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A priori bounds of Castelnuovo type for cohomological Hilbert
functions

M. BRODMANN

1. Introduction

In 1893 Catelnuovo [10] proved the following result: Given a smooth curve Y in
the projective space P>, there is an integer r, such that for any n 2 r the surfaces of
degree n in P? cut out of a complete linear system on the curve Y. Thereby, one
may choose r =deg (Y) — 2.

In other words, Castelnuovos result says that the maps

H(P?, Ops(n)) > HX(Y, Oy(n))

become surjective for n =r. Denoting the vanishing ideal of Y in Op; by £,
applying cohomology to the sequences 0 — £(n) — Ops(n) - O (n) -0 and observ-
ing that H'(P3, Ops(n)) =0, we see that the previous statement is equivalent to

HY(P3, #(n)) =0, Vn=r.

Meanwhile, the vanishing of higher cohomology of projective varieties with co-
efficients in positively twisted coherent sheaves has become a prominent subject in
algebraic geometry.

In one respect, Serre [39] generalized Castelnuovos result to the maximally
possible extent, by showing, that for any coherent sheaf & over any projective
variety X, there is an integer r, such that H'(X, #(n)) vanishes for all n = r and all
i>0.

But contrary to Castelnuovos result (which, in the special case it refers to, gives
an explicit value for r) Serre’s result is not of quantitative nature. Nevertheless,
there are a lot of results, which give upper bounds on Serre’s number r for specific
coherent sheaves #. The common idea of these results is to bound r by only finitely
many simple invariants of the corresponding sheaf &#.

So, Mumford [34] gave a quantitative approach to Castelnuovo’s problem for
arbitrary coherent sheaves of ideals .# < Op. oOver a given projective space P4, He
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namely introduced the Castelnuovo-regularity reg (#) of such a sheaf # of ideals as
the minimal number m € Z for which

H(PY #(n))=0 foralli>0 andalln=m—i.

Then he proved, that reg (#) has an upper bound which depends only on the
(finitely many) coefficients of the Hilbert-polynomial of .#. Gotzmann [14] later
gave a refinement of Mumfords result and applied it to study certain subschemes of
Hilbert schemes (s. [15]).

Meanwhile Castelnuovos original result was extended to the vanishing ideals
F < Opa of specific closed subvarieties Y < P9, So, first of all, Gruson—Lazarsfeld—
Peskine [20] generalized Castelnuovos bound to arbitrary reduced curves. Pinkham
gave a further extension to smooth surfaces in P* and P° (cf. [38]), whereas
Lazarsfeld [27] finally settled the case of arbitrary smooth non-degenerate surfaces
Y = P4, by proving reg (#) < deg (Y) + 2 — d. Apparently the inequality reg () <
deg (Y) + dim (Y) —d is expected to hold true in general for the vanishing ideal
sheaf # = 0. of a nondegenerate, smooth closed subvariety Y < P? Note, that
Bayer—Mumford [2] have established the weaker estimate

reg (#) < (dim (Y) + 1)(deg (Y) —2) + 1 in the described general situation.

The case of vanishing ideals of varieties ¥ = P? with certain arithmetic proper-
ties (for example the property of being arithmetrically of Buchsbaum-type) has been
studied extensively by Nagel-Vogel [35], by Stiickrad—Vogel [41, 42,43] and—in a
related situation—by Miro—Roig [32].

The search of Castelnuovo bounds for vanishing ideals is related to the search
of bounds on the degrees of the defining equations of projective varieties. This
subject recently has been studied by several authors, too. We only mention a few of
them: Ballico [1], Geramita [13], Maroscia—Vogel [28], Maroscia—Vogel—Stiickrad
[29], Treger [44], Trung—Valla [45].

In the present paper we will show, that the cohomological Hilbert-functions

n— hi(#(n)) := dim H(X, #(n)), (i >0)

of a coherent sheaf &# over a projective variety X = P“ are bounded in the range
n 2 —i by finitely many invariants of #. In particular, the Castelnuovo-regularity
reg (#) of &, which is defined in the same way as done previously for sheaves of
ideals, is bounded only by these invariants.

To formulate our main result, we have to introduce a few notations. So, let
X = P4 be a closed subscheme of the projective space P{. Let # be a coherent sheaf
of ¢, -modules. As done already above, we write h'(# (n)) instead of the k-vector
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space dimension of the Serre-cohomology group H(X, #(n)) instead of the
k-vector space dimension of the Serre-cohomology group H'(X, #(n)). Thereby,
twisting is understood with respect to the given embedding X ¢, P?.

Moreover we introduce the reduced linear subdimension of # as the invariant

Isdim® (%) = min {dim ({x}> | x € Ass (#), x non closed},

(where (_{_;}—> denotes the linear span of 5—}) and the reduced global subdepth as
being the number

0 O(F) = min {depth (¥ ) | x € X closed, x ¢ Ass (¥)},

thereby assuming that dim (%) := dim supp (¥) > 0.
Using these notations, we may formulate our main result as follows (cf.
(6.11), (6.12)):

(1.1) THEOREM. Let 0 <i <e be integers. Then, there are functions

Be,i : NZX Ng—i+l X Zz—i_’NOa
C.,:N2x Ng=i+',7,

such that for any coherent sheaf F over an arbitrary closed subscheme X of P? with
0 < dim (&) < e the following statements hold true:
(i) h{(F ) < B, ;(Isdim@ (F), SOF); h(F(—i)), ..., h(F(—e));n);Vn = —i
(ii) A{(F(n)) =0 for all n 2 C, ,(1sdim® (F), 6O(F);
h(F(—=iQ)),..., h(F(—e))). O

So, the cohomological Hilbert functions n — h’(# (n)) (i > 0) of a coherent sheaf
F over a closed subscheme X of P are bounded (in the range n =2 —i) by the
invariants Isdim® (%), 6 (%), h'(F(—-1)), ..., h9™F(F(—dim (F))). In partic-
ular the same holds true for the Castelnuovo-regularity reg (#) of #.

Let us compare (1.1) with Mumfords regularity bound [34] for sheaves of ideals
J € Opa. The statement (1.1)(ii)) may be viewed as a kind of extension of Mum-
fords result to arbitrary coherent sheaves over projective varieties: It namely
bounds the Castelnuovo-regularity of such sheaves in terms of only finitely many
invariants. In view of statement (i), our result also may be considered as a
refinement of Mumford’s: It namely does not only bound the regularity of a sheaf
Z, but in addition its cohomological Hilbert functions. Clearly there is also an
essential difference between Mumfords result and Theorem (1.1): Namely, our
bounding invariants are by no means related directly to the coefficients of the
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Hilbert polynomial of the occurring sheaf #. But, this difference is not surprising,
as (even for direct sums of line bundles over P9) the regularity of coherent sheaves
is not bounded in general in terms of their Hilbert polynomial (cf. [34]). The only
serious attempt to extend Mumfords result directly has been made by Kleiman

[19, Exp XIII] who gave a regularity bound for subsheaves of trivial bundles over
P4 in terms of their Hilbert polynomial.

It turns out, that our system of bounding invariants is too large in some sense.
The cohomological Hilbert functions in question are bounded in fact already by the
numbers AN (F(—-1)),..., 9™ F(F(—dim (¥))). We namely shall prove (cf.
(6.14), (6.15)):

(1.2) THEOREM. Let 0 <i < e be integers. Then, there are functions
GoiiNg~ "+ xZ, ;»No; F.,:Ns~*152Z

such that for any coherent sheaf & over an arbitrary closed subscheme X of P¢ with
0 < dim (&) < e the following statements hold true:

(i) K(F @) <G, (W(F(=0),...,h*(F(—e€);n), Yn= —i

(i) h(F(n)) =0 for all n 2 F, (h(F(—i)), ..., h"(F(—e)). O

Thereby the functions G,; and F,; are defined by

G.(ciy...,c.;n):=B,(1,1;¢,...,c.5n);

Fe.i(cia o vy ce) = Ce,t’(la 1’ cia e vy ce)a

where B,; and C,; are the bounding functions occurring in (1.1).

Obviously, the bounds given in (1.2) are weaker than the corresponding bounds
of (1.1). Moreover it is easy to see that h'(F(—i)),..., h*(¥(—e)) is a minimal
system of bounding invariants for the cohomological Hilbert functions of # (cf.
(7.14)).

Nevertheless, for particular classes of sheaves, cohomology may be bounded by
shorter systems of invariants. So, generalizing a result of Elencwajg—Forster [12] we
proved in [8], that the cohomological Hilbert functions of a vector bundle & over
P“ are bounded only by the rank, the first two Chern numbers and the span of the
generic splitting type of &. For invertible sheaves over projective varieties there are
similar bounds of regularity, which depend only on few invariants (cf. [19, Exp.
XIII], [24)).

To use the cohomology dimensions h'(F(—1)), ..., h*(F(—e)) “on the diago-
nal” as a system of invariants to bound the cohomology of a coherent sheaf # of
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dimension <e in the positive range is fairly natural. It namely is an easy observa-
tion that A'(F(—1)) =h*(F(=2)) = =h(F(—e)) =0 induces hi(F(n)) =0
forallm= —i(i=1,...,e) (cf. [34]). Thus, if h'(F(—i)) =0 for all i >0, then in
particular reg (#) =0. So, in some sense, (1.1) and especially (1.2) extend this
observation to the case of non-vanishing cohomology dimensions h‘(#F(—i)).
Moreover, having defined the bounding functions B, ;, C,;, G.; and F,; we will see
that (1.1) and (1.2) give back the previous observation, (cf. (7.11)).

