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About a problem of Ulam concerning flat sections of manifolds

Luis Montejano*

§0. Introduction

The problem 68 of the Scottish Book [13], stated by S. M. Ulam, says the

following:

&quot;There is a given n-dimensional manifold R with the property that every section

of its boundary by a hyperplane of (n — 1) -dimensions gives an (n — 2)-dimen-
sional, closed surface (a set of homeomorphic to a surface of the sphère of this

dimension). Prove that R is convex.&quot;

The problem is also included in the list of problems about finite dimensional
manifolds of R. J. Daverman [7]. It is listed as the problem M. 16 and it is

interpreted as follows:
&quot;If M is a compact, (n + 1)-dimensional manifold with boundary in Un+l for

which every n -dimensional hyperplane H that meets M in more than a point has

HnôM an (n — l)-sphere, is M convex?&quot;

Schreier [14] showed that a two-dimensional surface in R3, each of whose

nondegenerate planar sections is a Jordan curve, is the boundary of a convex body.
Our first theorem, which is a generalization of Schreier&apos;s Theorem, solves this first
interprétation of Ulam&apos;s Problem.

THEOREM 1. Let N be a closed, connected n-manifold topologically embedded

in Un+l. Suppose that for every n-dimensional hyperplane H that meets N in more
than a point, H — N has exactly two components. Then N is the boundary of a convex
(n + \)-body.

Let Ibea compact subset of IR&quot; + An n-dimensional hyperplane H of
is called a supporting hyperplane of X if X n H # 0 and X is contained in one of the

closed halfspaces of Rw+1 determined by H.

* Research supportée by the Alexander von Humboldt-Foundation
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In Theorem 1 we are not using the whole strength of the hypothesis of Ulam&apos;s

Problem, because the phrase &quot;every «-dimensional hyperplane that meets N in more
than one point&quot; almost implies that N is the boundary of a convex body. It will be
clear from the proof of Theorem 1 that every supporting hyperplane H of N has

H — N connected and, consequently, under this weak hypothesis, H n N is a single
point. Therefore, a better interprétation of Ulam&apos;s Problem is the following one
in which no assumption is made on the intersection of M with its supporting
hyperplanes. Furthermore, as it is suggested by the commentary of R. D. Mauldin
[13] to this problem, it would be interesting to consider intersections with hyperplanes

of lower dimensions.

ULAM&apos;S PROBLEM. Let X^k^n. If M is a compact (n + \)-manifold with
boundary in IR&quot;+ l for which every k-dimensional hyperplane H that meets the interior
of M has H ndM a (k — 1)-sphère, is M convex?

If iVis a closed, connected w-manifold topologically embedded in R&quot;* &apos;, let In (N)
dénote the bounded component of Un +1 — N. Our next theorem solves Ulam&apos;s

Problem.

THEOREM 2. Let [ &lt;. k &lt; n and let N be a closed, connected n-manifold
topologically embedded in Un+X. Suppose that for every k-dimensional hyperplane H
that meets In (N), H nN has the Cech-cohomology of a (k — 1)-sphère. Then N is the

boundary of a convex (n + \)-body.

In order to prove Theorem 2 it will be essential to characterize convex bodies in
terms of the cohomology of its sections. A compact set X will be called acyclic if for
every k ^ 0, the reduced Cech-cohomology group H\X, Z) is zéro. For example, if
I is an n -sphère topologically embedded in U&quot; + \ then I u In (Z) is acyclic. Our next
theorem characterizes convex sets in terms of acyclic sections.

THEOREM 3. Let l &lt;&gt; k £ n and let Kbea compact subset ofUn+x. Suppose that

for every k-dimensional hyperplane H that meets K,Hr\K is acyclic. Then K is convex.

Note that Theorem 3 generalizes Aumann&apos;s Theorems [1] and [2] (see commentary

of R. D. Mauldin to the problem 68 of the Scottish Book [13]) because for a

compact subset X of U2, X is acyclic if and only if X and IR2 — X are connected
(Aumann&apos;s définition of simple connectedness).

