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About a problem of Ulam concerning flat sections of manifolds

Luis MONTEJANO*

§0. Introduction

The problem 68 of the Scottish Book [13], stated by S. M. Ulam, says the
following:

“There is a given n-dimensional manifold R with the property that every section
of its boundary by a hyperplane of (n — 1)-dimensions gives an (n — 2)-dimen-
sional, closed surface (a set of homeomorphic to a surface of the sphere of this
dimension). Prove that R is convex.”

The problem is also included in the list of problems about finite dimensional
manifolds of R. J. Daverman [7]. It is listed as the problem M.16 and it is
interpreted as follows:

“If M is a compact, (n + 1)-dimensional manifold with boundary in R**' for
which every n-dimensional hyperplane H that meets M in more than a point has
H N oM an (n — 1)-sphere, is M convex?”’

Schreier [14] showed that a two-dimensional surface in R*, each of whose
nondegenerate planar sections is a Jordan curve, is the boundary of a convex body.
Our first theorem, which is a generalization of Schreier’s Theorem, solves this first
interpretation of Ulam’s Problem.

THEOREM 1. Let N be a closed, connected n-manifold topologically embedded
in R"*'. Suppose that for every n-dimensional hyperplane H that meets N in more

than a point, H — N has exactly two components. Then N is the boundary of a convex
(n + 1)-body.

Let X be a compact subset of R"* !. An n-dimensional hyperplane H of R"*!
is called a supporting hyperplane of X if X n H # ¢ and X is contained in one of the
closed halfspaces of R**' determined by H.

* Research supported by the Alexander von Humboldt-Foundation
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In Theorem 1 we are not using the whole strength of the hypothesis of Ulam’s
Problem, because the phrase “every n-dimensional hyperplane that meets N in more
than one point” almost implies that N is the boundary of a convex body. It will be
clear from the proof of Theorem 1 that every supporting hyperplane H of N has
H — N connected and, consequently, under this weak hypothesis, H \ N is a single
point. Therefore, a better interpretation of Ulam’s Problem is the following one
in which no assumption is made on the intersection of M with its supporting
hyperplanes. Furthermore, as it is suggested by the commentary of R. D. Mauldin
[13] to this problem, it would be interesting to consider intersections with hyper-
planes of lower dimensions.

ULAM'’S PROBLEM. Let 1 <k <n. If M is a compact (n + 1)-manifold with
boundary in R"* ' for which every k-dimensional hyperplane H that meets the interior
of M has H oM a (k — 1)-sphere, is M convex?

If Nis a closed, connected n-manifold topologically embedded in R** !, let In (N)
denote the bounded component of R**' — N. Our next theorem solves Ulam’s
Problem.

THEOREM 2. Let 1 <k <n and let N be a closed, connected n-manifold
topologically embedded in R"*'. Suppose that for every k-dimensional hyperplane H
that meets In (N), H N\ N has the Cech-cohomology of a (k — 1)-sphere. Then N is the
boundary of a convex (n + 1)-body.

In order to prove Theorem 2 it will be essential to characterize convex bodies in
terms of the cohomology of its sections. A compact set X will be called acyclic if for
every 4 > 0, the reduced Cech-cohomology group H*(X, Z) is zero. For example, if
X is an n-sphere topologically embedded in R *!, then Z U In () is acyclic. Our next
theorem characterizes convex sets in terms of acyclic sections.

THEOREM 3. Let 1 <k < nand let K be a compact subset of R"* . Suppose that
for every k-dimensional hyperplane H that meets K, H n K is acyclic. Then K is convex.

Note that Theorem 3 generalizes Aumann’s Theorems [1] and [2] (see commen-
tary of R. D. Mauldin to the problem 68 of the Scottish Book [13]) because for a
compact subset X of R% X is acyclic if and only if X and R*— X are connected
(Aumann’s definition of simple connectedness).