Obviously, (1.1) and (1.2) furnish regularity bounds for arbitrary coherent
sheaves. More precisely, choosing the bounding functions C,; and F,; as in (1.1)
resp. (1.2), we have (cf. (7.9), (7.10)):

(1.3) THEOREM. Let e € N. Then, for any coherent sheaf # over an arbitrary
closed subscheme X of P? with 0 < dim (¥) < e:

reg (¥) < C,,(Isdim@ (F), s F); hN(F(—1)), ..., ha(F(—e)) + 1. O
(1.4) THEOREM. Let e € N. Then, for any & as in (1.3)
reg(ZF) < F.,(h"(F(-1),...,h(F(—e)) + 1. ]

Our approach is fairly different from the methods of other authors. As Hilbert
polynomials do not occur in our estimate, our arguments differ in an essential way
from the ones found in Mumford [34] —which latter base on techniques developed
by Kleiman [24], Matsusaka [31] and Nakai [36]. As free resolutions do not enter
into our considerations, we will not use the syzygetic approach of Eisenbud—-Goto
[11], Ooishi [37] and Bayer—Stillmann [3]. Dealing with arbitrary coherent sheaves,
we cannot use the methods applied by numerous authors to study the behaviour of
cohomological Hilbert functions in special cases ([22], [26], [28], [29], [33], [35],
[41-45])).

What we use instead is the hyperplane section method, which we applied (in
some special cases) already in [S], [6], [7], [8], [9]. What we use of this method is
essentially the following fact, which was shown in [8]: Let X < P be a closed
subscheme and let # be a coherent sheaf over X. Let § be a linear system of
hyperplane sections of X of positive dimension N. Assume that H nAss (¥) = &
forall He 9. Let i e N and let u € Z such that H(H, # [H(n)) =0 for all He $
and all n = u. Then in the range n > u the cohomological Hilbert function A’ (% (n))
decreases in steps of at least N, until it reaches the value 0.

This observation—together with some information on the possible choices of
N —will furnish an inductive procedure, which allows to define recursively the
bounding functions, that occur in (1.1)-(1.4).
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Besides the previous general results, we consider a very special situation, too.
Namely, using the Kodaira vanishing theorem, we prove that the cohomology of a
smooth, closed, non-degenerate subvariety X of PZ is bounded only by the
embedding dimension d, the dimension e of X and the invarient 4%(0, ( —e)). More

precisely, we consider the functions B, ;, C,,; of (1.1) and use them to define new
functions

B* B,:N>xNZ->N,; C*C, :N*xNy—Z
by setting

B.(a,b,c;n) := B, (a, b;0,...,0,c;n),
Ci(a,b,c) := C, (a, b;0,...,0,0¢).

b
B*(a,b,c;n) := B,,(a, b;0,...,0,¢,0,...,0;n)

C*@a,b,c) :=C,,(a, b;0,...,0, ¢0,...,0;n)
Then, we prove (cf. (8.15)):

(1.5) THEOREM. Let X be a smooth, closed, non-degenerate subvariety of the
complex projective space PL. Put e =dim (X), and let %y < Opa be the sheaf of
vanishing ideals of X. Then, for 0 <i <e:

(i) h(Ox(n)) < B,(d, e, h(Ox(—e));n), V¥n 20
(i) hi(O,(n) =0, Yn = C,(d, e, h°(0(—e))).
(iii) reg (Oy) < C,(d, e; h(Ox(—e))) + 1.
(iv) h'(F,(n)) < B*(d, e + 1, h(Ox(—e));n — 1), Vn =0.
(V) h'(F, () =0, Yn=C*(d, e+ 1, h(Ox(—e))). 0O

Originally, the hyperplane section method only works over algebraically closed
fields. (Its failure in the real case may be deduced from the counterexample (2.3) of
[6]). But, as cohomological Hilbert functions are not affected by base field exten-
sions, our theorems (1.2) and (1.4) are valid for projective varieties over arbitrary
fields.

Finally, let us say a few words about the organization of the present paper,
which is divided up into eight sections. In Section 2 we introduce the notion of the
(linear) dimension spectrum of a coherent sheaf and note a few basic facts about
the global subdepth. These preliminaries are needed to understand the invariants
0O(F) and Isdim® (#) occurring in our theorems (1.1) and (1.3). Section 3 is
devoted to present what we shall use from the hyperplane section method. Section
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4 still has auxiliary character. It namely gives some results of Bertini-type for the
invariants introduced in Section 2. In Section 5 all these preliminaries are combined
to give a recursive procedure to bound cohomological Hilbert functions by the
invariants occurring in (1.1). Next—in Section 6—we use the preceding results to
introduce the bounding functions B, ;, C,;, G.; and F,; and to prove our theorems
(1.1) and (1.2). In Section 7 we investigate Castelnuovo-regularities for arbitrary
coherent sheaves and prove in particular (1.3) and (1.4). Finally, Section 8 is
concerned with the study of the cohomology of smooth, projective complex
varieties. There, our last theorem (1.5) will be established.

As for the unexplained terminology and notations, we refer to [17], [21] and
[30].

It should be noted, that all our results stay valid in the complex analytic case.
(cf. [40], [16)).

2. Dimension spectra and global subdepth

Let k be an algebraically closed field. We write S=k® S, ® S, P - - for the
polynomial ring k[z,, . .., z;], thereby considering S as a graded k-algebra in the
canonical way. Moreover we consider the projective space P?:= Proj (S) and fix a
coherent sheaf # of Op.-modules.

(2.1) DEFINITION. The dimension spectrum dim (¥) of # is defined as
follows:

. _ f{dim {x}|x € Ass (%)}, if F #0,
9‘—’3‘—(?)'“{{—1}, if # =0.

The subdimension sdim (%) is defined by
sdim (#) := min dim (#). O

Now, let X = P? be a non-empty closed subset. We write (X for the linear span
of X. So, {X) is the intersection of all linear projective subspaces P* < P¢ which
contain X.

Now, the linear dimension ldim X of X is defined as the dimension of the linear
span of X:

Idim X := dim {X).
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(2.2) DEFINITION. The linear dimension spectrum ldim (#) of the sheaf & is
defined as follows:

{Idim {x} | x € Ass (%)}, if F #0,
(=1}, if # =0.

Idim (#) := {
The linear subdimension 1sdim (#) is defined by
Isdim (#) := min Idim (%). O

Now, we want to introduce the notion of reduced dimension spectra.

(2.3) DEFINITION. Let r be an integer 2 0. Then, the r-th reduction of
Ass (#) is defined as:

Ass? (F) 1= {x € Ass (¥) | dim {x} 2 r}.
The r-reduced subdimension spectrum giﬁ(” (F) of F is defined by:

(dim {x} —r | x € Ass? (#)}, if Ass? (F) # D
{—1}, if Ass?(F) =

dim® (%) : = {
The r-reduced dimension sdim® (#) of # is defined by:
sdim® (#) := min dim® (#).

The r-reduced linear subdimension spectrum 1dim® (#) of # correspondingly is
defined as:

{Idim {x} —r | x € Ass? (F)}, if Ass” (F) #
(-1, if Ass® (F) # .

1dim® (F) := {
The r-reduced linear subdimension 1sdim” (¥) of & is given by

Isdim® (#) : = min ldim®” ().

(2.4) REMARKS. (A) As the closure of Ass (#) coincides with the support
supp (#) of &, we have

(i) dim (¥) = dim supp (¥) = max dim (¥).
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Thereby we use the convention, that dim ¢ = —1. In particular—observing in
addition that dim X < ldim X —we get:

(i1) sdim (#) <dim (¥), sdim (%) < Isdim (%)
(i) F =0<sdim(F) = -1« dim(F) = —1 = Isdim (F) = — 1.

(B) Let r be a non-negative integer. Then
(iv) sdim® (#) < Isdim” (£F).
Observing that Ass” () # & if dim (¥) > r, we get:

(v) (a) dim (%) >r = sdim® (#), Isdim® (F) >0
(b) dim (¥) < r < sdim®? (F) = — 1 <> Isdim” (F) = — 1.

Note also the following statement, which follows immediately from the definitions:

(vi) If dim (¥F) >r + 1, then:
(a) sdim"*+ VY (#) 2 sdim® (F) — 1,
(b) Isdim” *V (F) = Isdim® (F) — 1.

If sdim® (#) > 1, then, equality holds in (a) and (b).
By induction we get from (vi):

(vii) If dim (¥F) > r, then:
sdim® (#) 2 sdim (¥#) —r, Isdim® (#) 2 Isdim® (F) —r.

If sdim (#) > r, then equality holds in both places.
(C) For later use we notice:

.. . _ {dim m | x € Ass (F), x non closed}, if dim (¥#)>0,
(i) dim®(#) = {{ ~1}, if dim (%) <0.

o _ {{dim {x} | x € Ass (%), x non closed}, if dim (#)>0,
(ix) 1dim®™ (F) = {{-1}, if dim () <0. O

Besides the previous dimension related invariants, we also will introduce an
invariant of # which is related to the depths of the stalks of #.

(2.5) DEFINITION. The global subdepth 6(¥) of the sheaf & is defined by

min {depth (¥) | x € P4, x closed}, if F #0.

5(%::{—1, if # =0.
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The O-reduced global subdepth 6 O(F) of # is defined as:

min {depth (%) | x € P4, x closed, x ¢ Ass (¥)}, if dim (#) >0,

ONF) =
&) {-1’ if dim (%) <0,

(2.6) REMARK. Note the following obvious relations:
(i) (F) < sdim (F), 6 NF) < sdim@® (F)
(i) (F)>0<=sdim(F) >0 (F)=0NF) =20
(iii) dim (F) >0 = 6O(F) = 6(F). O

To compare the reduced invariants to the non-reduced ones, we introduce a special
sheaf #, the so called reduction of #.

We begin with defining the torsion-subsheaf T(F) of #. T(F) is the subsheaf of
sections whose support consists of only finitely many points. T(¥) is nothing else
than the maximal subsheaf of &% which is of finite length. T(#) also may be
described as the maximal subsheaf of # whose support consists exactly of the
closed members of Ass (%).