We may be also interested just in sections with horizontal hyperplanes. In this

direction we can obtain, using deep décomposition theorems of R. J. Daverman

[4], [6], the following theorem:
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THEOREM 4. Let N be a closed, connectée n-manifold topologically embedded

in Un + Leî R, W x {t} and Nt RtnN. Suppose that N satisfies one of the

following two properties:
(a) For every Ut which meets N in more thon a points Nt is a closed, connected

(n — \)-manifold with the property that nx(Nt) is abelian, n ^ 5.

(b) For every R, which meets N in more thon a point, N, is a closed, connected

(n — \)-manifold with the property that Nt is locally flat in N.
Then N is an n-sphère.

If in addition to (b), Nt is locally flat in Un n # 4, then N is a locally flat n-sphere.

For 3-dimensional versions of this theorem see [3] and [9].
We let Un dénote Euclidean w-space and we will identify IR* with

{(x,,..., xn) g Un/xk +, • • • xn 0}. Also, we let U\ and Un_ dénote

{(jc,, xn) g R7jcn ^ 0} and {(*,,..., xn) e Un/xn £ 0}, respectively. Further-
more, if jc g M&quot;, Bc(x) {y e Un/\\x — y\\ &lt;e} dénotes the open e-ball centered at jc.

For any space X and A &lt;= X, we use Int^, C\XA and BdxA to dénote, respectively,

the topological interior, closure and boundary of A in X. The subscript will
be omitted when the meaning is clear and in that case Â will also dénote the closure
of A in X.

In this paper we will use reduced Cech-homology [cohomology] and ail our
homomorphisms, unless otherwise stated, are induced by inclusions.

§1. The proof of Theorem 1

In this section we will always use reduced Cech-homology [cohomology] with
Z2-coefficients.

Our first task is to prove the following theorem:

THEOREM 1.1. Let U be a bounded, open subset ofUn+l. Suppose that:
(1) Hn_ {(U) -+Hn_ i(O) is an epimorphism.

[Hn&apos;l(Û) -? Hn-\U) is a monomorphism.]
(2) For every n-dimensional hyperplane H ofUn+l that meets U in more than a

point, Hn](HnBd V) Z2 (Le. H — Bd V has exactly two components).
Then 0 is convex.

The following two technical lemmas will be needed in the proof of Theorem 1.1.

LEMMA 1.2. Let U be as in Theorem 1.1 and let H be an n-dimensional

hyperplane that meets U. Then H — 0 is the unbounded component of H — Bd 0 and

consequently H —V is connected.
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Proof. Since Hn~ l(H nBd £7) Z2 then //- Bd £7 has exactly two compo-
nents, Wx and W2. Let Wx be the bounded component of H — Bd £7. If x e H nU
then x € Wu otherwise there would be an arc from x to a point in H — 0 which
does not intersect Bd £7. By exactly the same reason and since H nU ^ 0, every
élément of Wx belongs to £7 and also W2czH -0. Then W2 H-U.

LEMMA 1.3. Lef (7 fte as i« Theorem 1.1 anrf fef H be a supporting hyperplane

of £7. 77iert // n £7 consists of a single point.

Proof We will give the proof of the homology version. The cohomology version
has just the dual proof.

Suppose HnO H nBd £7 X is not a single point. Hence, Hn&quot;\X) Z2

and consequently H — X has exactly two components. Therefore, Hn_x(X) Z2.
Let HK be the bounded component of // - X and let Z ^u W. It is not difficult
to prove that Hn(X) Hn_x(X) =0 and that if W6^ then Hn_x{X)-+
Hn_x(% — {w}) is an isomorphism. Without loss of generality we may assume
that H Un, W contains the origin of IRn +1 and £7 c IR^+ For te (0, oo), let

F, £7u(iTx[f, oo)).

CLAIM. There is t0 e (0, oo) such that Hn_ X(X) -+Hn_ x(YtQ) is zéro.

If Hn_ X(X) —^-+ Hn_ ,(£7) is zéro, then there is nothing to prove. Therefore, let

y be the generator of Hn_ X(X) Z2 an^ suppose 0 # i+(y) e //„_ ,(£7). By hypo-
thesis, there is /? g Hn_ X(U) such that j\(P) i^(y), where j : U c+ £7 is the inclusion.

For every t e (0, oo), let Ut Un(Un x (f, oo)). Hence, there is t0 e (0, oo)

and /?,0 g Hn^x(UtQ) such that k+(fitQ) &amp; where A: : C//o-&gt; t/ is the inclusion.
Let us consider the following commutative diagram of homomorphisms induced

by inclusions:

Since A# is zéro and (jk)+(Pto) *&apos;?(?), we have that Hn-1W ~+Hn- \(Yt0) is zéro.
This concludes the proof of the claim.

