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Fixed point free low dimensional real algebraic actions of A5 on
contractible varieties

KARL HEINZ DOVERMANN AND MIKIYA MASUDA

Dedicated to Professor Shoré Araki on the occasion of his 60th birthday.

1. Introduction

Let G be a compact Lie group, and let € be an orthogonal representation of G.
A real algebraic G variety is a G invariant set

V={xeQ|p(x)=""=p,(x) =0}

for polynomials p, : Q >R, i =1,..., m. We also say that G acts real algebraically
on the variety V. All varieties considered in this paper are non-singular. The
purpose of this note is to show

THEOREM A. The alternating group As acts real algebraically with exactly one
fixed point on a variety which is diffeomorphic to S°. Furthermore, As acts real
algebraically without a fixed point on a variety which is diffeomorphic to R" for any
nz6.

The principal motivation for this theorem is the

FIXED POINT CONJECTURE. A4 compact Lie group G acts real algebraically
without a fixed point on a variety diffeomorphic to R" if and only if G acts smoothly
without a fixed point on the disk D™= {x € R™| |x| < 1}.

Petrie and Rendall [PR] showed the necessity part (=) of the conjecture, and
here one may set m = n. Previous partial results in this direction are also discussed
in their paper. The conjecture demonstrates a clear difference between smooth and
the real algebraic actions. Conner and Floyd constructed (smooth) cyclic group
actions on R” without fixed point [CF]. By the Lefschetz Fixed Point Theorem,
every smooth cyclic action on a disk has a fixed point. Combined with the result
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of Petrie and Randall this implies that there are no cyclic, fixed point free, real
algebraic actions on any variety diffeomorphic to R”.

Our theorem deals with the sufficiency part (<) of the conjecture. Observe that
As acts without a fixed point on a disk [Br, page 55], and Theorem A implies

COROLLARY. The Fixed Point Conjecture holds for As.

The corollary was obtained previously by Dovermann, Masuda, and Petrie
[DMP]. It was derived from a theorem similar to Theorem A, but there n = 24.
Furthermore, Dovermann, Knop, and Suh showed the sufficiency part of the Fixed
Point Conjecture for odd order abelian groups [DKS].

A fixed point free complex algebraic action of a reductive group (such as a
finite group or C*) on C” would be a striking counter example to the Linearity
Conjecture by Kambayashi [Ka]: “Any reductive complex algebraic action on C” is
conjugate to a linear action.” For some results supporting this conjecture see [BH]
and [Kr]. Recently G. Schwarz [Sc] has shown that Kambayashi’s conjecture is
false. Many groups, such as O(n, C) x C*, have algebraic actions on C" which are
not conjugate to linear actions. But, these actions have fixed points. Recently
Masuda and Petrie extended the results of Schwarz [MP]. The actions in Theorem
A are not conjugate to linear actions because they have no fixed points. We only
know that the underlying variety of this action is diffeomorphic to R”, and
algebraically it may not be R"”. Generally there are infinitely many real algebraic
varieties diffeomorphic to one smooth manifold (e.g., see [BK]).

The first part of Theorem A addresses a problem raised by Montgomery and
Samelson [MS). Which groups can act on a homotopy sphere with exactly one fixed
point? Stein [St] showed that the binary icosahedral group has this property, and
Petrie showed the same for several classes of groups [P2], [P3]. One such class are
odd order abelian groups with at least three non-cyclic Sylow subgroups. Theorem
A provides an answer to the question of Montgomery and Samelson in the real
algebraic category.

The question of low-dimensional smooth one fixed point actions on spheres was
raised by Morimoto [Mol]. He constructed smooth actions as in Theorem A (see
[Mo3] and [Mod4]). In dimensions <5 one fixed point actions on spheres do not
exist. See [Mo2] and [F] if the dimension is <4 and [BKS] if the dimension is 5. We
give a short proof of Morimoto’s theorem which does not only provide smooth A;
actions on S®, but which also provides such actions in the more rigid real algebraic
category.

The first part of the proof of Theorem A will follow from the next three results.
Let 2 = SO(3)/As = {gAs | g € SO(3)} denote the Poincaré homology sphere. Here
we identify 4 with the icosahedral group I = SO(3). The alternating group A; acts
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on # by left multiplication. With this action 2 is a closed smooth 4 manifold. The
action has exactly one fixed point because the normalizer of I in SO(3) is I itself.