(2.7) DEFINITION. The reduction # of & is defined as the coherent sheaf
F |T(F). O

(2.8) REMARK. From the definition of # the following statements are
obvious:

(i) Ass (F) = Ass? (F).
(i) #F, =%, for all x ¢ Ass (F) — Ass? (#F).
(i) F =0<> T(F) = F < dim (¥) <0.
(iv) F =0< T(F) =0 < sdim (F) >0, (for F #£0). o

Now, from (2.8)(i) and (ii) we may draw the following immediate conclusion:

(2.9) PROPOSITION. Let F be the reduction of #. Then:
(i) im®(#) = dim (#).
(i) 1dim® (#) = ldim (%).
(iii) sdim@ (F) = sdim (#).
(iv) 1sdim© (#) = Isdim (&#).
(V) 0OF) = 6(F). a

The previous proposition (2.9) later on often will be used to express 0-reduced
invariants of # by the corresponding non reduced invariants of the reduction & of
F . As we then will be treating higher cohomology, this replacement is justified by
the following observation.
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(2.10) REMARK. Consider the twisted short exact sequences 0 — T(#)(n) —
F(n) » F(n) - 0. As T(F(n)) is of finite support, H'(P?, T(F)(n)) vanishes for all
i >0. So applying cohomology to the above sequence, we get natural isomor-
phisms.

(i) H(P? F(n)) = H(PY #(n)), Vi>0, Vnel.
By (2.8)(i) we get Ass® (F) = Ass®” (F) for all r 2 0. Consequently:
(ii) dim® (F) = dim” (F), sdim® (F) = sdim® (F);
(iii) 1dim® (£) =1ldim” (F), Isdim® (F) = Isdim®” (F). O

Finally, we introduce the following notation:

(2.11) DEFINITION. Let r be a non-negative integer. Then, the r-reduced
global subdepth 6(F) is defined by:

" o max{l, 8O(F) —r}, if dim(F)>r.
O : {—l, if dim (#) <r. &
(2.12) REMARK. In view of (2.6)(1), (2.4)(ii), (vii) we have:
(i) dim(F) >r = 0 < INF) < Isdim” (F).
Moreover (2.9)(v) shows that
(ii) 6(F) = 6 UF). O

3. Restrictions to general hyperplanes

As in the previous section we write P4 = Proj (S), where S= @, ., S, is the
polynomial ring k{z,, . . ., z,] in the indeterminates z,, . . ., z, over the algebraically

closed ground field k. Moreover we fix a coherent sheaf # over P“. We suppose
d>0.

Now, let f€ .S, — {0} be a non-trivial linear form in S. We write H, for the
hyperplane defined in P“ by f:
H,:= Proj (S/fS) @ P‘-'c P

If Mc S, is a set of linear forms, we write H(M) for the set of all hyperplanes
defined by M:

H(M) := {H;|fe M —{0}}.

The set $(S,) of all hyperplanes H = P“ will be denoted by 6.
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If L =8, is a k-vector-space of dimension N > 0, then H(L) is a linear system of
dimension N — 1.

Now, let H < P4 be a hyperplane. H is said to be general with respect to the
sheaf &, if H avoids all points associated to & :

H general with respect to # <> HNAss (¥) =

Moreover a linear form fe S, — {0} is called general with respect to %, if the
corresponding hyperplane H, is general with respect to &.

A set $ < ® of hyperplanes is called general with respect to & if all H € § are
general with respect to #. Correspondingly a set M < S, of linear forms is called
general with respect to %, if the set H(M) is.

In the present paper, the “hyperplane section method” presented in [8] will play
an important role. Therefore we need to know about the existence of large general
linear systems. The following result will be useful in this respect:

(3.1) PROPOSITION. Let & #0, and let $ < ® be a linear system of hyper-
planes, which is general with respect to % . Then, there is a linear system & = ®& which
is general with respect to # and such that

H<l dim (L) =Isdim (F).

Proof. Put {x,,...,x,}=Ass(¥), thereby considering x; as a homogenous
prime ideal of S. We write V,=8,nx;, and let M < S, be the k-space of
linear forms which defines . Then MnV,=0 for i=1,...,r. Moreover
u := min;_, dim (S,/V;) equals Isdim (¥) + 1.

So, as k is infinite, we find a linear subspace L < S, with the following three
properties:

McL: LnV,=0(@(=1,...,r); dim;(L)=u.
Setting £:= (L), we thus get a linear system with the requested properties. [

(3.2) COROLLARY. Let # #0. Then:

(i) There is a linear system $ of hyperplanes general with respect to ¥ and such
that dim($9) = Isdim (F).

(ii)) Any linear system £ of hyperplanes which is general with respect to ¥
satisfies dim (L) < Isdim (%). O

As already said above, a crucial technical point of the present paper is to apply the
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hyperplane section method of [8]. We now will present what will be used of this
method. We begin with introducing some notations.
If H=H,=Proj(S/fS) is a hyperplane, we will have to look at the restriction

FIH=0,0%

of # to H.
If n is an integer, we write for i =0, 1, ...

(3.3) (i) h(F(n)) := dim, H(P<, #(n)),
(i) hi(F | H(n)) : = dim, H(H, (¥ | H)n)).

Thereby twisting on H is defined by means of the canonical embedding H ¢, P“.
The function n — h{(F(n)) is called the i-th cohomological Hilbert function of F .
Next, we define the i-th right-regularity of # by

(3.4) up:=sup{neZ|h(Fn-1)#0}, @(>0),

thereby using the convention that sup (J = — oo. It is well known, that u’; < oo for
all i >0 (cf. [3, No. 63 Prop. 3]). It will be one of our main tasks to give upper
bounds for the right-regularities u’5 of # fori=1,2,....

Using the hyperplane section method, such bounds may be obtained from the
Hilbert functions h'(# | H(n)), where H runs through an appropriate linear system
of hyperplanes.

To give precise statements, we have to introduce some more notations. So, let
$ < ® be a linear system of hyperplanes in P9. We then put

(3.5) () h'(F | 9(n) := sup {h'(F | H(n)) | H € H},
(ii) A(F | 9(m) := inf {h'(F | H(n)) | H € H}.

(3.6) (i) pi},m:: sup {H}r,, | H € $}.
(i) fs 5= inf{u% | n | H € 9}.

(3.7) REMARK. Fix n. Then, there is a non-empty open subset U of § (with
respect to the canonical Zariski-topology on the Grassmannian of all hyperplanes
in P?) such that h{(# | H(n)) = h;(F | $(n)) for all H € U. Therefore h,(F | H(n))
is referred to as the generic value of h'(¥ | H(n)) for H € §.

Similarly ji% ;g is attained by u% ;4 for all H which belong to a non-empty
open set U = H. Therefore fi% , 4 is called the generic i-th right regularity of F | H
for H € $. O
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Now, the hyperplane section method gives the following result (cf. [8, (3.11)]).

(3.8) PROPOSITION. Let $S<= ® be a linear system of hyperplanes which is
general with respect to % . Assume, that § is of positive dimension, and let i >0,
ng€Z. Put I'(n) := h'(F(ny)) + Z,,, < m<n h'(F | H(n)). Then:

I ; iy 5)

1) p's < max {n,, u’ — -1

(1) us {no, s 15} + dim ()
. ;
l'(n), Jor ng<n<jiy,q
I'(i% | g), Jor ig g <n<pfy,q

iy hi(F < : : ;
WD HEED = 4y ) — (1= iy o+ 1) dGim(D), for wy g <1 < is

0, for n 2 u'y O

.

(3.9) REMARK. The previous result provides us with an inductive method for
finding upper bounds on the cohomological Hilbert function 4‘(# (n)). Thereby, we
will proceed as follows:

(1) Assume that dim (¥) >0 and Isdim (¥) > 0. Assume moreover given an

upper bound on h'(¥ (n,)) for some ny€ Z.

(ii) Suppose given some uniform upper bound on u's ; y, H running through all
hyperplanes which are general with respect to ¥ .

(iii) Assume moreover, that upper bounds are known on h'(¥ | H(n)) (n > n,) and
on p's  p for some special hyperplane H which is general with respect to F .

(iv) Choose a linear system $ of hyperplanes, which contains H, which is general
with respect to &% and whose dimension has the largest possible value
Isdim (%).

(v) Apply (3.8) after having replaced hi(F (ny)), p's 1 o, h(F | H(n)) and p's | 4
by the corresponding upper bounds given in (1), (ii), (iii) respectively. O

If dim (%) > 1, the bounds requested in (3.9)(ii), (iii) already are obtained by
applying the described induction procedure to all pairs (H, # | H), where
H =P“"! runs through all hyperplanes which are general with respect to #.
Therefore information is needed about the invariants Isdim (# [ H) for all such H.
To get the uniform bounds mentioned in (ii), we have to look for a uniform lower
bound on the numbers Isdim (# | H). In view of the inequalities (2.4)(ii) and
(2.6)(i), it suffices to find uniform lower bounds on (% | H) (resp. on
0O(F | H)). As we will see in a moment, finding these latter bounds is easy.

To get the “generic” bounds mentioned in (iii), we need to know the maximal
value of Isdim (¥ | H) (resp. of Isdim® (# | H)). This needs a more detailed
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insight into the behaviour of the linear dimension spectrum Idim (# | H) for a
generic hyperplane H. A detailed study of this latter problem will be given in the
next section.

Before looking at the (reduced) global subdepths 6(# | H) (resp. 6 | H))
of the restrictions & | H we prove the following result:

(3.10) LEMMA. Let y € H, where H < P? is a hyperplane which is general with
respect to . Then (¥ | H), = % ,/a¥ ,, where a € mpa, is a non-zero-divisor with
respect to F .

