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Geometric actions of surface groups on A-trees

RICHARD K. SKORA!

In this paper we characterize actions of surface groups on A-trees which are
dual to A-measured geodesic laminations. Here A is an ordered abelian group—for
example, Z, Q @ ﬁQ, R with the usual ordering or Z @ Z with the lexicographical
ordering.

Our interest in this problem stems from the work of J. W. Morgan and P. B.
Shalen [Mo-Shl], [Mo]. Let I be a finitely generated group which is not virtually
abelian and {p, }; a sequence of discrete faithful representations of I' into the group
of isometries of H”. They show that there is a subsequence {p,.j }; either converging
to a discrete faithful representation or converging to an action on a A-tree. For
such an action the stabilizer of each segment is virtually abelian.

The convergence to the A-tree is in the following sense. Let /, be the length
function of the representation p; and / the length function of the action on the limit
A-tree. There is a natural ratio +/-: 4<°x A<°—>[0, +cc]. If lim, lp,,j(g) =
lim, , lm,(h) = oo, for some g, h € I', then

. L&) —lg)
fa LB~ =l

Their work on the degeneration of hyperbolic structures has inspired other
views. G. Brumfiel has explained this in terms of the real spectrum compactification
of algebraic varieties [Brl], [Br2], [Br3] and M. Bestvina [Be] and F. Paulin [Pa]
have explained it in purely geometric terms.

Let F be a compact surface with or without boundary and having negative Euler
characteristic. Any complete hyperbolic structure on F determines a discrete,
faithful representation of n, F into the group of isometries of H? which is unique
upto conjugation. If one applies the above result to a sequence of such representa-
tions, then one obtains an action on a A-tree with the following properties:

'Supported in part by a SUNY Research Department Grant and by an NSF Postdoctoral Research
Fellowship.
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(*) the stabilizer of each segment is cyclic; and
(**) for all g, h € m, F, the axes of g and A in T intersect, whenever g and A are
hyperbolic in T, and g and A are hyperbolic in H? and the axes in H?
intersect transversely in one point.

The first property follows from above and the fact that virtually abelian
subgroups of =, F are cyclic. The second property was proved later in [Mo-Ot].
Notice it is independent of the hyperbolic structure on F.

In [Mo-Shl] they apply this to compactify the Teichmiiller space of F and
reprove a result of W. P. Thurston [Th] that the boundary is homeomorphic to the
space of projective R-measured compact geodesic laminations on F. Their proof is
indirect. This left open the problem of understanding the actions on the A-trees and
finding a more tree theoretic proof of Thurston’s result [Sha].

Morgan and J.-P. Otal [Mo-Ot] proved the following. Let n,F x T—»T be a
minimal action on a A-tree, such that each peripheral element of =, F fixes a point.
Then the action is dual to a A-measured compact geodesic lamination? if and only
if it satisfies (*) and (**). Also they asked whether (*) or (**) implies the other?

Here is our main result.

(3.3) THEOREM. Let F be a complete hyperbolic surface of finite area. A
minimal action on a A-tree n\F x T — T is dual to a A-measured geodesic lamination
if and only if it has a length function of a general type and it satisfies (**).

Under the additional assumption about peripheral elements the lamination
would necessarily be compact. Also if an action satisfies (*), then its length function
is of a general type. Thus our result implies the result in [Mo-Ot].

Theorem (3.3) answers half of the question of Morgan and Otal. Namely having
a length function of a general type and (**) implies (*). The example of §4 shows
that (**) alone is insufficient. The other half of the question is answered in [Sk2]
where the following is proved. Let n, F x T — T be a minimal action on an R-tree,
such that each peripheral element of =, F fixes a point. The action is dual to an
R-measured compact geodesic lamination if and only if it satisfies (*). In particular,
under these additional hypotheses (*) implies (**). And there is an example of an
action of a closed surface group on a non-Archimedean A-tree with a length

2Their definitions of measured lamination and dual differ from ours. The translation is made as
follows. Suppose a minimal action on an A-tree is dual in their sense to a A-measured (topological)
lamination. Then each path component of the pre-image in H? of the lamination determines two distinct
endpoints on the circle at infinity. If each component of the lamination is replaced by a geodesic with
the same endpoints, then what results is a /A-measured geodesic lamination which is dual in our sense
to the action.
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function of a general type and satisfying (*), but not dual to a A-measured
lamination. This shows that (*) alone is insufficient.