PROPOSITION B. ([DMP, Section 2]) The Poincaré homology sphere P is
equivariantly diffeomorphic to a real algebraic As variety.

Let G be a compact Lie group, and let X and X’ be closed (i.e., compact and
without boundary) smooth G manifolds. They are called equivariantly cobordant if
there exists a smooth G manifold W such that its boundary is the disjoint union of
X and X".

Let 2, be Z x 2 with a diagonal action of 4. In particular, £, is equivanantly
diffeomorphic to a real algebraic A5 variety, and the action has exactly one fixed
point.

THEOREM C. The manifold P, is As equivariantly cobordant to S® with an
action of As which has exactly one fixed point.

THEOREM D. ([DMP, Theorem 1.3]) Suppose G is a compact Lie group and M
is a closed smooth G manifold. Suppose M is G cobordant to a real algebraic G
variety. Then M is G diffeomorphic to a real algebraic G variety.

Theorem D is a partial generalization of Tognoli’s Theorem [T] (the proof of
the Nash Conjecture), and it is this result which links smooth and real algebraic
transformation groups. Tognoli’s Theorem is without group action. With the help
of Theorem D the proof of Theorem A has been reduced to a smooth problem, and
this problem is solved in Theorem C.

The proof of Theorem C is given in Section 3. There are two propositions which
prepare it. In Proposition 2.1 we construct a cobordism between £, and a manifold
X, and the non-free orbits in X have the properties implied by an 44 action on a
six-dimensional homotopy sphere. The method of proof is an explicit low dimen-
sional construction. In Proposition 3.1 we show that a manifold as in the conclu-
sion of Proposition 2.1 is equivariantly cobordant to a sphere. In its proof more
abstract equivariant surgery techniques are used to provide cobordism in the
theorem.

The second part of Theorem A follows easily from the first part with the help
of our next

LEMMA E. (See [M] and [DMP)]) Let G be a compact Lie group. Let V be a
real algebraic G variety and W a G invariant subvariety. Then V\W is equivariantly
diffeomorphic to a real algebraic G variety.
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Proof. Let (p,, ..., p) be the ideal which defines the variety V. Set p =X p?.
Then p~'(0) = V. Let E denote the representation of G in which V is the zero set.
Find a G invariant polynomial ¢ such that ¢ ~!(0) = W. Here one may start with a_
non-equivariant polynomial with this property and average its square over G. Then

V\W={xeV|p(x) =0 and g(x) #0}.

The assignment which maps x to (x, 1/¢(x)) defines an equivariant diffecomorphism

V\W—->A={(x,y) €E @ R|p(x) =0 and yg(x) — 1 =0}.
The action of G on A is real algebraic. O

Proof of Theorem A. Proposition B implies that £, is equivariantly diffeomor-
phic to a real algebraic A5 variety. Theorem C implies that £, is equivariantly
cobordant to S and the action on S° has exactly one fixed point. Theorem D
implies that S°® with this action of Ay is equivariantly diffeormorphic to a real
algebraic A, variety. This shows the first part of Theorem A.

Furthermore, Lemma E implies that S%\(5°)A4° is equivariantly diffeomorphic to
a real algebraic A variety, and this variety is diffeomorphic to RS. This implies the
second claim in Theorem A for n = 6. For n > 6 the result follows then trivially.

O

2. Low dimensional surgeries

The topic of this section is the construction of the manifold X described in
Proposition 2.1. The manifold will be used later. We denote the tangent bundle of
a smooth manifold X by TX. Let Q be a representation of a group G and Ba G
space. The product bundle p, : B x Q — B, whose projection map is projection on
this first factor, is denoted by Q. The base space will be understood from context.
We say that a smooth G manifold X has an equivariant stable framing if there are
representations Q, and a G vector bundle isomorphism 7X @ Q_—-Q, .

PROPOSITION 2.1. There is an As equivariant cobordism between 2, and an As
manifold X such that

(1) X4 consists of exactly one point.

(2) X# =S° if H is a dihedral or tetrahedral subgroup of As.

(3) X€ =82 for any non-trivial cyclic subgroup C of As,

(4) X has an equivariant stable framing.