We may be also interested just in sections with horizontal hyperplanes. In this
direction we can obtain, using deep decomposition theorems of R. J. Daverman
[4], [6], the following theorem:
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THEOREM 4. Let N be a closed, connected n-manifold topologically embedded
in R"*!. Let R,=R"x {t} and N, =R, N. Suppose that N satisfies one of the
following two properties:

(a) For every R, which meets N in more than a point, N, is a closed, connected

(n — 1)-manifold with the property that n,(N,) is abelian, n 2 5.
(b) For every R, which meets N in more than a point, N, is a closed, connected
(n — 1)-manifold with the property that N, is locally flat in N.
Then N is an n-sphere.
If in addition to (b), N, is locally flat in R,, n # 4, then N is a locally flat n-sphere.

For 3-dimensional versions of this theorem see [3] and [9].

We let R” denote Euclidean n-space and we will identify R* with
{(xys...,x,)eRYx, ., =---=x,=0}. Also, we let R® and R” denote
{(xy,...,x,) eRYx, 20} and {(x,,...,x,) € R"/x, <0}, respectively. Further-
more, if x € R", B,(x) = {y € R"/||x — y| <€} denotes the open ¢-ball centered at x.
For any space X and 4 < X, we use Int, 4, Cl, 4 and Bd, 4 to denote, respec-
tively, the topological interior, closure and boundary of 4 in X. The subscript will
be omitted when the meaning is clear and in that case 4 will also denote the closure
of 4in X.

In this paper we will use reduced Cech-homology [cohomology] and all our
homomorphisms, unless otherwise stated, are induced by inclusions.

§1. The proof of Theorem 1

In this section we will always use reduced Cech-homology [cohomology] with
Z ,-coefficients.
Our first task is to prove the following theorem:

THEOREM 1.1. Let U be a bounded, open subset of R"*'. Suppose that:
(1) H,_,(U)—>H,_(0) is an epimorphism.
[H"~Y(O) - H"~ '(U) is a monomorphism.]
(2) For every n-dimensional hyperplane H of R**' that meets U in more than a
point, H " (HNBd U) = Z, (i.e. H— Bd U has exactly two components).
Then U is convex.

The following two technical lemmas will be needed in the proof of Theorem 1.1.

LEMMA 1.2. Let U be as in Theorem 1.1 and let H be an n-dimensional
hyperplane that meets U. Then H — U is the unbounded component of H — Bd U and
consequently H — U is connected.
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Proof. Since H" " '(HNnBd U) =Z, then H —Bd U has exactly two compo-
nents, W, and W,. Let W, be the bounded component of H —Bd U. If xe HNU
then x € W,, otherwise there would be an arc from x to a point in H — U which
does not intersect Bd U. By exactly the same reason and since H N\ U # (J, every
element of W, belongs to U and also W,c H — U. Then W,=H — U. O

LEMMA 1.3. Let U be as in Theorem 1.1 and let H be a supporting hyperplane
of U. Then H U consists of a single point.

Proof. We will give the proof of the homology version. The cohomology version
has just the dual proof.

Suppose HNU = HnBd U = X is not a single point. Hence, H" ~'(X) = Z,
and consequently H — X has exactly two components. Therefore, H, _,(X) = Z,.
Let W be the bounded component of H — X and let X = X U W. It is not difficult
to prove that H (X)=H,_ ,(X)=0 and that if we W then H,_,(X)—
H,_ (X —{w}) is an isomorphism. Without loss of generality we may assume
that H = R", W contains the origin of R"*! and U <« R%*'. For ¢ € (0, ), let
Y, = UU(R" x [t, ©)).

CLAIM. There is t, € (0, 00) such that H,_,(X) - H,_,(Y,)) is zero.

IfH, ,(X) =, H,_,(U) is zero, then there is nothing to prove. Therefore, let
y be the generator of H,_,(X) =Z, and suppose 0 #i,(y) € H,_,(U). By hypo-
thesis, there is g € H,_,(U) such that j, (8) =i,(y), where j: U ¢ U is the inclu-
sion. For every t € (0, o0), let U, = Un(R" x (¢, ov)). Hence, there is ¢, € (0, o)
and B, € H,_,(U,,) such that k (B, ) = B, where k : U, — U is the inclusion.

Let us consider the following commutative diagram of homomorphisms induced
by inclusions:

Z,=H,_ (X)— H,_,(0)

| / oo,

l.
Hn~l(Yt0) — n—l(Uro)

Since 4, is zero and (jk),(B,,) = i,(y), we have that H, _,(X) - H, _,(Y,,) is zero.
This concludes the proof of the claim.