Let us return to the proof of Lemma L3. Let Y Îkj YtQ. Our next purpose is

to prove that Hn(YtQ) -+Hn(Y) is an epimorphism.
Since the origin of M&quot; +l is not in £7, then there is 0 &lt; e &lt; t0 such that

Bc(0) c Rn+1 - £7. Let 0 &lt; tx &lt; e be such that (OT x {tx}) n U ^ 0. Hence, by
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Lemma 1.2, there is a proper embedding a : [0, oo) -&gt; Un x {/,} such that a(0)
(0, f,)eRBx(-oo, oo) R/î-fl, a([0, oo)) c Un+l - V and HT*1-a([0, oo)) is

contractible.
Let S be the «-sphère of radius yje2 +1\ centered at (0,/,) and let

V Bc(0)nUn. Hence, SnM&quot; is the boundary of F.

Let/:Rn+1-{(0, tx)}-&gt;S be given by

for every jc € Rn+ l — {(0, t{)}. Let us consider the following commutative diagram:

Hn(Y)-+Hn(Y,Y-V)
[&apos;¦ ¦!&apos;•

Since f:(Y, Y — V)-*(S9Sn Un++ l) is a homeomorphism of pairs and / : y -? S is

nullhomotopic because it factorizes through Rn+ — a([0, oo)), we hâve that
Hn(Y)-+Hn(Y9 y- F) is zéro and consequently that Hn(Y - V)-+Hn(Y) is an

epimorphism.
On the other hand, since the inclusion X — V c+ X — {0} is a homotopy

équivalence and Hn _ x (X) -+Hn_ i (X — {0}) is an isomorphism, the long exact

séquence of the pair (X — V, X) shows that Hn(X — F, X) 0 and, by excision, that
Hn(Y- F, y,o) =0. Thus, Hn(Yt0)^Hn(Y- V) is an epimorphism and hence so
is Hn(YtQ)^Hn(Y).

Let us consider the Mayer-Vietoris long exact séquence corresponding to the

décomposition Y= YtQuX:

Since i is an epimorphism and j is zéro, we hâve that Hn _ x (X) 0, which is a

contradiction. This concludes the proof of Lemma 1.3.

Proof of Theorem 1.1. Let cc(O) be the convex hull of O. We will start by
proving that Bd (cc(Û)) &lt;= Bd O. Let x € Bd (cc(O)) and let H be a supporting
hyperplane of cc(Û) through x. By Caratheodory&apos;s Theorem (see [10]), there is a

finite set F c H n V such that x belongs to the convex hull of F. Therefore, H is a

supporting hyperplane of V and hence, by Lemma 1.3, H n V {x}.
Let us now prove that cc(Û) c V. Suppose it is not. Let yx € cc(V) — £7,

y2e U cz Int (cc(Û)) and Hx an «-dimensional hyperplane through y{ and y2- Let
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&gt;&gt;3 g H y — cc(O). Note that yx and y2 are in différent components of H{ - Bd 0.
Furthermore, since Bd (cc(Û)) cz Bd (£7), y3 and y,, i 1, 2, are in différent components

of Hx — Bd D. Consequently, //, — Bd V has at least three components, which
is a contradiction. Then cc{Û) V which implies that V is convex.

Let X be a locally compact, metric space. We say that X is uniformly, homolog-
ically n-connected, ulcn, if given 0 ^ i &lt; «, any abelian group G and any open cover
a of JK, there is an open cover /? of X with the following property: For every V e P

there is ^ea such that V cz W and #,(F, G) -»/?J(H&apos;, G) is zéro. By Theorems
X.3.2 and X.6.10 of [15], we know that a bounded, open subset of Rw+1 is ulcn if
and only if each component of its boundary is a generalized manifold. Thus, if N
is a closed, connected «-dimensional manifold topologically embedded in IRW + 1,

In (N) is ulc&quot;.

As an immédiate corollary of Theorem 1.1 and Theorems X.5.12 and X.6.3 of
[15], we hâve the following theorem.

