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A relationship between volume, injectivity radius, and eigenvalues

BURTON RANDOL

Suppose M is a compact Riemannian manifold and C a measurable subset of M
having measure A. Expand the indicator function x of C in a Fourier séries in
orthonormal eigenfunctions of the Laplace opérator to get (in L2)

x(y)= Z

By the Parseval theorem,

\ak\\

and since a0 A/y/V9 where V vol (M), this implies that

where the prime on a summation sign means that the term corresponding to index
0 is omitted. This last identity is the core of Siegel&apos;s quantitative version of the
Minkowski theorem for a convex symmetric body B in Rn, in which the rôle of C
is played by \B [7].

Equation (1) becomes more précise if we know something about the Fourier
coefficients. We will illustrate this when M is hyperbolic and of dimension n, which
we will henceforth assume to be the case. Take C to be a bail about a point x in
M of radius equal to the injectivity radius R of M. It then follows from the Selberg

pretrace formula (cf. [1], Chapter 11), that the Fourier coefficients are given
by ak h(rk)(pk(x), where rk is either of the two roots of ô2 + r2 Xk. Hère
S j(n — 1), Xk is the &amp;th eigenvalue of the Laplace operator, and the even function
h is the Selberg transform of the point-pair invariant which is 1 if its two arguments
are within R of each other, and 0 otherwise (cf. [1], Chapter 11).
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Equation (1) thus becomes

where the summation is over one of the two rk&apos;s corresponding to each Xk. For
definiteness, we will suppose that the sum is taken over the rk&quot;s which lie on the
union of the non-negative reals with the imaginary segment from 0 to ÔL Note that
the so-called small eigenvalues of M, i.e., those in (0, S2), correspond to r*&apos;s on the

open imaginary segment. If kk =&lt;52 is an eigenvalue of multiplicity m, the
corresponding rk 0 is counted m times.

Integrate now over x, to get

from which we dérive

THEOREM 1.

In order to apply Theorem 1, we will need to calculate h(r) for our particular
point-pair invariant. Now by [1], équation (5), page 275,

ÇR ÇR
h{r) 2œn _ 2 cos ru du (z(p) — z(u))â~ l sinh p dp,

JO Jm

where

z(x) 2 sinh ^ 2(cosh x) - 2,

and œn _ 2 is the area of the (n - 2)-sphere in Rn ](œ0 2).

Le.,

J*R
ÇR

cos ru du (cosh p - cosh u)6 ~ l sinh p dp,
0 Ju
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or

ÇR
h(r) =ô~l2ôcon_2 (cosh R - cosh u)6 cos ru du. (2)

Jo

Note that h(r) is positive and decreasing along the segment from Si to 0, so that
the values of h(r) along this segment dominate A(O), which is given by

ÇR
ô ~l2ô(Dn_2 (cosh R - cosh u)s du

Jo
h(0)

Jo

H0^)3du.
Now A, the volume of the bail of radius R9 is given by

ÇR
sinh&quot; - udu,

Jo

which is asymptotic to

(n-\)2n-1

for large R. On the other hand, it follows easily from our last expression for h(0),
that à(0) is positive for R &gt; 0, and that |A(0)|2 is asymptotic to

for large R. It follows that A &quot;^(O)!2 ^ c,(«, i?)i^2, where c^w, R) is positive and

asymptotic to

&lt;*(«)=;

for large R.

This has an interesting conséquence, since it follows from Theorem 1 that
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where the sum is over the small eigenvalues. On the other hand, we hâve seen that
for such an eigenvalue, \h(rk)\2 &gt; \h(0)\2, so if we dénote by N(M) the number of
small eigenvalues for M, we conclude that

A N(M)R2
\&gt;- + cl(n,R)

K

y*

which implies the following theorem, which is of interest for large R:

THEOREM 2.

where cc(n9 R) is positive and asymptotic to \/c2(n) for large R.

We conclude with another application of Theorem 1. Recall that a0, the zeroth
Fourier coefficient of #, is equal to A/^/v, and that &lt;po(y) l/y/v. Since

a0 h(ro)(po(y)9 it follows immediately that h(r0) h(ôi) A. Thus, if kk is close to
0, or equivalently, if rk is close to Si, it will be the case that h(rk) ~ A. In more
détail, suppose e e (0,1), and that rk &lt;57, where |&lt;5 - S&apos;\ &lt; e/R.

By (2),

ÇR
A - h(ô&apos;ï) S~l2ôcon_2 (cosh R - cosh «)&lt;5(cosh ou - cosh ô&apos;u) du,

Jo

and by the mean value theorem this last expression is equal to

Ô ~l2ôcon_2 J (cosh R - cosh ^(sinh w(u))(ô - ô&apos;)u du,

where w(u) is between b&apos;u and ou.

This is dominated by

ÇR
eô~l2sœn_2 (cosh R - cosh w)&lt;5(cosh ou) du eA.

ÇR

,_2 (cosh/? —
Jo

Le.,

\A -h(ô&apos;i)\&lt;cA,
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or

A

from which we easily deduce that

Suppose now that M has se(M) very small eigenvalues in the above sensé, i.e.,
eigenvalues for which \rk — ôi\ &lt; ejR.

By Theorem 1,

where the sum is taken over the s€(M) very small eigenvalues of M.
We conclude from this that

which implies the following theorem which is of interest for large R:

THEOREM 3.

COROLLARY.

1 V
l+s£(M)&lt;

The corollary has an interesting conséquence in two dimensions. Suppose M is

of genus g, and sc(M) - 2g - 3. (We remark that such examples can be produced,
and that for a given genus, if 6 is small enough this value of sc(M) is maximal, since

it is known [2, 3, 6] that there exists e(g) &gt; 0 such that for e &lt; e(g), sc(m) ^ 2g — 3.

Additionally, for a given genus, s£(M) 2g — 3 for e sufficiently small implies that
there are no other eigenvalues kk in (0, S2) [5].)
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By the corollary, bearing in mind that V 4n(g - 1),

2g-2&lt; {\-e)2 A

or

2b
A &lt;

Since A 2;r(cosh R — 1), we conclude that if 2g — 3 very small eigenvalues are

présent, the mjectivity radius R of M must be less than a quantity which for small
e is near cosh&quot;1 2% 1.317. Note that for fixed e, this estimate on the injectivity
radius is uniform in the genus. In gênerai, in view of the corollary, in any dimension
an inequality of the form se(M) ^ cV imposes a computable upper bound on R.

Similarly, in any dimension an inequality of the form V/A ^ c imposes a

computable upper bound on sc(M). Finally, since ît is known that for fixed genus in two
dimensions, ^2g-3 cannot tend to zéro unless R tends to zéro [2, 3, 6], results like
the last one dérive interest for small e from the fact that they are uniform in the

genus.
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