The idea of the proof of Theorem (3.3) is simple. It is obvious that if an action
is dual to a A-measured geodesic lamination, then the action is of a general type
and the action satisfies (**). To prove the converse we study the relationship
between the ends to the A-tree and the ends of H?. Observe that if the action were
dual to a A-measured geodesic lamination, then the lamination would necessarily
determine a map from the space of ends of the A-tree to the circle at infinity of H2.
Conversely, this map must determine the A-measured geodesic lamination. Thus we
use the two hypotheses to find this map.

§1 contains the definitions surrounding trees and laminations. And §2 reviews
the definition of ends of a A-tree. Then we define a topology on the tree union its
ends. We show that the ends act like the circle at infinity of H2. The main
proposition is a simultaneous version of a well known result for actions on H? and
the analogous result for A-trees. In §3 we prove the main theorem.

In §4 there are two examples demonstrating the importance of the hypotheses in
Theorem (3.3). In §5 we prove the applications. We show from Theorem (3.3) that
actions on A-trees which are limits of hyperbolic structures are dual to A-measured
geodesic laminations. To do this we show that such actions have a length function
of a general type and then we reveiw the argument from [Mo—Ot] that the action
must satisfy (**). And for completeness we prove directly that the boundary of the
compactification of Teichmiiller space is homeomorphic to the space of projective
R-measured compact geodesic laminations.

The work on degenerations of hyperbolic structures suggests the question which
actions on A-trees are limits of hyperbolic structures? And are there characteriza-
tions as in Theorem (3.3) for groups other than surface groups?

I would like to thank Charles Livingston and Peter Shalen for their help. Also
I am grateful to Marc Culler for his many suggestions for improving this paper.

1. Definitions

The definitions of this section are taken from [Mo—Shl], [A-B] (cp. [Cu—-Mo)),
and [Mo-Ot)]. A pair (A, <) is an ordered abelian group if A is an abelian group
and < is a total ordering, such that a < b, ¢ < d implies a + ¢ < b + d. A subgroup
A is convex if x, y € A implies [x, y] € A. The convex subgroups are totally ordered
by inclusion. The rank of A is the cardinality of the set of nontrivial convex
subgroups. A rank zero or one group is called Archimedean. An Archimedean
group admits an order preserving embedding into R which is unique upto multipli-
cation by a positive number.
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Let A<° be the negative elements of A. The natual ratio |- : A<° x A<°>
[0, + 0] is defined as follows. Let x,y € 4<% Let A be the smallest convex
subgroup containing x, y and let 4, be the subgroup which is the union of all
convex subgroups properly contained in 4. So either x or y is not contained in A,.
It follows A/A, is rank one. Define x/y =i(x)/i(y), where 1: 4/4,—R is any
embedding.

A A-metric space is a pair (X, d), where d: X x X - A°< satisfies

(i) for all x,y € X, d(x, y) =d(y, x),
(ii) for all x, y € X, d(x, y) =0 if and only if x = y; and
(iii) for all x,y,z € X, d(x, z) < d(x, y) +d(y, 2).

A function g : X — X is an isometry if d(g(x), g(y)) =d(x, y), forall x,y e X. A
(closed) segment in X is an arc isometric to a (closed) interval in A.
A A-tree is a non-empty, A-metric space (7, d) satisfying

(i) any two points in 7 are joined by a unique closed segment;
(i) if two closed segments have a common endpoint, then their intersection is
a closed segment; and
(i) if two closed segments meet in exactly one common endpoint, then their
union is a closed segment.