THEOREM 1.4. Let U be a bounded, ulc&quot;, open subset ofUn+l. Suppose that for
every n-dimensional hyperplane H that meets 0 in more than a point, H — Bd U has

exactly two components. Then U is convex.

Theorem 1 follows immediately from Theorem 1.4. Note that Theorem 1 also

holds when iV is a generalized manifold.

Proofof Theorem 4. Let us suppose that Nt # 0 if and only if t e [0, 1]. By the

proof of Lemma 1.3, Theorem X.5.12 and Theorem X.3.2 of [15], we hâve that No
and Nx consist each one of a single point. By Corollary 8.9 of [6] in case (a) and
Lemma 4.1 of [6] in case (b), we hâve that M is the suspension of Mt.
Consequently, M is an «-sphère and M, is a homotopy (n — 1)-sphère. Finally, the last

assertion follows from Corollary 5.6 of [4] and Theorem 1 of [5].

§2. Alexander Duality and acyclic sections

The main purpose of this section is to prove Theorem 3. In our proof we will
use Alexander Duality. Thus, for completeness, we summarize what we need in the

following:
For every compact subset X of M&quot;, any abelian group G and 0 ^ X ^ n — 1, there

is an isomorphism
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From this isomorphism we will use the following three facts (sec [8]):

(2.1) Let X9 Y c= Rn be such that X is compact, Y is a compact polyhedron and

Xn Y 0. Let i : X -? R&quot; - Y and j : Y -? Un - Z be the inclusions. Suppose

that

then

a g Image /? : Hk(Un - F, G) -+ HX(X, G).

(2.2) Let X be a compact subset of (Rw + Then the following diagram is

commutative (up to sign):

H\X n H&quot;, G) ^- H\X, G)

where 5 is the boundary homomorphism which arrives from the Mayer-
Vietoris long exact séquence of the décomposition of R&quot;+1 — X induced

by RwclRn+1 and i* is the homomorphism induced by the inclusion
i:XnMnc+X.

(2.3) In particular, if IcR&quot;, since ô : ftn_À(Rn+ l - X, G) -*#n_&gt;l~-1

(Un — X, G) is an isomorphism, we hâve that if D&quot;(y)=dp, for
y 6 fi\X, G) and fi g #„_,(R&quot;+

&apos; - X9 G), then Dl+\y) ±jï.

For the rest of this paper, unless otherwise stated, we will use reduced Cech-

homology [cohomology] with Z-coefficients.

Proof of Theorem 3. It is not difficult to see that it is enough to prove the
theorem for k =«. The proof is by induction on n. If n 1, compact, acyclic
subsets of 1-dimensional hyperplanes in R2 are closed intervais, so K is convex.
Suppose the theorem is true for n — 1. We will prove it for n.

We will start by proving that for every supporting hyperplane H o( K,H r\K
is convex. For that purpose it will be enough to prove that for every (n — 1)-
dimensional hyperplane F of H which meets K, F n K is acyclic.
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Let us assume without loss of generality that F M&quot; ~ \ H — Un and K c R^+!.
Let X {(x{,...,xn + l)€Klxn ;&gt;0}. Then XnUn~ l KnUn~ \ InR&quot;

£ n (R&quot;+ and if Ht {(xj,. xn +, € R&quot; + !/*« 4-1 txn} is an «-dimensional hy-
perplane through Un~ \ then XnHt KnHt for every f &gt; 0.

We will first prove that for every ir^ 0, ff&apos;(KnW+ -+Hl(Kr\Un-1) is zéro.
That is, we will prove that

Hl(X n M&quot;) -^ H&apos;(X n R&quot; - l)

is zéro.
Let a be a nonzero élément of ïil(XnUn). Let us look at the following

commutative diagram (up to sign):

//&apos;(X nU&quot;-1) 4-^- Hl{X n M&quot;)

H&apos;(XnU&quot;nHt)

1- !&apos;¦

where the first block is as in 2.2, where Ht is playing the rôle of Un and XnUn the
rôle of X and, where 7a c: IRn + 1

— (XnUn) is a compact polyhedron with the

property that there is p g ftn_XYJ such that k+(p) =/)f+1(a). Furthermore, let
d : ^-XK,) -&gt;//„„,_ ^F, n//,) be the boundary homomorphism which anses in
the Mayer-Vietoris long exact séquence from the décomposition of Ya induced by

Hence, j+id/i) ±Z)^(/*(a)) and consequently by 2.1,

*&apos;*(a) e Image A* : H\Ht - YJ-&gt; Hl(XnUn 1).