(5) X is orientable, and the As action on X preserves the orientation.
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We prepare the proof of Proposition 2.1. As before we identify A5 with the
icosahedral group 7 = SO(3). Let H denote the quaternions and = : S(H) — SO(3)
the double cover. The binary icosahedral group is I =n~'(I). We will reserve the
letter = for the representation of I whose underlying space is H. The action
I x E - & is given by (n(y), v) — yvy ~ L.

We describe 72 @ R. Set S(H) x H = TH sy, = TS(H) & R. The binary
icosahedral group acts by left and right multiplication on S(H) x H. Taking
quotients with respect to the right multiplication we get 7% @ R.

Consider 1 : S(H) x H— 2 x E defined by n(g, v) = ([g], vg ~'). This map fac-
tors through 72 @ R and identifies 72 @ R with 2 x E. The action of Ton2is
not effective and induces an action of I. The map 7 is equivariant with respect to
the left I actions on S(H) x H and the I action on £ x E.

Let x € 2 be the fixed point. Then 7,2 @ R = E. The Thom-Pontrjagin map
¢ : P - S(Z) collapses the complement of a small invariant disk around x to the
point at infinity in the one point compactification 7,2* of T,#2. It is an
equivariant map. We identify T, 2 * with S(Z) such that 0 € 7,# maps to 1 € =,
and such that —1 € E corresponds to the compactification point. We define the
bundle isomorphism

B.T?P®R=2xE->P xE with B(gl,v)=(gl, ve([g]).

Let H be a non-trivial proper subgroup of I. Then #¥ is diffeomorphic (=)
to the boundary of a disk D and the normal bundle w(2%, ) is trivial. Let v be
its fibre, D:=D x D(v), and Dy:=0D x D(v). Then D, < 0D. Let B, : (P, #) -
0D xv be the trivialization induced by B, and let ¢:DWPH, P)>P
be the map which identifies the normal disk bundle with a tubular neighbour-
hood of 24 in 2. Define ¢ : D,— 2 as the composition of (B,) ' (restricted to
the disk bundle) and ¢. Set W, =2 x[0,1] u, D where D is attached along
P x {1}.

PROPOSITION 2.2. The I equivariant stable framing B:T? @ R->2 x E
extends to an H equivariant stable framing By, - TW, @ R-> Wy x (£ @ R).

Proof. Let Wy=2 x [0, 1]. We use B to define f,: TW, @ R—> W, x (E @ R).
In the direction of 2 we use B, and the summand R which we added to = is used
to frame the direction [0, 1] in W,. We show that B, extends over W,. Set
W' = Wyou(D x {0}). Because W, contracts to W’ it suffices to extend B, to
V:(TWylw @ RoW' x[E & R).

Restricted over W¥, B, decomposes as a direct sum (8,)” @ (Bo)x, Where (By)”
is the isomorphism on the H fixed point set, and (f,)y is the isomorphism on its
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orthogonal complement. Because we used ¢ to identify D, with a tubular neigh-
bourhood of 2# in 2, it follows that (B,), extends over D and W’. (The same
argument was used in [DP, Lemma 4.28].)

We extend B¢. Consider the case where H is dihedral or tetrahedral. Then
2" = S° Denote the points in ¥ by x and y, where {x} = 2’. In particular,
cx)=1, «(y)=—1 and

B(x,v) =(x,v) and B(y,v)=(y, —v) (2.3)

Because of the specific construction of ¢ using the framing B and the fact that B,
is defined by B, it follows that B¢ extends over the disk D! =[0, 1] bounded by 2%.

Let H be a non-trivial cyclic subgroup of I. In this case 2% =~ S'. The stable
framing of T2, induced by n and restricted to 2%, gives the stabilized Lie framing
on 2. This framing is twisted, and ¢ untwists it. For this reason B extends H
equivariantly over the disk bounded by ##. This completes the proof of the
proposition also in this case. O

Proof of Proposition 2.1. We construct an A5 equivariant cobordism N between
P, =P x P (with diagonal action) and a manifold X, and an equivariant stable
framing ¢ of N. The manifold X will have all of the desired properties.

Let Ny:=2, x [0, 1]. A stable framing ¢, RZ ® TN, EZ D E D R of N, is
given as follows. Use the product

BxB:R® T2, 2(R® TP)?*=(P xE): (P xE)2xP, x (E @ E)

as stable framing of #,. The summand R added to £ @ E accounts for the [0, 1]
direction in N,.