Proof. The local vanishing ideal £, = Opa, of H at y is a proper principal ideal,
hence of the form 4, = a0p.,, with a € mpa,. As H is general with respect to &,
a has to avoid all members of Ass(# ), and hence is a non-zero divisor with
respect to F,. As (¥ [H), =0y, @F, =Opa, [a0ps,RF ,=F ,[aF , we get
our claim. U

(3.11) LEMMA. Let H = P? be a hyperplane. Then, for the reductions intro-
duced in (2.7) we have

(F I H)=(Z | H).

Proof. Immediate from the observation that the kernel of the canonical map
F |H->% | H is of finite length hence contained in the torsion subsheaf
(¥ | H). O

(3.12) PROPOSITION. Let F #0 and let H < P? be a hyperplane which is
general with respect to % . Then
(i) &F [ H)2F)— 1.
(i) If dim (F) > 1, then 6O(F | H) 2 6N(F) — 1.
(iii) If dim (F) >r + 1, then 6(F | H) 2 6" +*V)(F) > 0.

Proof. (i) The case 6(F) =0 is obvious. So let (%) > 0. Choose y € H. Then,
by (3.10), depth ((# [ H),) = depth (¥ ) — 1. Making y run through all closed
points of H, we get our claim.

(i) Apply (i) to &, thereby observing (3.11), (2.6) and (2.9)(v).

(iii) Immediate from (i), observing the definition (2.11). O

We close this section by a lemma, which will be used later.

(3.13) LEMMA. Let F #0 and let H < P? be a hyperplane which is general
with respect to ¥ . Let x € Ass (¥). Then, any generic point y of {x}n H belongs to
Ass (# | H).
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Proof. According to (3.11) we may write (¥ | H), = %, /a¥ ,, where a € mpa,
is a non-zero-divisor with respect to #,. Consequently depth (¥ | H),) =
depth (#,) —1. As #, admits the non-zero divisior @ €mps,, we have
depth (#,) 21. As xeAss(¥), ye{x} and codimypyy {H <1 we have

depth (#,) < 1. Therefore depth (#,) = 1, and consequently depth (¥ | H),) =
hence y € Ass (¥ | H). E]

(3.14) REMARK. The previous lemma will be used in the next section. For the
moment we notice, that it immediately proves the following easy facts:

(1) If # #0, then dim (¥ | H) =dim (¥) — 1.

(ii) If dim (F) > 0, then sdim (¥ | H) < sdim©@® (#) — 1 and Isdim (¥ | H) <

1sdim® (#) — 1.

4. Generic hyperplanes

In the sequel let X be an arbitrary noetherian scheme, and let 4 denote a
coherent sheaf of O, -modules.

(4.1) DEFINITION. A point z € X is called critical with respect to ¥, if it
satisfies the following properties.

(1) depth (%4,) = 1.

(ii) codimpz ({z}) > 1 for all x € Ass (%) with z € {x}

Moreover we put:

€y (%) =C(%) .= {z € X | z critical with respect to ¥} O

First we want to show that €(%) is finite, whenever the scheme X is excellent.
Obviously, for an open subset U of X we have

(4.2) &%) AU =% | U).

So, as X admits a finite affine open covering, we may put our attention to the case
where X is affine. To treat this particular case, we define:

(4.3) DEFINITION. Let R be a noetherian ring, and let M be a finitely
generated R-Module. A prime ideal p € Spec (R) is called critical with respect to
M, if:

(i) depth (M,) =

(i) ht(p/q) > 1 for all q € Ass (M) with q < p.
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Moreover we put
C(M):={p € Spec (R) | p critical with respect to M}. O

(4.4) REMARK. Keeping the notations of (4.3) and denoting by M the
coherent sheaf induced by M over Spec (R), we obviously have

Q:Spec (R)(M) = CR(M)-

So, our task is reduced to study the sets Cr(M) for finitely generated modules M
over a noetherian excellent Ring R. To do so, we introduce ideal-transforms in the
sense of Grothendieck [18] and Brodmann [4].

(4.5) DEFINITION. Let R be a noetherian ring, and let J be a multiplicative
filter of ideals of R. (So J a set of ideals of R such that J, L € J always induces

JL € J). Then, the J-transform is the covariant, left-exact functor on the category
of R-modules, which is defined by:

M > lim Homg (J, M) := Dy(M). O

Jeld

(4.6) DEFINITION. Let R and J be as in (4.5), and let M be a finitely
generated R-module. Then we put

Py(M) := {p eSpec(R) |depth (M) =1A3J e :Jcp} O

The following finiteness-criterion for the set P,(M) will play a certain role at a
later instance.

(4.7) LEMMA. Let R be a noetherian ring, let 3 be a multiplicative filter of
ideals of R, and let M be a finitely generated R-module such that J & q for any J € J

and any qe Ass (M). Assume moreover that Dy,(M) is finitely generated as an
R-module. Then the set P,(M) is finite.

Proof. See [4, (3.2)]. O

(4.7) will be used together with the following finiteness-criterion for J-transforms,
which is given by [4, (4.9)].

(4.8) PROPOSITION. Let R be a noetherian excellent ring, let J be a multi-
plicative filter of ideals of R, and let M be a finitely generated R-module. Assume that
ht((J +q)/q) # 1 for all J € J and all q € Ass (M). Then Dy(M) is a finitely gener-
ated R-module. O
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Now, we may prove crucial finiteness result.

(4.9) PROPOSITION. Let R be an excellent noetherian ring, and let M be a
finitely generated R-module. Then the set Cr(M) is finite.

Proof. Let us assume to the contrary, that Cr(M) is infinite. For each
p € Cr(M) let S(p) ={qe Ass (M) |q<=p}.

S(p) always is a non-empty finite subset of the finite set Ass (M). In particular
S(p) takes only finitely many different values, if p runs through Cr(M). So, there
is an infinite subset C < Cr(M), such that S(p) takes the same value S < Ass (M)
for all p e C.

Let S"=Ass(M) —S. If S’ # Fput I = (\,.s p and set M = M/T,(M), where
T,(M) denotes the I-torsion {me M |IneN:I'm=0}. As V(I)nS =&, we
have Ass (M) =S. As V(I)nC =& we have M,= M, for all p e C. Therefore
C = Cr(M) and q < p for all q € Ass (M) and all p € C. Thus, replacing M by M,
we may assume that q = p for all q € Ass (M) and all pe C.

Now, let J be the set of all finite products J = p, - - - p,, whose factors p; belong
to C. Then it is obvious by our construction, that C < P,(M). So P;(M) is infinite.

Now, let qeAss(M) and let JelJ. We may write J=p, --p, with

Pi,...,p,€C. As q=p; and ht(p;/q) > 1 for i=1,...,r we have ht((J + q)/q)
> 1. So, by (4.8) D,(M) is finitely generated. Moreover J & q for any J € J and any
q € Ass (M). So, by (4.7) we get the contradiction that P,(M) is finite. O

(4.10) COROLLARY. Let X be a noetherian excellent scheme, and let G be a
coherent sheaf of Oy-modules. Then, the set (%) is finite. O

Now, we return back to our original task—namely the study of the restrictions
F | H of a coherent sheaf # over P? to a general hyperplane H < P?. First we
prove the following complement to (3.13).

(4.11) LEMMA. Let H<P? be a hyperplane such that H n(Ass (¥F)u
Coi(F)) = . Then H is general with respect to ¥. Moreover, for _any
y € Ass (F | H) there is an x € Ass (¥) such that y is a generic point of H N {x).

Proof. As HnAss (¥) = ¢, H is general with respect to the sheaf #.

Now, let yeAss(# | H). Using the Lemma (3.10), we may write
(# | H), =% ,/a¥ ,, where a € mpa,, is a non-zero-divisor with respect to &, and
a non-unit in Ops,. Consequently depth(# [ H), =depth(F,)—1. As
y € Ass (F | H), we have depth (¥ [ H), =0 and thus obtain depth (#,) = 1.

As yeH and HnGuu(F)=, we have y ¢ Gﬂ? ). Observix}g_ that
depth (#,) = 1 we thus find a point x € Ass (#) with y € {x} and codimp {y} = 1.
Clearly y will be a generic point of H n{x}. O
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We say, that a property holds for a generic hyperplane H < P, if it is satisfied
on a non-empty open set of such hyperplanes. (Thereby the Grassmannian of all
hyperplanes H = P? is furnished with its natural Zariski-topology.)

We now want to compare the reduced dimension spectra of # and & | H for
a generic hyperplane. To do so, we first prove:

(4.12) LEMMA. Let x € P? be such that dim {x}> 1. Then, for a generic
hyperplane H < P? the intersection {x} n H is irreducible and satisfies

Idim ({x} A H) = Idim ({x}) — 1.

Proof. We write m = X =Proj (T), where T is a graded homomorphic image
domain of the polynomial ring k{z,, ..., z;] = S. By Bertini’s theorem there is a
non-empty open set U < S, of linear forms such that H.n X = Proj (T/fT) is an
integral scheme of codimension 1 in X for all fe U (cf. [23, (6.11))).

It remains to show, that ldim (H,n X) = ldim (X)) — 1 for all such f. So, fix f, let
f e T be its canonical image and let z be the generic point of H,n X. Considering
z as a homogeneous prime ideal of 7, we want to show that dim, (T;,nz) = 1. As
kf is a non-zero subspace of T, z, we are left with proving zN T, S kf.