A A-tree is linear if it is isometric to a subset of A, i.e. isometric to a segment.
Let [x, y] denote the unique closed segment from x to y.

Let S be a subset of a A-tree T. A component of S is a maximal subtree of S.
A point x € T is an endpoint if T — {x} has no more than one component and a
vertex if it has more than two components.

Let g : T— T be an isometry. The isometry g is elliptic if it has a fixed point.
The characteristic set of g is T, = {x | g(x) = x}. This is a A-tree.

The isometry g is an inversion if it is not elliptic but it stabilizes a segment. Its
characteristic set is T, = . Notice that g2 has a fixed point.

And g is hyperbolic if it is neither an inversion nor elliptic and it has a unique
non-empty, maximal, invariant linear subtree. Its characteristic set T, is this unique
maximal invariant linear subtree. The action on T, is non-trivial translation. Every
isometry is either elliptic, an inversion or hyperbolic [Al-Ba].

Define its length I(g) € A°= to be 0 if g is either an inversion or elliptic; and
min,. r {d(x, g(x))} if g is hyperbolic.

A group action on a tree G x T — T is understood to be by isometries. The
length function is | : G — A°=.
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Set B(s, t) = I(st) — I(s) — I(¢). The length function is abelian if B < 0. The length
function is dihedral if it is not abelian and (s, ¢) < 0, for all hyperbolic s, ¢. And the
length function is of a general type if it is neither abelian nor dihedral.

If s, ¢t are not inversions, then d(7,, T,) = max {3B(s, ), 0}. It follows that the
length function is of a general type if and only if there exist hyperbolic s, ¢, such
that 7,nT, = J. Also if the length function is of a general type, then for any
hyperbolic s, there is a hyperbolic ¢, such that T, T, = &.

The action G x T — T is trivial if there is a fixed point. The action is minimal if
there is no invariant proper, non-empty subtree.

Let F be a compact surface with or without boundary and having negative Euler
characteristic. For convenience fix a complete hyperbolic structure of finite area.
Let H> > F be the universal covering and let , F act on H? by covering transforma-
tions. A geodesic lamination & is a non-empty, closed subset of F, such that each
path component is a simple geodesic. Since the hyperbolic structure has finite area,
no component is properly homotopic to infinity.

Recall if y,y’ are two paths, then yy’ denotes their product whenever it is
defined. A path in F with its endpoints in the complement of Z is transverse to &£
if it may be written as a product y, - - - y,,, where for each y; there is a neighborhood
U of y;,, a closed 0-dimensional subset Z of (0,1) and a homeomorphism
(U, Un%, Uny,)—([0,1] x[0,1],[0, 1] x Z, {3} x [0, 1]). A A-measure on a lam-
ination % is a function u from the set of paths transverse to .Z to A°<, such that
(i) if y,y” are homotopic through a l-parameter family of transverse paths, then
u(y) = u(y’); and (i) if the product yy’ is defined, then u(yy’) = u(y) + u(y’).

A A-measured lamination (%, y) in F has a lift (2, i) in H2. Say the action
mF x T—Tis dual to a measured lamination (%, u) if there is an equivariant
bijection p from the connected components of H?> — 2 to the vertices of T, such
that fi(y) = d(p(x), p(»)) for all transverse paths y : [0, 1] - H? from x to y meeting
each leaf of £ at most once.

Notice if an action on a A-tree with length function / is dual to (%, p), then for
each g e m, F, there is a closed path y whose free hopotopy class is conjugate to g
and /(g) = u(y).

Every A-measured geodesic lamination is dual to a unique minimal action on a
A-tree. This is proved in [Hat], [Mo—Sh4] for 4 =R, and in [Mo-Ot] for general
A. Conversely, as long as the complete hyperbolic structure of finite area is fixed,
every minimal action is dual to at most one A-measured geodesic lamination.

2. Ends of A-trees

In this section we review the definition of ends of a A-tree from [Al-Ba] and
[Ba]. Then we define a topology on T union its ends. We also prove some theorems
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about the ends. The main proposition is a simultaneous version of a well
known result for actions on H? and the analogous result for A-trees. This
allows the translation of (**) into a statement about the ends of T and the ends of
H2.