We attach handles to N, along £, x {1}. Let H be a non-trivial proper
subgroup of A which is an isotropy group. In the set-up of Proposition 2.2 we
assigned to H a handle D with boundary piece D,. Let =, be the nontrivial
summand of Z, so E, is the tangent representation of 2 at the fixed point. Set

E,(H) = As x (D x D(Ey)) ifdim P27 =0

T T 14 x (D(Ey) x By)  if dim2H =1
This is an A, space with diagonal action. Let z be a point in & with isotropy group
H, and let  : D(Z,) % be an H equivariant embedding which identifies D(Z,)
with a tubular neighbourhood of z. Let ¢ be as in the set-up of 2.2. We define an
As map

Y(H) : Ey(H) »P x P =P, x {1}
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(go(w), gn(v)) if dim ¥ =0

FLEE 1 1) = {(grl(u), go@) if dimPH =1

Let B, (H) be the following quotient of E,(H).

B, () = {43 X# (Do X D(Ey)) if dim =0
T 4 % (D(Ep) x By) if dim PY =1

Then W(H) factors through B,(H) and defines an A, equivariant embedding
Y(H) :Do(H) > P x P =2, x {1}.
Finally, we define

B(H) = {AS X (D x D(Zy)) if dim P27 =0

As Xy (D(E) xD) ifdmPH=1
Observe that 0,(H) is part of the boundary of B(H). Using y/(H) as attaching map
we form Ny Up, i) D(H).

We extend the stable framing ¢, of N, over the attached handles D(H). The
stable framing ¢, restricts to an H equivariant stable framing of D,, which extends
to an H equivariant stable framing of D (see Proposition 2.2). A stable framing of
D(E,) is obtained easily because this space is contractible. Their product provides
a stable framing of D x D(Z,) and D(Z,) x D. These stable framings extend A
equivariantly over D(H) because the handles are attached equivariantly. This
provides an A equivariant extension of c,.

Consider the set of conjugacy classes of non-trivial proper subgroups of A;
which are isotropy groups of the action on 2. In each of these classes choose one
representative H, and attach the associated handles D(H) to N, in the way
described above. These handles are disjoint from each other. The resulting manifold
N is the cobordism which we set out to construct. Because we have extensions of
the stable framing ¢, over each of the handles, we get a stable framing ¢ of N. The
manifold X is defined by N =2, U X and a stable framing of X is defined as
restriction of ¢ over X.

We need to verify that X satisfies (1) —(5). Property (4) and (5) are obvious. By
assumption, 245 consists of exactly one point, and this point stays untouched in the
process of attaching handles. This point is also contained in X, and (1) is clear. We
check (2). Let H be an isotropy group of the action on £, such that H # G, and



Fixed point free low dimensional real algebraic actions of A5 on contractible varieties 541

dim 2% = 0. Then 2§ =~ §° x S°. We attached one handle cancelling two points in
24 Thus XY = S°.

We check (3). Let C be a non-trivial cyclic subgroup of 45 with normalizer NC
and W(C):=NC/C. Observe that W(C) is of order 2, and = S'. Identify #€
with the unit complex numbers such that {1} corresponds to the A, fixed point in
2, and {—1} corresponds to the other point left fixed by the action of NC. Then
PSS x St and (P§)"© = §° x §°. We describe the spheres in 25 on which we
did surgery when we attached handles to N,. We used S®= {11} x {—1} as the
sphere on which to do surgery when we eliminated two NC fixed points. We also
did surgery on the spheres S' x { +i} when we attached the handles associated with
C. So, with above notation we choose z =i € 2¢ = 2. The reader is invited to draw
a picture of the torus and carry out the surgeries which we just described. The result
of these surgeries is S, as it was claimed for the C fixed point set in X. This
completes the proof. 0O

3. Surgery on free orbits

The next step in the proof of Theorem C provides an equivariant cobordism
between X as in the conclusion of Proposition 2.1 and S® with an A, action.
Restricted to all non-free orbits the corbordism is a product. We discuss an
obstruction for finding such a cobordism, and we show that the group in which it
lives is trivial, hence the obstruction vanishes.