As Proj (T/fT) = H;,n X is an integral scheme, there is an r € N with m’z < fT,
where m denotes the homogeneous maximal ideal of 7. Writing Q for the total ring
of fractions of T we thus may write z < fT', with I’ = {g € Q |31 e N:m'qg e T}. But
the ring I' is nothing else than the total ring of sections @, ., I'(X, Ox(n)) of
X =Proj (T). As X is integral, I'y=T'(X, 0y) = k. So we get

ZﬁT,EﬁﬂT]=ﬁoﬁTl=ﬂ. D

(4.13) PROPOSITION. Let # #0. Then, for a generic hyperplane H < P¢ we
have:
(i) H is general with respect to ¥ .
(i1) For each y’ € Ass (¥ | H) there is a x € Ass (¥) such that y is a generic
point of H{x}.
(iii) If y € Ass (¥ | H) is a non-closed point and if x € Ass (¥) is as in (ii), then
y is the unique generic point of H{x} and

Idim ({y}) = Idim ({x}) — 1.

Proof. To avoid the finitely many points of Ass () U&(F) (cf. (4.10)) is a
generic property of hyperplanes. So, by (4.11), (i) and (ii) are satisfied for generic
hyperplanes H < P¢. Applying (4.12) to any of the (finitely many) points
x € Ass (#) with dim {x} > 1, and observing (ii), we obtain (iii). O
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Now, using the notations introduced in (2.3), we may conclude:

(4.14) COROLLARY. Let dim (¥) >r + 1. Then, for a generic hyperplane
H <= P? we have:
(i) H is general with respect to ¥ .
(i)) im® (# | H) = dim * " ().
(iii) 1dim” (F | H) =1dim"* " (#).
(iv) sdim® (F | H) =sdim"*+ D ().
(v) Isdim® (F | H) =Isdim"* D (#).

Proof. All statements follow from (4.13) and the definitions. a

5. Recursive bounds

In this section we perform the induction procedure described in (3.9). Again let
F be a coherent sheaf over the projective space P? = P¢, where k is an algebraically
closed field.

More precisely, we want to give bounds on the functions —i < n > h{(F(n)),
which depend only on the dimensions A(F(—j))(j=1i,...,dim (%)), the linear
dimension spectrum Idim (%) and the 0-reduced global subdepth § O(#F) of #.

First of all we introduce the following notation:

r

(5.1) h(F) := } (;)h"”(f(—i—j));

j=0
obviously h(O(F) = hi(F(—i)).

(5.2) LEMMA. Let H be a hyperplane, which is general with respect to % .
Then, for all r 20

h{(F | H) < h{* D(F).
Proof. Let 1 : H— P? be the inclusion map and consider the sequences
0> Opa(n — 1) = Opa(n) »1,0,(n) -0.

As H is general with respect to &, taking tensor products with & leaves this
sequence exact, hence furnishes exact sequences.

0->Fn—-1)->Fn)—-1,F | Hn)-0.
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Applying cohomology and observing that 1 is a closed immersion (which allows to
replace H/(P?, 1, % | H(n)) by H(F | H(n)) we thus get exact sequences.

H(F (=i =) > HAF | H(—i =) » H I (F (=i = j = 1)),
These allow to write
OAF | H(—i =) S BHAF (=i =) + 4 (F (=i == 1),

Consequently

j=0

WF 1 H) = Y ’.)h"ﬂ'(f P H(—i—j))

< ¥ (" AF (=i =) + B F (i — = 1)
i=0\J

=HF-)+ T [(j) + (,-: 1)]11"”(37( )

+ hitr+ ‘(,9'(-—-1' —_r — 1)) e 'il ((r j— l)th(g"—(-i —J)>

j=0

= h"+ Y(F). 0

Now, we write e = dim (%), let i >0, r > 0 and define by descending induction
on r certain integers u!”, i{” > —i and certain functions n > s"(n), n — §(n),
(n2 —i).

Moreover, in (5.5)(1), (ii), the symbol [-]* shall be used to denote least upper
natural bounds:

[@* :=min{neZ|a<nn>0} (aeR).

The functions ¢{” and ¢V which shall be defined in (5.4) have auxiliary character
only.
Now, the mentioned functions and invariants are defined as follows:

(53) () u¥ =0 = —i+1; forr>e—i.
(i) s{7(n) =5(n) =0, (n 2 i); forr>e—i.
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n

(5.4) (i) t9n) := K(F)+ Y s+D(m), (—i<n<pl*D); forr<e—i.

m= —i+1

(i) 1(n) := KAF)+ Y 5V D(m), (—i<n<al+*"); forr<e—i.

m= —i+1

(5 5) (1) ") o, r+1) —tgr)('ugr-{—l)) + . |
. [THENE Y + W —1; forr<e—i

@)

i) G = pr+n

+
:| —1; forr<e—i.

(5.6) For r <e —i, we finally put:

(i)
t(n); (—i<n<p{*h)
s = 10 D) —(n+ 1= pf T IOF); (D <n<pul)
0; P <n)
(i) )
t‘(r)(n); (—l <n< ﬁ$r+ l))
£+ M); @V <n<pf*h)
§(n) 1=
(RS TD) = (1 + 1= pf+ D) Isdim® (F); (0 < m < 30
L0; (a"” <n)

(5.7 REMARK. (A) Ifr<e —i,thendim(#)=e2r+i>r (asi>0). So,
by (2.12)(i) 0 < 6(F) < Isdim™ (F). Therefore the invariants u{” and 1{” are well
defined. Consequently the definitions (5.4) and (5.6) make sense, too.

(B) By descending induction on r, it is easy to verify, that:

(i) (a) pf"*P <@

(b) s{(n) =0, for all n 2 u!".
(c) 5°(n) =0, for all n 2 fi,,. O

The previously introduced functions s, 5, t{, 1, as well as the invariants p{"
and {" clearly depend on #. To formulate the results to come, we have to observe
this dependence. Therefore we write:

(5.8) (i) ti% =1, T :=1"; st =50 5% =5V
. . . - - |
(i) pi% = u?; @l =g
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(59) LEMMA. Let i>0, # #0, and let H< P’ be a hyperplane which is
general with respect to % . Then:

(i) llf':)r tH ﬂ(’H)
(ii) 0% | y(n) <583 Pu(n), for alln 2 —i.

Proof. Yet writing e = dim (%), we have dim (¥ | H) =e — 1, (cf. (3.14)). We
proceed by descending inductiononr. Let r >e — 1 —i. Then r + 1 > e —i. So, the
invariants occurring in (i) coincide with —i + 1 whereas the functions in (ii) vanish
(cf. (5.3)).

So,letr <e —1—i thus r + 1 <e —i. Then, by induction we may assume that
i Py S pld? and that s Py(n) < s 2(n),Vn 2 —i. By (5.2) we moreover
have h{(F | H) < h¢+ D(F).

Consequently

t  u() =hP(F THY+ Y sl Pu(m)

m= —i+1

ShEYF)+ ) stFPm) =10 V(n) for —i<n<pldDy

m= —i+1

As t{’g Y(n) is non-decreasing in the range —i <n < u{;t ¥y, we get in particu-
lar 10 (U Pn) S t0FPUlSE?). As dim (F) =e2r+1+i>r+ 1, (3.12)(iii)
induces 6 (#F | H) 2 6"+ Y(#) > 0. Therefore we obtain

G P P |
SO(F | H)

(DL
<ufF? + ¢ Wi ) |* L)
K (r+2)(5;;)

+1
e = w3 Dt |

This proves (i).

Now, the proof of (ii) is easy. For —i<n<pu{}; we already have
sy 1+ 1(n) < 1§ Y(n) = 53 P(n), where the last equality follows, in view of (5.6)(i),
as u{gt Py < u(’”) In the range n 2 pu{’;f Yy, the function s{ , ;4 is non-increasing,
whereas the function s{gt " is non-decreasing in the range —i <n <pu{t? (cf.
(5.6)(i)). Consequently sS'; Pu(n) for —i sn<pllt?.

At n=u{F? —1 the function sV starts decreasing linearly with slope
0+ () > 0 until it reaches the value 0, (cf. (5.6)(i)). The function s{} , ; starts
to decrease linearly already at the place n = u{’5f Py — 1( < u{ ? — 1) until its value
reaches 0. Thereby, the slope is 6(F | H) = 6(F), hence not less than the slope
in the previous case. Consequently s} ; ,(n) < s¥ (n) is true for all n 2 —i. O
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(5.10) LEMMA. Let i >0, % #0. Then, for a generic hyperplane H < P
() 2% 1n s AT
(ii) 5% | y(n) <57 (), for all n = —i.

Proof. We proceed in the same way as in the previous proof. Thereby we
observe that H is general with respect to &%, which, by (5.9), already induces
W3t Ve < u? and pll |y < plGHD.

Here, again both statements are obvious for r >e —1—i. If r2e—1—i, we
get exactly in the same way as before.

1 1 u(n) St0FY(m) for —i<n<alFb, <alt
and
rH(ﬂ r+l) ) < t(r+l)( (r+2))

Now, i} 4 < i{g "V follows immediately from the definition (5.5)(ii).

Statement (ii) again is shown similarly as in the proof of (5.9). Again we know
already that the requested inequality holds in the range —i < n < a{’gt ;. Again by
(5.6)(ii) 5'% |, is non-increasing in the range n = G y, whereas 5¢; " is non-
decreasing in the range —i <n < pu{J? by (5.6)(ii). Consequently (ii) holds true
for —i <n <uld?. Now, we may conclude as both functions drop linearly with
the same slope Isdim® (# | H) =Isdim® (¥), 5} , ; beginning to do so at an
earlier instance than §{;" V. O

(5.11) THEOREM. Let ¥ #0, and let i > 0. Then:
(i) W(Fn) <5%((n) forallnz=i.
(i) pl < a9

Proof. We proceed by introduction on e =dim (F). If e =0, h'(#(n)) =0 for
all n, hence our claim is obvious.