Recall the following. Given H? its circle at infinity S is the set of endpoints
of complete geodesics in H2. The set H2 11 S* is topologized to be homeomorphic
to a 2-ball. An isometry of H? extends to S$*. This is a model for defining the
ends of a A-tree.

Let T be a A-tree and x € T. A ray from x is a linear subtree with x as an
endpoint. A T-ray from x is a maximal ray from x. Let L be a T-ray from x and
L’ a T-ray from x’. Say that L and L’ are equivalent if LN L’ is a T-ray from x”,
for some x”. This defines an equivalence relation on the set of T-rays. An end of
T is an equivalence class of T-rays. An end is closed if it is an endpoint of T,
otherwise it is open. If ¢ is an end of T, then let [x, ¢) denote the unique T-ray
from x in the equivalence class ¢. The set of all ends is denoted Ends(T).

We now define a topology on T U Ends(T). Let S < T be a finite set of points
and U a component of T — S. A basic open neighborhood, denoted U, is U union
the set of all ends of T contained in U. Let U = U — U. Endow T = T U Ends(T)
with the topology generated by all such U. The set Ends(T) is not necessarily
closed. It is easy to see that this topology is Hausdorff and that the empty set
together with all basic open neighborhoods is a basis. Any isometry of T extends
uniquely to a homeomorphism of 7.

Also recall a Fuchsian group G is a discrete group of isometries of H2. A limit
point is a point z € S, satisfying for all x e H* L1 §* and neighborhood V of z,
there exists g € G, such that g(x) € V. The set of limit points is the limit set
L = S*. If G is co-compact, then L =.5%.

The first two propositions show that the ends of a A-tree share some of the
properties of the circle at infinity of H? These will not be used in this paper.

(2.1) PROPOSITION. Let G x T —T be an action on a A-tree. If G x T—>T
is minimal, then for every point x € T and neighborhood U of an end, there is g € G,
such that g(x) € U.

Proof. Suppose G x T — T is minimal. Let x € T and U be a neighborhood of
an end. Let S be convex span of G(x). So S is the minimal A-tree containing G(x)
and S is invariant. Since the action is minimal, S =7 and SN U # . Therefore
there is g € G, such that g(x) e U. O

Given two distinct ends ¢, ¢’ there is a unique linear sub-tree with ends ¢, €’
[Ba].
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(2.2) PROPOSITION. Let G x T - T be an action on an A-tree. If G x T>T
is minimal and has a length function of a general type, then for every point
¢ € Ends(T) and neighborhood U of an end, there is g € G, such that ge)eU.

Proof. Suppose G x T — T is minimal and has a length function of a general
type. Let € be an end and U be a neighborhood of an end. Let S be convex span
of G(e). Since the action has a length function of a general type, S # . So S is the
minimal A-tree containing G(¢) and S is invariant. Since the action is minimal,
S =T and SN U # . Therefore there is g € G, such that g(¢) € U. O

The non-trivial isometries of H? are classified as elliptic, parabolic and hyper-
bolic. If g is a hyperbolic isometry, its unique, maximal invariant geodesic is called
the axis A,. Its fixed points on the circle at infinity are the two ends of 4,. Denote
these 4, and 4./, which are expansive and attractive, respectively.

This has an analog for A-trees. Let g be a hyperbolic isometry of 7. Then g fixes
exactly two ends of T which are the ends of T, [Al-Ba]. We denote these ends T,
and T/, which are expansive and attractive, respectively.

(2.3) LEMMA. Let G x T — T be an action on a A-tree. If the action is minimal
and has a length function of a general type, then for every hyperbolic g € G and
neighborhood U of an end, there is f € G, such that T, < 0.

