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Smooth algebras and vanishing of Hochschild homology

ANTONIO G. RoDIcIO

For a given homomorphism of commutative noetherian rings 4 - B, we con-
sider the B ® , B-module structure in B induced by the canonical surjective
homomorphism B®,B—+B. b®b'+— bb’. We denote by fdy g, 5(B) the flat
dimension of this module.

Let K be a field; then a noetherian K-algebra C is called geometrically regular
if for any finite field extension L | K, the ring C ® x L is regular. A homomorphism
A — B of noetherian rings is called regular if it is flat and its fibers are geometrically
regular.

In this paper we prove the following result

THEOREM 1. Let A be a noetherian ring and let B be a flat and noetherian
A-algebra. If fdg o , 5(B) < 0, then the homomorphism A — B is regular.

This result has been obtained in [8] with two additional hypotheses: B has
characteristic zero and B ® 4 B is a noetherian ring. Moreover, in [8] has been
proved that if 4 —» B is regular and B ®, B noetherian, then fdg g, 5(B) < 00.
Nevertheless, it is not true for an arbitrary regular homomorphism. Indeed, for a
regular homomorphism 4 — B, we have isomorphisms [2, Proposition C]

A Qp 4 — Tory ®4 2 (B, B),

where Q) , is the Kahler differentials module of B over 4.

The proof of the version of Theorem 1 given in [8] uses the Hodge decomposi-
tion of Hochschild cohomology in characteristic zero, as well as a strong result of
L. Avramov [3], which characterizes the local complete intersection rings by the
finiteness of flat dimension of its cotangent complex. Here we give a more
elementary proof based on the properties of Hochschild homology exposed in [5].
We also use a result of J.-L. Brylinski [4] concerning to the localization of this
homology.
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Observe that the condition fd o , 3(B) < 0 is equivalent to the existence of an
integer n such that the Hochschild homology

H,(B, M) =Tor2®42(B,M) =0

for all B ® , B-modules M.
The results we will be using are the following

R.1. Let K be a commutative ring and let A, L be commutative K-algebras such
that A is K-flat. Then for any (L ® x A1) ®, (L ® x A)-module M there are isomor-
phisms H,(A, M) ~ H (L ®x A, M) (on the left hand side we have homology of A
over K, and on the right one, homology of L ® x A over L).

R.2. Let K be a field and let A be a commutative K-algebra. Then for any
A-modules M and N we have isomorphisms H,(A, M ® x N) ~ Tor? (M, N).

R.3. Let A — B be a flat homomorphism of commutative rings. Let g be a prime
ideal of B and let p be its contraction in A. Then for any B ® , B-module M we
have isomorphisms

Tor? ®4 2 (B, M), ~ Tor?: ®4, % (B,, M,,).

R.1 and R.2 are in [S5]. R.3 is in [4].

Proof of Theorem 1. Using R.3 it is sufficient to show that if 4 > B is a
flat homomorphism of noetherian local rings, K the residue field of A4, and
fdpg ,8(B) <0, then B®,K is a geometrically regular K-algebra. Let
C =B ®4K. It follows from R.1 that fdc g, c(C) < 00. Since C is noetherian, R.2
implies that the global dimension of C is finite. Then C is a regular local ring (by
the classical result of J. P. Serre [10]). Moreover, a new application of R.1 and R.2,
shows that C remains regular after a finite extension of K. Therefore C is
geometrically regular over K, and Theorem 1 is proved.

As a particular case of Theorem 1 we obtain that a field extension L | K is
separable if fd, o, (L) < . It is a generalization of Theorem 9 in [8].

COROLLARY 2. Let A be a noetherian ring and let B be an A-algebra of finite
type. The following conditions are equivalent

(1) B is a smooth A-algebra
(ii) B is a flat A-module and fdy & , 5(B) < 00.

Proof. Let us recall the characterizations of regularity and smoothness using
the André-Quillen 1-dimensional (co) homology functors H(A, B, —) (see [1]). This
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functors can be described as follows. Let B ~ R/J be a presentation of B where
R is a polynomial A-algebra, and consider the canonical homomorphism
J|J?—> Qg 4 ®r B. Then, for a B-module M we have

H\(A4, B, M) ~Ker (J|J* @3 M - Qg , Qr M)
H'(4, B, M) ~ Coker (Homg (2|, ®x B, M) »Hom, (J/J2, M)).

The above mentioned characterizations are the following:

(1) A - B is regular if and only if H,(4, B, —) =0, i.e.,, H,(4, B, B) =0 and
Qp 4 is a flat B-module;

(2) B is a smooth A-algebra if and only if H'(4,B,-)=0, ie,
H\(A4, B, B) =0 and Qg , is a projective B-module. Since B is noetherian
and Qg , is a finitely generated B-module, these two conditions on Qg , are
equivalent. Then the result is a consequence of [8] and Theorem 1.

REMARK 3. The proof of H,(A4, B, —) =0 for a regular homomorphism is
easy if B is an A4-algebra of finite type. In the general case, the proof is difficult since
it involves the homology functors of higher dimensions (see [1], pp. 330-331).

The homomorphism of rings B ® , B — B enable us to consider a B-module M
as a B®,B-module. If B®,B is a noetherian ring, then the vanishing of
H,(B, M) for an integer n and all B-modules M, is sufficient for fdy g , 5(B) < c0.
It is an easy consequence of the following well known result: if R is a local
noetherian ring with residue field K, and 7 is an ideal of R, then fdg(R/I) < oo if
and only if there exists an integer n such that Tor® (R/I, K) = 0. On the other hand,
the calculation of Hochschild homology of complete intersections in [11] shows that
there exist locally complete intersection algebras A, of finite type over a field of
characteristic zero such that H, (A4, A) # 0 for infinitely many n. We consider this as
an evidence for the following conjecture:

CONJECTURE. Let K be a field of characteristic zero and let A be a K-algebra
of finite type. If H,(A, A) =0 for n sufficiently large, then A is a smooth K-algebra.

A conjecture of J. Herzog implies that such an algebra must be at least a locally
complete intersection. In fact, since K has characteristic zero, H,(K, A, A) is a
summand of H,, (A4, A) (see [6], where H, (K, A, A) is called H, ,(A4, A)). Then
H,(K, A, A) =0 for n sufficiently large. Let R be a polynomial K-algebra of finite
type such that there exists a surjective K-homomorphism R — 4. Since the André—
Quillen homology of R vanishes in dimensions >0, the Jacobi—Zriski sequence
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associated to K—+ R — A yields H,(R, A, A) =0 for n sufficiently large. In this

situation, Herzog conjectures [7] (p. 62) that 4 must be a locally complete
intersection.
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