is injective and without H-fixed
points as a kH-module, so that H*(L, V) = 0 for any non-trivial subgroup of H.

2. Strebel’s criterion
Strebel’s criterion [13] can be used to show that certain finitely generated groups
of cohomological dimension two are of type (FP),. Let G be such a group. The

criterion can be expressed as

lim H*G, P;) =0 for every vanishing (meaning affording zero direct limit)
direct limit system (P,) of projective G-modules. (*%

For the reader’s convenience, and because our formulation is slightly different from
Strebel’s, we briefly outline why (**) is sufficient. To prove that a finitely generated
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group G is of type (FP), it is enough to show that whenever (M,) is a vanishing
direct limit system of G-modules then lim H*G, M;) = 0. Given a system (M), one
can form compatible short exact sequences

KA—’PA—’M)'

with (P,) being a vanishing direct limit system of projective modules. Now, taking
direct limits in the long exact sequence of cohomology we have the exact sequence

lim H%(G, P,) ~lim HXG, M;) —lim H*(G, K,).

The right hand group here vanishes because cd (G) = 2, and the left hand vanishes
by (**). Therefore the central group vanishes and G is of type (FP), as required.

For the remainder of this section, let G be an X-group and let H be an infinite
cyclic subgroup satisfying (*). To apply Strebel’s criterion to G we use the following
ring theoretic result. The reader can find a good introduction to right Ore sets in
group rings in Passman’s book [12].

LEMMA 2.1. Let k be an integral domain, and let Q be the multiplicatively
closed subset of kG generated by {x*%;0+# x e kH and g € G}. Then Q is a right Ore
set of non-zero-divisors in kG and kGQ ~' is torsion-free and divisible as a kH-
module. Moreover, if P is any projective kG-module then H'(G, PQ ") = 0 for all i.

Proof. 1 am indebted to the referee for correcting my original erroneous
argument. We first prove that the set IT of non-zero elements of kH is a right Ore
set. Given n in IT and x in kG we must find n” in II and x’ in kG such that
nx’ = xn’. Let X be the support of x and set I = corey (H). We show that for each
g in X there exist non-zero elements c, in kH* and d, in kI such that néc, =d,.
Since I has finite index in H?, it follows that kH? is integral over kI and hence there
is a monic polynomial

f@Z)=Z"+i{Z" "+ +i,
with coefficients i; in kI, with i, # 0 and satisfying f(n¥) = 0. We can therefore set

C=@®"""+-+i,_,

and
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Let Dg = Hh#g,he)( dh'
If x =X x,g, (x, in k) then set

x'=Y x,gc,D,

and set

n’ =[] .4,

Then nx’ = n(X x,gc,D,) = X x,gn*c,D, = X x,8d, D, = Z x,gn’ = xn’ as required.
The assertion that k<GQ ~! exists now follows. In fact k<GQ ~! can be identified
with kGIT .
It is clear that kG2 ~! is torsion-free and divisible as a kH-module and the final
remark follows from Lemma 1.2.

LEMMA 2.2. G is of type (FP), and has one end.

Proof. Since H is a 1-large abelian subgroup of G, and G is not infinite cyclic,
Lemma 1.1 shows that H'(G, —) vanishes on free modules. Thus G has one end. To
prove that G is of type (FP) it is enough to check (**). Let (P,) be a vanishing
direct limit system of projective modules, and consider the system of short exact
sequences

PA—*PAQ_I"’PAQ—I/PI

formed by localising with the right Ore set of Lemma 2.1. Applying direct limits to
the long exact sequence of cohomology yields the exact sequence

lim H'(G, P,Q~"/P,) —lim HXG, P,) - lim H¥G, P,Q"").

Here, the right hand group vanishes by Lemma 2.1, and the left hand vanishes
because G is finitely generated and lim P,2~'/P, = 0. Therefore (**) holds and the
result follows.

As Bieri points out in proposition 9.17(c) of [2], the conclusion of Lemma 2.2
guarantees that G is a 2-dimensional duality group. For our purposes we need only
consider this duality over the field F of two elements, in which case the dualising
module is D = H*G, FG).

LEMMA 2.3. The dualising module D is locally finite dimensional as an FH-
module, and é(G, H) = 2.
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Proof. Now D naturally inherits a left FG-module structure from FG. Here we
are interested only in the restriction of D to FH-module: think of FG as a
(FH, FG)-bimodule, its right FG-structure being “used up” in forming D, and its
left FH-structure being inherited. Using the localisation of Lemma 2.1, FG can be
imbedded in FGQ ', and this imbedding respects the bimodule structure. More-
over, as a (FH, FG)-bimodule, FGR ! is isomorphic to K ®;; FG, where K is the
field of fraction of FH. Lemma 2.1 therefore shows that

H*(G, K ®¢y FG)
vanishes. Using Lemma 2.4 below we can conclude that
K ®¢y H*(G, FG)

vanishes, and this is just a reformulation of the desired conclusion that
D = HXG, FG) is locally finite dimensional qua FH-module. Therefore the result
follows in view of Lemma 2.4 below. That é(G, H) = 2 now follows from Lemma
4.1(iii) of [10].