The obstruction lies in a Witt group W,(4s, I'). More generally, Bak introduced
groups W (G, I') where G is a group and I’ is a form parameter [B, Section 1]. Let
v=2Xa,g € Z[G]. Then v is defined as Za,g ~'. In our situation G = 45 and

I’={v+\7+2a3g|veZ[A5], a, € Z and 1 # g € A5 with g2=1}

In comparison to the elements in Wall’s surgery obstruction group L%(Z[A4;), 1)
where the self intersection form takes values in Z[4]/{v + V |v € Z[4;]}, the self
intersection form now takes values in Z[A4]/I". Morimoto noticed the importance of
these Witt groups for equivariant surgery.

DEFINITION. Let X be a closed smooth 45 manifold. We call it adjusted if X”
is a homotopy sphere for all non-trivial subgroups P of A5 of prime power order.

THEOREM 3.1. Let X be an adjusted A5 manifold of dimension 4k + 2 such
that
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(1) dim X% <2k for 1 # g € A5 and equality holds if g*> = 1.

(2 X145 #£0.

(3) X has a stable equivariant framing.

(4) X is orientable, and then Ag action on X preserves the orientation.

Then X is As equivariantly cobordant to a homotopy sphere X such that X*s is
diffeomorphic to X*s.

Proof of Theorem C. 1t is the conclusion of Proposition 2.1 that #Z, =2 x 2 is
As equivariantly cobordant to a manifold X which satisfies the assumptions of
Theorem 3.1 and which has exactly one fixed point. It is the conclusion of Theorem
3.1 that X is equivariantly cobordant to a homotopy sphere X such that X4s
consists of exactly one point. Then 2, and X are equivariantly cobordant. In
particular, X is diffeomorphic to S and Theorem C is proved. O

We need two algebraic computations in the proof of Theorem 3.1.

THEOREM 3.2. ([RU])) Every finitely generated projective module over Z[As] is
Z[A,] stably free.

THEOREM 3.3. For I' as above, W,(As, ') =0.

The proof of Theorem 3.3 was provided to us by A. Bak, and we like to thank
him. It simplifies a proof given by Morimoto in [Mo4].

Proof: Since K,(Z[As]) =0 (see 3.2), it follows from [B, 8.17] that
W,(A4s,T) = W%(As, I') where P signifies that the underlying modules of our
non-singular forms are allowed to be finitely generated and projective over Z[A;].
The maximal 2-hyperelementary subgroups of A5 are the dihedral groups D,, D,
and D,,. Thus, by induction [B, Section 12], it suffices to show that W,(H, ') =0
for any of these dihedral groups, and

I‘H={v+v+2agg|veZ[H], o, € Z and l;égeHwithgz:l}.

Consider the maximal and minimal form parameters
Ix={a€eZ[H]|a=a} and T'y,={v+7|veZH]}.
We first show that W,(H, I',.,) =0. Consider the split exact sequence [B, 11.4]

Oqs(rmax/rmin) e W{(H9 rmin) - Wg(H, Fmax) —’0
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The splitting of the first map is given by the Arf invariant. By [K, §6 (2)],
WE(H, I';,) is accounted for solely by the Arf invariant. Thus W5(H, I',.,..) = 0.
Consider once more Bak’s exact sequence

O""S(Fmax/rll) - WZP(H9 FH) =* Wg(H’ Fmax) —’0

We compute S(I'.,/Iy)- It is easy to see that I',,,, /I is isomorphic to Z, and a
generator is given by e, the trivial element in H. Consider I',,, and I',, as
Z[H]-modules, where the action (right and left) is given by conjugation. By
definition, S denotes the symmetric tensor product

S(Fmax/rﬂ) =((rmax/rﬂ) ®Z[H](rmax/FH))/{a ® b _'b ® aa ® b —a ® bab_}

The tensor product is generated by e ® e. Let ¢ denote an element of order 2 in H,
t#1. Then tely, 2e + 2t € 'y, and in S(I /T 'y)

e@e=eR@Ee+t)=e@(e+te(e+t)=e @ (2e +2t) =0.
Thus S(I'y,ax/Ts) =0 and WE(H, I'y,) = WE(H, IT,,,) =0 as claimed. O

We prepare the proof of Theorem 3.1. Let G be a finite group. We give the
definition of an adjusted G normal map as it is appropriate in our context.