Let us return to the proof of Lemma 1.3. Let Y = XU Y, ,- Our next purpose is
to prove that H,(Y, ) — H,(Y) is an epimorphism.

Since the origin of R**' is not in U, then there is 0 <e <, such that
B(0)cR"*'—U. Let 0<t, <e be such that (R" x {t,}) nU # &. Hence, by
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Lemma 1.2, there is a proper embedding « : [0, c0) - R" x {¢,} such that «(0) =
0,1)eR" x(—0,0)=R"*!, a0, 0)) =cR*"*!'—~U and R"*'— ([0, 0)) is
contractible.

Let S be the n-sphere of radius ./e?+t? centered at (0,t,) and let
V = B,(0) nR". Hence, S nR" is the boundary of V.

Let f:R"*!' —{(0,¢,)} - S be given by

_ (0, 7,
Rl (o) NGET AT

for every x e R"* ! —{(0, t,)}. Let us consider the following commutative diagram:

H(Y)->H/(Y,Y—V)
l 1 = T 1.
H,(S)- H,(S,SnR>+1)

Since f: (Y, Y — V) —>(S, SNR"*") is a homeomorphism of pairs and f: Y - S is
nullhomotopic because it factorizes through R"*!'—a([0, 0)), we have that
H(Y)->H,/(Y,Y—V)is zero and consequently that H,(Y — V) —» H,(Y) is an
epimorphism.

On the other hand, since the inclusion X — ¥V ¢ X — {0} is a homotopy
equivalence and H,_,(X)- H,_,(X —{0}) is an isomorphism, the long exact
sequence of the pair ()? — ¥V, X) shows that H,,()? — V, X) =0 and, by excision, that
H(Y—-V,Y,)=0. Thus, H,(Y, ) = H,(Y — V) is an epimorphism and hence so
is H,(Y,,) > H,(Y).

Let us consider the Mayer-Vietoris long exact sequence corresponding to the
decomposition Y =Y, ouf' :

—*Hn(Y,(,)@Hn(f’)LHn(Y)i’Hn_:(X)LHn_l(Y,O)EDHn_I(Y)-*

Since i is an epimorphism and j is zero, we have that H,_,(X) =0, which is a
contradiction. This concludes the proof of Lemma 1.3. O

Proof of Theorem 1.1. Let cc(U) be the convex hull of U. We will start by
proving that Bd (cc(U)) = Bd U. Let x € Bd (cc(U)) and let H be a supporting
hyperplane of c¢¢(U) through x. By Caratheodory’s Theorem (see [10]), there is a
finite set F =« H n U such that x belongs to the convex hull of F. Therefore, H is a
supporting hyperplane of U and hence, by Lemma 1.3, Hn U = {x}.

Let us now prove that cc(U) = U. Suppose it is not. Let y, € cc(U) —

y, € U cInt (cc(U)) and H, an n-dimensional hyperplane through y, and y,. Let
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y1 € H, — cc(U). Note that y, and y, are in different components of H, —Bd U.
Furthermore, since Bd (cc(U)) = Bd (U), y, and y,, i =1, 2, are in different compo-
nents of H, — Bd U. Consequently, H, — Bd U has at least three components, which
is a contradiction. Then cc(U) = U which implies that U is convex. a

Let X be a locally compact, metric space. We say that X is uniformly, homolog-
ically n-connected, ulc”, if given 0 < i < n, any abelian group G and any open cover
a of X, there is an open cover f of X with the following property: For every V € f
there is W e a such that ¥V < W and H,(V, G) -» H,(W, G) is zero. By Theorems
X.3.2 and X.6.10 of [15], we know that a bounded, open subset of R**! is ulc” if
and only if each component of its boundary is a generalized manifold. Thus, if N
is a closed, connected n-dimensional manifold topologically embedded in R"+!,
In (N) 1s ulc”.

As an immediate corollary of Theorem 1.1 and Theorems X.5.12 and X.6.3 of
[15], we have the following theorem.

THEOREM 1.4. Let U be a bounded, ulc", open subset of R"*'. Suppose that for
every n-dimensional hyperplane H that meets U in more than a point, H — Bd U has
exactly two components. Then U is convex.