Proof. Suppose the action is minimal and has a length function of a general
type. Let g € G be hyperbolic and U be a neighborhood of an end. Since the action
has a length function of a general type, there is an 4 € G, such that T,nT, = (.
Let B be the shortest segment from T, to T,. Let S be convex span of G(B). So §
is the minimal A-tree containing G(B) and S is invariant. Since the action is
minimal, § = T and SN U # @&. Thus there is f € G, such that f(T,) = U. O

The next lemma says that hyperbolics are easy to construct.

(2.4) LEMMA. Let G x T— T be an action on an A-tree and G x H> - H? be
an action. If g € G is hyperbolic in T and h € G is hyperbolic in H?, then there exists
m,n =0, such that g™h" is hyperbolic in both T and H>.

Proof. Suppose g € G is hyperbolic in 7 and h € G is hyperbolic in H?. If g is
hyperbolic in H?, then g'h° is hyperbolic in both T and H?. Similarly, if & is
hyperbolic in T, then g°' is hyperbolic in both T and H?.

Now suppose g is either trivial, elliptic or parabolic in H? and 4 is either elliptic
or an inversion in 7. It is easy to see that for some g > 0, that g”h?" is hyperbolic
in T for all m, n > 0. Finally, g"h?" is hyperbolic in H* for some m, n > 0. O
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The next result extends Lemma (2.4) and implies that there are many elements
which are hyperbolic in both T and H?. Recall a Fuchsian group is elementary if the
limit set L has two or fewer points.

(2.5 LEMMA. Let G x T - T be an action on a A-tree and G x H*> - H? be an
action. If the action on T is minimal and has a length function of a general type and

the action on H? is non-elementary, then there are g, h € G which are hyperbolic in
both T and W? and satisfy T,nT, = =A, N A,.

Proof. Suppose the action on T is minimal and has a length function of a
general type and the action on H? is non-elementary. By Lemma (2.4) there is
g0 € G which is hyperbolic in both T and H2. By taking translates one finds
g, .,8&s € G which are hyperbolic in both T and H?. Furthermore, without loss
of generality suppose for distinct i, j, k, that T, N T, = and T, does not separate
T, from T, . Similarly there are distinct h,, ..., hs € G which are hyperbolic in
both T and H?. Also suppose for all distinct i, j, k, that A, nA,,j = & and 4, does
not separate A, from 4,, .

So for each i, there are at most two j’s, such that T, n T", # . Similarly, for
each j, there are at most two i’s, such that A, A, #J. But there are 25 pairs
8, h;. Now simple counting shows that for some i, j, the elements g =g, and h = i,
have disjoint axes in both T and H>. O

If a Fuchsian group G with limit set L is non-elementary, then {(4;, 4;)}, is
dense in L x L [Gre] (cp. [Gro]). The next proposition is a simultaneous version of
this result and the corresponding result for A-trees. Some of the difficulty in
proving this proposition is that A may be non-Archimedean.

(2.6) PROPOSITION. Let GxT—>T be an action on a A-tree and
G x H?> > H? be an action. If the action on T is minimal and has a length function of
a general type and the action on H? is non-elementary, then {(T; , T}, A;,A})}, is

dense in {(T;, T/, A}, A )}en, where s, g, h range over all elements which are
hyperbolic in both T and H>.

Proof. Suppose the action on T is minimal and has a length function of a
general type and the action on H? is non-elementary. Let g, h e n, F and be
hyperbolic in both T and in H2 Let U~ x U* x ¥~ x V* be a neighborhood
of (T;,Ty,A},Ay). It suffices to find an s, such that (T;,T;,4;7,4])¢€
U- xU* x V- x V*. Suppose there are j, k € G hyperbolic in both T and H?,
such that T,c U, 4, V-, T, = U*, 4, = V*. Furthermore, T;, T;" are dis-
tinct from T, , T, and A;", A" are distinct from 4, , A} . Then take s = k"j" for
large enough n.
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Thus it suffices to find such j, k. By Lemmas (2.3) and (2.5) we may find j
hyperbolic in both T and in H?, such that T; = U- and T;,T; are distinct from
T,,T; and A;, A} are distinct from 4, , A; . Similarly there is k hyperbolic in
both T and in H?, such that T, < U* and T, T; are distinct from T; , T; and
Ag, A are distinct from A, , A;}. Now replace j, k by g%g—", h"kh—™ for
sufficiently large m, n. O

It is an interesting question whether Proposition (2.6) has a generalization for a
group acting simultaneously on more than two spaces?