Since Yocn(XnUn) 0 then, for f&gt;0 sufficiently small, YOLn(XnHt)=0
and hence, A&quot; n IRrt ~ l c X n //, c //r - ya. Therefore, A factorizes through
H&apos;(XnHt) H&apos;(KnHt) 0, and hence /*(a) 0.

This proves that //&apos;(A:n(R&quot;+ ^//&apos;(AThR&quot;&quot;1) is zéro. Similarly, Hl(KnMn_)-+
H&apos;(Kr\Un&apos;]) is also zéro. Therefore, the Mayer-Vietoris long exact séquence of
the décomposition of KnUn induced by IRnl c Rn, together with the fact that
KnUn is acyclic, imply that Hl(KnUn~l) =0.

We hâve proved that HnK has acyclic (n - l)~dimensional sections. Hence, by

induction, HnK is convex for every supporting hyperplane H of K. By
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Caratheodory&apos;s Theorem, we hâve that Bd (cc(K)) c Bd K and arguing as in the

proof of Theorem 1.1 we conclude that K is convex. D

The next theorem, whose proof uses Alexander Duality, will be used in the

proof of Theorem 2.

THEOREM 2.4. Let U be a bounded, connectée, ulcn, open subset ofUn+K
Suppose that for every n-dimemional hyperplane H that meets U, HnÛ is acyclic.
Then U is convex.

Proof. Let F be a supporting hyperplane of V. By Theorem 3 and Theorem
X.6.3 of [14], it will be enough to prove that FnÛ is acyclic. Without loss of
generality we may assume that F R&quot; and 0 c Un+. For every / &gt; 0, let

y, t7u(Rnx[/, oo)).

Suppose H&apos;(ÛnR&quot;) is not zéro. Then, following the proof of the claim in
Lemma 1.3, but using Theorem X.5.9 of [15] instead of (1), it is possible to check,
by the naturality of the Universal Coefficient Theorem, that there is an abelian

Group G, t0 e (0, oo) and an élément y e Hl(Û n R&quot;, G) which is not in the image of
H&apos;(Yt0,G)^H&apos;(ÛnUn,G).

Clearly, #„_,_ ,(11&quot; - U, G) -&gt;#„_,_ ,(R&quot;_+
&apos; - U, G) sends Dnt(y) to zéro.

Note now that for every «-dimensional hyperplane H that meets U,

Hl(HnÛ,G)=0 (see Section 3 of [12]). Hence, #„_,_,(«&quot; - 0, G) -»
Hn_l_l(M&quot;++l — Û,G) sends D&quot;(y) to zéro because there are sufficiently small
numbers / &gt; 0 with the property that (IR&quot;x{/})n[/#0 and consequently with
the property that

#„-,- ,((R&quot; x (0) - V, G) ^&apos;((R&quot; x {&apos;}) n £7, G) 0.

Let us consider the following commutative diagram, where the vertical homomor-
phisms correspond, respectively, to the Mayer-Vietoris long exact séquence of the

décomposition of IRW+ x - YtQ and Un + l- (OnUn) induced by Un c R&quot; + &gt;:
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By the above, A(Z&gt;7(y)) 0. Thus, let Y c !RW+ l - YtQ be a compact polyhedron
such that dj+(P)=Dîiy) for some fi e RH_t{Y, G). Hence, dkj^p) Dnt{y) and
then, by 2.3, kj^(p) ±D^\y). Therefore, by 2.1, y is in the image of
Hl(Un + x - y, G) -&gt;#&apos;(£7nRM, G). This is a contradiction because ÛnUnciYtQci
U^x_-Y and 7 is not in the image of Hl(YtQ, G)-^Hl(DnUn, G). Consequently,
Jt&apos;(UnRn)=0 and hence, UnU&quot; is acyclic. This concludes the proof of
Theorem 2.4.

