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Smooth algebras and vanishing of Hochschild homology

Antonio G. Rodicio

For a given homomorphism of commutative noetherian rings A -? 2?, we con-
sider the B ®A ^-module structure in B induced by the canonical surjective
homomorphism B®AB-+B* b®b&apos;*-*bb&apos;. We dénote by fdB&lt;g&gt;AB(B) the flat
dimension of this module.

Let K be a fîeld; then a noetherian A^-algebra C is called geometrically regular
if for any fini te field extension L | K, the ring C ® K L is regular. A homomorphism
A -&gt; B of noetherian rings is called regular if it is flat and its fibers are geometrically
regular.

In this paper we prove the following resuit

THEOREM 1. Let A be a noetherian ring and let B be a flat and noetherian

A-algebra. fffdB&lt;s&gt;AB(B) &lt; oo, then the homomorphism A^Bis regular.

This resuit has been obtained in [8] with two additional hypothèses: B has

characteristic zéro and B ®A B is a noetherian ring. Moreover, in [8] has been

proved that if A -* B is regular and B ®A B noetherian, then fdB&lt;s&gt;AB(B) &lt; oo.

Nevertheless, it is not true for an arbitrary regular homomorphism. Indeed, for a

regular homomorphism A -+B, we hâve isomorphisms [2, Proposition C]

where QB\A is the Kahler differentials module of B over A.
The proof of the version of Theorem 1 given in [8] uses the Hodge décomposition

of Hochschild cohomology in characteristic zéro, as well as a strong resuit of
L. Avramov [3], which characterizes the local complète intersection rings by the

finiteness of flat dimension of its cotangent complex. Hère we give a more
elementary proof based on the properties of Hochschild homology exposed in [5].
We also use a resuit of J.-L. Brylinski [4] concerning to the localization of this

homology.
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Observe that the condition fdB&lt;s&gt;AB(B) &lt; oo is équivalent to the existence of an
integer n such that the Hochschild homology

Hn(B, M) Tor* *&gt;* B (B, M) 0

for ail B ®A ^-modules M.
The results we will be using are the following

R.l. Let AT be a commutative ring and let A, L be commutative A&apos;-algebras such

that A is K-ûat Then for any (L ®KA) ®L(L ®K A) -module M there are isomor-
phisms Hn(A, M) ~ Hn(L ®K A, M) (on the left hand side we hâve homology of A

over K, and on the right one, homology of L ®KA over L).
R.2. Let K be a fîeld and let A be a commutative A&apos;-algebra. Then for any

A-modules M and N we hâve isomorphisms Hn(A, M ®KN) ~ Tor^ (M, N).
R.3. Let A -? B be a flat homomorphism of commutative rings. Let q be a prime

idéal of B and let p be its contraction in A. Then for any 5 ®A B-module M we
hâve isomorphisms

Torf ®* * (B, M\ ~ To# ®^ ^ (^, M,).

R.l and R.2 are in [5]. R.3 is in [4].

Proof of Theorem 1. Using R.3 it is sufficient to show that if A-+B is a

flat homomorphism of noetherian local rings, K the residue field of A, and

fdB&lt;S)AB(B) &lt; oo, then B ®A K is a geometrically regular AT-algebra. Let
C B ®A K. It follows from R.l that/rfC(g&gt;itC(C) &lt; oo. Since C is noetherian, R.2

implies that the global dimension of C is finite. Then C is a regular local ring (by
the classical resuit of J. P. Serre [10]). Moreover, a new application of R.l and R.2,
shows that C remains regular after a finite extension of K. Therefore C is

geometrically regular over K, and Theorem 1 is proved.

As a particular case of Theorem 1 we obtain that a field extension L \ K is

separable iffdL&lt;s&gt;xL(L) &lt; oo. It is a generalization of Theorem 9 in [8].

COROLLARY 2. Let A be a noetherian ring and let B be an A-algebra offinite
type. The following conditions are équivalent

(i) B is a smooth A-algebra
(ii) B is a flat A-module and fdB&lt;s&gt;AB(B) &lt; oo.

Proof Let us recall the characterizations of regularity and smoothness using
the André-Quillen 1-dimensional (co) homology functors H(A, B, -) (see [1]). This
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functors can be described as follows. Let B czR/J be a présentation of B where
R is a polynomial ^4-algebra, and consider the canonical homomorphism
J/J2-+Qr\a ®r B&apos; Then, for a S-module M we hâve

HX(A9 B, M) a Ker (J/J2 ®B M^QR]A ®R M)

Hl(A9 B, M) cz Coker (Hom* (QR ]A ®R B, M) -&gt; HomB (//72, M)).

The above mentioned characterizations are the following:
(1) A -? B is regular if and only if HX(A&gt; £, -) 0, i.e., HX(A9 B,B)=0 and

Qb\a is a flat ^-module;
(2)5 is a smooth ^4-algebra if and only if Hl(A9 B, — =0, i.e.,

//,(;4, B, B) =0 and fî^i^ is a projective B-module. Since B is noetherian
and QB j ^ is a finitely generated ^-module, thèse two conditions on fîB j A are

équivalent. Then the resuit is a conséquence of [8] and Theorem 1.

REMARK 3. The proof of HX(A, B, — =0 for a regular homomorphism is

easy if B is an ^4-algebra of finite type. In the gênerai case, the proof is difficult since

it involves the homology functors of higher dimensions (see [1], pp. 330-331).

The homomorphism of rings B ®^ B-+B enable us to consider a B-module M
as a B ®A ^-module. If B ®^ B is a noetherian ring, then the vanishing of
Hn(B, M) for an integer n and ail ^-modules M, is sufficient for fdB($AB(B) &lt; oo.

It is an easy conséquence of the following well known resuit: if R is a local
noetherian ring with residue field K, and / is an idéal of R, then fdR(R/I) &lt; oo if
and only if there exists an integer n such that Tor£ (R/I, K) 0. On the other hand,
the calculation of Hochschild homology of complète intersections in [11] shows that
there exist locally complète intersection algebras A, of finite type over a field of
characteristic zéro such that Hn(A9 A) # 0 for infinitely many n. We consider this as

an évidence for the following conjecture:

CONJECTURE. Let K be a field of characteristic zéro and let A be a K-algebra
offinite type. IfHn(A9 A) =*Qfor n sufficiently large, then A is a smooth K-algebra.

A conjecture of J. Herzog implies that such an algebra must be at least a locally
complète intersection. In fact, since K has characteristic zéro, Hn(K, A, A) is a

summand of Hn+l(A, A) (see [6], where Hn(K,A,A) is called HUn(A, A)). Then

Hn(K9 A, A) 0 for n sufficiently large. Let R be a polynomial ^-algebra of finite
type such that there exists a surjective AMiomomorphism R -&gt;A. Since the André-
Quillen homology of R vanishes in dimensions &gt;0, the Jacobi-Zriski séquence
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associated to K-+R-+A yields Hn(R, A, A) 0 for n sufficiently large. In this
situation, Herzog conjectures [7] (p. 62) that A must be a locally complète
intersection.
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