3. Main Theorem

In this section we prove the main theorem by simultaneously constructing a
continuous function from the space of ends of T to the circle at infinity S*. It is
interesting to note that this is exactly the opposite of the construction in [Mo-Ot].
There they construct a map from H? to T.

Let F be a compact surface with or without boundary and having negative Euler
characteristic. For convenience fix a complete, hyperbolic structure of finite area
and let n, F x H?> — H? be the covering action. Let A be an ordered abelian group
and T a A-tree and let n, F x T —» T be a minimal action.

Define the relation R < Ends(T) x S® as R={(T/}, A;)},, where g ranges
over all elements of m,F which are hyperbolic in both H?> and T. For any
X € Ends(T) let R(X) ={A; }, where g ranges over all elements of =, F, such that
g is hyperbolic in both T and H? and T, € X. Similarly, for any Y =S let
R-'(Y)={T} }, where g ranges over all elements of n, F, such that g is hyperbolic
in both T and H? and 4} €Y.

It will be a consequence of Theorem (3.3) that under the correct hypotheses R
extends to a continuous function Ends(T) — S=.

(3.1) LEMMA. Let pe T and {U,}, components of T — {p} and Z, = R(0U,).
If the action on T has a length function of a general type and satisfies (**), then for
all o« no two points in Z, are separated on S by any two points in U, .5 Zg.

Proof. Suppose the action n, F x T — T has a length function of a general type
and satisfies (**). We argue by contradiction.

Fix o and let x,y € Z,,z € Zg, w € Z,, where a # f,y. Suppose x, y are sepa-
rated on S® by z, w. By definition there are g, h, such that T, T, € dU, and
A} =x, A; =y. Similarly there are j, k, such that T;' € 0U, T € 0U, and
A +

j =Z,A;:=W.
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By assumption the action on T is minimal and has a length function of a general
type. By Proposition (2.6) there exist s,t € n,F, such that (T, , T}, A7 ,A))
approximates (T),Ty,A;,A;)) and (T;,T;,A;,A;) approximates
(T}, T¢, A}, Af). More precisely, there are s, ¢, such that

() Ty, TS edl,;

(i) T, €dUs, T} €0U,; and

(iii) A, , A} are separated on S® by A, ,A4,".

So T,c U, and T, Uyu{p}uU,. In particular T,nT, = . But 4, and 4,
intersect transversely in one point. This contradicts the supposition (**). O

(3.2) LEMMA. let p € T and {U, }, be components of T — {p}. If the action on
T has a length function of a general type and satisfies (**), then there are unique
closed intervals I, = S*, such that
(i) ul, =S*;
(i) for all o # B, I,n Iy = &J; and
(iii) for all o, R—'(I,) = 0U, =< R~\(I,).

Proof. Suppose the action n;, F x T — T has a length function of a general type
and satisfies (**). Let Z, = R(0U,). Set I, = Z,. By Lemma (3.1) no pair of points
in the same Z, are separated on S® by a pair of points in U,z Z;. And by
hypothesis UZ, is dense in S*. So I, is connected. Minimality implies that for any
a, the set Z, # . Furthermore, there is some f # a. Therefore I, is an interval. It
is routine to check (i), (ii) and (iii). O

(3.3) THEOREM. Let F be a complete hyperbolic surface of finite area. A
minimal action on a A-tree n,F x T — T is dual to a A-measured geodesic lamination
if and only if it has a length function of a general type and it satisfies (**).

Proof. 1t is clear if the action is geometric, then it is it has a length function of
a general type and satisfies (**). Now suppose the action has a length function of
a general type and satisfies (**). It will be shown that the action is geometric.