REMARK. If in Theorem 2.4, Û is also an ENR, then the following is a

simpler proof. Let F Un and £7 cz Rn+ as above. We will prove that On F is

acyclic. Let FI : (7 -? U be the projection on the last coordinate. Then, by 2.2 of [11]
or Corollary 3.3 of [12], 771 : n~l(IJ(U)) -&gt;77((7) is an uv™ map. Consequently, by
Theorems X.5.9 and X.6.3 of [15] and the Vietoris-Begle Theorem (see 3.4 of [11]),
ÛnF is uv°° and hence, again by 2.2 of [11], acyclic.

§3. The proof of Theorem 2

We will dérive Theorem 2 from the following theorem:

THEOREM 3.1. Let l &lt; k friand let Vbe a bounded, ulcn, open subset ofUn+x
such that Û is an ENR. Suppose that for every k-dimensional hyperplane H that
meets U, HnU is connected and HnU is acyclic. Then U is convex.

Proof. Let F be a (k + l)-dimensional hyperplane that meets U. Then, it is easy
to see that F n U is connected. Consequently, by Theorem 2.4, it will be enough to

prove that F n V is acyclic. Without loss of generality we may assume that

r {(x1,...,xn+1)er+l|x1 x2 - xn_, o}.
Let p : U -&gt;Mn~k be the projection on the fîrst (n — &amp;)-coordinates. We would

like to show that Hl(p ~ l(0)) 0, for every / &gt; 0. Since Û is an ENR, by 2.2 of [ 11]

or Corollary 3.3 of [12], it will be enough to prove that given e &gt; 0 there is S &gt; 0

such that

is zéro, for every 1 &gt; 0. By Theorem X.5.9 of [15], it will be enough to prove that
for every i ^ 0 and c &gt; 0 sufficiently small,

is zéro.
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Let 77 : R&quot; +l -* Un~k + x be the projection of the first (n - k + l)-coordinates.
Note that fl~l(y) is a /r-dimensional hyperplane and 77(F) is the line

We will first prove that /!((/) is convex. Let ;c, y e 77(£/) be any two points and
let x0, y0 € (7 be such that 77(x0) x and FI(y0) j&gt;. Let F, be the (k + l)-dimen-
sional hyperplane which contains {jco}u 77-*(&gt;&gt;). Hence, /7(r,) is the line in
r» - * +! which contains x and y. Furthermore, since F n U is connected, the closed
interval with endpoints x and y is contained in WJJ). This proves that 77((7) is

convex.
Since TKJJ) 77(É7), then 77(£7) is convex and Ln77(*7) is a closed interval

whose relative interior is L n T1{U). Let rc : R&quot; ~ h + x -? IRn &quot; * be the projection on the
first (h — fc)-coordinates. Note that n~x(Q) L. Hence, for e &gt;0 sufficiently small,
W n~l(B€(0))n7I((7) is contractible.

Let n\:II-l(W)n0-+lV be the restriction of n to H-^^nt;.
Clearly, 77 ^W^) n U is an ENR and 771 is a proper map whose point inverses are

acyclic. Then, by 2.1 and 2.2 of [11] or Corollary 3.3 of [12], 77| is a uv°° map and

consequently, by the Vietoris-Begle Theorem (see 3.4 of [11]), Ë^Tl^W) nO)
0, for every / ^ 0.

Since p~l(Bc(0)) nU cnl(W)n0 a p~~l(Be(Q)), we have that

is zéro. This concludes the proof of Theorem 3.1.

Proof of Theorem 2. By theorem X.3.2 of [15], In(iV) is a bounded, ulcn9

open subset of Un + l. Furthermore, In (N) N u In (N) is an ENR. Let H be a
A&gt;dimensional hyperplane that meets In(A^). Therefore, Hkl(H nN, Z2) =Z2&gt;

which implies that H — N has exactly two components. Let W be the bounded

component of H — N. Since Hnln (N) ^ 0, it is easy to see, as in the proof of
Lemma 1.2, that Hnln(N) W and consequently that Hnln(N) is connected.

Furthermore, using Mayer-Vietoris, it is easy to check that Hnln(N)
Hc\(NkjIn (N)) =(HnN)vWi$ acyclic. Then, Theorem 3.1 implies that In (AT)

is convex and consequently that N is the boundary of a convex (n -h l)-body.

REMARK. Note that Theorem 2, k n, holds when AT is a generalized
manifold and Theorem 2, 1 ^ k &lt; n, holds when N is a generalized manifold which
is also an ENR.
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