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A relationship between volume, injectivity radius, and eigenvalues

BURTON RANDOL

Suppose M is a compact Riemannian manifold and C a measurable subset of M
having measure 4. Expand the indicator function y of C in a Fourier series in
orthonormal eigenfunctions of the Laplace operator to get (in L?)

[e o]

() =Y aey).

k=0

By the Parseval theorem,

4 =J WP dy =% |aP,
M k=0

and since g, = A/\/I_/, where V = vol (M), this implies that

A 1 o
1=,—,+°Ajz a.|?, (D

where the prime on a summation sign means that the term corresponding to index
0 is omitted. This last identity is the core of Siegel’s quantitative version of the
Minkowski theorem for a convex symmetric body B in R”, in which the role of C
is played by 1B [7].

Equation (1) becomes more precise if we know something about the Fourier
coefficients. We will illustrate this when M is hyperbolic and of dimension n, which
we will henceforth assume to be the case. Take C to be a ball about a point x in
M of radius equal to the injectivity radius R of M. It then follows from the Selberg
pretrace formula -(cf. [1], Chapter 11), that the Fourier coefficients are given
by a, = h(r,)@.(x), where r, is either of the two roots of 82+ r2=4,. Here
d =1(n — 1), 4, is the kth eigenvalue of the Laplace operator, and the even function
h is the Selberg transform of the point-pair invariant which is 1 if its two arguments
are within R of each other, and 0 otherwise (cf. [1], Chapter 11).
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Equation (1) thus becomes

A4 1
=5+ X hrdPled P

where the summation is over one of the two r,’s corresponding to each A,. For
definiteness, we will suppose that the sum is taken over the r,’s which lie on the
union of the non-negative reals with the imaginary segment from 0 to di. Note that
the so-called small eigenvalues of M, i.e., those in (0, 62), correspond to r,’s on the
open imaginary segment. If 4, =62 is an eigenvalue of multiplicity m, the corre-
sponding r, = 0 is counted m times.

Integrate now over x, to get

1
V=A +;Z lh(re)|%,

from which we derive

THEOREM 1.
1=2 4L S )P
V' AV k-

In order to apply Theorem 1, we will need to calculate A(r) for our particular
point-pair invariant. Now by [1], equation (5), page 275,

R R
h(r) =2w, _, f cos ru du J‘ (z(p) — z(u))® ~ ! sinh p dp,
0 u

where
x 2
z(x) = (2 sinh —2—) = 2(cosh x) — 2,

and w, _, is the area of the (n — 2)-sphere in R"~ (w, = 2).
Ie.,

R

h(r) = 26(,0"_2]‘

0

R
cos ru du f (cosh p — cosh u)® ~ ! sinh p dp,
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or

R
h(r) =6 " "2°w,_, J‘ (cosh R — cosh u)® cos ru du. 2)
0

Note that A(r) is positive and decreasing along the segment from i to 0, so that
the values of A(r) along this segment dominate A(0), which is given by

R
h(0) =6 " "2°w, _, J. (cosh R — cosh u)? du
0

1 cosh Ru\?
— du.
(1 cosh R ) “

=0 "'2°w,_ ,R cosh’ R f

0

Now A, the volume of the ball of radius R, is given by

R
w,,_lj sinh” ~ ! u du,

0

which is asymptotic to

W,y e~ DR

(n—12n!

for large R. On the other hand, it follows easily from our last expression for 4(0),
that A(0) is positive for R >0, and that |h(0)|* is asymptotic to

S —2w§~ sz e~ DR

for large R. It follows that 4 ~'|A(0)]*> 2 ¢,(n, R)R?, where c,(n, R) is positive and
asymptotic to

n+1,_.2
2 Wy _2

L R v

for large R.
This has an interesting consequence, since it follows from Theorem 1 that

1 n
>4 4 Ly eop (3)
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where the sum is over the small eigenvalues. On the other hand, we have seen that

for such an eigenvalue, |h(r,)|* > |h(0)|%, so if we denote by N(M) the number of
small eigenvalues for M, we conclude that

A N(M)R?
1 >T/‘+cl(n, R)_L?_‘_,

which implies the following theorem, which is of interest for large R:
THEOREM 2.

NM) <aln, B) =,

where a(n, R) is positive and asymptotic to 1/c,(n) for large R.

We conclude with another application of Theorem 1. Recall that a,, the zeroth
Fourier coefficient of y, is equal to A/ﬁ, and that ¢@,(y) =1 /ﬁ. Since
ap = h(ry)ee( ), it follows immediately that h(r,) = h(6i) = A. Thus, if A, is close to
0, or equivalently, if r, is close to di, it will be the case that h(r,) ~ A. In more
detail, suppose € € (0, 1), and that r, = 8’i, where |6 — 8’| <¢/R.

By (2),

R
A—h('i)=6"w,_, j (cosh R — cosh u)®(cosh du — cosh 6’u) du,
0
and by the mean value theorem this last expression is equal to
R
6 2%, _, J (cosh R — cosh u)’(sinh w(u))(6 — 6")u du,
0

where w(u) is between 6'u and du.
This is dominated by

R
2w, , J (cosh R — cosh u)°(cosh du) du = €A.
0

lLe.,

|4 — h(5'i)| < €A,
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or

'l—fl(—f}g <Eg,

from which we easily deduce that

]h(é i)[?

y > A(1 —¢)2

Suppose now that M has s,(M) very small eigenvalues in the above sense, i.e.,
eigenvalues for which |r, — di| <¢/R.
By Theorem 1,

A "
1>2 0 Ly e,

where the sum is taken over the s,(M) very small eigenvalues of M.
We conclude from this that

v
1+(1-s(M) <,

which implies the following theorem which is of interest for large R:

THEOREM 3.
1 1 vV
T —6)2+S€(M) <(l —6)22'
COROLLARY.
| I 4
1 +5s.(M) <(1 —6)22.

The corollary has an interesting consequence in two dimensions. Suppose M is
of genus g, and 5.(M) = 2g — 3. (We remark that such examples can be produced,
and that for a given genus, if ¢ is small enough this value of s,.(M) is maximal, since
it is known [2, 3, 6] that there exists ¢(g) > 0 such that for ¢ < e(g), s.(m) < 2g — 3.
Additionally, for a given genus, s, (M) = 2g — 3 for ¢ sufficiently small implies that
there are no other eigenvalues 4, in (0, 6%) [5].)
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By the corollary, bearing in mind that V = 4n(g — 1),

1 4n(g—1)
(1-¢2 4 °

2g —-2<

or

2n
A< (-———————1 e
Since A = 2n(cosh R — 1), we conclude that if 2¢ — 3 very small eigenvalues are
present, the injectivity radius R of M must be less than a quantity which for small
¢ is near cosh™'2a 1.317. Note that for fixed ¢, this estimate on the injectivity
radius is uniform in the genus. In general, in view of the corollary, in any dimension
an inequality of the form s, (M) = cV imposes a computable upper bound on R.
Similarly, in any dimension an inequality of the form V/A4 < ¢ imposes a com-
putable upper bound on s,(M). Finally, since it is known that for fixed genus in two
dimensions, 4,, 3 cannot tend to zero unless R tends to zero [2, 3, 6], results like
the last one derive interest for small ¢ from the fact that they are uniform in the
genus.
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