By hypothesis the covering action is non-elementary. Let p € T and let {U,} be
the collection of componenets of T — {p}. Let {I,}, be as in Lemma (3.2). Define
X, to be the convex closure of U(S* — I,). The frontier of X, , in H? is a union of
disjoint complete geodesics.

Now let p, ¢ be distinct points in 7. Let C, and C, be the component of T — {p}
containing ¢ and the component of T — {g} containing p, respectively. Since
I,uly =8>, the set X, X, is either empty or a single geodesic.

Define £ to be the closure of UFr(X,). Clearly £ is a geodesic lamination on
H2. We now show X, — p defines a bijection from the components of H> — 2 to
the vertices of T.
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It suffices to see the function is well defined. Let X be a component of H?> — 2.
Since UI, = S®, the space H? — X has at least 3 compontents. So there are 3 distinct
points a, b, c in T, such that X, X;, X, lie in distinct components of H? — X. Notice
that X} and X, lie in the same component of H?> — X,. Thus b and c lie in the same
component of 7 — {a}. A similar statement holds for b and c. Thus there is a unique
point p in T that separates a, b, c. By construction X, must separate X,, X, X_.
Therefore X, = X. Furthermore, from above if X, = X, then p =g¢.

Finally define a A-measure ji as follows. First consider only paths y in H?
transverse to .2 and meeting each component of £ at most once. Then y has
endpoints in X, X, for some p, q. Define ji(y) = d(p, 9).

For such paths we need to check conditions (i) and (ii) in the definition of
A-measure. Suppose 7,7’ are transverse and each meets each component of £ at
most once. If y, y” are homotopic through a 1-parameter family of transverse paths,
then they have their endpoints in the same complementary components of the
lamination. By construction of the measure u(y) = u(y’). Now suppose yy’ is defined
and yy’ meets each component of .Z at most once. It follows from the definition of
A-tree that u(yy’) = u(y) + u(y’).

Extend fj to all transverse paths additively. It is easy to see that i is a
A-measure. The construction of (&, ji) is equivariant, so it determines a A-
measured lamination (%, u) to which the action is dual. O

Notice the assumption that F has finite area is used only to conclude that the
limit set of =, F is S and the I,’s are unique. So the hypothesis of finite area may
be replaced by limit set S*.

Actually the theorem holds if the finite area hypothesis is dropped altogether.
And with the correct definitions the above proofs go through for F an orbifold.

If Fis a surface of non-negative Euler characteristic, then the action of =, F on
A-trees are abelian and therefore satisfy (**). These actions are easily classified and
are all dual to A-measured topological laminations.

4. Examples

In this section we give examples which show the necessity in Theorem (3.3)
of the hypotheses that the action has a length function of a general type and
satisfies (**).

(4.1) EXAMPLE. Let F be a closed hyperbolic surface of genus three. There is
a Z-tree T and minimal action n, F x T — T with length function of a general type
and not dual to a Z-measured geodesic lamination.
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Take F, and F, to be compact subsurfaces each homeomorphic to a once-punc-
tured genus two surface and intersecting in a twice-punctured genus one surface F;.
By Van Kampen’s Theorem n,F = n,(F}) *, (r,, m(F;). This corresponds to an
action m;F x T— T, where T is a Z-tree [Ser]. The vertex stabilizers are the
conjugates of =,(F,) and =,(F,). Clearly the length function is of a general type.
However, the action is not geometric, for some of the edge stabilizers are conjugate
to m,(F;) which is non-cyclic. O

By Theorem (3.2) the above action does not satisfy (**). The reader should
play with the above example to see explicitly how property (**) is violated. See
[Sk1] for another example of an R-tree T and a minimal action n, F x T —» T with
length function of a general type which is not dual to a R-measured geodesic
lamination.

(4.2) EXAMPLE. Let F be a closed hyperbolic surface of genus two. There is
a minimal action n, F x T — T on a Z-tree which satisfies (**) and which is not dual
to a Z-measured geodesic lamination.