Theorem 1 follows immediately from Theorem 1.4. Note that Theorem 1 also
holds when N is a generalized manifold.

Proof of Theorem 4. Let us suppose that N, # J if and only if ¢ € [0, 1]. By the
proof of Lemma 1.3, Theorem X.5.12 and Theorem X.3.2 of [15], we have that N,
and N, consist each one of a single point. By Corollary 8.9 of [6] in case (a) and
Lemma 4.1 of [6] in case (b), we have that M is the suspension of M,. Conse-
quently, M is an n-sphere and M, is a homotopy (n — 1)-sphere. Finally, the last
assertion follows from Corollary 5.6 of [4] and Theorem 1 of [5].

§2. Alexander Duality and acyclic sections

The main purpose of this section is to prove Theorem 3. In our proof we will
use Alexander Duality. Thus, for completeness, we summarize what we need in the
following:

For every compact subset X of R”, any abelian group G and 0 <A < n — 1, there
is an isomorphism

D% :H}X,G)-»H, , (R"—X,G).
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From this isomorphism we will use the following three facts (see [8]):

(2.1) Let X, Y < R” be such that X is compact, Y is a compact polyhedron and
XnY=. Leti: X—>R"— Y andj: Y - R"— X be the inclusions. Sup-
pose that

Dj3(x) € Imagej, : H,_;_(Y,G)»H,_;,_(R"— X, G),
then
a € Image i* : HY(R" — Y, G) - HXX, G).

(2.2) Let X be a compact subset of R"*!. Then the following diagram is
commutative (up to sign):

HYX AR", G) < AN, G)

n n+1

A,_,_ (R"—X,G) < A,_,(R"*' - X, G)

where 0 is the boundary homomorphism which arrives from the Mayer-
Vietoris long exact sequence of the decomposition of R"*' — X induced
by R”cR**! and i* is the homomorphism induced by the inclusion
i: XNnR"4 X.

(2.3) In particular, if XcR", since 0:H, (R"*'—-X,G)-H, _,_,
(R*— X, G) is an isomorphism, we have that if D’%(y) =08, for
ye HXX,G) and e H, ,(R"*'—X,G), then D71*'(y) = +8.

For the rest of this paper, unless otherwise stated, we will use reduced Cech-
homology [cohomology] with Z-coefficients.

Proof of Theorem 3. It is not difficult to see that it is enough to prove the
theorem for kK =n. The proof is by induction on n. If n =1, compact, acyclic
subsets of 1-dimensional hyperplanes in R? are closed intervals, so K is convex.
Suppose the theorem is true for n — 1. We will prove it for n.

We will start by proving that for every supporting hyperplane H of K, HnK
is convex. For that purpose it will be enough to prove that for every (n — 1)-
dimensional hyperplane I' of H which meets K, I' n K is acyclic.
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Let us assume without loss of generality that ' =R"~!, H=R"and K <« R%*'.
Let X={(x\,...,%,,1)€K/x,20}. Then XnR" " '=KnR""!, XnR"=
KnRY and if H,={(x,,...,x,,,)eR"*/x,,,=1x,} is an n-dimensional hy-
perplane through R"~', then X n H, = Kn H, for every t > 0.

We will first prove that for every i 20, H(KNR" ) > H(KNR""') is zero.
That is, we will prove that

HXARY 5 (X AR 1)

is zero.

Let « be a nonzero element of H{(X "R"). Let us look at the following
commutative diagram (up to sign):

HX AR <X AR
H(X ~R"~H) | o
D"
A, (H—-XnRY) < H,_ (R —(XAR")

. T,

H,_, (YanH) <R, (Y,

where the first block is as in 2.2, where H, is playing the role of R” and X nR" the
role of X and, where Y, cR"*' — (X nR") is a compact polyhedron with the
property that there is f € H,_(Y,) such that k,(B) = D"*'(x). Furthermore, let
0:H, (Y,)—-H,_, ,(Y,nH,) be the boundary homomorphism which arises in
the Mayer- Vietoris long exact sequence from the decomposition of Y, induced by
Ht c R" + ).