So, let e > 0. Let # be the reduction of &, as it was introduced in (2.7). Then
hitI(F (n)) = h*H/(F(n)) for all j =0 (cf. (2.10)(ii)) shows that h{(F) = hi(F),
for all r 20 (cf. (5.11)). By (2.10)(iii) we have Isdim® (#) = Isdim® (#) for all
r 2 0. Finally, by (2.12)(ii) 6 (#F) = 6"(F) for all r 2 0. Altogether we see, that
the functions §¢” and the invariants u{”, i{” are not affected, if we replace # by #.
Thus we may assume that # = #. Then Isdim® (#) = Isdim (#) > 0.

Now, let H = P be a generic hyperplane. Then H is general with respect to &,
(cf. (4.14)). Moreover, by (3.1) H is member of a linear system § of hyperplanes
general with respect to # and such that dim ($) = Isdim (F) = Isdim©® (#).
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As dm(# |H)=e—-1, we may assume by induction, that

h(F | Hn) <5% 5 for all n> —i In view of (5.10) we thus obtain
hi(# | H(n)) <5%(n) for all n 2 —i.

By our choice of §, the generic values A(# | H(n)) as they were introduced in
(3.5)(ii)) do not exceed A(¥ | H(n)). So we get, hi(F | H(n)) < 5% (n) for all
nz—i

Now, we write

Iy =h(F(-)+ Y h(F | Hn)).

—i<m=<n

As hO(F) = h'(#(—1i)), we obtain

Fm) = hOF) + Y 5().

m=—i+1

For —i <n < p{Y, the right hand expression coincides with §% (n), (cf. (5.6)(ii),
(5.7)(ii)(c)). Thus, in view of (3.8) we obtain hi(F(n)) < 5% (n) for —i <n < ul}.

Moreover 5% begins to decrease linearly with slope Isdim® (#F) =dim (9) at
the place n = uf‘,’,, until it reaches 0. By (3.8)

hi(# (n)) < max {0, I'(fils ; g) —dim (D)(n —pis 5+ 1)} forn2zpl g—1.

So, it remains to show the inequality pu% ;4 < u{3.

To do so, let Le$. Then (59) gives u% . <ul. By induction,
hi(F | L(n)) =0 for all n2aQ,, (note that dim(# |L)=e —1), hence
P <% .. By (5.7(iNa) A% ;. <ul% ... Consequently we obtain
po o < p . for all L €. This proves p ;g < pui's. a

(5.12) REMARK. 1t is already clear from their definition, that the bounding
functions 5 and the bounding invariants i depend only on the parameters
OUNF), Isdim (F), h' P I(F(—i—))), (j=0,...,e—i;e=dim (F)). In the next
section, this dependence will be studied in more detail. O

6. Bounding functions
In this section we consider the dependence of the functions § and the

invariants % on the parameters Isdim® (#), 6(#) (r=0,1,...,e —i) and on
the parameters W(F(—j)) (j=i,i+1,...,e).
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Thereby we state in a more explicit way what already has been noticed in the

previous section: The cohomological Hilbert functions n — hi(#(n))(n =2 —i) have
upper bounds which depend only on the previously mentioned parameters, (cf.
(5.12)).

First, we introduce some notations. If u, v are natural numbers, we write F** for
the set of all functions f: N x N§ — Z with the following property:

(6.1 f@ay,...,a,;by,...,b)=<f(ay,...,a,;by,...,b)) if a,2a,>0 for
i=1,...,uand b;2b;20 forj=1,...,0.

Moreover we write F;**(/ € Z) for the set of all functions g : N*x N§y x Z,, =N,
such that

(6.2) Vn =21:g(—,n): N*“x N§ - N, belongs to F**,

Now, we fix integers e = i > 0. Then, mimicking the construction of the invari-
ants u”, " and of the functions s\, 5 (cf. (5.3-6)) we define functions

Mg,)" MS’? . NZ(e—i+l) X N(e)—ii-—l__)z
S 80 I NH D NG X Z, Ny
as will be done below. Thereby we assume that
(@n):=@?,...,a¢ %a0,...,a¥ " a,...,a;n)
belongs to N2~ i+ D x Ne~i+1 xZ, ..
If r >e —i, we put:

(6.3) (i) MO(a) =M{Na):= —i+].
(ii) S¥)(a,n) =S50 a,n) :=0.

If 0 <r <e —i, we introduce auxiliary functions T}, TV} by

e,

(6.4) (i) TW(a,n):= Y, (f)a‘z"”@ Y 8¢t (a, m),
j=0

.] m= —i+1

(i) T¢Na,n):= ) (r.)ag"”’+ Y. S¢rUa, m).
ji=0

j m= —i+ 1
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Then, we define

r M(r+ DN+
(6 5) (l) Mgr?(a) — M(r+l)( )+[T£x(a g) (a)) —1.
r) r+ D01+
(i) M(a) := MY D(a) + [Tﬁ.,(a 2{’) () -1
i _
(6.6) (1)
S¢)a, n)
T¢)(a, n); (—i<n <M g).
1= TO(@, MY V(@) — (n + 1 — ME Y@)a; (MY V(@) <n < MO(a).
0; (M)a) < n).
(ii)
(r)(a, n)
(19, n); (=i <n< M)
] e 50 (ME @) < n < MU @)
o T¢(a, M DY(@) —(n+1— M P@)al; (M @) <n < M)(a)).
L0; (M{)(a) < n).

(6.7) REMARK. (A) From the definitions of the above functions, the
monotony-properties (6.1) and (6.2) are easily verified. So we may conclude:
(1) Mgrg’Mg? {FZ(e—-i+1)e—i+l
(ll) ng)s Sﬁ,’? € ,}:2(e i+ 1),e— t+1
(B) The following comparison statements are immediate from the definitions:
(iii) (a) a{’ 2 ay for all j< e —i=>M{)(a) < M{)(a), S¢)(a,n) < S{)(a, n).
(b) a{ < af for all j < e —i =MP(a) = ME(a), $a, n) 2 S, (a, n).
Concerning the vanishing of the functions S¢) and S¢) we have
(iv) (a) S9(a,n) =0, Vn = M{Xa).
(b) $¢(a, n) =0, VYn2=M{)(a).
In addition, we see from our definitions:
(V) The values M) (a), M")(a) and the functions S¢)(a,n) and S)(a, n) are
independent from the parameters a'”, a$” with j <r.
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(C) Now, for an integer e’ with e 2 ¢’ 2 i we put

. 0 b o b ,
dg:=@®,....,a¢ "%aP,...,af" %a,...,a,0,...,0)

(eNz(e—i—-l) X N8~i+l)

a :=@@Q®,...,a¢ %a0,...,af Y a, ..., a).

Then, from our definitions we get (by descending induction on r) the following
relations:
(vi) (a) MON@) =2 MO(a'); M@ = MPi(a)).
(b) S(@; n) = SPi(a’; n); SCNG, n) 2 SO(a’, n).
(D) We want to express the invariants u{’}, g’} and the bounding functions
5%, 5% of the previous section by means of the functions MY}, M¢) resp. S¢), §¢).

e,

To do so, we introduce the following notations, in which & is a coherent sheaf over
P

L & 1= (Isdim® (%), . . ., Isdim® ~ (F)),
= (6O(F),..., 8¢ F)),
= (W(F(—1),..., h{(F(—¢e)).

Then, we have for any coherent sheaf # of dimension e over P

(vii) u{% =My, 85, his),
(viii) g% = MO (Lg, 0,5, his),

(ix) s{%(n) = SOy, dig, higin), (n 2 —1),

(x) 55 (M) =S0Uig, i, hig;n), (n 2 —i).
(E) Finally, it should be noted that the functions M) and S) may be

expressed by the functions M¢) and S¢) in the following way
(xi) (a) MOa,; ay; ay; 1) = MO@s; a5 as; n).
(b) SOay; a3 a3) = SUN(a,; ay; a3).

Thereby, we use the notation

g:=@®...,a* ",(j=12; ay=@y,...,a?). O

Now, to simplify matters (may be to the cost of the quality of our bounds) we
introduce functions

CO:N*x Ng~*+1>7,
(r).N2 e—i+1 Z Z
Be,i' X NO X Z—i—* ’
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as it will be done below. Thereby, for a € Z we write
a:= max {a —r, 1}.
Then, for
(*) (@, b;¢c;n) =@, b;c®,...,c®n)eN?xNf~*DVx27Z, _,
we put
(6.8) Ca, b;c;n) := M@, ... ale=1 pl0 | ple—1 ()
(6.9) B (a,b;¢c;n) := 8@, ...,ae=1 b0 . bl c;n).

(6.10) REMARK. (A) Again, it follows easily from the previous definitions
that (cf. (6.7)):
(l) Cgr? € u;Z,e—i+ l,
(ii) BO) e P25+ 1
From (6.7)(iii) and (iv) we get the following comparison and vanishing statements
(in which (a, b; c; n) is defined by (*)):
(iii) @ 2 b = CYa, b; ¢) < COU(b, b; ¢) and BY)(a, b; ¢, n) < BE)(b, b; ¢; n).
(iv) B{)(a, b; ¢;n) =0,Vn 2 C{)a, b; c).
(B) Now, let e’ be an integer with e = ¢’ > i. We put

E=(cD,...,c©,0,...,00(eN—i*1), ¢ =(c®,...,c@)

Then—from (6.7)(vi)—we obtain:
(v) (a) C{)(a, b; &) 2 C(a, b; c),
(b) Ba, b; &;n) 2 BYi(a, b; ¢’; n).
(C) Obviously, the functions C¢) and BY) may be defined by the following
recursive procedure (cf. (6.5), (6.6), (6.7)(xi))
(vi) (a) CQa, b;c;m)=—i+1, forr>e—i.
(b) BOa, b; ¢c;n) =0, forr>e—i.
If 0 <r <e —i, then we define the auxiliary function

(vii) W(a, b;c;n) := Y, (;)C‘“”"+ Y., B¢t a, b;c;m).

j=0 m= —i+1
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Now, using these intermediate functions, we put

") e CCF D) . +
(viil) C{)(a, b3 ) := Cz,tﬁ”(b,b;g)+[W""(“””Q’ Lo 16 ”’9))] -1
a

Then, finally we set (for 0 <r <e —i)
(ix)

B{)(a, b;¢c;n) =
[ Wla, b; c; n); (—i<n<C¢*a,b;c)).
Wila, b; ¢; CL* a, b; ¢)); (CL(a, b;0) <n < CUF Vb, b; 0)).
4 Wila, b; ¢; CUit Pa, by ) — (n + 1) — C&* Vb, b; ¢))al;
(CEH Db, b; o)) <n < C8a, b; ).
LO; (COa, b; ¢) <n). O

Now, if we fix integers e = i > 0, the previously defined functions bound the i-th
Hilbert function of coherent sheaves over P? as follows:

(6.11) PROPOSITION. Let 0 <dim (¥#) <e. Then:
(i) A{(F () < BO(Isdim® (F), 6OF); h(F(—1)), ..., h{(F(—e));n),
Vn =2 —i.
(ii) A(F(n)) =0, Vn 2 CO(Isdim(F), 6O(F); h(F(=1)), ..., h"(F(—e))).