LEMMA 24. If G is any group of type (FP).,, R a ring, M an (R, G)-bimodule,
and V a right R-module, then there are natural isomorphisms

H'G,V ®r M) =V @ H(G, M).

Proof. This is easily seen by computing the cohomology of G using a projective
resolution of the trivial module of finite type.

3. Dunwoody’ method of cutting up graphs

We continue the study of the pair of groups G, H, as in §2. Now we aim to find
a subset B of G such that for all g € G the symmetric difference B + Bg is contained
in a finite union of right cosets Hx of H. Such a B is called H-almost invariant, and
it is called proper if neither B nor its complement is contained in a finite union of
cosets.

LEMMA 3.1. Let G and H be as in Lemma 2.2. Then G has a proper H-almost
invariant subset B such that B = BH.

Proof. As in [10], let # ,G denote the G-module of H-finite subsets of G. An
easy variation on Lemma 2.2 of [9] yields a suitable B once one knows that the
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restriction map
HI(G, 'gHG) —)Hl(Ha fHG)

has non-zero kernel. Here, we have already shown that H'(G, # ;,G) is non-zero,
for Lemma 1.2 of [10] shows that this is equivalent to the statement é(G, H) = 2
which was established in Lemma 2.3. In fact H'(H, # ,G) is zero, because F ,,G
qua H-module is a direct sum of coinduced modules, and the Lemma follows.

LEMMA 3.2. G splits over an infinite cyclic subgroup commensurable with H.

Proof. Let X be a finite set of generators for G. I would like to thank Martin
Dunwoody for suggesting the following construction of a graph I" on which G acts:
this graph does indeed play a crucial role in the proof by enabling the use of
Dunwoody’s results in [5]. The vertices are the left cosets gH, g € G, and for each
x in X there is an edge joining gH to GxH. The graph need not be locally finite, but
it does admit a left action of G. Moreover, I is connected because X generates G,
and G\I is finite because X is finite. Let B be the subset given by Lemma 3.1. As
it is a union of left cosets of H, it determines a subset W of vertices of I' in the
obvious way, and in fact this subset is a cut in the sense that only finitely many
edges of I' have exactly one vertex in it. To see this, fix x € X and consider

{g € g; exactly one of gH and gxH is contained in B}
= {g € G; exactly one of g and gx belongs to B}

= {g € G; belongs to the symmetric difference B + Bx ~'}.

This set is H-finite: it is contained in a finite union of right cosets of H, and since
Commg (H) =G it is equally contained in a finite union of left cosets of H.
Repeating this argument for each member of the finite set X, we conclude that W
is indeed a cut. The upshot is that the graph I' has more than one end. Theorem 1.1
of [5] now shows that there is a subset D of G such that D = DH and for all g € G
one of the four intersections D ngD, D ngD* D*ngD, D*ngD* is empty. (D*
denotes the complement of D.) As Dunwoody concludes in Corollary 4.2 of [5], this
leads to a splitting of G as an amalgam or HNN-extension over a subgroup C
which contains the stabiliser of an edge of I as a subgroup of finite index. Now the
stabiliser of the typical edge, joining gH to gxH, is gHg ~'ngxH(gx) ~' and so is
commensurable with H. It follows that C is an infinite cyclic subgroup commen-
surable with H.
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4. Conclusion

In order to complete the proof we need a finiteness theorem proved by Bestvina
and Feign [1]. The following is a special case of their Main Theorem. Although they
state the result only for finitely presented groups, they point out in Remark (8)
following the statement that it holds equally for groups of type (FP),.

THEOREM 4.1. Let G be a group of type (FP),. Then there is a number é such

that if T is a reduced G-tree with abelian edge stabilisers then T has at most 6 orbits
of edges.

Proof of Theorem C. Rather than trying the reader’s patience with the details of
the complete proof I shall just illustrate what happens in a simple example. Let G
be in X and let H be an infinite cyclic subgroup satisfying (*). If G is not infinite
cyclic then it splits over a subgroup commensurable with H. Let us suppose that
G = K%L is an amalgam, and let 7 be the corresponding G-tree. Suppose further-
more that § is 1. Then the Theorem above shows that there is no refinement of this
splitting. Since both G and H are of type (FP), standard results imply that K and
L are of type (FP). In particular both K and L belong to X. If K is not infinite cyclic
then Lemma 3.2 shows that it splits over an infinite cyclic subgroup J commen-
surable with H. For the sake of argument, suppose that K = M*¥ N is an amalgam,
and let U be the corresponding K-tree. Now J meets H and so in U there must be
a vertex fixed by H. Hence there is an element x € K such that x ~!'Hx is contained
in M or N. Now replace M, J, N by their conjugates by x ~!. Then, without loss of
generality, we may assume that H is contained in M. But this means that G can be
expressed as the double amalgam LM% N. This yields a G-tree with two orbits of
edges, and contradicts the assumption 6 = 1. Therefore both K and L are indeed
infinite cyclic.
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