Hence, j,(0p) = + D} (i*(«)) and consequently by 2.1,

i*(x) € Image A* : H(H, — Y,) > H(X "R~ ).

Since Y,n(XnR") = then, for ¢ >0 sufficiently small, ¥, n(XnH,) =
and hence, XNnR""'cXnH,cH,—Y,. Therefore, A* factorizes through
H(XnH,)=H(KnH,) =0, and hence i*(x) =0.

This proves that H(K nR". ) - H(K nR"~") is zero. Similarly, H(K "R" ) -
HY K R"') is also zero. Therefore, the Mayer—Vietoris long exact sequence of
the decomposition of K nR" induced by R" ' < R", together with the fact that
K A R" is acyclic, imply that H(K~R"~') =0.

We have proved that H n K has acyclic (n — 1)-dimensional sections. Hence, by
induction, HnK is convex for every supporting hyperplane H of K. By
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Caratheodory’s Theorem, we have that Bd (cc(K)) = Bd K and arguing as in the
proof of Theorem 1.1 we conclude that K is convex. O

The next theorem, whose proof uses Alexander Duality, will be used in the
proof of Theorem 2.

THEOREM 24. Let U be a bounded, connected, ulc", open subset of R"* !,

Suppose that for every n-dimensional hyperplane H that meets U, H AU is acyclic.
Then U is convex.

Proof. Let ' be a supporting hyperplane of U. By Theorem 3 and Theorem
X.6.3 of [14], it will be enough to prove that I' n U is acyclic. Without loss of
generality we may assume that ' =R" and UcR". For every t>0, let
Y, = UuU(R" x [t, 00)).

Suppose H(U NR") is not zero. Then, following the proof of the claim in
Lemma 1.3, but using Theorem X.5.9 of [15] instead of (1), it is possible to check,
by the naturality of the Universal Coefficient Theorem, that there is an abelian
Group G, t, € (0, ) and an element y € H(U nR", G) which is not in the image of
H(Y,,G)->H(UNR"G).

Clearly, #, , (R"-U,G)-»H, , (R"*'—-U,G) sends D7(y) to zero.
Note now that for every n-dimensional hyperplane H that meets U,
HHNU,G)=0 (see Section 3 of [12]). Hence, H, , (R"—U,G)—>
A, ., (R"*'—U, G) sends D"(y) to zero because there are sufficiently small
numbers ¢ >0 with the property that (R” x {¢}) nU # & and consequently with
the property that

H_._ ((Rx{t}) -U,G) =H(R"x{t})nT,G) =0.

Let us consider the following commutative diagram, where the vertical homomor-
phisms correspond, respectively, to the Mayer—Vietoris long exact sequence of the
decomposition of R"*' - Y, and R"*' —(UNR") induced by R" < R"** .

r'y 8 % M ka v _
A, (Y,G)" A, _(R"*+'—Y,,G) —— A, (R"*'— (TR, G)
Fij = 0
ﬁn——i-l(Rn—YtoaG)"L:'—) n..;_](Rn—U,G)
) .
ﬁn—i—l(R’-’:" - Ytoa G)

®
[?n~i~|(lR"~-+_l - YtoaG)
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By the above, A(D7(y)) =0. Thus,let Yc R"*! — Y, , be a compact polyhedron
such that 9j,(B) = D?(y) for some f € H, (Y, G). Hence, 0k ,j.(B) =D7(y) and
then, by 2.3, k,j,(f) = £D?*'(y). Therefore, by 2.1, y is in the image of
H (R"*'—Y,G) - H(UNR",G). This is a contradiction because U nR" = Y, <
[@”*' — Y and y is not in the image of H(Y, , G) » H(U nR", G). Consequently,
H({UANR") =0 and hence, UnR" is acyclic. This concludes the proof of
Theorem 2.4. O

REMARK. If in Theorem 2.4, U is also an ENR, then the following is a
simpler proof. Let I' =R" and U = R". as above. We will prove that UnT is
acyclic. Let IT : U — R be the projection on the last coordinate. Then, by 2.2 of [11]
or Corollary 3.3 of [12}, I1|: IT1 ~'(II(U)) - I(U) is an uv™ map. Consequently, by
Theorems X.5.9 and X.6.3 of [15] and the Vietoris—Begle Theorem (see 3.4 of [11]),
UnNT is uw™ and hence, again by 2.2 of [11], acyclic.