DEFINITION 3.4. A G normal map consists of two closed smooth oriented G
manifolds X and Y, an equivariant map f: X - Y of degree 1, and an equivariant
stable framing b : TX @ 4 — Q of X. Here 4 and 2 are appropriate representations
of G, Y is assumed to be simply connected, and it is assumed that the actions of G
on X and Y preserve orientations. The data of a normal map will be abbreviated as
(X,f,b). A G normal map is called adjusted if f¥:X*— Y” is a homotopy
equivalence whenever P is a non-trivial subgroup of G of prime power order.

For G normal maps we have a concept of G normal cobordism. Let
W =(X,f,b) and #' = (X', f’, b’) be G normal maps, with the same target space
Y. Let W be a G cobordism between X and X’. Let F: W — Y x I be an equivariant
map such that F restricts to f and f', so f=Fy:X—>Yx0=Y and
ff=Fy:X'>Yx1=Y. Let B:.TW & 4—>Q be a stable G vector bundle iso-
morphism which restricts to b over X and to 5" and X”. Then (W, F, B) is called a
G normal cobordism between #” and #°’. The cobordism is relative to the L fixed
point set, L < G, if all data restricts over the L fixed point set to a product with the
unit interval. We may also add the same representation to both 4 and © in above
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definition and stabilze b with the identity map. This generates an equivalence
relation for stable framings and for normal maps. We abuse language slightly and
call the equivalence relation generated by both of the equivalence relations again
equivariant normal cobordism.

To an orientable G manifold X of dimension 4k + 2 with orientation preserving
action we assign a form parameter I'(X). Set

X)={g e G|l #g g*=1, X? has a component of dimension 2k}

F(X)={v+\7+2agg |v e Z[G), a, € Z andgey(X)}.

We say that a G manifold X satisfies the dimension assumptions for surgery, if
dim X = § and whenever 1 # g € G, then we have for each component F of X% that
2dim F < dim X.

THEOREM 3.5. Let (X, b, f) be an adjusted G normal map. Suppose that X is
of dimension 4k +2, X satisfies the dimension assumptions for surgery, and f is
(2k + 1)-connected (i.e., for the mapping cylinder M, of f, n;(M;, X)=0 for
Jj =2k +1). Then

(1) K(X):=ker (Hy , (X) > H,, , ,(Y)) is a projective Z[G] module.

(2) Suppose K(X) is Z[G] stably free. There exists an element o(f,b) €
W,(G, I'(X)) such that the vanishing of o(f, b) implies that (X,f,b) is G
normally cobordant to a G normal map (X', f', b") for which f’ is a homotopy
equivalence.

(3) The normal cobordism in (2) may be chosen relative to the L fixed point sets
for all non-trivial subgroups L of G.

The first part of this theorem was proved by Petrie [P]. The other two parts were
shown by Morimoto [Mo5). Compare [D, Theorem 3.11] for a different point of
view.

Proof of Theorem 3.1. Let x € X be a fixed point. Let Y:=T,X be the tangent
representation at x. Let Y:=S(Y @ R) and f: X - Y the map obtained by col-
lapsing the complement of an A invariant disk around x to one point, the
compactification point in ¥t = S(Y @ R). With appropriately chosen orientations
f is of degree 1. Let b be the stable framing of X. Then (X,f, b) is an adjusted
normal map.

All cobordisms in this proof are relative to the L fixed point sets for all
nontrivial subgroups L of 4. Using standard equivariant surgery techniques [DP,
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Sec. 4] we make (X, f, b) connected up to the middle dimension and find a (2k + 1)-
connected A5 normal map (X, f,, b,) which is 45 normally cobordant to (X, f, b).

The normal map (X,,f,, b,) satisfies the assumptions in Theorem 3.5. In
particular, K(X,) is Z[As] stably free because of Theorem 3.2 and the obstruction
6( fo, bo) 1n 3.5 (2) vanishes due to Theorem 3.3. It is the conclusion of Theorem 3.5
that (X, fo, bo) (and hence also (X, f, b)) is A5 normally cobordant to an 45 normal
map (X, f;, b;) such that f; is a homotopy equivalence. So, X, is a homotopy
sphere because Y is a sphere, and X:= X, is equivariantly cobordant to X with
Z4s = X4s, This completes the proof. a
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