Just let n, F act on Z by non-trivial translation. The action satisfies (**). Since
it is abelian, it is not dual to a Z-measured geodesic lamination. O

5. Applications

In this section we prove that Theorem (3.3) implies that if a minimal action on
a A-tree is the limit of a sequence of representations coming from complete
hyperbolic structures, then the action is dual to a A-measured geodesic lamina-
tion. And we prove directly the boundary of the compactification of Teichmiiller
space is homeomorphic to the space of projective R-measured compact geodesic
laminations.

Let F be a surface of negative Euler characteristic. Fix a complete hyperbolic
structure of finite area on F. Let n, F x T — T be an action on a A-tree. Suppose
{p;}; is a sequence of representations of n, F coming from complete hyperbolic
structures on F which converges to the action. We will show the action has a length
function of a general type and satisfies (**).

First recall that if p is a representation of =, F into the group of isometries of
H?, its length function 1, : m,F - [0, o) sends g to the translation length of p(g).

Since F has negative Euler characteristic, there is some g € m; F, such that
lim,_, ., /,(g) = . It follows that /(g) >0 and g is hyperbolic in T. Also there is
some conjugate of g, say A, such that H? divided out by {g, k) is a twice-punctured
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disk with g, h represented by disjoint simple loops. Then the commutator
ghg ~'h~! satisfies 1,(g) +1,(h) < l,(ghg 'h~"), for all i. It follows that
I(g) +I(h)< l(ghg'h~") and T,NT, is a segment of length no greater than
min {/(g), I(h)}. Therefore the action has a length function of a general type.

The argument that the action satisfies (**) is from [Mo—Ot]. Suppose g and 4
are elements of m,F which are hyperbolic in T. Also suppose g and h are
hyperbolic in H? and 4, and A4, intersect transversely in one point. Then an easy
calculation shows that I, (gh) </, (g) + [, (h), for all i. Without loss of generality
suppose /(g) < I(h) and rewrite the above as

L{gN _ 1, (@)
Loy 1, (h)

+ 1.

Then taking limits yields

_l(gh) _ —I(g)
“iwy S i T

This implies /(gh) <I(g) + I/(h) and T,NT, # &. Therefore the action satisfies
(**).
So Theorem (3.3) implies the following.

(5.1) THEOREM. If a minimal action on a A-tree n,F x T — T is the limit of
a sequence of representations coming from complete hyperbolic structures on F, then
the action is dual to a A-measured geodesic lamination. O

If the sequence {p,}; comes from complete hyperbolic structures of finite area,
then p,(g) is parabolic for all peripheral elements g. This means that /(g) =
[,(g) = 0. Therefore g fixes a point of T and the dual lamination is necessarily
compact. This special case of Theorem (5.1) where the sequence comes from
complete hyperbolic structures of finite area also follows from [Mo-Ot].

We now review the compactification of [Mo—Shl]. The Teichmiiller space of F
is the space of complete hyperbolic structures of finite area on F, denoted 7 .
Recall every complete hyperbolic structure of finite area on F comes from a
discrete, faithful representation p of =, F into the group of isometries of HZ.
Define an embedding 7 - ([0, c0)™* —0)/R* by p +—[l,]. The closure of I,
denoted J (F), is compact.

Each point of 07 (F) =9 (F) — J(F) is the projective length function of a
minimal action on an R-tree.



532 RICHARD S. SKORA

The above arguments work equally well to show these actions also have
length functions of a general type and satisfy (**). Thus by Theorem (3.3) the set
0 (F) is contained in the space of projective R-measured compact geodesic
laminations. Finally we need the fact that the space of projective R-measured
compact geodesic laminations is contained in 07 (F). This is proved in Thurston’s
program [Th] and may also be demonstrated directly [Mo—Shl]. Together these
imply the following.

(5.2) THEOREM. [Thurston] The space 0 (F) is homeomorphic to the space
of projective R-measured compact geodesic laminations. ]

Alternate proofs of the above result are given in both [Mo-Sh1] and [Mo-Ot].
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