Proof. Assume first, that dim (#)=e. Then, as C@eF**~+! and
B e P25~ i+ 1 (cf. (6.10)(i), (ii)) and as
Isdim®(F) 2 Isdim® (F) — r = lsdimO(F)" for r =0, 1, . . ., e — i( <dim (%))

(cf. (2.4)(vii), (2.11)) we get (in the notations of (6.7)(D)) the relations (cf.
(6.7)(viil), (x)):
5% ) =8NUis, 45, bis s n) < BO(Isdim® (F), 6UF), by s ;1)
= B (1sdim® (F), 6UF); h(F (=), ..., h(F(—e));n), (n 2 —i),
A% =M (Ls; 05 big) < COsAm® (F), 6NF); by 5 )
= CO(Isdim@ (F), 6OF); h'(F(=i)), ..., h"(F(—e))).

In view of (5.11) this proves our claim if dim (#) =e.
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Now, let dim (#) =:e’ <e. If i > ¢’, our claim is obvious, as then h'(#(n)) =0
for all neZ. If i <e’, we conclude by the formulas (6.10)(v), thereby observing
that W(F(—j)) =0 for all j > ¢’ O

(6.12) REMARK. Let X = P? be a closed subscheme of P9, and let # be a
coherent sheaf over X. Denoting the inclusion map X ¢ P9 be 1, we have (cf. [16])

H{(X, F(n) = H(P%1,¥(n), Vnel.

(Thereby, twisting of & is understood wth respect to the embedding 1). Now,
applying (6.11) to 1, % and writing

B.;:= BY), C,;:=C{), h(F(n)=dim, H(X, #(n)),
we get:

h(F (n) < B, (Isdim® (F), SUF); RI(F (D)), ..., h(F(—€)); m), (n 2 —i),
hi(Fn) =0, Vn 2 C,,(Isdim® (F), $O(F); hi(F(—1i)), ..., h(F(—e)),

whenever 0 < dim (#) < e. This obviously proves (1.1). O
Finally, we put (for (¢;n) =(c",...,c®;n)eN§g~*!'xZ, _)):

(6.13) (i) F (c?,...,c@) = CO1, 1;¢D,...,c®),
(i) G, (c®, ..., c¢95n) := BO(1, 1;¢9,...,c95n).

Then, as 1 <1sdim@ (#)U, and by the monotony property of the functions C
and BY), we immediately get from (6.11):

(6.14) COROLLARY. Let dim (%) < e. Then:
(i) K(F ) <G, (h(F(—10),...,h(F(—e€);n), Yn2 —i.
(il) h'(F @) =0 for all n 2 F, (h((F(—i)), ..., h(F(—e))). O

(6.15) REMARK. (A) Obviously, now (1.2) follows from (6.14) in the same
way as (1.1) follows from (6.11).

(B) The previously introduced bounding functions

F,,:Ng*'57; G,,:N§g "*'xZ,_,-N,
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may be defined by the following procedure (cf. (6.10)(C)): (Again we assume
(c;n)=(c...,e%5m)eNs "' xZ, )

(i) F;:= FQ); G..=G?).

(i) F(c)=—i+1; GY(c;n) =0, forr>e—i.
If 0 <r <e — i, then we intermediately put:

(iii) UQ(e;m)i= Y, (;)c"'”’+ Y GV m).

Jj=0 m= —i+1

Using these auxiliary functions U{) we finally set:

(iv) FO)(c) =FU* V() + U (e; FUt V() — 1.

(v)
Ul o); (—i<n<F{F ).
Gile;n) =< USNe; FOrD(e) —(n+1—FCre); (FU ) <n < FO(0)).
0; (FO(e) s m). O

7. A priori bounds for Castelnuovo regularities

Generalizing the point of view of Castelnuovos original problem, we say that a
coherent (pq-sheaf F is m-regular if

(7.1) H(PY, #(n)) =0, Vi>0, Vnz2m—i.
This general definition goes back to Mumford [34]. It is well known, that
H{(PY, F(n)) =0,Vn » 0, Vi >0 (cf. [39]). As H(P9, #(n)) =0 for all n € Z and all
i >dim (%) (cf. [39]), # always is m-regular for some m € Z. The minimally
possible value among all these numbers m is called the Castelnuovo-regularity of #
and denoted by reg (#):

(7.2) reg (#) := inf{meZ|H(P? F(n)=0,Yi>0,Yn2m —i}.
So, in terms of the invariants p’s (cf. (3.4)) we may write

(7.3) reg (¥) =sup {us +i|i>0}.

(7.4) LEMMA. Let # #0, and let H < P? be a hyperplane which is general
with respect to #. Let j > 1. Then ps < p/y !y — 1.
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Proof. Consider the following exact sequences
H/=\(H, & | H(n)) » H(P?, F(n — 1)) = H(P*, #(n)).

For all n 2 p/z !, the left-hand space vanishes. So, the map a, becomes injective for
all such n. As Hf(Pd 9’ (n)) vanishes for all n » 0, H/(P4, #(n — 1)) already has to
vanish for all n = /s '}, Therefore ps < 5|y — 1. O

Now, we are ready to prove the following result:

(7.5) THEOREM. Let # #0, and let j =i > 0. Then H/(P?, #(n)) =0 for all
npiE?—j+i

Proof. We proceed by induction on j — i. If j — i = 0 we have j =i and thus may
conclude by (5.11)(ii). So, let j > i. Then, in particular j > 1. Now, choose a generic
hyperplane H < P“. Then, first of all H in general with respect to #. So, (7.4) gives
W < py !y — 1. By induction

Wely S {a —j+ 141

In view of (5.10) we may write al% ;" <a{%s". So, altogether we obtain
s < ul%s P —j+i. This proves our clalm O

As a first application to this we obtain.

(7.6) COROLLARY. Let & #0, j2i>0. Then H/(P? #(n)) =0 for all
n2agl% —j+i

Proof. Obvious, as iz " < (% O
Applying (7.6) with i = 1, we get the following regularity-bound for #:
(7.7) COROLLARY. reg (¥#) < a{% + 1. O

Now defining CO: N? x N§~‘*!—>Z according to (6.8), we conclude as in
(6.11):

(7.8) COROLLARY. Let dim(¥) <e,j2i>0. Then H/(P? F(n)) vanishes
for all n € Z with

n = CO(Isdim® (F), §O(F), Ki(F (=), ..., h(F(—i)) —j + 1. O
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From (7.8) we get in particular (cf. (7.7)):
(7.9) COROLLARY. If 0 <dim (#) < e, then
reg (#) < CO(Isdim@® (F), dOF), hK(F(—1)), ..., h5(F(—e)) + 1. O

Finally, defining F,,:N§—+Z by F,(c;,...,¢c.)=Cq(,1,¢,,...,c,)—as
done already in the previous section—we get

(7.10) COROLLARY. If dim (¥#) <e, then
reg (F) < F,,(h'"(F(-1)),...,(F(—¢)) + 1. O

(7.11) REMARK. Now, obviously, (1.3) and (1.4) follow from (7.9) resp.
(7.10) by the same arguments that were given in (6.12).

(7.12) REMARK. It is obvious from the definitions (6.4), (6.5) and (6.8),
(6.9), that the functions C¢) and BY) satisfy

(i) Ca,b;0) = —i+1

(i) BO(a, b;0;n) =0, Vn= —i.
Consequently we get from (7.8)

(iii) If dim (¥) < e and W(F(—j)) =0 for j=1i,...,e, then H(P¢ F(n)) =0

forallje{i,...,e} and all n 2 —j.

So, applying this with i = 1 we obtain:

(iv) If H(PY, F(—i)) =0 for i=1,2,...,dim (F), then reg (F) =0.
This statement is given in [34] and may be easily verified in a direct way. As already
mentioned in the introduction, (7.8) generalizes the vanishing statement (iv) to a
corresponding statement about bounds. O

(7.13) EXAMPLE. Let 0<j <d and let 1 : P°>P? be a linear embedding.
Consider the coherent Op.-sheaves

G, =1,0p4(t), (te€l).
Then clearly

(i) h'(%.,(n) =0, VneZ, Vi#0,e.

0; (n2t-e)
(ii) h*(%, () = (—n+f—e*‘) n<t—e.

€
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(iii) 69%%,,) =1sdim? (¥4,,) =dim (4.,) =e.