§3. The proof of Theorem 2
We will derive Theorem 2 from the following theorem:

THEOREM 3.1. Let 1 <k <nand let U be a bounded, ulc", open subset of R" *!
such that U is an ENR. Suppose that for every k-dimensional hyperplane H that
meets U, HNU is connected and H ~ U is acyclic. Then U is convex.

Proof. Let I" be a (k + 1)-dimensional hyperplane that meets U. Then, it is easy
to see that I' n U is connected. Consequently, by Theorem 2.4, it will be enough to
prove that I' AU is acyclic. Without loss of generality we may assume that
r={(x,....x, 1) )eR"*|x;=x,=""-=x,_, =0}.

Let p : U— R"—* be the projection on the first (n — k)-coordinates. We would
like to show that H(p ~'(0)) = 0, for every i > 0. Since U is an ENR, by 2.2 of [11]
or Corollary 3.3 of [12], it will be enough to prove that given ¢ > 0 there is 6 >0
such that

Hi(p~'(B5(0)) ~ Hi(p ' (B(0)))

is zero, for every i =2 0. By Theorem X.5.9 of [15], it will be enough to prove that
for every i 2 0 and ¢ > 0 sufficiently small,

H,(p~'(B.(0)) "U) - H,(p ~'(B.0))

IS zero.
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Let IT:R"*'>R"—%+! be the projection of the first (n — k + 1)-coordinates.
Note that IT ~'(y) is a k-dimensional hyperplane and II(I') is the line

L={(x,.. ., X% sy ) eR"*x,=---=x,_, =0}

We will first prove that IT(U) is convex. Let x, y € II(U) be any two points and
let x,, yo € U be such that I1(x,) = x and I1(y,) = y. Let I', be the (k + 1)-dimen-
sional hyperplane which contains {x,}uIl~'(y). Hence, II(I',) is the line in
R"~*+1! which contains x and y. Furthermore, since I' n U is connected, the closed
interval with endpoints x and y is contained in II(U). This proves that II(U) is
convex.

Since II(U) = I1(U), then IT1(U) is convex and L nII(U) is a closed interval
whose relative interior is L " II(U). Let n : R"~*+! - R"~* be the projection on the
first (n — k)-coordinates. Note that = ~'(0) = L. Hence, for ¢ > 0 sufficiently small,
W =n~'(B,(0)) nII(U) is contractible.

Let II|: 0 '(W)nU->W be the restricion of II to I '(W)nU.
Clearly, IT~'(W)n U is an ENR and II| is a proper map whose point inverses are
acyclic. Then, by 2.1 and 2.2 of [11] or Corollary 3.3 of [12}, IT| is a uv® map and
consequently, by the Vietoris—Begle Theorem (see 3.4 of [11]), H,(IT"'(W)n0) =
0, for every i 2 0.

Since p "' (B () "nU <= (W)nU < p~'(B,(0)), we have that

Hi(p ~'(B0)) nU) —» H,(p " (B.(0)))
is zero. This concludes the proof of Theorem 3.1. O

Proof of Theorem 2. By theorem X.3.2 of [15], In(N) is a bounded, ulc”,
open subset of R”*!. Furthermore, In(N) = Nuln (N) is an ENR. Let H be a
k-dimensional hyperplane that meets In (N). Therefore, H*~Y(H NN, Z,) = Z,,
which implies that H — N has exactly two components. Let W be the bounded
component of H — N. Since HnIn (N) # J, it is easy to see, as in the proof of
Lemma 1.2, that H nIn (N) = W and consequently that H nIn (N) is connected.
Furthermore, using Mayer—Vietoris, it is easy to check that HnIn(N) =
Hn(Nuln(N)) =(HnN)uW is acyclic. Then, Theorem 3.1 implies that In (N)
is convex and consequently that N is the boundary of a convex (n + 1)-body. O

REMARK. Note that Theorem 2, k =n, holds when N is a generalized
manifold and Theorem 2, 1 < k < n, holds when N is a generalized manifold which
is also an ENR.
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