(iv) reg (4.,) =t.
Observing that

C +
Cg?(e, e;0,...,0, C) = —e +[_e_:|
B{)e, e;0,...,0,c;n) =max {0,c —(n+e)e}, (n2—e)

(6.11) furnishes the bounds

he(%.,(n) < max{o, (’ : ‘) —(n+ e)e}; (n 2 —e),

h*(%.,(n)) =0, VYn= —e+ [(l B l)e“']+,

e

for any ¢ 2 1. For large values of ¢, these bounds are very weak with respect to what
we know by (i) and (ii). Consequently the regularity bounds given by (7.9) or (7.10)
will heavily exceed the actual value given by (iv). This is not surprising, as the small
system of bounding invariants we use may not store much information on the
specific nature of a sheaf. O

(7.14) REMARK. The previous example illustrates that the generality of our
approach goes to the cost of the strength of our bounds. To get sharper bounds, we
thus should at least use more bounding invariants. Moreover, the sheaves 4,, of
(7.13) may be used to show that the numbers A'(F(—1)), ..., h*(F(—e)) form a
minimal system of invariants for bounding the Castelnuovo regularity of arbitrary
coherent sheaves of dimension <e over P?. More precisely:

(i) Let 0 <j <e <d be integers. Then, there is no function R :N°*~'—>Z such

that for any coherent sheaf & of dimension e

reg () < RANF(-1), ..., W {(F(=(-D)),
WU (F(=(+1D),..., h5(F(—e))).
To see this, choose te N and put #,;,:= 94,,®0Y;,.
According to. (7.14)(iii)) and (iv) this sheaf is of dimension e and satisfies

reg (#.,,) = t. By (7.14)(i), (ii) h*(# . ;,(—5)) = 0 for all 5 # j. So, assuming that R
exists, we would have the contradiction

t<RO,...,0), VieN.
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For fixed d the invariants Isdim® (#) and 6 (%) take only finitely many values.
So (i) implies:
(i) Let 0<j<e <d be integers. Then, there is no bound of regularity for
arbitrary coherent sheaves F of dimension <e over P?, which depends only
on

Isdim@ (#), 6 O(F), K F(-1)),...,. W (F(=(=1))),
WYY F(=j+ D)), ..., h(F(—e)).

Now, it is obvious that none of the systems occurring in (ii) is a bounding
system for all cohomological Hilbert functions h'(#(n)) (i =1, 2, .. .) for arbitrary
coherent sheaves # of dimension <e over P9 In this sense A'(F(—-1)),...,

h¢(#(—e)) form a minimal system of invariants bounding the cohomology of all
such sheaves. O

8. Smooth varieties in characteristic 0

Throughout this section we assume, that the ground field k& is of characteristic
0 (and—as previously —algebraically closed).

Moreover we assume that X < P“is a closed, smooth, connected non-degenerate
subvariety of positive dimension. Writing 1 for the inclusion map X ¢ P? we thus
have

(8.1) (i) Isdim® (1,0 ) = Isdim (1, 0, ) = d.
(ii) 69(1,05) =58(1,0,) =dim (X) := e.

Writing
(8.2) h'(Oy(n)) := dim, H(X, O (n)),

(where twisting is understood with respect to the embedding 1), we have (cf. [20])
(8.3) h(Ox(n)) =h'(1,0x(n), VneZ, Viz0.

Now, defining C® e F>*~*!, B® e F>$~'*! according to (6.8) and (6.9), we
introduce functions

C.:N?xNy—»Z, B :N’xNyxZ,_ ,»Z
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by setting (with (0,...,0,¢) e N;—+1):

(8.4) (i) Ci(a,b,¢) := C(a, b;0,...,0,c)
(ii) B;(a, b,c;n) =BX(a, b;0,...,0,c;n)

(8.5) REMARK: (A) It is obvious from the definitions of C; and B, that
(i) C, e F*": B, eF>.
(ii) B.(a,b,c;n) =0, VYn = C,(a,b,c).
(iii) C,(a, b,0) = —i + 1.
(iv) B.(a,b,0;n) =0, Vn = —i.
(B) By (6.10)(C), the above functions may be described as follows. First we put

(v) C;=C®; B:=B0"; (i=1,2,...).

Then, by descending induction on r, define functions
CN:N2xNy—»Z; B":N2xNyxZ,_ ,-N,

according to the following formulas, in which (@, b,c;n) e N> x Ny x Z, _;:
(vi) (a) Ca, b,c) = —i+1, forr>b—i.
(b) B"a,b,c;n)=0, forr>b—i.
In the range 0 < r < b — i we first define auxiliary functions

(vii)

c; (r=5b-1i).

VXa, b, c;n) := 1 "
(a5, ¢;m) Y BUtVab,e;m); (r<b—i).

m= —i+1

Using these functions, we ultimately put:

. . 7(r) A(r+1) b +
(iix) Ca, b,c) 1= CL* V(b b, c)+[V' S "’”] -1

al
(ix)
Via, b, c; n); (—i <n<Cr+a,b,c)).
| Via, b, C*Ya, b, c)); (CY*+a,b,c) <n<C(b,b,c)).
B(a, b, c;n)=1 Va, b,CI*a, b, ) — (n+1—C* g, b, 0))a;

(Cr*+Yb, b, c) <n < CPa, b, c)).
0; (C"(a, b, ¢) < n). @)
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Now, using the above functions, we get the following bounds on the cohomo-
logical Hilbert functions h‘(0,(n)):

(8.6) PROPOSITION. Let 0<i<e,j< —e +1i. Then:
(i) h'(Ox(n)) < B;(d, e, h°(Ox(j)); n—j—e), Vn2i+j+e.
(i) hi(Ox(n) =0, Yn=C;(d, e, h%(Ox())) +Jj+e.

Proof. In view of (8.5)(ii) it suffices to prove (i). According to the Kodaira
vanishing theorem [25] we have h/(0O,(n)) =0 for all /<e and all n <0. Let
i<l<e. Then —l+j+e<—l—e+it+e=—-14+i=<0 shows that
R, O0x(j+e)—=1) =hi(Ox(—1+j+e)=0forl=i...,e—1, (cf. (8.3)).

So, applying (6.11)(i) to 1, O (j + e) and observing (8.1), (8.2), (8.3) we obtain

h'(Ox(j+e +n))

=h'(1,0x(j +e)n)) < BO)(d, e;0,...,0,h°(1,0x(j +e)—e));n)
=B)(d,e,0,...,0,h(Ox())); n) = Bi(d, e, h*(Ox())); n)

for all n > —i.
Consequently

hi(Ox(n) < Bi(d, e, h°(Ox(j));n —j—e), Vnz—i+j+e .

Applying (8.6) with j = —e, we get bounds on the cohomological Hilbert
functions n — h'(0(n)), which depend only on A¢(O,( —e)).

(8.7) COROLLARY. Let 0<i <e. Then

(i) h(Ox(n)) < B;(d, e, h*(Ox(—e));n), Vn = —i

(i) h(Ox() =0, Vn 2 C,(d, e, h(Ox(—e))). O
Making again use of the Kodaira vanishing theorem, we thus obtain:

(8.8) COROLLARY: Let 0 <i <e. Then

<B.(d, e, h*(Oxy(—e));n); for 0<n<C,(d e h"(Ox(—e))).
=0; otherwise.

h i((ox(n)){

Now, from (7.9) we get the following regularity bound:

(8.9) COROLLARY. reg (Oy) < C,(d, e; h*(Ox(—e))) + 1. O
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Next, we want to apply the previous results to bound the cohomological Hilbert
functions of the vanishing ideal #, < Ops of X. Thereby we clearly may restrict
ourselves to the case 0 <e <d.

Applying cohomology to the sequences

(8.10) 0 F (1) — Opa(n) > 1,0(n) =0

and observing that H/(P9, Opa(n)) =0 for j # 0, d, we obtain
(8.11) hi(FI () = ki~ (Oy(n)) for 1 <i#d.

As HYP? Opi(n)) =0 for all n > —d, we get in addition
(8.12) h¥(F (n)) = h*~ (O, (n)) for alln = —d.

So, it remains to give our upper bound for the first cohomological Hilbert
function n +— h'(F x(n)). To do so, we introduce functions

B*:N2XN(2)“"N0, C*:NZXNO—‘)NO
defined by

b
(8.13) (i) B*(a,b,c;n) := BO)(a, b;0,...,0,¢,0,...,0;n)
(i) C*a,b,¢):= C9(a, b;0,...,0, «c0,...,0)
where BY), C©) are defined according to (6.8) and (6.9).

(8.14) PROPOSITION. Let 0 <e <d. Then

(i) h'(Fx(n) < B*(d, e + 1, h°(Ox(—e€));n — 1)
for 0<n < C*d, e+ 1, h*(O(—e)))

(ii) h'(F x(n)) =0 for all other n.

Proof. Let x € P. Then (8.10) induces a short exact sequence 0— .#, —
Opa, = Oy, —0, which tells us that depth (£, x) equals e + 1 or d, according to
whether x e X or x ¢ X. Therefore we have 6©@(#,) =8(Fx) =e + 1, hence
OO(SF (1) =e+1.

In view of (8.11) and (8.12)

h(SF x(D)(—i) = h(Fx(1 =) = h'~ ' (Ox(1 = i)) =0 or h*(Ox(—e)),

according to whether 2<i#e+1lori=e+ 1.

Applying cohomology to (8.10) (and observing that HO(PY Opi(n)) =
HY(P? 1,04(n)) for all n < 0) we see in addition that H'(P9, #,(n)) =0 for all
n <0. In particular A'(SF,(1)(—=1)) =h'(F,) =0.
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So, by (6.11) we get (cf. (8.4)(ii))

h'(Fx(n) = h'(£x(1)(n — 1))
e+1

A
<BP)d,e+1;0,...,0,h(Ox(—¢)),0,...,0;n—1)
=B*d,e + 1, h*(Ox(—€));n — 1)

for n — 12 —1. In view of (8.5)(ii) this proves our claim. O

(8.15) REMARK. Now, (8.7), (8.9) and (8.13) give the theorem (1.5). O
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